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Therefore do thou hold Patience; a Patience of beautiful (contentment).
Quran (chapter 70 - verse 5)

There is no alternative for hard work
Thomas Edison (an inventor)

The business that only brings financial benefits is a weak business
Henry Ford (founder of ford company)
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Chapter 1

Introduction

Contents

1.1 Context of study . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contribution and report structure . . . . . . . . . . . . . . 6

1.1 Context of study

As a rule of thumb, the more technology advances, the more devices are in-

volved in our life. Networking provides attractive solutions to efficiently utilize

these devices. In a networking environment, resources can be shared, mem-

bers can communicate and collaborate, and management is considered as an

indispensable tool to organize these components.

In contrast to wired networks, wireless networks do not use cables to con-

nect their components; this feature introduces vast amount of benefits as well

as new challenges. By freeing the user from cables, anywhere/anytime mo-

bility and communication becomes a reality, and causes fundamental changes

in networking concepts. Different technologies can be used to support wire-
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1.1. CONTEXT OF STUDY

less communication such as Infrared (IrDA), Bluetooth, WiFi, Wireless USB....

They can participate in different types of networking; a , for example, consists

of several Access Points connected to the network backbone, and each wireless

node entering the network is asigned to a certain Access Point. Another exam-

ple is WPAN, where few number of nodes can communicate together within

a very short distance. However, the requirements of some applications can

not be satisfied with such charactersistics. Having a fixed backbone limits

the network flexibility for installation and maintenance, as well as hindering

node mobility. Moreover, some applications may require the coverage of large

distances, and support large number of wireless nodes.

Specialized wireless networks such as ad hoc networks and wireless sen-

sor networks can be used to overcome these drawbacks and fullfil the needed

requirements. Herein a brief of these networks mentioning their main charac-

teristics..

• Ad hoc networks: A collection of wireless nodes builds a temporary

network without using any existing infrastructure. It can form a complex

distributed system that comprises wireless mobile nodes that can freely

and dynamically self-organize into arbitrary and temporary ”ad-hoc”

network topologies, allowing people and devices to seamlessly internet-

work in areas with no pre-existing communication infrastructure

• Wireless Sensor Network (WSN): Its simplest form is a set of

sensors for data capturing (i.e., temperature), and sending them to a

base station. The extreme case is to have a heterogeneous network,

which may contain base stations, different types of sensors, actuators,

and processing elements [1]. The nodes (i.e., sensors) are characterized

by being limited in resources (i.e., power, storage, processing, etc...), and

small in size. They are powered by tiny batteries where the battery power

is usually directly proportional to its size. Such power constraint has a

great effect over node activities. The major power consuming activities

2



CHAPTER 1. INTRODUCTION

are mobility and communication. However, power consumption due to

mobility is not a must; for example, when nodes are attached to a moving

object, no power is consumed through mobility. On the contrary, power

consumption due to communication is a must to perform the required

task. It is also worthy to note that, a single hop communication can be

more power consuming than a multiple hop communication [2] because

more transmission power is required.

Ad hoc and Wireless Sensor Networks can introduce different solutions for

wireless networking requirements. Ad hoc networks can be installed quickly,

because they are not in need of pre-installed infrastructure; this speedy instal-

lation is important in some applications such as rescue missions and covering

areas of natural disasters, where communication infrastructure may not ex-

ist or is not available. Also, it may help to minimize installation costs since

less number of devices are involved, and allows nodes to move freely from one

point to another. Moreover, wireless media can be utilized better because

short communication links are used to connect node to node instead of node

to a central base station. In addition, WSN allows wireless nodes to be used in

environments and locations unaccessable by ad hoc nodes (i.e., underground

pipes), also, it is characterized by having numerous number of nodes.

In-Flight Entertainment (IFE) is an application that inspires ideas from ad

hoc networks and WSN, where different number of devices are welling to form

a heterogeneous network. It is the entertainment available to aircraft passen-

gers during flight. The passenger can experience different types of audio and

video devices as well as using his own personal devices. Such environment can

be considered as dense because many wireless devices exist inside a cabin of

limited area, where the obstacles (i.e., seats) and the metalic tunnel structure

of the cabin can affect the wireless signal. Moreover, a recent shift in the main

concept of IFE systems introduced the usage of embedded sensors inside pas-

senger’s seat to provide the system with passenger’s health status information

to enhance the IFE services [3, 4, 5]. For instance, special embedded actuators

3



1.2. PROBLEM DESCRIPTION

can also be used to provide massage for first class passengers [6].

1.2 Problem description

Wireless environment faces many challenges especially when new application

requirements impose difficulties which were not previously under the spot.

These difficulties range from the natural problems inherited by wireless media,

to managerial and organizational problems.

Regardless of the differences between ad hoc networks and WSN, they are

facing common challenges. Wireless nodes can not have simultaneous access

to the wireless media, rather than that; they are sharing the media to achieve

wireless connectivity. There are different sharing techniques to solve the sit-

uation, but the problem becomes worse when the number of nodes increase.

Some applications (i.e., WSN applications) require the deployment of hundreds

and even thousands of nodes in the area to be sensed, where the deployment

scheme can be under either a controlled or random distribution. The same

situation can exist if nodes are able to move and gather within a specific area.

Such behavior may cause contention between nodes to use the shared media.

Self-organization can be used to overcome these problems; it can provide so-

lutions to save resources while keeping large number of nodes connected and

managed [1].

In this section, we highlight some challenges such as network density, het-

erogeneity, and the importance of self-organization to the role played by wire-

less networks.

