
Worcester Polytechnic Institute
Digital WPI

Masters Theses (All Theses, All Years) Electronic Theses and Dissertations

2009-05-05

A Centralized Energy Management System for
Wireless Sensor Networks
Richard William Skowyra
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/etd-theses

This thesis is brought to you for free and open access by Digital WPI. It has been accepted for inclusion in Masters Theses (All Theses, All Years) by an
authorized administrator of Digital WPI. For more information, please contact wpi-etd@wpi.edu.

Repository Citation
Skowyra, Richard William, "A Centralized Energy Management System for Wireless Sensor Networks" (2009). Masters Theses (All Theses,
All Years). 746.
https://digitalcommons.wpi.edu/etd-theses/746

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212999490?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/etd-theses/746?utm_source=digitalcommons.wpi.edu%2Fetd-theses%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/
mailto:wpi-etd@wpi.edu


 1 

A CENTRALIZED ENERGY MANAGEMENT SYSTEM FOR WIRELESS 

SENSOR NETWORKS 

 

by 

 

Richard William Skowyra  

 

A Thesis 

 

Submitted to the Faculty 

 

of the 

 

WORCESTER POLYTECHNIC INSTITUTE 

 

in partial fulfillment of the requirements for the 

 

Degree of Master of Science 

 

in 

 

Computer Science 

 

May 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advisor: _____________________ 

Department Head: _____________ 

 



 2 

 

Abstract 
 This document presents the Centralized Energy Management System (CEMS), a 

dynamic fault-tolerant reclustering protocol for wireless sensor networks. CEMS 

reconfigures a homogeneous network both periodically and in response to critical events 

(e.g. cluster head death). A global TDMA schedule prevents costly retransmissions due to 

collision, and a genetic algorithm running on the base station computes cluster 

assignments in concert with a head selection algorithm.  

 CEMS’ performance is compared to the LEACH-C protocol in both normal and 

failure-prone conditions, with an emphasis on each protocol’s ability to recover from 

unexpected loss of cluster heads. 



 3 

Table of Contents 

1 INTRODUCTION............................................................................................................................... 5 

2 RELATED WORK ............................................................................................................................. 7 

3 BACKGROUND ................................................................................................................................. 8 

3.1 CHARACTERISTICS OF A WIRELESS SENSOR NETWORK .................................................................... 9 
3.2 COMPONENTS OF A WIRELESS SENSOR NETWORK ...........................................................................10 

3.2.1 Hardware ...............................................................................................................................10 
3.2.1.1 Sensing Unit .................................................................................................................................... 11 
3.2.1.2 Processing Unit ............................................................................................................................... 11 
3.2.1.3 Radio Unit ....................................................................................................................................... 12 

3.2.2 Software .................................................................................................................................12 
3.2.2.1 Operating Systems........................................................................................................................... 13 

3.2.2.1.1 TinyOS ................................................................................................................................. 13 
3.3 WSN SIMULATION ...........................................................................................................................15 

3.3.1 GloMoSim ..............................................................................................................................15 
3.3.2 ns-2 ........................................................................................................................................16 
3.3.3 Omnet++ ...............................................................................................................................16 
3.3.4 TOSSIM .................................................................................................................................16 

3.4 POWER AS A LIMITING FACTOR ........................................................................................................17 
3.4.1 Radio Energy Dissipation ......................................................................................................18 

3.4.1.1 Free Space Model ............................................................................................................................ 18 
3.4.1.2 Two-Ray Ground Reflection Model ................................................................................................ 19 
3.4.1.3 Shadow Fading Model..................................................................................................................... 20 
3.4.1.4 Multipath Fading ............................................................................................................................. 21 

3.4.2 Energy Minimization .............................................................................................................21 
3.4.2.1 MAC-Layer Protocols ..................................................................................................................... 21 

3.4.2.1.1 Crankshaft ............................................................................................................................. 22 
3.4.2.2 Clustering Protocols ........................................................................................................................ 23 

3.4.2.2.1 LEACH ................................................................................................................................. 23 

4 THE CENTRALIZED ENERGY MANAGEMENT SYSTEM (CEMS) .....................................24 

4.1 CLUSTERING PHASE .........................................................................................................................25 
4.1.1 Cluster Formation .................................................................................................................26 

4.1.1.1 Configuration .................................................................................................................................. 27 
4.1.1.2 Scoring Problems ............................................................................................................................ 28 

4.1.1.2.1 K-Means Algorithm .............................................................................................................. 28 
4.1.2 Head Selection .......................................................................................................................28 
4.1.3 Sensor Notification ................................................................................................................29 

4.2 STEADY-STATE PHASE .....................................................................................................................29 
4.2.1 TDMA Scheduling ..................................................................................................................30 

4.2.1.1 Dynamic and Static Schedules ........................................................................................................ 31 
4.2.1.2 Scalability and Delay ...................................................................................................................... 32 
4.2.1.3 Collision Avoidance ........................................................................................................................ 32 
4.2.1.4 Synchronization ............................................................................................................................... 33 

4.2.2 Quick Recovery ......................................................................................................................33 
4.2.2.1 Coverage Loss ................................................................................................................................. 34 
4.2.2.2 Failure Detection and Emergency Reclustering .............................................................................. 35 

4.3 CONFIGURATION ..............................................................................................................................35 
4.3.1 TDMA Schedule Length .........................................................................................................36 
4.3.2 Reclustering Period ...............................................................................................................36 
4.3.3 Cluster Size ............................................................................................................................38 
4.3.4 Radio Model ..........................................................................................................................38 

5 SIMULATIONS .................................................................................................................................39 



 4 

5.1 SOFTWARE TOOLS ...........................................................................................................................40 
5.1.1 Omnet++ and the Mobility Framework ................................................................................40 
5.1.2 LEACH-C Implementation .....................................................................................................41 

5.2 ASSUMPTIONS ..................................................................................................................................42 
5.3 POISSON DEATH MODEL ..................................................................................................................43 
5.4 FIELD DESCRIPTION .........................................................................................................................44 

6 EXPERIMENTS ................................................................................................................................45 

6.1 NETWORK LIFETIME ........................................................................................................................45 
6.2 COVERAGE .......................................................................................................................................48 
6.3 SINK LOCATION ...............................................................................................................................50 
6.4 CLUSTERING ALGORITHM COMPARISON ..........................................................................................52 

7 CONCLUSIONS ................................................................................................................................53 

8 FUTURE WORK ...............................................................................................................................54 

9 REFERENCES ...................................................................................................................................56 

10 APPENDIX I: PARAMETER SETTINGS......................................................................................59 

 

Table of Figures 
Figure 1 - Free Space Model _____________________________________________________________ 18 
Figure 2 - Two-Ray Ground Reflection _____________________________________________________ 19 
Figure 3 - WSN Clustering _______________________________________________________________ 23 
Figure 4- CEMS Overview _______________________________________________________________ 24 
Figure 5 - Genome Representation _________________________________________________________ 26 
Figure 6 - Objective Function _____________________________________________________________ 26 
Figure 7 - State-State Phase ______________________________________________________________ 30 
Figure 8 - TDMA Schedule _______________________________________________________________ 30 
Figure 9 - Hidden Terminals _____________________________________________________________ 33 
Figure 10 - 20 Hour Reclustering Period ____________________________________________________ 37 
Figure 11 - 100 Hour Reclustering Period ___________________________________________________ 37 
Figure 12- Reclustering Period and Network Lifetimes _________________________________________ 38 
Figure 13 - Sensor Distribution ___________________________________________________________ 44 
Figure 14 - Network Lifetime _____________________________________________________________ 45 
Figure 15 - Network Lifetime = 10% of the original population __________________________________ 46 
Figure 16 - Network Lifetime = 25% of the original population __________________________________ 47 
Figure 17 - Network Lifetime = 50% of the original population __________________________________ 47 
Figure 18 - Network Coverage ____________________________________________________________ 48 
Figure 19 – CEMS Algorithm with Varied Sink Location _______________________________________ 50 
Figure 20 - Sink Location and Sensor Death _________________________________________________ 51 
Figure 21 - Clustering Algorithm Comparison ________________________________________________ 52 
 



 5 

 

1  Introduction 
 Wireless sensor networks (WSNs) are increasingly deployed in a variety of 

environments and applications, ranging from the monitoring of medical conditions inside 

the human body to the reporting of mechanical stresses in buildings and bridges. In these 

and many other WSN applications the sensors cannot be recharged once placed, making 

energy expenditure the primary limiting factor in overall network lifetime. 

 One standard WSN configuration consists of a set of sensors that communicate to the 

external world via a base station, or sink, that has no power constraints. The sensors 

number in the hundreds or even thousands, and are primarily constrained by a limited 

battery supply of available energy.  While the sink is modeled as a single node, it may 

provide access to other systems upstream such as distributed processing facilities or 

databases devoted to consolidating and cataloging the reported WSN data.  

 Since the primary form of energy dissipation for wireless sensors is in radio 

transmission and reception [1], a variety of network modifications have been proposed to 

limit radio use as much as possible. Some of these approaches focus on the MAC layer to 

minimize transmission costs (see Section 3.4.2.1), while other techniques operate on the 

network layer and attempt to minimize the range and duration of transmissions (see 

Section 3.4.2.2).  Sensor clustering at the network layer has been shown to be a scalable 

method of reducing energy dissipation. Rather than individual sensor nodes transmitting 

their data to the base station, they instead transmit to another sensor designated as the local 

cluster head. The cluster head then sends aggregated (and possibly compressed) sensor 

information to the sink as a single transmission.  Note that clustering makes some nodes 

more important than others, while increasing the energy dissipation of those same nodes. 

 This thesis implements a novel reclustering technique that minimizes both energy 

expenditure and loss of network coverage due to the failure of cluster heads. CEMS 

(Centralized Energy Management System) moves almost all processing not directly related 

to data collection off of the energy-limited sensor nodes and onto the sink. Furthermore, 

the base station maintains a record of expected transmission times from the network’s 



 6 

cluster heads, based on their location on the global TDMA
1
 schedule. If a cluster head 

consistently fails to transmit during its expected window of time, the sink triggers an 

emergency reclustering to restore network coverage. Two assumptions governed the 

creation of this system: 

 The optimal clustering configuration changes over time as the residual energy of 

cluster heads decreases 

 Any node, including a cluster head, has a non-zero probability of failing at a given 

time due to random accidents. 

The sink maintains state information on each node in the network consisting of its 

location and its projected amount of residual energy. The assignment of nodes to cluster 

heads is calculated using a genetic algorithm (GA) which includes these factors when 

calculating the fitness of a legal potential clustering solution. The number of cluster heads, 

determined a priori, is an input parameter to the system. 

CEMS was compared to the LEACH-C (See Section 5.1.2) protocol in a network 

configuration of one hundred nodes scattered over a 25m square field. While LEACH-C 

networks last slightly longer than CEMS networks under normal conditions, the latter 

outperforms the former when sensor failure rate is high due to random accidents. This can 

be ameliorated by using k-means clustering algorithm instead of a genetic algorithm, 

which was found to extend network lifetime by approximately 8%. Furthermore, CEMS 

restores coverage after cluster head death significantly faster than LEACH-C.  

Before these experimental results are presented, related work is presented in Section 2. 

Background on wireless sensor networks, the simulation environments available for WSN 

research, and the role of energy dissipation in their design is presented in Section 3. CEMS 

itself is explained in detail in Section 4, and our experimental setup is presented in Section 

5. Results are given and analyzed in Section 6.Conclusions and future work are detailed in 

Sections 7 and 8, respectively.  

                                                 
1
 TDMA, or Time Division Multiple Access, divides a period of time into slots. Each member of a TDMA 

network is assigned one time slot, during which it has sole access to the medium. Once the final slot’s time 

interval expires, the schedule recycles to the first slot and the order repeats. 



 7 

2 Related Work 
Many protocols and algorithms to facilitate clustering in wireless sensor networks have 

been proposed in the past. LEACH, a self-organizing and adaptive protocol, is described 

by Heinzelman et al in [1]. Their work is directed at minimizing energy dissipation at the 

sensor level. LEACH takes a more distributed approach than CEMS and assumes that each 

sensor participates in an election process with its neighbors to determine a cluster head. 

This equates to a random distribution of cluster heads that, over time, equally distributes 

energy dissipation throughout the cluster. Determination of the optimal number of cluster 

heads is done a priori. A more in-depth description of this protocol is presented in Section 

3.4.2.2.1. 

A centralized version of LEACH, dubbed LEACH-C, is presented in [2] and explained 

below in Section 5.1.2. While the steady-state phases of both protocols are identical, 

LEACH-C uses a simulated annealing algorithm
2
 running on the base station to calculate 

cluster assignments. This replaces the probabilistic self-election scheme used in LEACH.   