• Network density: Unattended node mobility or deployment can lead

to different node densities within the same network. As the number

of nodes increases, their connectivity increases; however, the nature of

wireless media imposes some constrains over this rule. All nodes are

sharing the same channel, so nodes within the same transmission range

are not able to use it simultaneously. Moreover, nodes on high traffic

4



CHAPTER 1. INTRODUCTION

paths can deplete their power faster. Accordingly, network performance

degrades when it becomes highly dense. On the other hand, sparse nodes

do not suffer from high collision problems, but they may suffer from bad

connectivity, and those without any connected neighbors are considered

as isolated nodes.

Apparently, a dense network can raise different problems to MAC layer

such as overhearing, communication grouping, over-provisioning, and

neighbour state [7]. Moreover, the negative effect propagates to the

Network layer [8, 9], and Application layer [10, 11], where it can not be

over passed.

• Network heterogeneity: Nowadays, wireless communication spans a

wide range of devices from satellite phones to wireless sensors. This di-

versity in devices and technologies leads to a heterogeneous environment.

The heterogeneity and homogeneity of wireless environment can range

from using different devices, to the various methods used in communica-

tion between identical devices. In other words, it is possible to say that

the network is totally homogeneous only when all nodes are identical in

all aspects. Otherwise, we have to mention the points of heterogeneity.

For example, nodes, which play a special role in the network can be

considered a factor of heterogeneity although they may have the same

physical structure as the other nodes.

Regardless of heterogenity type, a control scheme should exist to coor-

dinate between different components. In this dissertation, we propose a

heterogeneous networking architecture to be used inside the dense wire-

less environment of IFE systems to connect its different components.

• Self-organization: In some applications, centralized management does

not offer good solutions especially when the system is too complex and

needs to be scalable due to the overhead of control messaging especially

when the system changes frequently, and decentralized techniques do

5



1.3. CONTRIBUTION AND REPORT STRUCTURE

not satisfy all the needs of such systems because they lack the system

global view and are still using control messages. On the other hand,

self-organization techniques can provide new solutions for complex, au-

tonomous, and scalable systems; where the system components can or-

ganize themselves independently without expensive coordination.

Many self-organizational techniques are inspired from natural systems

such as in biology and physics [12]. However, these techniques should be

thoroughly studied and adapted to match the technical systems. Self-

organization greatly helps when a large number of subsystems needs to

be managed while there is a lack of global state information; so that local

information can be used to take the required decisions.

1.3 Contribution and report structure

The basic idea of finding network density is given by the number of direct

neighboring nodes within the node transmission range. However, we believe

that such metric is not enough; there are other factors that should be con-

sidered when judging the network as being dense or not. Thus, we propose a

new metric that encompasses the number of direct neighbors and the network

performance. In this way, the network response with respect to the increasing

number of nodes is considered when deciding the density level.

Moreover, we defined two terms, self-organization and self-configuration

(which are usually used interchangeably in the literature) through highlighting

the difference between them. We believe that having a clear definition for

terminology can eliminate a lot of ambiguity and help to present the research

concepts more clearly.

Some applications, such as In-Flight Entertainment (IFE) systems inside

the aircraft cabin, can be considered as wirelessly high dense even if relatively

few nodes are present, so we propose a heterogeneous architecture of different

technologies to overcome the inherited constrains inside the cabin, where each

6



CHAPTER 1. INTRODUCTION

component aims at solving a part of the problem. We held various experimen-

tations and simulations to show the feasibility of the proposed architecture.

The experimentations and simulation results proved that such heteroge-

neous architecture can provide a solution for the constrained wireless commu-

nication inside the cabin.

Based on the self-organization concept, we introduce a new self-organizing

identification protocol that utilizes smart antennas. The protocol was firstly

designed and verified using UML language, then, a NS2 module was created

to experiment with different scenarios.

In chapter 2, we introduce adhoc networks and discuss topics related to its

communication capabilities, how it can utilize energy conservation techniques

to overcome its limited power sources, and how to be identified through ad-

dressing schemes. Similar topics are discussed for WSN; showing similarities

and differences between them. Finally, factors affecting network density are

presented followed by a presentation for self-organization and IFE systems.

In chapter 3, we show how network density is usually measured in the

literature, and how density calculation can be enhanced when network perfor-

mance is considered as a parameter for calculating network density. We also

propose a wireless heterogeneous network architecture as a solution for the

dense wireless IFE systems.

In chapter 4, we explained our understanding to the terms self-organization

and self-configuration, which are used interchangeably in the literature. We

also introduce a device identification protocol for IFE systems, that practically

shows the differences between the two terms. The protocol uses smart antennas

to connect each display unit with its remote control without any previous

configuration.

In chapter 5, we present the conclusion and future work of our contribution.
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2.1. INTRODUCTION

2.1 Introduction

The rapid advance of portable wireless communication devices triggered the

need of ad-hoc networks and Wireless Sensor Networks (WSN), where certain

applications require a wireless communication without the use of any infras-

tructure. These types of networks are usually characterized by being mobile,

scalable, and numerous in numbers. This may lead to high node concentration

in certain areas, where communication suffers from various difficulties such as

signal interference. Thus, the term network density is used to describe nodes

concentration in a certain location. Different research attempts were held to

solve problems due to high density. However, the infrastructureless design of

these networks makes them difficult to be managed, and the communicating

nodes need to be cooperative and able to take their own decisions; this makes

self-organization a valuable feature for this type of networks. We believe that

self-organization techniques can provide solutions suitable for the special char-

acteristics of these types of networks.