Voigt et al.[3] extend LEACH-C to include solar-aware functionality. Sensors which 

are currently being charged via solar panels are more likely to be assigned the role of 

cluster head, and current cluster heads which cease to be charged may hand off their 

responsibilities to a new head mid-round.   

Manjeshwar and Agrawal take a different approach than LEACH and its successors in 

[4]. Their TEEN protocol regulates both cluster assignments (using a round-robin cluster 

head selection scheme) and sensor reporting thresholds via user-configurable parameters to 

simultaneously minimize transmission cost and the overall number of transmissions. Super 

clusters (clusters of cluster heads) are used to extend the network’s area beyond that of an 

individual sensor’s transmission limit,.  

A number of recent papers have been published which investigate the efficacy of 

genetic algorithms as tools to compute cluster assignments. In [5], Tang et al. propose 

using a genetic algorithm to determine a priori the optimal cycling of cluster heads in an 

implanted biosensor network. Their intent is not to ensure optimal energy usage, but 

instead to minimize heat dissipation into surrounding tissues over time. Thus, their fitness 



 8 

function includes a leadership history for each node, as well as the projected temperature 

increase that would result from its status as cluster head. The GA is only intended to be run 

once, with the resulting sequence repeated indefinitely.  

Taking a more generalized approach, Mudundi and Ali [6] propose a genetic algorithm 

designed to find well-balanced clustering solutions for a wireless sensor network. Their 

primary fitness parameters are distance from the base station to the sensors in a cluster, the 

distance from cluster nodes to the cluster head, and transmission costs, and the number of 

cluster heads selected. The algorithm is reported to converge in 8 to 10 iterations, given 

100 nodes.  

Hussain and Matin [7] employ a genetic algorithm in one version of their Hierarchical 

Cluster-based Routing (HCR) protocol. Fitness is determined by node density, distances 

between sensors, cluster heads and the sink, transmission costs, and the number of 

expected transmissions that round, among other factors.  

Despite the amount of work put into protocols designed to minimize WSN energy 

expenditures, little research has been conducted on the robustness of these systems in real-

world conditions. While a simulation environment excels at establishing baseline 

performance metrics, sensors are often subject to a variety of field conditions which are not 

modeled during simulation. Specifically, a number of accidents, from deliberate vandalism 

to storm damage, may disable or remove sensors from the field. This affects not only the 

coverage of individual sensors, but may eliminate the routing path of an entire cluster if a 

cluster head is rendered inoperative. The ability to rapidly reintegrate sensors which have 

been removed from a network due to cluster head failure is not a design point in any of the 

above protocols, but could prove valuable in real-world conditions.  

3 Background 
Wireless sensor networks have been an active topic of military research and 

development since the 1980s, with a number of DARPA projects funding their 

development. The Distributed Sensor Network project [12], initiated in 1980 and spanning 

a range of topics from signal processing to distributed computing and tracking 

                                                                                                                                                    
2
 Simulated annealing is a Monte Carlo method that probabilistically replaces the current solution with a 

solution nearby in the search space, based on the difference between their scores and a global constraint 

which is gradually tightened each iteration. 



 9 

technologies, was the first consolidated effort to develop a wireless sensor platform. Due to 

the state of technological miniaturization during the 1980s, however, these early sensor 

networks generally used large, powered sensors deployed in a hierarchical network to 

share data among a number of sites. The U.S. Navy’s Cooperative Engagement Capability 

[13], for example, combines the sensor measurements of a number of independent ships to 

form a coherent description of airspace over a given region. This is accomplished by 

creating a shared database of sensor data from a geographically distributed network of 

mobile, ship-based sensors.  

The modern incarnation of WSNs as distributed networks of small, low-cost and low-

power sensors did not arise until the early 21
st
 century, when technological advances in 

MEMS (Micro-Electromechanical Systems) allowed for cheap mass production of wireless 

sensors. This spurred an ongoing research effort in the academic and commercial 

communities to both improve the capabilities of WSNs and extend their applications to an 

ever-widening array of situations. Today wireless sensor networks exist in industries 

disparate as healthcare, civil engineering, agriculture, industrial automation, traffic control, 

and security surveillance.  

3.1 Characteristics of a Wireless Sensor Network 

While WSNs have much in common with more traditional ad-hoc and infrastructure-

mode wireless networks, they differ in several important ways. A WSN generally has a 

large number of sensors scattered over an area  and a single node referred to as the base 

station, or sink, which is responsible for receiving data transmitted by sensors in the field. 

It bears some similarity to an access point in an infrastructure-mode network. The sink 

may or may not be located inside of the space being sensed, and is almost always 

considered to be a powered node operating without energy constraints. Depending on the 

application and configuration of the WSN, the base station may have additional 

responsibilities such as coordinating network activities, processing or formatting incoming 

data, or working with an upstream data analysis system to provide data matching any query 

requests that it receives.  

In contrast to the single base station, WSNs may have hundreds or even thousands of 

sensors operating in the field. These low-power devices are often battery powered and 

sometimes include solar panels or other alternative energy sources. During their limited 



 10 

lifespan (defined as the time interval during which sufficient energy remains to transmit 

data), sensors are tasked with monitoring a single aspect of their surrounding environment 

and reporting their sensed data via an onboard radio transceiver.  

Given the above characteristics, a few important differences from standard WLANs 

become apparent:  

 Most traffic is upstream, from the sensors to the base station. 

 The small amount of downstream traffic tends to be dominated by broadcast 

traffic from the base station to provide generic updates to all sensor nodes.  

 Power use is a key performance metric, as sensors are battery powered. 

 Network links tend to be low-capacity, as high throughput is energy intensive 

and often unnecessary. 

 Long delays may be acceptable for many WSN applications (e.g. a network 

monitoring soil pH will be relatively immune to high latencies.) 

3.2 Components of a Wireless Sensor Network 

WSNs employ a variety of hardware platforms and software systems. Sensors 

themselves vary in size from a few millimeters (e.g. Dust Network’s DN2510 [14]) to the 

size of a PDA (Crossbow Technology’s Imote 2 [15]) or larger (Harvard University’s 

CitySense sensors [16]). Even within similar sensors, radio transceivers, sensors, and 

microprocessor facilities may vary. Given the wide variety of platforms available, any 

protocols developed for a WSN must consider the characteristics of the underlying 

hardware on which they will operate. 

3.2.1 Hardware 

Wireless sensor nodes have shrunk significantly as MEMS technology has progressed. 

Individual components are now often integrated into the same chip, and hardware design 

has evolved to reflect this change. A sensor node is composed of several independent 

components linked together to form one operative package. A power supply provides the 

necessary energy to a sensing unit designed to monitor the environment and produce a 

representative signal, a processor governing sensor operations, onboard flash memory, and 

the radio transceiver responsible for linking the sensor node to the rest of the network.  



 11 

3.2.1.1 Sensing Unit  

At their simplest, sensors are designed to generate a signal corresponding to some 

changing quantity in the surrounding environment. This may be anything from a simple 

Peltier diode to measure temperature (such as the Microchip TC74 [17]), or as complex as 

a charge-coupled device to monitor video input (such as the Omnivision OV7640 [18]). 

The data are sent to an onboard microprocessor after being converted to a digital signal by 

the sensor electronics, which may perform some processing or culling before electing to 

transmit the information over the module’s transceiver. Generally sensors are procured and 

attached to WSN sensor platforms by the purchaser, and are often manufactured by 

different companies than those which provide the platform itself.  

3.2.1.2 Processing Unit 

A sensor’s processor must, at minimum, serve as an effective interface to the sensor 

module and regulate data flow from the sensing unit to the radio transceiver. There are 

currently three popular types of processing unit in general use: microcontrollers, 

microprocessors, and Field-Programmable Gate Arrays (FPGAs). Onboard storage, often 

in the form of flash memory, is also often included as part of a sensor’s processing unit.  

Microcontrollers such as the 8-bit TI MSP430 [19] and 16-bit Atmel AVR [20] are the 

simplest and one of the most common forms of processor, unable to support complex 

operations but running at a low clock speed and consuming the least amount of power. 

They are most often used when little data processing or decision making is necessary.  

Microprocessors such as the 32-bit Intel Xscale [21] are a more general-purpose CPU, 

and are potentially much more powerful than microcontrollers, with significantly higher 

clock speeds and more flexibility in terms of their programming. This does come at a 

commensurately increased energy cost, however.  

Field-Programmable Gate Arrays (FPGAs) use a hardware description language to 

allow sensor modules to be reconfigured in the field to rapidly process the data that their 

sensor units are reporting. This can be invaluable for real-time surveillance networks and 

target tracking, where image processing algorithms can be implemented on the hardware 

level without purchasing a dedicated GPU. FPGAs are also the highest energy consumers 

of the three processors, and may not be compatible with general-purpose WSN software 

systems.  



 12 

3.2.1.3 Radio Unit 

Wireless sensor networks operate primarily in the 430MHz, 900MHz, and 2.4GHz 

ISM bands. Individual transceivers are tunable within their designated band, and several 

(such as the CC1021 [22]) can toggle between multiple frequency bands. Depending on the 

transceiver, maximum bit rates as low as 76.8bps (e.g. the CC1000 [23]) or as high as 

250bps may be supported.  

Regardless of frequency and bit rate, radio transceivers are the primary energy 

consumer in any wireless sensor node.  For this reason the vast majority of modern 

transceivers (such as the Chipcon CC2500 [24]) provide onboard hardware support for 

several discrete states of operation: transmit, receive, idle, and sleep. Transmitting 

consumes the most power, but reception of a broadcast, even one not intended for the node 

in question, has a nontrivial power cost (see Section 3.4.1). Idle modes turn off the radio 

oscillator, but generally use a polling or carrier sense mechanism to check the medium 

periodically. This dissipates less energy than leaving the transceiver in receive mode, but is 

sufficiently expensive that many protocols have evolved which avoid the idle state. A radio 

transceiver operating in sleep mode is essentially turned off, consuming negligible 

amounts of power but unable to interact with the network at all. 

Despite these operative modes being referred to as discrete states, real world 

electronics are obviously unable to switch modes instantaneously. This delay is one of the 

major attractions of using a sensor’s idle mode over its sleep mode, as wake up times are 

significantly less in the case of the former. Switching between transmit and receive states 

is generally quite fast (on the order of a few nanoseconds), but switching to and from idle 

and sleep states generally requires times in the hundreds of nanoseconds. In the case of 

sleep mode , power-on and calibration delays must also be accounted for in energy 

consumption calculations. 

 

3.2.2 Software 

Software written for wireless sensor networks differs from more conventional 

platforms in several respects. The vast majority of WSN operating systems and network 

protocols that have been produced in academia or in the commercial sector are power-

aware due to the limited amount of energy available to sensor nodes. From a software 



 13 

design standpoint, this necessitates optimizing algorithms and program architectures to 

minimize the amount of energy dissipated per operation. Efficiency of execution in terms 

of running time is still a concern, but is of secondary importance. If an algorithm could 

finish rapidly but consume more power than a slower implementation, the slower version 

might still be selected for use in a WSN.  

Furthermore, sensor nodes are extremely limited in terms of resources. On-board RAM 

capacity is extremely small due to the energy drain of volatile memory. Software systems 

must therefore rely primarily on register-based operations and any flash-based storage 

medium that might be present. This requires that a program use a limited number of often-

accessed data structures, and that it performs computations using as little memory as 

possible.  

Two other distinguishing features of WSN software arise less from hardware 

limitations and more from environmental constraints. Since sensors can be deployed in a 

potentially inaccessible field (e.g. underwater, inside walls, in a combat zone), WSN 

software systems must be able to run unattended for long periods of time. Any logical or 

physical faults should be able to be dealt with, worked around, or minimized in impact 

without the intervention of human agencies. Support for any kind of graphical user 

interface, or even a terminal interface in field conditions, is not generally provided. Sensors 

may be reprogrammed or configured in controlled conditions, however, via software 

running on an external machine to which individual nodes may be connected.  

3.2.2.1 Operating Systems 

WSN-specific operating systems are distinguished from existing embedded OSs such 

as ChibiOS/RT or Nucleus RTOS by their lack of real-time processing constraints. Sensor 

networks are rarely interactive, and only a few specific applications such as live video 

surveillance impose any strict time constraints on data acquisition and processing. Since 

sensor hardware is often extremely limited in terms of both resources and available energy, 

small footprints and efficient use of memory and processor cycles is a key requirement for 

any WSN operating system. An example of how these requirements guide WSN operating 

system design can be seen in TinyOS.  

3.2.2.1.1 TinyOS  



 14 

Originally developed by the University of California, Berkeley, and Intel Corporation 

in 2002, TinyOS [25] has become one of the most popular WSN operating systems 

available. Today it is maintained by an international community of developers and users, 

the TinyOS Alliance.  

TinyOS is implemented in nesC (network embedded systems C), a dialect of C 

developed in the early phases of  TinyOS’s design and made specifically to optimize 

programs for use in a wireless sensor network. It provides static, compile-time race 

detection and a number compiler optimizations designed to dramatically reduce an 

application’s footprint. In order to provide these optimizations, nesC does not allow the 

declaration of function pointers or the use of dynamically allocated memory.  

The developers of TinyOS used two principles to direct its development: 

 The system is event-centric rather than process-centric. Computation occurs 

reactively through event handling, similar to the mechanisms employed in many 

network simulators. The reasoning behind this principle is that sensor networks are 

themselves event-based: data is measured either periodically or reactively, 

processed, and sent to the base station.  

 The system is a platform for innovation. Rather than making TinyOS the optimal 

choice for a specific application or subset of applications, the operating system is 

designed to be flexible and easily configured for a given role. 

The latter principle guided the operating system’s overall architecture, while the former 

influenced the development of the component model.  

TinyOS is as an architectural framework and collection of components which can be 

used to easily make an application-specific operating system. These components include 

not only standard hardware interfaces and services (e.g. sensor components, system clocks, 

timers, etc.) but also a variety of advanced power management and network control 

components. These are designed to minimize energy use and optimize duty cycles for a 

variety of common scenarios.  

Each component is an independent module which exposes a set of split-phase 

interfaces, which decouple requests for service from the results of those requests. A 

configuration file referred to as a wiring specification links the interfaces of components to 

those of other components, defining what operations may be requested and where data may 



 15 

be sent. Components may be wired in such a way as to create a super-component, such as a 

network stack.  

Individual components in TinyOS correspond to a specific set of services, and often 

map to individual hardware modules such as a system clock or sensing unit. These services 

are accessed asynchronously via commands, events, and tasks. TinyOS defines a command 

as a function that is implemented by the component which provides a given interface, such 

as a sensor module with a getData command. A component which finishes executing a 

command triggers an event containing its results (e.g. a dataReady event containing the 

sensed data). Events are implemented by the users of a given interface, such as a 

processing module that performs compression or aggregation of sensor data. Finally, tasks 

represent deferred computation within a single component. They may be placed in a 

component’s scheduler by either commands or events, and are executed in a FIFO order. 

Each task is run to completion before the next is executed, so tasks may be considered 

atomic with respect to one another.  

By wiring the correct components together, TinyOS users can create an operating 

system specifically optimized for their sensor node hardware and their application. nesC 

attempts to ensure that the resulting code footprint will be as small as possible: the TinyOS 

kernel is 400 bytes, with most applications ranging from less than 16KB to approximately 

64KB.  

3.3 WSN Simulation 

Wireless sensor network research is largely directed at improving the energy 

efficiency, coverage, reliability, and security of sensors and networks. This translates into a 

need for detailed information about conditions on the lower levels of the network stack in 

an ad-hoc wireless environment. Conventional network simulators often have more support 

for packet-level network-layer simulation than for, e.g., frame-level information gathering 

and radio energy dissipation modules. To meet this need a number of simulators have 

evolved or adapted to service the needs of WSN research.  

3.3.1 GloMoSim 

GloMoSim [26] is the academic version of the commercial Qualnet wireless network 

simulator. It is written in Parsec, a dialect of C designed for discrete event simulation. 



 16 

GloMoSim only currently supports simulation of wireless networks, with no modules 

included for sensor-oriented research. Networks can easily scale up to thousands of nodes, 

however. The simulator’s network stack is also designed to be easily configurable, with 

modules on each layer easily swapped out if the interfaces are preserved. Each layer has 

built-in statistics collection.  

3.3.2 ns-2 

The de facto simulator for wired networks, ns-2 [27] now includes support for a wide 

range of wireless protocols. Modules, generally defined as individual protocols, to be used 

in the simulation are written in C++, and user command scripts are written in OTcl. These 

scripts define network topology, relationships between modules, and how simulation data 

is output. The Zigbee 802.15.4 standard is supported, and advanced radio propagation 

modules are available. In addition, there is a significant amount of support available in the 

form of mailing lists, online manuals and tutorials, and message boards.  

3.3.3 Omnet++ 

Omnet++ [28] is a discrete event simulator designed for wireless mobile and ad-hoc 

networks. Like ns-2, Omnet++ uses modules written in C++. Rather than OTcl, however, it 

uses the NED topology description language to define topologies and relationships 

between modules. On its own Omnet++ has only limited support for WSN research. 

However, the MiXiM framework, a merger of the Mobility Framework, MAC Simulator, 

ChSim, and Postif frameworks, provides extensive support for physical, MAC, and 

network-layer simulation in which frame level information can be easily collected and 

analyzed. Many existing WSN MAC protocols, such as S-MAC, SC-MAC, and L-MAC 

are included. The Omnet++ simulator is much more extensively used in the European 

academic community than the American community. This can make finding support 

difficult if the existing tutorials are not sufficient. A mailing list is available, but response 

times tend to be slow.  

3.3.4 TOSSIM 

TinyOS includes TOSSIM [29], a sensor node simulator that also uses nesC. TOSSIM 

is not a general-use WSN simulator, but is instead intended to allow for design and 

troubleshooting of TinyOS networks. All state information of all nodes, in addition to 



 17 

network information, is available to the user. Since TOSSIM simulates nodes running 

TinyOS, a simulation can actually interface with applications running on a base station as 

though it were a physical network. This is the standard simulator in use for networks based 

on TinyOS applications, but has little practical use outside of the TinyOS community. 

3.4 Power as a Limiting Factor 

By their nature, wireless sensor networks are limited in their operative lifespan by the 

amount of energy available to sensor nodes. Recent advances in MEMS and NEMS 

(micro- and nano- electromechanical systems) technologies may allow for greatly 

increased battery energy densities in the coming years, but without a reliable method of 

replenishing them even the most powerful energy supplies will dissipate and a sensor node 

will eventually go offline.  

A popular trend in both simulated and real-world sensor networks is to mount energy-

harvesting components on some or all of a network’s sensor nodes, allowing their power 

supplies to be replenished in the field. Depending on the environment where sensors are 

deployed, these energy harvesting mechanisms may use a variety of techniques: 

 Solar harvesters (e.g. the Heliomote [30]) employ solar cells to charge a battery 

or supercapacitor when sunlight is available. Due to the relatively low 

efficiency (in terms of power output to surface area) of solar cells, however, 

solar energy harvesting does not provide reliable power for small sensor nodes. 

 Wind generators (e.g. Ambimax [31]) use small turbines moved by air currents 

to generate energy. While impractical in many settings, wind power can be 

useful for sensors mounted on bridges, building exteriors, etc.  

 Mechanical harvesters convert mechanical stress (either strain or vibration) to 

electrical energy using, e.g., piezoelectric membranes. This can be a useful 

source of power for sensors on bridges, railroad and subway tracks, and any 

other environment which is subject to movement. 

 RF harvesters use recent advances in wireless power transmission to recharge 

sensor nodes using broadcast power from a nearby transmitter. While limited in 

range, these systems have the potential to remove the energy constraints 

traditionally applied to WSNs. 



 18 

Hybrid approaches are also occasionally employed when cost and size constraints allow. 

Solar and wind harvesters are especially complementary, as windy conditions tend to 

coincide with cloudy conditions.  

Topological techniques are also sometimes employed to conserve node energy. Rather 

than deploying a homogenous network of sensors, certain designated gateway nodes may 

be included. These are generally attached to energy harvesters, and are responsible for 

routing long-range communications between the sensor nodes and the base station. Other 

networks use a combination of static, battery-powered sensors and mobile sensors 

equipped with energy harvesters. These mobile nodes are able to move throughout the field 

and recharge static nodes, distributing energy gains amongst all members of the network.  

3.4.1 Radio Energy Dissipation 

The primary energy consumer in any sensor node is its radio transceiver. Precisely how 

much energy is dissipated per bit transmitted or received is a function of distance, bit rate 

and transmission length, among other factors. A significant amount of research has been 

conducted with the intent to minimize the duration and distance that signals must be 

transmitted, as well as the number of extraneous signals that must be received. In order to 

quantify the performance of these power-aware protocols, the behavior of radio wave 

propagation must be accurately modeled. This is a limiting factor in many network 

simulators, as such physical layer concerns have traditionally been in the purview of 

electrical engineers and not a factor in protocol design. Several models of increasing 

complexity exist, each of which is useful in certain scenarios. 

3.4.1.1 Free Space Model 

The free space model of radio 

wave propagation is by far the 

simplest. In the free space 

environment, signal strength (in watts 

or decibels) falls as a power of 

distance traveled from the transmitter. The simplest application of this is the well known 

inverse-square law, which states that a signal’s power is inversely proportional to the 

square of the distance from the source. When applied to a wireless medium, the free space 

 
 

Figure 1 - Free Space Model 



 19 

model can be described in terms of the relationship between transmitted power, Pt, and 

received power, Pr [32]: 

 

 Gt – Transmitter antenna gain 

 Gr – Receiver antenna gain 

 λ – Signal wavelength 

 d – Transmitted distance 

This model assumes that path loss is the only force acting on the radio signal. Reflection 

(attenuation and redirection of a signal), diffraction (strong attenuation and signal splitting 

in a cylindrical space), and scattering (attenuation and propagation in all directions) are 

ignored. The signal therefore takes a single path from the transmitter to the receiver; 

experiencing no interference and encountering no obstacles (see Figure 1). While useful 

for approximations at small distances, the free space model fails to model real-world 

conditions accurately enough to be relied upon in a simulation of power-aware systems.  

3.4.1.2 Two-Ray Ground Reflection Model  

The two-ray ground reflection model 

is more complex than the free space 

model, but more accurately models real-

world settings. While still extremely 

simplistic, it assumes that both 

transmitter and receiver are elevated 

some distance above the ground. In addition to the direct path from transmitter to receiver, 

a reflected signal off the ground constitutes a second signal path that either constructively 

or destructively interferes with the original signal at the receiver (see Figure 2.) [32] : 

 

 

 Gt – Transmitter antenna gain 

 Gr – Receiver antenna gain 

 d – Transmitted distance 

 
 

Figure 2 - Two-Ray Ground Reflection 



 20 

 ht – Transmitter height 

 hr – Receiver height 

Note that in addition to height being accounted for, the path-loss exponent has 

increased from two to four. This significantly impacts the range of low-power transmitters 

such as wireless sensor nodes, and is a much more realistic value for representing real-

world conditions. Two-ray ground reflection still fails to account for any obstacles other 

than the earth itself. However, in most environments there will be trees, walls, urban 

features, mobile obstructions, and other factors which cause signal reflection, scattering, or 

diffraction.  

3.4.1.3 Shadow Fading Model 

The path-loss exponents used above do not take the density and material of obstacles 

into account. In real-world settings, a variety of constructed and natural materials will 

interfere with a signal enroute from the transmitter to the receiver. Mobile obstacles, such 

as human beings, vehicles, moving tree leaves, etc. may also be present. The effects of 

such sources on a signal are referred to as shadow fading, and result in the same signal 

being received at different strengths at the same distance from the transmitter. Over time 

the received signal strength tends to fluctuate around a given mean, as obstacles move in 

and out of range. Taking this fluctuation into account, path loss can be modeled by the 

following equation [32]: 

 

 Lp – Path loss in decibels 

 L0 – Path loss at 1 meter 

  α – Path loss exponent. For most 2.4GHz applications, α = 4 

 d – Distance from transmitter to receiver 

 X – A random variable with a distribution appropriate to the environment. This 

can be determined empirically by regression analysis of received signal 

strengths.  

Note that this model also fails to explicitly model the effects of radio wave diffraction, 

scattering, and reflection off of multiple obstacles. While it is accounted for to some 

degree in the random variable X, this is a purely statistical approach to the problem.  



 21 

3.4.1.4 Multipath Fading  

Advanced radio propagation models also account for the effects of multipath fading. 

This effect arises from the same signal intersecting with multiple obstacles and traveling 

different distances from transmitter to receiver as it is reflected, diffracted, and scattered 

off of various surfaces. The individual signals therefore not only arrive at slightly different 

times and levels of attenuation, but also in different phases. This causes rapid fluctuations 

of received signal amplitudes, and leads to extremely high bit error rates. A number of 

mechanisms, such as directional antennas, coding, and channel or spatial diversity, are 

used to mitigate the effects of multipath fading. Only a few simulators, such as Omnet++ 

[10] (with the Mobility Framework or MiXiM) and ns-2 provide sufficiently detailed radio 

propagation models to account for multipath fading.   

3.4.2 Energy Minimization 

A significant amount of research in WSNs has been on power-aware protocols and 

energy minimization strategies. These can broadly be grouped into two classes: those 

which attempt to minimize the overhead and power cost of network communications on 

the MAC layer, and those which attempt to minimize the distance and duration of 

communications via network-layer routing protocols. The most common form of protocol 

in the latter category is clustered routing, though other techniques such as beaconing are 

also employed. 