On the other hand, the solutions provided for ad-hoc and WSN networks

can be helpful for other applications such as In-Flight Entertainment (IFE)

systems. An IFE systems is a part of a complex avionic system where various

constraints exist. They can be business constraints where minimizing costs is

a paramount factor, or technical and safety constraints that affect the choise

and usage of proposed solutions. Wiring complexity inside aircrafts increases

weight which can be evaluated as more fuel consumption, increases testing dif-

ficulties to verify connection correctness, and makes maintenance and changing

aircraft layout more difficult.These various constraints make the usage of a sin-

gle technology insufficient to provide the expected service. Thus, IFE can use

various networking techniques and technologies, where each technology solves

part of the problem. The high number of wireless devices enclosed in a metallic

tunnel filled with many obstacles (i.e., seats) initiates the same problems facing

ad-hoc and WSN networks. Therefore, studying the features of these networks,

the effect of network density, and the solutions provided by self-organization
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techniques become a paramount need for designing such systems.

In this chapter, we discuss the features of ad-hoc networks and WSN show-

ing their differences, and similarities; followed by a description of dense net-

works and self-organization. Then, we present IFE systems and showing their

main features and how they can be treated as dense self-organized networks.

2.2 Wireless networking

Ad-hoc and WSN networks are characterized by special features that distin-

guish them from other types of wireless networks. In this section, we discuss

their properties and the difficulties that they face.

2.2.1 Ad-hoc Networks

According to Merriam-Webster dictionary [13], the term “Ad hoc” means

“formed or used for specific or immediate problems or needs (i.e., ad hoc so-

lutions)”. This definition can show the sense of the term “Ad-hoc networks”.

Ad-hoc Networks are wireless networks where nodes can communicate wire-

lessly with each other without the need for a fixed infrastructure. This is the

most distinguishing feature that differentiates between ad-hoc networks and

traditional wireless networks (i.e., cellular networks). There is no centralized

control; nodes are autonomous and can take their own actions depending on

network’s situation [14]. In other words, they are responsible for determining

the way they communicate, organizing themselves, and responding to changes

that happen to the network due to external or internal factors.

The importance of ad-hoc networking concept is greatly recognized when

the nodes are deployed over a large area where a single hop communication

is not possible. This situation introduces a challenge to find techniques that

provide appropriate multi-hop routing since nodes must be able to join or leave

the network independently without causing the network to fail. To achieve this
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functionality, the network should have an architecture capable of providing

such behavior through its structure, methods of communication, topology.

2.2.1.1 Structure

Ordinary wireless networks usually depend on a fixed infrastructure to inter-

connect thier nodes and connecting them to the external world. However, the

contrary of this concept is applied in ad-hoc networks where there is no fixed

infrastructure that allows direct communication between nodes. It is the re-

sponsibility of the individual nodes to recognize their surroundings and create

their own communication network; they can work in a stand alone fashion or

can be connected to another network.

To overcome the absence of infrastructure, the nodes can work in ei-

ther single or multiple hop communication. Wireless Personal Area Net-

work (WPAN) [15] is likely to use single hop since all nodes are within the

transmission range of each other and no node is welling to act as a router.

On the other hand, large ad-hoc networks use multiple hop communication to

cover larger area. WSN nodes usually use the multihop scheme to connect to

a central point that collects their data [16].

2.2.1.2 Communication

The main purpose of setting up an ad-hoc network is to communicate and

exchange data between nodes. The wireless mobile environment has special

characteristics that impose various constrains over the communication process.

These characteristics are discussed below.

• Wireless media: According to its nature, a wireless network has in-

herited characteristics that distinguish it from wired networks leading to

special kinds of problems. The spatial coexistence of multiple wireless

nodes, which are using the same channel can cause interference problems

leading to a degradation of network performance; the Hidden Termi-
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nal problem [10, 17] and the Exposed Terminal problem [17] are a direct

example of such effect. Moreover, the surrounding environment can im-

pose fading effects [18] over the wireless signal such as Shadowing, which

occurs due to surrounding obstacles that attenuate the signal, and Mul-

tipath effect where reflective objects in the environment reflect the signal

causing it to arrive from different paths; these signals can add up either

constructively or destructively to change the signal strength. This will

be explained precisely in section 2.3.1.2).

• Routing: Multihop routing is a real challenge in wireless networks es-

pecially if nodes are mobile causing the network topology to change fre-

quently and active routes to be no more available. Routing protocols are

the mechanism through which nodes can communicate in such dynamic

environment; they are usually categorized as Proactive, Reactive, and Hy-

brid protocols [19, 20]. Proactive protocols usually use periodic messaging

to distribute information about the current network topology. Each node

saves this information and tries to calculate a route for each destination;

this helps to minimize the delay required to find routing information, but

more resources must be allocated. Destination Sequence Distance Vec-

tor (DSDV) [21], Fisheye State Routing (FSR) [22], and Optimized Link

State Routing (OLSR) [23] are classified as proactive protocols. Reactive

protocols computes routes on demand, so when a node needs to send a

packet it starts with an exploration phase to find the active available

route through which the packets can be sent. This scheme saves a lot

of resources especially energy and bandwidth since no periodic discovery

packets are used. However, nodes need to wait before sending data un-

til the routes are discovered. Many reactive protocols were introduced

such as Ad hoc On-Demand Distance Vector (AODV) [21], Dynamic

Source Routing (DSR) [24], and Temporarily Ordered Routing Algo-

rithm (TORA) [25]. Hybrid protocols are a mix between the previous

types where routes are kept proactively for nearby nodes and reactively
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for far nodes (i.e., Zone Routing Protocol (ZRP) [26], and Zone-based

Hierarchical Link State (ZHLS) [19]).

• Link capacity: In wired networks, capacity of the whole route is almost

provided and can be calculated as the minimum of the capacities of its

links. In a wireless environment, especially an ad-hoc network, the sit-

uation is different since the transmission media is shared between nodes

within the same transmission range. Link capacity in wireless networks

is not fixed and depends on many factors including transmission power

over the link, interference caused by transmissions over other links in the

network, and sharing the bandwidth between nodes so that throughput

per node degrades as the number of nodes increases [27]. To overcome

these constrains, different Qos protocols were introduced in the litera-

ture [27, 28, 29, 30].

2.2.1.3 Energy Saving

Among the various limited resources in ad-hoc networks (i.e., processing power,

storage, etc...) energy is considered the most challenging resource to control;

this is due to the complexity of trade-offs available to the design of energy-

aware systems. It is difficult to say that a certain part of the system is respon-

sible for energy conservation. In fact, it is a combination of physical elements,

various layers of the protocol stack, and the environment in which the system

operates.

The energy consumption behavior of Network Interfaces (NI) passes

through known states, and the consumption values differ according to the

interface type. There are three states for a wireless interface; Sleep, Idle,

Transmit, and Receive states [31]. In the Sleep state, the NI doesn’t trans-

mit or receive. Thus, it must fire a transition to an Idle state to be able to

transmit or receive. Consequently, an Idle state consumes more energy than

Sleep state since more circuit elements are required to be active. As a result,

it is recommended to keep the interface in Sleep mode more than in Idle mode
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to save more power [31]; this can be achieved through power-saving protocols.

Although this will enhance power consumption, but there will be a delay due to

the wake-up period. Moreover, energy consumption can be further enhanced

through power control techniques.

• Power-Save protocols: Their aim is to increase the Sleep duration

and decrease the Idle duration while minimizing the impact on the net-

work throughput and latency. These protocols may be either Network

Layer protocols or MAC Layer Protocols [14].

Network Layer protocols usually follow the following strategies:

1. Synchronized operations where nodes periodically wakeup to listen

and exchange data (i.e., IEEE 802.11 standard).

2. Asynchronous operations where nodes maintain independent

Sleep / Awake schedules. The schedules are designed to guaran-

tee that neighboring nodes have an overlapped awake states (i.e.,

BECA / AFECA [32])

3. A topological approach can be used to identify a set of nodes to

topologically represent the network, so that the other nodes within

their coverage area can spend most of the time in a Sleep state

without highly affecting the network Throughput (i.e., Span [33],

and GAF [34]).

MAC layer power-save protocols can be used to benefit of the fact that

when a node is transmitting, its neighbors should remain silent to mini-

mize interference. So that, a neighboring node can use the media access

control information to go into a sleeping state (i.e., PAMAS [35])

• Power Control techniques: These techniques allow nodes to alter

their transmission power to achieve more network capacity while reducing

energy consumption since low-power transmission reduces contention and

leads to an increase in network capacity [14]. This implies that a route

15



2.2. WIRELESS NETWORKING

with a large number of low-power hops can be more energy efficient than

a route with a fewer high power hops. This can be achieved through

topology control and minimum energy routing. Topology control will be

further explained in section 2.2.1.5.

The spirit of the minimum routing techniques is to minimize the total

energy consumed in forwarding a packet from a source to a destination. Ac-

cordingly, the energy consumed at the transmitter and receiver sides must be

counted. A transmission is considered successful at the receiver side if the

power of the received signal is above certain threshold. Thus, the impact of

adding a new hop to the route, in terms of energy consumption, should consider

the overhead of the added transmit and receive operations [36].

2.2.1.4 Addressing Schemes

In ad hoc networks, there are three basic addressing schemes, Centralized, De-

centralized, and Neighbor-Base [37, 38] schemes. The Centralized scheme is

based on using at least one of the nodes, usually called Leader, as a DHCP

server. The challenges facing this scheme are how to maintain a single server in

an ad hoc environment in which mobile nodes are joining and leaving, and how

to minimize the effect of the Hot-Spot depletion problem (further explainiation

in section 1) over the nearby nodes. The Decentralized scheme allows each node

to independently configure its address, and then address uniqueness is eval-

uated through a global agreement from all other nodes. The Neighbor-Based

scheme allows nodes to communicate locally in order to get their address. The

key challenge is to guarantee address uniqueness without using global agree-

ment or centralized control.

Addressing schemes have common features in between [39]:

• Address uniqueness : Each node must have its own unique address since

duplicated address can cause severe routing problems.
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• Scalability : The address pool must be able to handle large number of

nodes. In addition, two factors can affect scalability; communication

overhead and allocation latency. Communication overhead includes the

number of packets and the packet size used to supply the node with

its address. Allocation latency is the waiting time of a node to get its

address.

• Reusability : Nodes may leave the network due to different reasons (i.e.,

mobility, power depletion, etc...). In this case, their address must return

to the address pool to be reused. If there is no policy for such situation

a scalability problem may exist.