3.4.2.1 MAC-Layer Protocols 

There are a significant number of MAC protocols for wireless sensor networks 

available from both academic and commercial sources. They range in scope from TDMA-

based protocols to CSMA and combinations of the two. In general, the WSN MAC 

protocols attempt to minimize energy dissipation through one or both of the following 

strategies: 

 Collision avoidance – Not only do retransmissions dissipate potentially large 

amounts of energy, but detection of the collision may itself be expensive. 

 Overhearing avoidance – Reception of packets, even those not intended for the 

node in question, dissipates energy operating the radio’s receiver electronics 

and processing the signal. This is especially draining on sensor power supplies 



 22 

in dense networks, where one broadcast may reach many sensors and many 

broadcasts may therefore be received in a short amount of time. 

A number of other problems exist in specific types of WSNs, such as dense 

deployments or delay-sensitive applications. Crankshaft, a relatively new protocol that is 

still under active research, attempts to mitigate the challenges associated with overhearing 

in the former case.  

3.4.2.1.1 Crankshaft 

Crankshaft [33] is a relatively new MAC protocol, and represents something of a 

synthesis of the SCP-MAC and L-MAC protocols. It uses a combination of TDMA-based 

frames and slots and CSMA-based contention resolution to ensure that a minimal amount 

of latency is introduced while increasing energy efficiency by minimizing overhearing and 

retransmissions. The protocol’s authors designed it specifically for dense sensor networks, 

where overhearing is the primary energy drain on sensors.  

Time in Crankshaft is divided into frames, and each frame is divided into unicast slots 

followed by broadcast slots. During any given unicast slot a specific node is listening for 

incoming transmissions. All nodes know the slot that other nodes listen on, as each slot 

offset is a modulo function of a node’s MAC address and the total number of slots. If a 

node wishes to transmit to another node, it wakes up during the receiver’s slot and checks 

the medium for contention. If the channel is clear the message is transmitted; otherwise the 

sender backs off and has a 70% probability of retransmitting each frame for three frames.  

During broadcast slots all nodes listen to the medium, and any message that is transmitted 

is assumed to be directed to all members of the network. The sink listens during all slots in 

the frame, as the vast majority of messages are assumed to be directed at it and it is not 

likely to be energy-constrained.  

Crankshaft performs well against existing WSN MAC protocols in terms of energy 

efficiency at loads of up to 80%, and in terms of delivery ratio in loads of up to 50% (after 

which it is surpassed by LPL). A significant amount of latency is introduced, however, 

making it potentially unsuitable for delay-sensitive applications such as object tracking. 



 23 

3.4.2.2 Clustering Protocols 

While clustering protocols may 

also operate on the MAC-layer, many 

can be implemented over an existing 

WSN MAC implementation. These 

protocols attempt to minimize the 

distance a sensor must transmit as 

well as the duration of each 

transmission. The former objective is 

accomplished by dividing a field into 

a number of cluster domains, each of 

which is administered by a cluster 

head (which may be a normal sensor 

node, or may have special features such as an energy harvester). Members of each cluster 

send data to their local cluster head using a mechanism defined by either the underlying 

MAC layer or the clustering protocol itself. Once all members of the cluster have reported 

in, the cluster head generally performs an application-specific form of aggregation and/or 

compression on the messages before forwarding them to the base station. For large 

networks, super-clusters composed of cluster heads may be used to introduce a form of 

hierarchical routing. Similarly, cluster heads may be used to form a backbone network of 

high-capacity, long-distance links. 

Note that clustering makes some nodes more important to maintaining routing paths 

than others, while simultaneously increasing the energy dissipation of those same nodes. 

For this reason, mechanisms to rotate cluster heads within a cluster (and potentially 

redefine members of each cluster) are key aspects of any clustering protocol. This rotation 

may be a distributed function which operates over each sensor node, or may be centralized 

at the base station. The Low Energy Adaptive Clustering Hierarchy (LEACH) is an early 

clustering protocol which employs the former technique. It has become the standard of 

comparison against which new protocols are often evaluated.   

3.4.2.2.1 LEACH 

Developed by Dr. Wendi Rabnir Heinzelman in 2002, LEACH [1] uses a periodic 

 

 

Figure 3 - WSN Clustering 



 24 

distributed clustering function to balance energy costs throughout the network. Time is 

divided into rounds, and  every sensor has a certain chance of self-electing itself as a 

cluster head. The specific probability is a function of the optimal number of cluster heads 

(determined a priori), the number of nodes in the network, and the node’s energy level 

relative to the aggregate residual energy in the network. This attempts to ensure that high-

energy nodes are cluster heads more often than low-energy nodes.  

Once a node has self-elected itself, it broadcasts a message to the surrounding sensors. 

Each sensor sets its cluster head to the node ID of the strongest signal that it received, and 

the network’s data-collection phase begins. This process is repeated each round.  

In order to minimize retransmissions and overhearing, LEACH uses intra-cluster 

TDMA. This necessitates dynamic TDMA cycles, however, which are difficult to 

implement on a hardware level. Each cluster uses a different CDMA spreading code to 

ensure that adjacent networks do not interfere with one another, and cluster heads contend 

for transmission privileges to the base station using CSMA.  

4 The Centralized Energy Management System (CEMS) 
The Centralized 

Energy Management 

System is a clustering 

protocol that exploits 

the predictable nature of 

TDMA-based channel 

access to rapidly detect 

and respond to critical 

failures. Almost all 

energy-intensive 

operations (such as 

cluster formation) are moved upstream to the base station, which is assumed to not have 

any energy constraints. CEMS has two distinct phases: cluster formation and steady-state 

operation. The former is run at the beginning of each reclustering phase, which occurs both 

periodically and in response to cluster head death. The base station calculates cluster 

assignments and notifies the new cluster heads. If all heads acknowledge, the steady-state 

 

Cluster 

Formation

Have All Cluster 

Heads ACKed?

Steady-State 

Cycle

Has A Cluster 

Head Died?
No

No

 

Cluster 

Formation 

Stage

Steady-State 

Stage

No

Yes

Yes Yes

Begin

Has The 

Recluster Time 

Been Reached?

 

 

Figure 4- CEMS Overview 



 25 

phase is initiated. During this phase, sensors report data to their cluster heads. The data are 

then compressed and aggregated before being forwarded to the base station. 

Two assumptions governed the creation of this system: 

 The optimal clustering configuration changes over time as the residual energy of 

cluster heads decreases 

 Any node, including a cluster head, has a non-zero probability of failing at a given 

time due to random accidents. 

The sink maintains state information on each node in the network consisting of its 

location and its projected amount of residual energy. The assignment of nodes to clusters is 

calculated using a genetic algorithm (GA) which considers nodes’ spatial positions, and the 

assignment of a cluster head to each cluster is calculated using node energy and position. 

The number of cluster heads, determined a priori, is an input parameter to the system. 

4.1 Clustering Phase 

CEMS’ clustering phase is initiated at network startup and at each subsequent 

reclustering, whether due to period triggers or in response the cluster head failure. 

Selection of cluster heads and cluster members is divided into two stages. A genetic 

algorithm first determines cluster membership for each sensor in the network during the 

cluster formation stage. This information, along with spatial coordinates and current 

energy levels, is then passed to a cluster head selection algorithm during the head selection 

stage. Once both cluster heads and members have been determined, the sink informs each 

sensor of its new assignment during the sensor notification stage. 



 26 

4.1.1 Cluster Formation 

The genetic algorithm which determines cluster 

membership is implemented with the GALib C++ 

library. It uses a fixed-length list of integers to describe 

a genome representing a potential network topology. 

The genome’s length is always equal to the current 

number of living sensors. Each value in the list signifies 

a cluster ID. (The number of clusters is determined a 

priori.) The index of each cell represents a unique 

sensor in the network. Since the network's population of 

active sensors will change over time, sensor IDs are 

referenced indirectly through a lookup table. An 

example of this can be seen in Figure 5. 

Selection is accomplished through the minimizing 

objective function presented in Figure 6. 

First, a centroid
3
 for each cluster is 

determined. Each cluster is then assigned 

a score based on the sum of the squared 

distances between each cluster member 

and that cluster’s centroid. The sum of all 

cluster scores is used as the objective 

score for that genome.  

Each individual sensor has a 

probability of being chosen for mating 

equal to its fitness score divided by the 

sum of fitness scores over that 

generation. Two individuals are chosen each generation, and the highest scoring genome is 

selected. 

                                                 
3
 A centroid is the geometrical center of a set of points, determined by averaging all of the spatial coordinates 

of the points comprising the set.  

 

4 152 2 4 1 3 5 3

0 1 2 3 4 5 6 7 8 9

Genome

0
1
2
3
4

0
3
4
6
7

Lookup Table

Index

8
9
10
11
12

5
6
7
8
9

ID

 
 

Figure 5 - Genome 

Representation 

  
zc – The centroid for cluster z 

zsi – Sensor i in cluster z 

sz – Score for cluster z 

 n – The number of sensors in a given cluster 

m – The number of clusters in the genome 

Figure 6 - Objective Function 

 



 27 

4.1.1.1 Configuration 

The original settings for single-point crossover and mutation values were based on the 

recommendations published in [8] and [9]. The parameters' final values were arrived at via 

tuning based on empirical tests in the Omnet++ discrete event simulator [10]. While the 

configuration used in our experiments did cause the algorithm to converge to a reasonable 

objective score, the process consumes a nontrivial amount of time. Note that the 

parameters we selected were chosen with the resources of a high-performance computer in 

mind. Practical hardware limitations may necessitate tuning the algorithm’s parameters. 

Population size per generation was set to one hundred genomes. This is something of a 

tradeoff between a large set of representative genomes, which allows a more informed 

search of the space, and execution time. Larger populations obviously take longer to 

evaluate per iteration, but also reduce the probability of premature convergence to a local 

minimum.  

Mutation rate was set to 0.0005. While this is a rather small probability, the fact that 

one hundred genomes with (initially) one hundred chromosomes will be present per 

generation puts this figure in some perspective. Lower mutation rates tend to fail in their 

primary task of acting as a secondary search parameter designed to prevent premature 

convergence to local minima. Higher mutation rates remove much of the evolutionary 

behavior of a genetic algorithm, and begin to cause the GA to perform more like a random 

search. 

Crossover rate was set to 0.06. As the primary search parameter, crossover rates must 

be balanced between high values which produce and discard superior genomes before they 

can be evaluated, and low values that cause stagnation and limit the search space to a 

subset of the actual region.  

Finally, the number of generations to iterate through before termination was set to 

5000. This is a fairly high value, but empirical analysis of objective scores over time did 

not indicate significant convergence earlier. It is possible that tuning of the above 

parameters could result in a faster rate of convergence, and allow this number to be 

lowered. Doing so could significantly improve runtimes of the genetic algorithm. 

 



 28 

4.1.1.2 Scoring Problems 

During the early phases of the genetic algorithm’s development, its objective function 

considered several factors beyond spatial location and attempted to determine both cluster 

membership and each cluster’s head. In order to do so sensor energy levels, position 

relative to other sensors, position relative to the base station, cluster population, projected 

transmission costs, and projected reception costs were all considered when calculating the 

objective score of each genome. Unfortunately, this created a situation in which a low 

score could be achieved by sacrificing some scoring components in order to minimize 

others. Seemingly good solutions, for example, would be returned in which every sensor 

was its own cluster head, cluster heads were members of multiple clusters, or cluster heads 

were far from their members but adjacent to the base station. In order to curtail this 

behavior, head selection was divided into two stages midway through CEMS’s 

development. In doing so, however, several benefits of using a genetic algorithm were lost. 

Since a single value is now being minimized, a K-means clustering algorithm might be 

both a faster and more efficient method of computing cluster assignments.  

4.1.1.2.1 K-Means Algorithm 

The k-means algorithm partitions n objects, in this case sensor nodes where each node 

is a 2-dimensional structure (representing x- and y-coordinates in the field), into k clusters. 

This is most frequently done by iterative refinement over a random (or heuristically 

determined) initial assignment. Each subsequent iteration potentially reassigns objects to 

different clusters, attempting to minimize the sum of the squared distances from each 

object to the centroid of its cluster. This is not dissimilar to the objective function 

described above, although k-means does not generally use an evolutionary technique 

during iterative refinement. The algorithm runs much faster than most GA configurations 

are able to, but is also not guaranteed to converge to a global minimum. 

4.1.2 Head Selection 

Once individual sensors have been assigned to clusters, a head selection algorithm 

elects one sensor per cluster to the position of cluster head. Each cluster is searched over 

for the sensor with the highest residual energy. All sensors whose remaining energy level 

is within 5% of that sensor’s energy level are put in a privileged subset from which the 



 29 

cluster head will be drawn. The sensor which is both a member of that subset and closest to 

the centroid of the cluster is then chosen as a cluster head for that round.  

Note that the 5% energy threshold was arrived at empirically. Depending on the actual 

topology of the cluster, another value may exhibit better overall performance. Clusters 

covering a large area, for example, might increase the threshold and thereby place more 

importance on spatial location at the expense of fair balancing of energy load. Conversely, 

clusters which cover a small area might emphasize fair balancing and reduce the threshold 

even further.  

Outlying sensors can further complicate head selection, as the current algorithm will 

favor a fully charged sensor that is far from the centroid over a closer sensor with lower 

battery levels. This increases the transmission cost for all sensors which must transmit to 

the outlying cluster head, potentially wasting more energy than is saved by using a more 

fully charged sensor. This scenario only occurs, however, if the clustering algorithm is 

unable to efficiently cluster sensors due to unavoidable topological concerns or 

convergence at a local minimum. 

4.1.3 Sensor Notification 

After sensors have been assigned and heads elected to clusters, the base station 

broadcasts a message to each cluster head informing it of its new role, which sensors are in 

its cluster, the distance it must transmit to the base station, and the distances that its 

members must transmit. The cluster head relays distance and membership data to each 

sensor in its cluster and sends an acknowledgement to the base station. Once all 

acknowledgments are received, the sink initiates the network's steady-state phase.  

If all cluster heads do not send an acknowledgement before a timeout window expires, 

the sink reclusters and increases the missed transmission count of any cluster head which 

failed to acknowledge. Any sensor with three consecutive missed transmissions will be 

declared dead and removed from future clustering assignments. 

 

4.2 Steady-State Phase 

The steady-state phase uses a layer-3 protocol which employs cross-layering to control 

sensor radio states. All nodes in the network share a single TDMA cycle, with a number of 



 30 

slots equal to the initial 

population of the network. The 

number of slots in this cycle will 

never decrease, despite sensor 

deaths creating unused slots as 

time goes on. The reason for 

this design is explained in 

Section 4.2.1.1 

During this phase, sensors 

periodically report data to their 

cluster head. Depending on the 

data type, the head aggregates 

and/or compresses its members’ 

messages before relaying them 

to the base station. This process 

continues until the reclustering 

period expires and the sink 

reclusters to balance energy 

loads, or until a cluster head 

dies and the sink initiates an emergency reclustering. An overview of this process is given 

in Figure 7. Note that the steady-state phase of the network is significantly longer than the 

clustering phase; almost all of a network’s lifetime will be spent in this mode of operation. 

4.2.1 TDMA Scheduling 

CEMS employs a global 

TDMA schedule (i.e. all sensors 

and clusters participate) to 

manage channel access among 

sensors and the base station. 

There is a single broadcast slot at 

the beginning of each cycle, while 

the remaining slots are strictly unicast. The CEMS TDMA scheme is shown in Figure 8. 

 

Listen on 

Slot 0

Is the sensor a 

cluster head?

Sleep until beginning of 

cluster_range

Is sensor i's slot 

the current slot?

Aggregate 

and transmit 

data to sink

Sleep until 

Slot 0

Sleep until assigned 

TDMA slot

Transmit 

data to 

cluster head

Queue any 

received 

data

 

Figure 7 - State-State Phase 

 

Schedule Length (ms) 

    

Slot length 

(ms)

Slot 0 Sensor Slot

    

Cluster 

head range

 

Unused range

 

Figure 8 - TDMA Schedule 



 31 

Each sensor is given a unique slot in the TDMA schedule during each reclustering phase. 

Note that there is no guarantee a sensor’s slot will be the same in two different rounds of 

operation.  

All sensors, including cluster heads, transmit to the base station on their slot. All nodes 

must also listen on slot 0, which is reserved for broadcast communications from the base 

station. Furthermore, cluster heads must listen during each slot in their cluster’s range to 

receive data from their members. To minimize hardware delays resulting from switching 

between sleep and wake states, slots within a single cluster always form a contiguous block 

of slots. Sensors are in sleep mode at all other times, their radio electronics turned 

completely off.  

4.2.1.1 Dynamic and Static Schedules 

On the surface, dynamic TDMA schedules are much more flexible and able to adapt to 

changing network conditions than static schedules. Delay can be minimized, and medium 

use can be better allocated as the sensor population changes. Despite these benefits, we 

chose to implement a static TDMA schedule. 

 The decision to do so was based on two factors. From an implementation standpoint, 

hardware support for dynamically resizing TDMA cycles is limited and would restrict 

deployment of CEMS to a smaller number of platforms than would otherwise be possible. 

This is a problem experienced by LEACH and LEACH-C, which rely on intra-cluster 

TDMA schedules with a number of slots equal to the current number of members.  

A more subtle problem with a dynamically resizing TDMA schedule in response to 

decreasing numbers of sensors must also be addressed. Changing the number of slots in a 

schedule to always correspond to the current sensor population has the effect of changing 

the rate at which data is reported as sensors begin to die, since cycles will repeat more or 

less often as sensors are removed or added to the population. This not only results in a 

variable measurement rate, but also serves to hasten network death by causing more 

transmissions over time. Thus, CEMS chooses not to resize the global TDMA schedule in 

response to sensor death.  



 32 

4.2.1.2 Scalability and Delay 

A common objection to TDMA, especially when implemented globally as CEMS does, 

is that the network has trouble scaling to high sensor populations. On the surface this is 

true; large numbers of sensors necessitate proportionally large TDMA schedules and 

therefore low per-sensor data rates and significant delay. Despite this, global TDMA 

networks are scalable for many applications. A given TDMA slot may have a length of 

50ms or less, depending on the nature of the data reported (e.g. temperature data may take 

much less time to transmit than a video image). Assuming that a network initially has 100 

sensors, one TDMA cycle lasts approximately 5 seconds. Cycle lengths scale linearly with 

sensor population, so doubling the number of sensors would increase the delay to 10 

seconds.  

Many applications of sensor networks can tolerate significant amounts of delay, such 

as soil chemistry sensors or building stress monitors. In these and similar scenarios, values 

being reported once per minute is more than sufficient. Under such constraints a network 

could be scaled up to 1200 sensors and still meet minimum delay requirements. However, 

query-based networks or real-time object-tracking networks may not be suitable 

applications for a CEMS-based system. 

4.2.1.3 Collision Avoidance 

Global TDMA address several problems inherent in WSNs and wireless networks in 

general. Dividing the medium into a series of equal-length time slots ensures that at no 

point will more than one sensor be transmitting over the wireless medium. Collisions are 

impossible under global TDMA, ensuring that no energy-intensive retransmissions due to 

congestion or collisions will take place. Furthermore, only the base station and one cluster 

head are capable of hearing transmissions at a given time (with the exception of slot 0). 

Energy losses due to overhearing, which can be a significant drain on sensor energy levels 

in dense network deployments [33], are thus avoided during the steady-state phase.  

Finally, CEMS avoids potential hidden terminal problems among cluster heads. If a 

base station is centrally positioned in the middle of a field, sensors’ effective transmission 

and reception ranges may not extend to all edges of the field. This introduces the 

possibility of collision among transmissions meant for the sink, which is a problem even in 

clustering protocols like LEACH-C which use CDMA (Channel Division Multiple Access) 



 33 

spreading codes to prevent interference 

among adjacent nodes and CSMA (Carrier 

Sense Multiple Access) to handle cluster head 

communication. CSMA checks to see if any 

transmissions are ongoing in the medium 

before a node tries to initiate its own 

transmission. If the medium is clear, it 

broadcasts. If not, it backs off for a period of 

time and tries again. Cluster heads must 

transmit on the same channel that the base 

station is listening on (precluding CDMA), 

and therefore may interfere with one another in certain circumstances despite their use of 

CSMA.  

Consider the situation illustrated in Figure 9. Cluster heads A and B are both within 

range of the base station, but not of each other. If Cluster head A senses the medium prior 

to transmitting to the sink, it will appear to be free despite the fact that Cluster head B may 

be actively transmitting. If Cluster head A then begins its own transmission, they will 

interfere at the base station and prompt both cluster heads to retransmit.  

 

4.2.1.4 Synchronization 

Due to time constraints, CEMS does not explicitly model any synchronization 

mechanisms or simulate clock drift. The protocol is designed, however, to easily 

accommodate timing beacons broadcast by the sink during slot 0 of each TDMA cycle. If 

the underlying hardware platform supports it, physical-layer reference broadcast 

synchronization would allow for a low-energy solution to clock drift. Otherwise a short 

MAC-layer reference beacon frame could be easily implemented into the CEMS protocol. 

4.2.2 Quick Recovery 

While clustering does reduce the energy load on wireless sensors, it also introduces 

single points of failure for each cluster. In many real-world environments sensors may fail 

due to, e.g., vandalism, theft, or environmental effects. Loss of a cluster head not only 

removes that sensor from the network, but it also breaks the routing path for all sensors in 

Base Station

Cluster Head A

Cluster Head B

 

Figure 9 - Hidden Terminals 



 34 

that cluster. This could significantly impact network coverage in the affected area, which 

for some WSN applications represents failure of the network. Given this dependence on 

certain individual sensors, it is somewhat surprising that existing clustering protocols do 

not handle cluster head loss elegantly. At best the cluster might be offline until the next 

round of reclustering. At worst, the entire cluster may be declared dead and removed from 

the network.  

4.2.2.1 Coverage Loss 

Precisely how significant the loss of a cluster head is to a network in terms of coverage 

depends on sensor density, the number of clusters in the network, sensor failure detection 

mechanisms, and network topology. Areas of high sensor density tend to experience 

overlapping areas of coverage for many sensor applications. Unfortunately, networks are 

not necessarily uniformly dense, and redundant coverage areas may be present only by 

chance. Networks that deliberately implement large areas of redundant coverage may do so 

due to the necessity of ensuring accurate data in exchange for a higher initial investment in 

sensor nodes or modules. These networks are resilient against individual node failure, but 

may not be able to compensate well for cluster head loss. 

As the authors of [2] have analytically shown, the number of clusters (and thereby 

cluster heads) is small relative to the total number of sensors for many applications. While 

this is useful from the standpoint of energy efficiency, it also places a great deal of 

importance on a small number of sensors. Loss of cluster head when there are only a few 

clusters total has the potential to bring large fractions of a network offline, opening 

significant holes in its coverage area. Even redundant networks may be vulnerable to this 

effect, as spatially adjacent (and therefore overlapping) sensors tend to be members of the 

same cluster. 

Coverage loss may be exacerbated by the mechanism a protocol uses to detect failed 

sensors. If a sensor is unable to communicate with the sink due to its cluster head being 

offline, it is possible that the base station will assume that the sensor has died and remove 

it from future clusters. If such is the case, loss of a cluster head may permanently remove 

all cluster members from the network. This is less likely in a distributed system like 

LEACH, but centralized protocols such as HCR or LEACH-C may be vulnerable.  

Finally, networks which employ super-clusters or cluster-head backbones may 



 35 

experience coverage loss from multiple clusters if an upstream node fails and their routing 

paths are cut. These networks often employ specialized nodes equipped with energy 

harvesters to avoid just such a fate, but the sensors may still be damaged or removed due to 

environmental conditions or deliberate vandalism.  

4.2.2.2 Failure Detection and Emergency Reclustering 

CEMS uses the periodic nature of its global TDMA cycle to rapidly recover from 

coverage loss due to cluster head death. At the beginning of each steady-state phase, the 

base station computes the expected transmission times of each cluster head using its 

TDMA slot and the overall cycle length. If any cluster head fails to transmit during its 

expected time, the sink increments that sensor’s missed transmission count. Three missed 

transmissions result in that sensor being labeled as dead, and trigger an emergency 

reclustering event to reconnect the cluster to the WSN. A successfully received 

transmission resets the sensor’s missed transmission count.  

Note that a tradeoff exists between the recovery period and accurate classification of 

cluster head death. The more missed transmissions required before a sensor is declared 

dead, the longer a cluster may be offline before emergency reclustering is triggered. A 

small missed transmission count, however, is vulnerable to false positives. In the field a 

sensor’s transmissions may be blocked by a mobile obstacle (e.g. a passing vehicle), 

interfered with by a spike in radio noise, etc. Misinterpretation of these temporary 

problems as permanent sensor death could lead to unnecessary energy expenditure and 

downtime due to reclustering. 

4.3 Configuration 

A number of CEMS’s parameters can be configured to meet application-specific 

constraints. In many sensor applications, for example, significant amounts of delay are 

acceptable if the network itself will last longer as a result. The density of sensors and the 

importance of continual coverage is also a factor in network lifetime. Finally, the optimal 

number of clusters to partition the network into may vary somewhat based on the previous 

considerations.  

A critical metric in our simulations is network lifetime, a measure of the length of time 

during which a network can be considered capable of monitoring its environment. Specific 



 36 

definitions of network lifetime have been described differently in different publications, 

and depend on the use to which a sensor network is put. For some applications the death of 

a single sensor may be defined as network death, while for others a more relaxed constraint 

may be employed. Any application-specific configuration of CEMS will depend heavily on 

how this metric is defined. 