2.2.1.5 Topology

Ad-hoc network topology control has a great effect over the network perfor-

mance. Its main goal is to maintain network connectivity while improving

routing performance, and reducing energy consumption and interference; when

direct connection between a source and a destination is not feasible, a multi-

hop communication can be a good solution. In this situation a topology control

mechanism can be used. Two main approaches are usually used in the ad-hoc

domain Flat or Hierarchical topology [40, 41]. In a Flat topology all nodes

are considered equal and there is no preference between them. In Hierarchical

topology, nodes can be gathered into clusters. In this approach, network nodes

are divided into groups (i.e., clusters) where each cluster has a minimum of

one Clusterhead node. Clusterheads are connected together, either directly or

through gateways, to form the network backbone. They are characterized by

having more resources (i.e., energy, transmission range, processing, storage,

etc...) than ordinary nodes in order to be able to perform their tasks.

Topology control faces different challenges [39]. A Flat architecture can

suffer from scalability problems in terms of throughput, delay, and communi-

cation overhead as the network size increases. On the other hand, clustering

faces other types of challenges such as choosing the suitable clusterhead, which
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can be a source of risk because its failure will affect connectivity with other

clusterheads and between nodes within the cluster.

Topology control can introduce solutions for different ad-hoc challenges.

Some applications require Fault-tolerant communication. Thallner [42] intro-

duced a Fault-tolerant distributed topology control algorithm to provide a

continuously maintained connections for energy efficient multi-hop communi-

cation. Roy [43] describes another algorithm that minimizes the amount of

power needed to maintain bi-connectivity by preserving the minimum energy

path between any pair of nodes.

2.2.2 Wireless Sensor Networks

During the recent years, great developments in electronics and wireless commu-

nication allowed researchers to implement miniature sensing devices with wire-

less communication capabilities. This modern technology satisfies the needs

for special type of applications where Wireless Sensor Network (WSN) can

play an important role. This type of networks is useful for applications where

rapid deployment is required in areas that lack the appropriate infrastructure

to setup the network. It is suitable for environmental measurements [44], com-

munications in disaster areas [45], commercial [46], and military [47, 48] appli-

cations. A practical implementation is presented through the Smart Dust [49]

application.

Wireless Sensor Network is a special type of networks where nodes are

smart sensors with scarce resources. They are small in size, have limited com-

putational power, short range communication capabilities, low energy, limited

storage capacity, and usually numerous in number. They differ from the ordi-

nary ad-hoc network nodes in that they are usually homogenous nodes unless

different phenomena are going to be sensed [14]. Many challenges are facing

WSN; the main challenges related to WSN implementation are energy conser-

vation, low quality communication, and scalability. Self-organization can help

in solving these problems or in the best case to minimize their drawbacks [50].
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A WSN mainly consists of sensor nodes that measure certain phenomena

and send the measured data to a sink node. A sink node is responsible for

collecting the measured data and relaying it to an external entity (i.e., users,

external network, etc...). Moreover, if required, it can make some processing

over the collected data. A phenomenon is a measurable event or a value,

which is sensed by a sensor node. A typical sensor node consists of four basic

parts; a sensing subsystem to measure the targeted phenomena, a wireless

communication subsystem, a processing subsystem for local data processing

and storage, and a power source. Some extra subsystems can be included such

as a positioning subsystem, and actuating subsystem (i.e., mobilizer) in case

that the node is capable of performing some actions (see Figure 2.1).

Power Generator Mobili izer Location f inding subsystem

Power supply subsystem

Sensors ADC Control Unit

Memory

Wireless device

Sensing 
Subsystem

Processing Subsystem

Communicat ion
Subsystem

Figure 2.1: Sensor node structure

Having a quick look at old surveys can give a good image about the great

developments that took place in this field. In 1986, T.G.Robertazzi [51] showed

the new rising ad-hoc network technology. At that time they were interested

in how to setup the connectivity between nodes, transmission scheduling, self-

organization, etc... the concepts of traditional wireless networks were still in

mind; using local hubs, backbone networks, gateway were thought to be part of

the solution. Nowadays, it is totally different. Ad-hoc networking has its own

concepts, which proved to be practical and reliable. Although connectivity
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and transmission scheduling are still important issues, but it became the issue

of their performance and reliability. Last but not least, more topics were

introduced such as security, QoS...

Although ad-hoc networks and WSN have many similarities in between, but

certain applications require especial characteristics (i.e., Connectivity, commu-

nication schemes) to cope with their requirements. So WSN is equipped with

special capabilities, which allow it to work in environments, where ad-hoc net-

works can not satisfy the required needs.

2.2.2.1 Coverage and Connectivity

Two nodes are considered connected when they can exchange packets between

each other. If they are within the transmission range of each other, then they

are directly connected and identified as being one-hop neighbor; otherwise,

they are connected indirectly through intermediate nodes to form a multi-hop

connection. Unreachable nodes are called “Disconnected”. Factors that can

affect connectivity are:

• Transmission range of nodes: this includes the transmission power and

the receivers sensitivity;

• Surrounding noise and interference;

• Number of neighboring nodes (i.e., density);

• Routing protocols;

2.2.2.2 Communication Schemes

The aim of WSN is to setup a network of sensors that can measure data and

transfer them to a location for further processing. During this process differ-

ent types of messages are exchanged between WSN entities; this can include

queries, data, commands, etc... Wu [14] mentioned three types of communica-

20



CHAPTER 2. ABOUT WIRELESS DENSE NETWORKS

tion schemes; Sink-to-Sensor, Sensor-to-Sink, and Sensor-to-Sensor commu-

nication. They are described below.

1. Sink-to-Sensor communication: In this scheme, communication is

initiated by the sink to allow sensors to perform certain tasks (i.e., send-

ing their measured data). This scheme can be further sub-classified into

Sink-to-All, Sink-to-One, Sink-to-Region, and Sink-to-Subset communi-

cations.