4.3.1 TDMA Schedule Length 

The minimum length of CEMS’ TDMA schedule is somewhat dependent on the kind 

of data being sensed by the network. Each slot needs to be at least long enough to 

accommodate a sensor’s radio electronics’ wakeup time and the transmission of sensor 

data to the cluster head or sink. Note that wakeup times are constant, however, and can be 

accounted for by starting the wakeup process during the previous slot. Beyond this 

minimum, extra slots can easily be added at the end of the TDMA cycle. While slot lengths 

could also be increased, this would result in sensors staying awake for longer periods and 

expending unnecessary energy on their transceiver modules. Adding empty slots, however, 

introduces periods where all sensors are asleep. This reduces the frequency of sensor 

reports, allowing fewer radio transmissions and thereby reducing energy costs.  

Note that this configuration is most useful where the minimum sensing granularity is 

significantly better than required. A network monitoring soil pH, for example, may not 

need a granularity higher than 1 measurement per sensor per hour. In this case a great deal 

of delay can be added to the TDMA cycle, dramatically increasing network lifetime 

without violating the latency constraints imposed by the application. 

4.3.2 Reclustering Period 



 37 

The ideal duration of 

each reclustering period in 

CEMS is application-

specific. Figures Figure 10 

and Figure 11 show the 

tradeoff between coverage 

and lifetime for reclustering 

periods of 20 hours and 100 

hours, respectively.  Each 

graph shows the residual 

energy over time for each 

sensor in the network. 

Given an initial population 

of one hundred sensors, the 

simulation begins with five 

clusters. Sharp declines in 

energy correspond to being 

made a cluster head, while 

gradual energy loss 

represents cluster 

membership.  

The relatively narrow 

gap between the sensor with 

the lowest residual energy 

and that with the highest residual energy in Figure 10 indicates a fairly even balancing of 

energy costs over the network. This preserves coverage for as long as possible, after which 

all sensors die within a few hours of each other. Figure 11, conversely, begins to lose 

sensors almost immediately. In this configuration, cluster heads lost so much energy before 

being reassigned as cluster members that they die shortly after reclustering. Note, however, 

that while coverage is significantly worse than the previous case, the overall network 

 

2000000000

1000000000

0

0 100000 200000

R
e
s
id

u
a
l 
E

n
e
rg

y
 (

n
J
)

Time (sec)
 

Figure 10 - 20 Hour Reclustering Period 

 

2000000000

1000000000

0

0 100000 200000

R
e

s
id

u
a

l 
E

n
e
rg

y
 (

n
J
)

 

Figure 11 - 100 Hour Reclustering Period 



 38 

lifetime is extended 

by approximately 

12%. Figure 12 

illustrates the 

relationship 

between these two 

factors. 

Therefore, in 

dense networks 

with overlapping 

areas of coverage or 

for networks which 

do not require 

complete coverage, a long reclustering period may be preferable. For networks where 

coverage must be maintained for as long as possible, a shorter reclustering period is 

desirable. For our experiments, we chose to use a reclustering period of 20 hours.  

4.3.3 Cluster Size 

Empirical testing as well as analytic analysis presented in [2] indicates that a number of 

cluster heads equal to 5% of the original population provides the longest network lifespan 

when most sensors are expected to die near the end of the network’s operative span. In 

applications where sensor death is more evenly distributed over the life of the WSN, 

however, a number of clusters equal to 10% of the current population allows for smooth 

scaling of cluster sizes. This scenario occurs most often when reclustering rates are high, 

and there is sufficient sensor overlap to sacrifice individual coverage of sensor nodes (e.g., 

the 100h period in Figure 12). When the reclustering period is high and/or the network is 

dense, more clusters might be desirable to allow for tighter groupings as sensors regularly 

fail. Since CEMS is primarily investigated in the context of failure-prone networks, our 

experiments use 10% of the current population as cluster heads. 

4.3.4 Radio Model 

In order to establish a fair basis of comparison with LEACH-C CEMS uses an 

Network Lifetimes and Recluster Period

0

20

40

60

80

100

120

0 50000 100000 150000 200000 250000 300000

Time (sec)

S
e
n

s
o

r 
P

o
p

u
la

ti
o

n

20h 100h

 

Figure 12- Reclustering Period and Network Lifetimes 

        Figure 6 – Reclustering Period and Network Lifetime 



 39 

equivalent radio model (see Section 5.1.2). Transmissions of one meter or less are modeled 

using a free space radio model, while transmissions beyond one meter use model closer to 

two-ray ground reflection with an α=4 power loss exponent:  

kEkE

dkkEdkE

dkkEdkE

elecRx

ampelecTx

ampelecTx

*)(

)**()*(),( :Else

)**()*(),( :1d If

4

2











 

 Etx – Energy required to transmit 

 k – Length of the message to be transmitted 

 d – Distance to transmit 

 Eelec – Radio electronics’ energy dissipation in nJ/bit 

 εamp – Energy dissipation of transmit amplifier in pJ/bit/m
2
 

This model, while not realistic in the sense that multipath and shadow fading are not 

addressed, does represent the capabilities of common sensor transceivers in terms of 

energy costs for transmission and reception. Given that neither CEMS nor LEACH 

implements any techniques that are designed to mitigate signal attenuation, it is not 

unreasonable to use the above as a radio model for simulaton. 

5 Simulations 
Given the plethora of existing clustering protocols for wireless sensor networks, 

performance analysis of CEMS focused on its ability to quickly restore coverage in fault 

tolerant environments and to prevent interference amongst nearby sensors. To this end, a 

detailed model of the Media Access Control and physical layers was necessary to 

accurately gauge performance in a realistic setting. To this end we elected to implement 

CEMS in v3.2 of the Omnet++ discrete event simulator [10] and its Mobility Framework 

module[11], which provides detailed modeling of the lower levels of the network stack.  

Due to time constraints, our version of LEACH-C is the same as  used in [3]. 

Ideally, these simulations would have modeled the wide variety of accidents and 

problems that are encountered in real-world settings, such as noisy radio channels, mobile 

obstacles causing intermittent effects on the wireless medium, and the reflection, 

diffraction, and scattering of radio transmissions off of both mobile and static objects. 

Unfortunately, the sheer complexity of modeling radio propagation on that level is 



 40 

impossible without access to significant computing resources. Simulation modules would 

have to be specially developed for Omnet++ that implemented such modeling, which was 

impossible given the  CEMS development time constraints . We instead elected to simulate 

sensor death without its cause. To this end we implemented a Poisson model to trigger 

sensor failure, detailed below. 

 

5.1 Software Tools 

5.1.1 Omnet++ and the Mobility Framework 

Omnet++ is a powerful discrete event simulator used in a number of wireless mobile, 

ad-hoc, and sensor network simulations. A variety of supported frameworks such as 

MiXiM (used by the authors of Crankshaft) and the Mobility Framework extend the 

capabilities of the base simulator with detailed models of lower-layer protocols and 

physical layer modeling of the wireless medium. For our purposes, the Mobility 

Framework sufficed to install an 802.15.4 Zigbee MAC layer over which CEMS operated 

as a Layer-3 protocol. 

Unfortunately, this simulator is much more popular in Europe than in America. Core 

documentation, such as the Omnet++ manual and an introductory tutorial, are well written 

overall. However, a number of problems that users are likely to experience with both the 

base simulator and any frameworks are not addressed in the core documentation. This is 

compounded by error messages that, while meaningful to developers, are often unclear in 

their intent to the user. Support is only available through a mailing list which is subscribed 

to by a number of other users, and a few developers.  

These circumstances can easily lead to situations in which an unknown bug (or design 

decision not supported by the simulator) causes an error message that seems unrelated to 

any problems actually being encountered, and can only be resolved by posting a question 

to developers who already receive many daily requests for assistance. Turnover time for 

questions can occasionally take days, during which development of the user’s simulation 

could be effectively halted.  

The Mobility Framework (MF) is especially vulnerable to these kinds of problems, as 

bugs have been discovered in the included modules which only arise in very specific and 

infrequent circumstances. When these bugs do manifest, however, they are often difficult 



 41 

to diagnose and significant enough to halt a running simulation. Furthermore, the MF’s 

manual is outdated to the point of being incorrect. A major change to system architecture 

has been made since the manual was first published. This leaves the user with little more 

than the API for documentation, and not all classes, functions, or data structures are 

actually described in any detail within the API.  

5.1.2 LEACH-C Implementation 

We compare CEMS to the LEACH-C protocol described in [3]. LEACH-C is a 

centralized version of the original LEACH [1], replacing its randomized rotation system 

with a simulated annealing algorithm running on the base station. During LEACH-C’s 

cluster formation phase, each node transmits position and energy data to the base station. It 

disqualifies any node whose residual energy is less than the mean node energy, and 

includes the remainder as a set of objects to be input into a simulated annealing algorithm. 

Solutions are evaluated using a minimizing scoring function similar to that used in k-

means. Each cluster is scored based on the sum of the squared distances between each 

cluster member and the cluster head. ) Note that the number of clusters is determined a 

priori.) Once a good solution is found, nodes are informed of their new status and the same 

steady-state phase that LEACH employs is started. 

 In LEACH-C sensors communicate with cluster heads using a local (i.e. cluster-

specific) TDMA schedule. Since cluster sizes may change during each reclustering, a 

dynamically resizing TDMA schedule whose operational details are assumed to be handled 

automatically by the sensor is used. This is difficult to implement on a hardware level, and 

may limit the number of sensors compatible with the protocol. Each cluster uses a different 

CDMA spreading code to avoid interference, and cluster heads transmit to the base station 

using a contention-based CSMA system. While this causes less delay than CEMS’ global 

TDMA schedule, hidden terminals among cluster heads may still be a problem if sensors 

do not have radios powerful enough to sense the entire field before deciding to transmit.  

LEACH-C uses a free space radio model for transmissions under one meter. For longer 

distances, the authors state that a multipath model is used. In reality the radio model 

resembles two-ray ground reflection model with an α=4 power loss exponent. No actual 

modeling of multipath fading or shadow fading appears to be implemented. Since we 

compare against the version of LEACH-C implemented in [3], however, it is possible that 



 42 

the original model written in ns-2 did employ a more advanced simulation of radio wave 

propagation. CEMS employs an equivalent model to that used in [3] in order to ensure a 

fair comparison. 

 

5.2 Assumptions 

Our experiments were governed by several key assumptions. One of these is imposed by 

assumptions made in [3], while the remainder are based on common real-world 

configurations or made in order to limit the scope of CEMS to a reasonable level given the 

time constraints placed on its development: 

 There is no radio background noise or interference: While not realistic for most 

settings, no WSN simulator that we investigated had sufficiently detailed physical-

layer modules to accurately portray radio wave propagation in any detail. 

Furthermore, CEMS is designed to operate above a WSN MAC layer. Ensuring 

that frames arrive at their destination is not currently part of the protocol’s 

responsibilities. Note, however, that some modifications might be necessary if 

background noise is sufficient to delay successful transmission beyond the end of a 

sensor’s TDMA slot.   

 There is no spontaneous packet loss: Similar to the above assumption, we assume 

that only signal attenuation affects packets in transit over the wireless medium. 

Packets once sent will always arrive, though at a lower signal strength.  

 All sensors are initially homogenous: At the beginning of a network’s lifespan, all 

sensors have the same amount of residual energy. All nodes are therefore equally 

likely to be considered for cluster head status, and position will be the sole 

determinant of which sensors serve as cluster heads in the first round.  

 Sensor platforms are homogenous: All sensors have the same underlying 

hardware. No node is equipped with energy harvesting modules or long-range 

transceivers, and only the sink is not equally energy constrained.  

 All sensors can transmit to the base station: Node’s radios are always 

sufficiently powerful to reach the base station, located in the center of the field for 

all but one of our experiments. Every sensor is therefore capable of being a cluster 



 43 

head. Note, however, that this assumption does not imply that all sensors can 

transmit to all other sensors (see Section 4.2.1.3). 

 Sensor locations are static: No sensor node is mobile. Once placed a sensor 

remains at its initial position throughout the simulation. CEMS is not designed as a 

protocol for mobile WSNs and would not be an appropriate choice for such a 

network. Mobility is an active research area in and of itself, with a variety of 

specially designed protocols and routing mechanisms that exceed the scope of this 

project.  

 There is no clock drift: Simulating the effect of clock drift on a TDMA-based was 

deemed too complex of a problem to handle in the time allotted to CEMS 

development. A discussion of this problem is presented in Section 4.2.1.4, 

however.  

 Any node, including a cluster head, has a non-zero probability of failing at a 

given time due to random accidents: In real-world environments, sensors are 

vulnerable to a number of disabling situations. Vandalism, storm damage, 

unintentional destruction, removal from the field, or permanent signal blocking are 

all possible fates for a wireless sensor.  