(a) Sink-to-All Communication: When a sink sends a query to all sen-

sors, flooding is considered as the basic technique. However, blind

flooding is not the best technique since it degrades the network per-

formance and imposes many difficulties. Duplicate packets consume

network resources and large number of them can cause undesir-

able congestion. A controlled flooding can introduce a solution [52]

where hop counts will prevent the packets to circulate endlessly

inside the network.

(b) Sink-to-One communication: In this scheme, the sink sends its

query only to one sensor. In a way or another, this pattern can

be utilized to implement all other patterns of Sink-to-Sensor com-

munication. Different techniques and routing protocols [53] are used

to implement this scheme. One advantage is that reliability can be

introduced by using multiple paths to destination. On the other

hand, a WSN environment imposes certain difficulties; the lack of

global ID scheme to identify each individual node can make this

scheme a difficult task.

(c) Sink-to-Region communication: When location information is avail-

able to WSN entities, nodes can be identified by their location.

Therefore, a set of nodes occupying certain area can be identified

by this region. This scheme is required when the application is in-

terested in the data value existing within certain region rather than
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the data sent by a certain node. However, some problems can oc-

cur; a WSN is deployed with a in numerous number of nodes that

can have a high density within a specific area and the distance be-

tween nodes is considerably short. This leads to severe interference

and packet collisions, so that receivers can get nothing but noise.

Moreover, the short distance between nodes causes some nodes to

exist continuously in the route between sink and required region;

this leads to energy depletion of these nodes. This is called Hot

spot depletion [54]. When the receiver receives multiple copies of

the same packet; this is called Response Implosion problem [55].

Another cause of energy depletion is the usage of a multipath rout-

ing scheme to increase reliability where the transmitter selects the k

shortest paths and divides the load among them [55]. Fortunately,

data aggregation mechanisms [56] can be utilized to minimize these

drawbacks.

(d) Sink-to-Subset communication: In this scheme, the sink sends its

query to a group of nodes scattered through the whole field. When

nodes can be uniquely identified, this scheme may not introduce

serious difficulties. However, if there is no identification, finding

the nodes will not be a trivial task.

2. Sensor-to-Sink communication: In this scheme, the communica-

tion is started from the sensors towards the sink. It is usually used to

send data or to respond for queries and commands sent by the sink.

This scheme can be further sub-classified into All-to-Sink, One-to-Sink,

Region-to-Sink, and Subset-to-Sink communications.

• All-to-Sink communication: When the sink wants to retrieve some

information from all sensors, they reply with All-to-Sink scheme;

this can be done periodically or upon certain requests by the sink.

As a result, the Hot-Spot [54] and the Response Implosion [55] prob-
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lems can exist, but within the nodes near to the sink, which may

suffer from excessive workload.

• One-To-Sink communication: Simply, it is the communication orig-

inating from a single sensor towards the sink. It is much easier than

Sink-to-One scheme since sink nodes already have their own identi-

fication while the transmitting sensor does not need to be uniquely

identified.

• Region-to-Sink communication: This is the most popular scheme,

according to the WSN philosophy, large number of sensors are de-

ployed in the field to sense certain phenomena. Consequently, an

event can trigger multiple sensors within the same region (i.e., the

temperature exceeds certain threshold). In this situation, high traf-

fic can exist. Thus, aggregation techniques can be used to minimize

this negative effect.

• Subset-to-Sink communication: This scheme is used when informa-

tion is needed from a group of sensors, which are sharing certain

feature. Although it seems similar to Region-to-Sink communica-

tion, but it differs since it is not bounded by the location of sensors.

In fact, it can be bounded by the type of sensor or the phenomena

to be measured or any other criteria rather than location.

3. Sensor-to-Sensor communication:In-Network data processing [57]

and aggregation [56, 58] have great importance in WSN where data pro-

cessing can enhance the network performance and overcome or minimize

some of the WSN problems. For example, they can be used to reduce

the number of packets transmitted by a node thereby saving energy, or

sensed data can be gathered and transformed to a more abstract high

level data before transmission. This requires the usage of processing

power, storage, and wireless communication. Hence, Sensor-to-Sensor

communication is indispensable to support these techniques.
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2.2.2.3 Energy Conservation

To perform the required tasks, all sensor nodes have to be equipped with a

power source. The type of power source may differ according to the application

and the WSN architecture. For example a static WSN inside a building can

have a fixed and/or rechargeable power source; however, this is an exceptional

case. Sensor nodes are usually deployed in numerous numbers within harsh

or unreachable environment. Moreover, their tiny size imposes constraints on

using powerful energy source. Therefore, sensor nodes are usually equipped

with batteries of limited power value. These batteries should have a lifetime

long enough to perform the required task. That is why energy conservation is

an important topic in WSN research.

For a typical sensor node (i.e., where there is neither a location finding nor

actuating subsystems) energy consumption is cognizable in communication,

and sensing subsystems. Pottie [59] mentioned that the cost of transmitting a

single bit of information is approximately the same as the energy needed for

processing a thousand operation in a typical sensor node.

Anastasi [31] proposed different approaches to minimize energy consump-

tion such as Duty Cycle, and Data-Driven approaches. The Duty Cycle ap-

proach is concerned by putting sensor nodes into a sleeping mode when there

is no need to transmit or receive. He defined the Duty Cycle approach as “the

fraction of time when nodes are active during their lifetime“. However, such

approach needs coordination between nodes to schedule their sleep and wakeup

times. Thus Duty Cycle approach can be used to enhance energy consump-

tion in communication subsystem. On the other hand, Data-Driven approach

is concerned by reducing data sampling, while keeping an acceptable sensing

accuracy, to save energy consumed by sensors, and to minimize transmitted

data.

Another classification was introduced by Pantazis [60] and Zheng [61] where

power control mechanisms were classified as either Active or Passive. An Ac-

tive Power Conservation Mechanism (APCM) saves energy by using energy-
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efficient network protocols; in other words, the communication subsystem

doesn’t go into sleeping mode. A Passive Power Control Mechanism (PPCM)

saves energy by allowing the communication subsystem to enter a sleeping

mode.

APCM can be distributed among different network layers. First, a MAC

layer protocol can save power by reducing the number of collisions and thus

decreasing energy consumption of retransmission. Second, network layer pro-

tocols can be further sub-classified into Power Aware Routing (PAR) [62, 63]

and Maximum Lifetime Routing (MLR) [64, 65]. PAR protocols are concerned

by finding routes that consumes least possible power. MLR protocols try to

balance power dissipation among sensor nodes. Third, transport layer proto-

cols are aiming at reducing unnecessary retransmissions to achieve minimum

power consumption while preserving high Throughput.

PPCM can have different levels of control. First, Physical Layer Power

Conservation (PLPC) where energy saving is achieved by minimizing energy

consumption of the Central Processing Units of idle system. Second, Fine-

Grain Power Conservation (FGPC) where MAC layer can take the decision

to turn off the radio interface module for just one transmission frame [66].

Energy can be saved from every frame transmission if MAC layer can take this

decision. Third, Coarse-Grain Power Conservation (CGPC) uses a dedicated

application located higher than the MAC layer to control the radio interface.

Therefore, it can be turned off for a longer period than the period of transmit-

ting a single MAC frame.

2.2.2.4 Limited Resources

In the WSN context, resources can be organized by being everything that a

node requires to survive and perform its required task. This includes processing

power, memory, energy, communication capabilities, etc... The percentage of

these resources within the system differs from one WSN to another according

to the objective required to be satisfied. However, the common feature is that
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these resources are limited either in quantity or value or both. The small

size and limited resources structure limits sensor nodes to undertake too much

complex tasks. Therefore, sensor nodes cooperate together to perform the

required task. Such objective requires a resource management scheme to utilize

the available resources. Any managing scheme will aim at maximizing some

factors while minimizing others; for example, to maximize network life time

and reliability, and minimize power usage and network traffic. Baarsma [67]

showed general design issues of resource management in WSN; they include:

• Lightweight management : Traditional heavy-weight managing schemes

are not suitable for WSN with limited resources, so that the managing

architecture should be designed as light-weight in terms of computation

and communication.

• Localized management and coordination: This managing scheme can re-

duce redundant activities of the network to save its resources. This can

be achieved through inter-node coordination where neighboring nodes

needs only to coordinate with each other instead of propagating man-

agement messages through the whole network. Thus, network traffic is

minimized and more energy is saved causing network life time to prolong.

• Generic management functions : WSN resource management encapsu-

lates application requirements to carry out the required tasks. This may

introduce compatibility problems when applying the same management

scheme over different applications. So that, a degree of genericness is

required to adapt the managing scheme.

2.2.2.5 Routing Protocols

Due to the large number of nodes deployed and the inherent characteristics

of WSN, routing becomes a very challenging topic. Routing protocols should

preserve active routes while considering energy limitations as well as node mo-

bility. Different routing protocols were introduced in the literature, each to
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overcome certain WSN challenge. Al-Karaki [41] organized WSN routing pro-

tocols according to network structure and protocol behavior. According to the

network structure, routing can be classified as Flat Network routing, Hierar-

chical Network routing, and Location Based routing. In Flat Network routing

all nodes play the same role and they cooperate together to accomplish the

sensing task. In Hierarchical Network routing, nodes are usually divided into

clusters where each cluster consists of a group of sensing nodes and cluster

heads. Cluster heads are used to collect data and route them to a sink node;

they are characterized by having higher energy level as well as more processing

and communication capabilities. In Location Based routing protocols, nodes

are addressed according to their location. Different techniques can be used to

determine node’s position; relative coordinates can be determined by exchang-

ing data between neighbors or absolute coordinates can be obtained through

GPS.

On the other hand, protocols can be classified according to their routing

behavior. Multipath routing protocols [41, 68] use multiple paths instead of sin-

gle path to increase network reliability and to be more resistive to route failure

either due to mobility or energy depletion. However, such technique consumes

more energy and introduces more overhead. Query Based routing [41, 69]

are used where sink nodes send a query to get certain data; therefore, only

the nodes having this data respond to the query. Certain techniques such as

data aggregation can be used to minimize the effect of duplicate data. Nego-

tiation Base routing [41, 69] uses negotiation messages to suppress duplicate

and redundant data from being sent through the network. In QoS-based rout-

ing [41, 70], QoS metrics (i.e., delay, energy, etc...) are used to make a balance

between energy consumption and required data quality.

From the first sight, Ad-hoc and Wireless Sensor networks seem the same.