 Cluster heads are capable of perfect compression/aggregation: This is an 

assumption made by [3]. A cluster head is able to process any number of messages 

from cluster members in such a way that its transmission to the base station 

contains the same amount of data as a single sensor’s transmission to the cluster 

head. This effectively decouples the size of reported data from the size of a cluster, 

and is rather unrealistic for many applications. The result of 100 sensor reports, for 

example, should not be the same length as the result from 1 sensor report unless 

some extreme form of data filtering (such as only reporting the highest sensed 

value) is in use. 

 

5.3 Poisson Death Model 

A network-wide death model using Poisson interarrival times is used to simulate 

accidents happening to sensors in the field. The cause of these deaths is not addressed, but 

it is assumed that each accident is entirely fatal. No sensor will ever be damaged but 



 44 

operational; a node is either functioning or dead.  Each arrival generated by the model is 

treated as a sensor death. The specific sensor is determined randomly using a uniform 

distribution. This could easily be changed, however, to reflect the existence of high-risk 

sensors.  

Days were chosen as a unit with which to represent expected arrival times of a sensor 

death. Note, however, that this is a fairly arbitrary choice based on desired granularity; a 

Poisson model is unit-less. Minutes or hours could just as easily be used, though this would 

require adjusting the expected value of deaths per unit time.  

 

5.4 Field Description 

One hundred sensors were 

scattered over a 25m square field. A 

uniform distribution was used to 

assign spatial coordinates, and the base 

station was placed in the center of the 

field. Given the uneven placement of 

sensors in relation to the field, certain 

regions of the network are extremely 

dense (e.g. the region between (3, 21) 

and (5, 23) in Figure 13) while others 

are quite sparse (e.g. the region 

between (20, 14) and (24, 13) in 

Figure 13.  

Previous discussions have examined the impact of network density on CEMS 

configuration. Since the experimental network is composed of both dense and sparse 

regions, CEMS is not tuned to provide optimal quality of service for either extreme. 

Coverage in this network obviously does not include the entire field. Any analysis of 

coverage, then, is compared against the initial amount of the field that is monitored at the 

start of the network’s lifespan.  

  

0

5

10

15

20

25

0 5 10 15 20 25

 

Figure 13 - Sensor Distribution 



 45 

6 Experiments 
Given the plethora of existing clustering protocols for wireless sensor networks, 

performance analysis of CEMS focused on its ability to quickly restore coverage in fault 

tolerant environments and to prevent interference amongst nearby sensors. A number of 

other useful experiments are certainly possible, but time constraints dictated that the 

majority of experiments relate directly to CEMS’ function as a fault-tolerant clustering 

protocol. Potential other experiments are discussed in Section 7. 

6.1 Network Lifetime 

Using 2J of energy and no random accidents, CEMS and LEACH-C were both run 

until network death (defined initially as the loss of 50% of the original population). As can 

be seen in Figure 14, LEACH-C currently lasts approximately 8% longer than CEMS. 

Both maintain fairly consistent coverage until the end of their operative lifespans, at which 

point all sensors die within a short time interval. Since each protocol’s underlying radio 

model is equivalent, the disparity is lifetime is due to aspects of each system’s design. Data 

packet sizes dwarf the energy costs associated with control packets
4
, and neither LEACH-

C nor CEMS is subject to overhearing the transmissions of neighbors (due to CDMA codes 

Network Lifetime (50 deaths)

0

20

40

60

80

100

120

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000

Time (sec)

N
e
tw

o
rk

 P
o

p
u

la
ti

o
n

LEACH-C CEMS

 

Figure 14 - Network Lifetime 



 46 

and global 

TDMA, 

respectively).  

The only 

significant 

difference 

between the two 

protocols which 

affects energy 

consumption, 

therefore, is the 

method of 

arriving at 

clustering 

solutions. CEMS 

employs a genetic algorithm which scores potential solutions based on the physical 

proximity of sensors, while LEACH-C’s simulated annealing algorithm uses a combination 

of energy levels and spatial locations of sensors. Time constraints prevented a comparison 

of the two protocols using the same clustering algorithm, but there is no reason that such a 

study couldn’t be made. The essential functionality of CEMS, its quick recovery behavior 

and global TDMA schedule, are not coupled to the choice of clustering algorithm. This 

possibility and the performance implications of using a different technique are investigated 

below, in Section 6.4. 

                                                                                                                                                    
4
 Data packets are 500 bytes (see Appendix I), while control packets are 30 bytes or less. 

 

Network Lifetime (10%)

90

91

92

93

94

95

96

97

98

99

100

0 5000 10000 15000 20000 25000 30000

Time (sec)

P
o

p
u

la
ti

o
n

LEACH-C CEMS

 

Figure 15 - Network Lifetime = 10% of the original 

population 



 47 

To 

investigate the 

impact of 

accidental sensor 

death on network 

lifetime, we 

increased the rate 

of random deaths 

to an expected 

value of five 

sensors per day. 

Figure 15-17 show 

the effect of sensor 

death at lifetimes 

defined as 10% of 

the population, 

25%, and 50%, 

respectively. In 

order to clearly 

show actual sensor 

populations, the 

temporary loss in 

network population 

due to cluster head 

death is 

investigated 

separately in the 

context of network 

coverage, below. 

Network Lifetime (25%)

75

80

85

90

95

100

0 20000 40000 60000 80000 100000 120000

Time (sec)

P
o

p
u

la
ti

o
n

LEACH-C CEMS

 

Figure 16 - Network Lifetime = 25% of the original 

population 

 

Network Lifetime (50%)

0

20

40

60

80

100

120

0 50000 100000 150000 200000

Time (sec)

P
o

p
u

la
ti

o
n

LEACH-C CEMS

 

Figure 17 - Network Lifetime = 50% of the original 

population 



 48 

Figures 15-17 display the actual sensor population, including temporarily offline but still 

living sensors, though network death may still be caused by clusters going offline due to 

cluster head death.  

As can be seen in Figure 15 and Figure 16, CEMS remains operational for approximately 

26% and 20% longer than LEACH-C, respectively. This is due to the impact of cluster 

head death on a network when cluster sizes are small. The loss of a cluster head in 

LEACH-C may put 20% of the sensors offline until the next reclustering period. If this 

puts the network below its minimum acceptable number of living sensors, the network is 

unable to fulfill its role and may be considered dead. In Figure 17 the LEACH-C network 

remains operational approximately 8% longer than CEMS. Since the network may lose up 

to 50% of its sensors before being considered dead, temporary sensor losses due to cluster 

head death are less significant. There may be significant effects on network coverage, 

however. Except in the case of very dense networks, losing almost half of all sensors in the 

field may introduce holes in the area that can be effectively sensed.  

 

6.2 Coverage 

Coverage

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20000 40000 60000 80000 100000 120000 140000 160000

Time (sec)

N
e

tw
o

rk
 C

o
v

e
ra

g
e

LEACH-C CEMS

 

Figure 18 - Network Coverage 



 49 

For this experiment, sensor failure rates were again set to an expected value of five 

sensors per day. Despite the shorter overall lifespan of CEMS at a network lifetime of 

50%, Figure 18 demonstrates its ability to retain a high standard of network coverage in 

the face of cluster head death and high sensor failure rates. As can be seen in Figure 18, 

both networks experience sensor death at the same points in time. Those deaths that are 

merely cluster members create a small drop in the network’s overall coverage. Larger 

drops are caused by the loss of a cluster head, which destroys the ability of all sensors in 

that cluster to transmit their information to the sink. Since a given sensor may not be 

assigned as a cluster head in both networks, the impact of a specific sensor death event on 

network coverage may be more or less pronounced (as can be seen in Figure 18). Since 

LEACH-C creates a number of clusters equal to 5% of the current sensor population, the 

loss of a cluster head is also more significant in terms of coverage loss than in CEMS, 

which uses 10% of the current population to determine cluster size. However, the 

probability of cluster head loss is also proportionally lower. Note that CEMS recovers 

from cluster head death rapidly by reclustering in response to missed transmissions from 

cluster heads. LEACH-C, conversely, does not restore coverage until the next periodic 

reclustering is triggered. This not only results in potentially significant gaps in the sensed 

area, but increases the probability of multiple clusters being offline at once. This is evident 

at approximately t=80000 in Figure 8.  

 



 50 

6.3 Sink Location 

For many WSN applications, the sink cannot be placed in the center of the field. To 

investigate the impact of sink location on network lifetime, we compared CEMS’ standard 

base station placement in the center of the field to one in which the sink was moved to a 

corner. Each sensor was given 2J of energy and placed in a 25m square field as described 

above. In the reference simulation, the sink was placed at (12.5, 12.5). In the experimental 

simulation, the sink was placed at (0, 25), the upper-left corner of the field.  

Network Lifetime

0

20

40

60

80

100

120

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Time (sec)

N
e
tw

o
rk

 P
o

p
u

la
ti

o
n

(12.5,12.5) (0,25)

 

Figure 19 – CEMS Algorithm with Varied Sink Location 



 51 

As can be seen in Figure 

19, moving the sink reduced 

network lifetime by 

approximately 5%. In 

addition, sensor death times 

were spread over a larger 

interval than in the reference 

simulation. This has the 

effect of reducing network 

coverage earlier in the 

network’s operative lifespan.  

Unsurprisingly, sensors 

died at a rate commensurate 

with their distance from the 

base station. Figure 20 

illustrates this phenomenon. The chart duplicates the sensors’ positions in the field as in 

Figure 13, the sink is moved to (0, 25) and but each sensor is colored to show the time it 

was observed to fail. At t=1100000, only sensors on the far side of the field had failed due 

to lack of residual energy. By t=12000000, a wider band of sensors closer to the sink were 

also dead due to due to energy dissipation. By the end of the simulation, only those sensors 

closest to the sink remained active.  

Interestingly, cluster heads do not expire significantly before their cluster members. 

While increasing the granularity of the results would certainly indicate cluster head failure 

preceding cluster member failure by some extent, the time difference is not large enough to 

actually register at normal sampling rates. This indicates that energy load is being balanced 

fairly effectively.  

This experiment does suggest a potential improvement to CEMS, however. In 

situations where cluster to sink transmission differences vary widely over the network (e.g. 

in the above example or in large fields), the protocol might be modified to rotate cluster 

heads during the steady-state phase at rates dependent on the cluster’s mean energy 

dissipation over time. This would preserve cluster memberships while further balancing 

Sensor Death Time Intervals

0

5

10

15

20

25

0 5 10 15 20 25

t=1100000 t=1200000 t=1260000 t=1320000 t=1380000 Sink

 

Figure 20 - Sink Location and Sensor Death 



 52 

energy load.  

6.4 Clustering Algorithm Comparison 

As discussed in Sections 4.1.1.2.1 and 0, a genetic algorithm may not be the most 

appropriate clustering technique given that CEMS clustering assignments are based only 

on spatial proximity. Since the protocol is decoupled from its clustering algorithm, we 

tested CEMS using both its original GA and a k-means algorithm which uses iterative 

refinement to partition a network into cluster domains. The head selection algorithm 

described in Section 4.1.2 is used in both experiments to elect cluster heads. The version of 

k-means that was employed in this experiment uses the kmlocal [34] library developed by 

the University of Maryland.  

As can be seen in Figure 21, k-means’s clustering solutions result in an extended 

network lifetime of approximately 8%. This makes CEMS networks perform almost 

equivalently to LEACH-C networks in terms of network lifetime in normal conditions. 

Coverage loss is similar to that experienced when using the genetic algorithm. 

Furthermore, the k-means algorithm executes with a mean time of 1.42 seconds, as 

compared to the genetic algorithm’s mean run time of 15.38 seconds. This significantly 

decreases the time required to simulate network operation, and would be valuable in real-

world conditions to decrease the delay associated with emergency reclustering. Had this 

Network Lifetime

0

20

40

60

80

100

120

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000

Time (sec)

N
e
tw

o
rk

 P
o

p
u

la
ti

o
n

Genetic Algorithm K-Means

 

Figure 21 - Clustering Algorithm Comparison 



 53 

experiment been run earlier during CEMS’ development, k-means would have been 

employed instead of the currently implemented genetic algorithm. 

7 Conclusions 
Several conclusions can be draw from these simulation experiments. First, there is an 

important application-specific tradeoff between acceptable coverage and network lifetime. 

By reclustering infrequently, a network may have a longer operative lifespan at the 

expense of early and increasingly common gaps in its coverage. For denser networks or 

those monitoring conditions likely to register on multiple sensors, this may be an 

acceptable tradeoff. For sparser of more precise networks, however, a decreased lifespan 

may be an acceptable cost for ensuring good coverage. A further tradeoff must be made 

between the number of clusters in a network and the expected failure rate of sensors due to 

accidents. A small number of cluster heads cause a significant loss of coverage if they fail, 

while a larger number of cluster heads cause a proportionally smaller coverage loss. 

Assigning more sensors to the role of cluster head also increases the probability of a cluster 

head randomly failing, of course.  

Secondly, a synchronized global TDMA schedule allows the base station to predict 

when transmissions from given cluster heads are expected and ensures that no sensors will 

act as hidden terminals. CEMS uses the former feature to implement a quick recovery 

system that rapidly restores network coverage in the event of cluster head death. 

Third, while LEACH-C has a longer operative duration than CEMS under normal 

conditions and loose definitions of network lifetime, it cannot maintain a high degree of 

coverage under failure-prone conditions or stricter lifespan requirements. A potential 

avenue for future research might be the adaptation of a quick-recovery mechanism to the 

LEACH-C protocol, however. 

Fourth, the location of a WSN base station relative to its sensor nodes has a potentially 

significant impact on network coverage. Since CEMS does not currently support cluster 

head rotation during steady-state mode, sensors and clusters farther from the base station 

fail due to low residual energy earlier in a network’s lifespan than those nearer the base 

station. This is especially obvious in large fields and topologies in which the sink is not 

centrally placed.  

Finally, a k-means algorithm is more appropriate for cluster selection than a genetic 



 54 

algorithm when only spatial proximity is considered. While GAs are popular methods of 

selecting cluster members, the benefits of evolutionary searching are somewhat lost when a 

single metric should be minimized or maximized. An evaluation of the performance of 

single-metric clustering techniques to more complex algorithms which consider many 

factors (e.g. position, energy, projected transmission costs, etc.) might be an interesting 

study, however.  

CEMS contributes to the study of wireless sensor networks by exploring the behavior 

and performance of WSNs in failure-prone conditions, and addressing the problem of 

coverage loss via its quick recovery mechanism. The majority of existing research does not 

address the problem of random sensor failure, which in any cluster-based network can pose 

significant risks. The benefits of a synchronized, global TDMA schedules for delay-

tolerant applications are also addressed in this project. The ability to predict sensor 

activities in advance is used to implement CEM’s quick recovery mechanism, but a 

number of other applications could almost certainly be devised. An important final note is 

that these experiments are not provably robust, due to time constraints and the significant 

amount of time taken to simulate a wireless sensor network in detail. All information 

presented above should be reliably verified before being used.   

8 Future Work 
Future work could be taken in a number of directions. Obvious improvements to the 

CEMS protocol are complete implementation and configuration of a k-means algorithm 

instead of the existing genetic algorithm. A method for rotating cluster heads during the 

steady-state phase without interrupting data reporting would be a useful feature for 

scenarios that have widely varying transmission costs between clusters. Support for 

dynamically determining the reclustering period would not only reduce configuration, but 

better distribute energy load as sensors die and cluster sizes change. Reference broadcasts 

during slot 0 could be implemented to deal with clock drift. With the inclusion of 

retransmission rules (which is currently assumed to be handled by the data-link layer), 

CEMS could nearly supplant many MAC protocols and operate on its own. Finally, an 

algorithm to analytically determine the optimal number of clusters given the current 

network topology would remove the need for almost any configuration, as well as better 

adapting the cluster-selection mechanism to changing environments and sensor 



 55 

populations.  

Enhancements to the simulation environment might reveal previously unexplored 

avenues of improvement, as well. More advanced radio models capable of simulating 

multi-path fading, and a more realistic portrayal of the wireless environment (e.g. channel 

noise), could be invaluable in tuning the global TDMA schedule. Simulation of an 

underlying environment to be sensed could allow CEMS to be investigated in the context 

of application-specific aggregation and compression algorithms. Inclusion of energy 

harvesters such as solar panels would allow a variety of currently excluded network 

configurations to be investigated. 

Future experiments, in addition to those described above, might investigate the 

relationship between data packets and control overhead. Smaller data packets representing 

simple, floating-point sensor measurements might result in control packet transmission and 

reception dissipating significant amounts of energy. Quantification of this relationship 

might allow for inefficiencies to be better identified and addressed. Investigating the ability 

of CEMS to handle sensors with heterogeneous and fluctuating residual energy (due to, 

e.g. energy harvesters or mains-powered gateway nodes) could reveal more efficient 

cluster-selection techniques which consider more than simple spatial proximity. Finally, 

only 100 sensor nodes were ever simulated at once. An investigation of CEM’s behavior in 

more populated networks (e.g. 250 or even 1000 nodes) would be a valuable insight into 

the protocol’s scalability, as well as its ability to perform in dense network topologies. 



 56 

 

9 References  
[1] Heinzelman, W.; Chandrakasan, A.; Balakrishnan, H., "Energy-efficient 

communication protocol for wireless microsensor networks," System Sciences, 

2000. Proceedings of the 33rd Annual Hawaii International Conference, 10 pp. 

vol.2-, 4-7 Jan. 2000 

[2] Heinzelman, W., Chandrakasan A., Balakrishnan H. "An Application-Specific 

Protocol Architecture for Wireless Microsensor Networks." IEEE Transactions on 

Wireless Communications 1 (2002). 

[3] Voigt, T.; Dunkels, A.; Alonso, J.; Ritter, H.; and Schiller, J. 2004. “Solar-aware 

clustering in wireless sensor networks”. In Proceedings of the Ninth international 

Symposium on Computers and Communications 2004 Volume 2 (Iscc"04) - Volume 

02 (June 28 - July 01, 2004). ISCC. IEEE Computer Society, Washington, DC, 

238-243. 

[4] Manjeshwar, A. and Agrawal, D.P. “Teen: a routing protocol for enhanced 

efficiency in wireless sensor networks”. In Parallel and Distributed Processing 

Symposium., Proceedings 15th International, pages 2009-2015. 

[5] Tang, Q.; Tummala N.; Gupta S.,;and Schweibert L. “Communication Scheduling 

to Minimize Thermal Effects of Implanted Biosensor Networks in Homogeneous 

Tissue”. IEEE Transcations on Biomedical Engineering 52 (2005): 1285-1293.  

[6] Mudundi, S.R., and Hasham H.A. “A New Robust Genetic Algorithm for Dynamic 

Cluster Formation in Wireless Sensor Networks”. Proceedings of the Seventh 

IASTED International Conferences (2007). 

[7] Hussain S.; Matin A.W.; Islam O., "Genetic Algorithm for Energy Efficient 

Clusters in Wireless Sensor Networks”," pp.147-154, International Conference on 

Information Technology (ITNG'07), 2007 

[8] Grefenstette, J., "Optimization of control parameters for genetic algorithms," IEEE 

Transactions on Systems, Man, and Cybernetics, vol. SMC-16(1), pp. 122-128, 

1986. 

[9] Haupt, R. "Optimum population size and mutation rate for a simple real genetic 

algorithm that optimizes array factors." Proc. of Antennas and Propagation Society 

International Symposium, 2000, Utah, Salt Lake City. 

[10] Varga, A. Omnet++ Discrete Event Simulation System. Computer software. Vers. 

3.2. Omnet++ Community Site. <http://www.omnetpp.org/>.  

[11] Mobility Framework for Omnet++. Computer software. Vers. 2.0p3. Mobility 

Framework. <http://mobility-fw.sourceforge.net/>.  

[12] Chong, C. and Kumar, S. "Sensor Networks: Evolution, Opportunities, and 

Challenges." Proceedings of the IEEE 91 (2003). 

[13] "The Cooperative Engagement Capability." John Hopkins APL Technical Digest 

16 (1995). 

[14] DN2510. 2007. Dust Networks. 

<http://www.dustnetworks.com/cms/sites/default/files/DN2510.pdf>. 

[15] Imote 2. Crossbow Technologies. 

<http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Imote2_Datashe

et.pdf>. 



 57 

[16] Murty R.; Mainland G.; Rose I.; Chowdhury A.; Gosain A.; Bers J.; and Welsh 

M.. "CitySense: A Vision for an Urban-Scale Wireless Networking Testbed." 

Proceedings of the 2008 IEEE International Conference on Technologies for 

Homeland Security (2008). 

[17] TC74. Microchip. 

<http://ww1.microchip.com/downloads/en/devicedoc/21462c.pdf>. 

[18] Omnivision OV7640. Datasheet Archive. 

<http://www.datasheetarchive.com/OV7640-datasheet.html>. 

[19] MSP430. Texas Instruments. 

<http://www.snm.ethz.ch/pub/uploads/Projects/MSP430_datasheet.pdf>. 

[20] AVR. Atmel. 

<http://www.snm.ethz.ch/pub/uploads/Projects/atmel_atmega128l_datasheet.pdf> 

[21] XScale. Intel. 

<http://download.intel.com/design/intelxscale/XScaleDatasheet4.pdf>. 

[22] CC1021. Texas Instruments. <http://focus.ti.com/lit/ds/symlink/cc1021.pdf>. 

[23] CC1000. Texas Instruments. <http://focus.ti.com/lit/ds/symlink/cc1000.pdf>. 

[24] CC2500. Texas Instruments. <http://focus.ti.com/lit/ds/symlink/cc2500.pdf>. 

[25] Levis P.; Madden S.; Polastre J.; Szewczyk R.; Whitehouse K.; Woo A.; Gay D.; 

Hill J.; Welsh M.; Brewer E.; and Culler D.; "Tinyos: An operating system for 

sensor networks," 2005, pp. 115-148. 

[26] Zeng X.; Bagrodia R.; Gerla M.; "GloMoSim: a Library for Parallel Simulation of 

Large-scale Wireless Networks". Proceedings of the 12th Workshop on Parallel and 

Distributed Simulations -- PADS '98, May 26-29, 1998 in Banff, Alberta, Canada 

[27] Mccanne, S; Floyd, S.; and Fall, K. ns2 (network simulator 2). http://www-

nrg.ee.lbl.gov/ns/. 

[28] Varga A. and Hornig R., "An Overview of the Omnet++ Simulation 

Environment," in Simutools '08: Proceedings of the 1st international conference on 

Simulation tools and techniques for communications, networks and systems & 

workshops.    ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer 

Sciences, Social-Informatics and Telecommunications Engineering), 2008, pp. 1-10. 

[29] Levis, P.; Lee N.; Welsh. M.; and Culler, D., "Tossim: Accurate and Scalable 

Simulation of Entire TinyOSs Applications," in SenSys '03: Proceedings of the 1st 

international conference on Embedded networked sensor systems.    New York, NY, 

USA: ACM Press, 2003, pp. 126-137. 

[30] Lin, K.; Hsu, J.; Zahedi, S.; Lee, D.C.; Friedman, J; Kansal, A.; Raghunathan, V.; 

Srivastava, M.B., "Heliomote: Enabling Long-Lived Sensor Networks Through Solar 

Energy Harvesting," ACM Sensys , November 2005. 

[31] Chulsung, P. and Chou, P.H. "AmbiMax: Autonomous Energy Harvesting 

Platform for Multi-Supply Wireless Sensor Nodes." Proc. of Sensor and Ad Hoc 

Communications and Networks, 2006., Virginia, Reston. 

[32] Pahlavan, K. and Krishnamurthy, P., “Principles of Wireless Networks – A 

Unified Approach”, 2ed Edition, John Wiley and Sons, 2008. 

[33] Halkes, G. and Langendoen, K. "Crankshaft: An Energy-Efficient MAC-Protocol 

For Dense Wireless Sensor Networks." Proc. of 4th European conference on 

Wireless Sensor Networks, Netherlands, Delft. 



 58 

[34] Mount, David. “KMlocal: A Testbed for k-means Clustering Algorithms”. 10 Aug. 

2005. University of Maryland. 

<http://www.cs.umd.edu/~mount/Projects/KMeans/kmlocal-doc.pdf>. 



 59 

 

10 Appendix I: Parameter Settings 
Our simulations relied on a variety of parameters to simulate the environment, wireless 

medium, CEMS protocol, and radio electronics. All values specific to the physical layer 

are based on the CC2500 transceiver module:  

 

Physical and Data Link Layer 

 Signal attenuation threshold: -100dBm 

 Sensor transmitter power: 1mW 

 Base station transmitter power: 100mW 

 Eelec: 50nj/bit 

 εamp: 100pJ/bit/m2 

 k: 4000 bits 

 bit rate: 250kbps 

 MAC header: 34 bytes 

 

CEMS and Network Layer 

 Data packets: 500 bytes 

 Layer-3 header: 24 bytes 

 TDMA cycle time: 10s 

 TMDA slot length: 50ms 

 Missed transmission count limit : 2  

 Number of clusters: 10% of the original population  

 Reclustering Period: 20 hours 

 Poisson death rate: 5 expected deaths per day 

 

Genetic Algorithm 

 Number of generations: 5000 

 Mutation rate: 0.0005 

 Crossover rate: 0.06 

 Population Size:  100 

 


	Worcester Polytechnic Institute
	Digital WPI
	2009-05-05

	A Centralized Energy Management System for Wireless Sensor Networks
	Richard William Skowyra
	Repository Citation


	Thesis Paper Outline