However, a detailed look can show basic differences between them. Table 2.1

shows some of their similarities and differences.
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Comparison Ad-hoc network WSN

Equipments Relatively large Tiny size with very
with limited power limited energy level

Human Intervention May exist Does not exist in
most applications

Traffic pattern

can exhibit periodic data
Usual pattern of transmission or long periods

Web, voice, applications of inactivity followed by
short periods of high activity

Scale Usually few Can reach thousands
number of nodes of nodes

Self-Organization Required Required

QoS requirements
Traditional techniques New techniques are

can work required to consider
the limited resources

Simplicity Relatively complex Simple software and
architecture Hardware architecture

Mobility Can exist Can exist
Deployment Random / Planned Random / Planned

Table 2.1: Ad-hoc Networks Vs WSN networks

2.2.3 Discussion

Both ad-hoc and WSN networks have features that make them an appealing

solution for many applications. Usually nodes are free to move either intention-

ally or unintentionally and nodes are able to adapt themselves to the changes

resulting from movement (i.e., building new routes). Scalability is an impor-

tant factor especially in WSN where numerous numbers of nodes are deployed.

Although high number of nodes guarantees better connectivity, but raises an

interference and congestion problems. Being reconfigurable, allows them to

respond to surrounding changes. However, ad-hoc and WSN networks have

some drawback such as limited energy sources which may shorten the networks

life time, and limited transmission range which can be overcome by multihop

routing.
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Some applications can benefit from these advantages and cope with the

advantages; while other applications can not. For example, IFE systems are

applications of the second type where the surrounding environment is full of

constraints especially those related to safety issues. In such environment, a

failing node or high interference level are considered a sever situation that

must not exist because their consequences are usually dangerous. Accord-

ingly, IFE systems need to achieve the pros of ad-hoc and wireless networks,

while avoiding their cons. They need to be mobile, reconfigurable, scalable,

and infrastructureless (if possible); and at the same time, to be tolerant to in-

terference, can avoid or recover from failure modes, and can keep the expected

QoS level.

2.3 Wireless network density and self-

organization

Wireless networks communication is based on sharing the wireless media be-

tween nodes through different sharing techniques. However, the existence of

large number of wireless nodes makes it difficult for these techniques to sus-

tain a good level of communication. Aside to the high concentration of nodes,

other factors can have a noticeable effect over the communication link. In this

section, we discuss these factors and show their impact over wireless commu-

nication.

Moreover, a self-organizational behavior can help wireless nodes to adapt

themselves to overcome the effect of high network density. A wireless node

is composed of different layers; each layer can participate in a part of the

self-organizational behavior. Thus, we discuss the solutions mentioned in the

literature to show how self-organization behavior is imbedded in these layers.
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2.3.1 Network density

The term “Dense networks” is usually used to identify networks having large

number of nodes within a small area while affecting the network performance.

Starting from this concept, different networking solutions were proposed [71,

72, 14]. However, it seems that this view is very abstract and needs to be

further investigated. In this section, we introduce the factors that have an

influence over network density; some of them are controllable while the others

are not. However, it is difficult to consider some factors as being absolutely

controllable or uncontrollable (i.e., Mobility).

2.3.1.1 Mobility

Different performance aspects may benefit from mobility such as load

balancing/life-time maximization [73], buffer overflow prevention [74], and cov-

erage enhancement [75]. Moreover, mobility models [76] have an impact over

traffic pattern [77], and can contribute to the role of bottleneck nodes (i.e.,

nodes close to sinks) where sink nodes can change their location to enhance

performance [78].

On the other hand, mobility can have negative effect since frequent move-

ments increase power consumption, and may result in performance degradation

through dynamic link changes [79].

Mobility can be considered as a controllable factor if nodes have actua-

tors to change their location according to a certain scheme [80]. For example,

nodes can move toward coverage holes to enhance the quality of initial deploy-

ment [81]. On the other hand, if the node is deployed in a random way or

attached to another moving object, then mobility is considered uncontrollable.

In both cases, it has a great influence on nodes distribution and subsequently

over their density [82].
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2.3.1.2 Obstacles

Radio signals are highly affected by the surrounding obstacles. Two path loss

models are usually considered in the context, the Free Space and the Two-Ray

models [18]. The Free Space model assumes that there is a line of sight path

between the transmitter and the receiver while reflections are neglected. A

more realistic model is the Two-Ray model where two paths are considered,

the line of sight path and the ground reflection [36]. In real life, path losses

are not the only reason for signal fading. Surrounding obstacles can dramati-

cally affect the radio signal through reflection and/or absorption. In addition,

the signal value can vary through time due to the relative motion between

the transmitter, the receiver, and the obstacle; this is called the Shadowing

Effect [18]. In addition, the receiver can receive super-positioned signals due

to reflections and/or scattering. These signals may add up constructively or

destructively causing high signal variations. This is called the Multipath Fad-

ing [18] effect. So, a node, which is considered as near due to its location, can

be considered out of transmission range due to the surrounding obstacles or,

in the best case, connected through a weak link.

2.3.1.3 Transmission Power

The number of neighboring nodes is affected by transmission power. In case

there are not enough neighbors, a node can extend its transmission range

by increasing the transmission power to cover a larger area. However, such

behavior should be governed by a power control scheme to reduce interference

and to save energy [83]; instead of transmitting at the maximal power level,

each node can choose a lower transmission power [84]. As a result, transmission

power control can be another way to adjust a network topology as well as its

population.

Moreover, a major interference source is the surrounding nodes. When

two nodes within the range of each other are both transmitting at the same

time and frequency, they are called to be interfering together and the arriving
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signal is likely to be corrupted. In addition, two different channels with very

near frequency band can interfere together due to spurious emissions especially

at high speed transmissions [85]. A persistent problem always exists in spite

of the different solutions proposed to overcome interference; it is hard for a

transmitter to estimate the interference situation at the receiver, while only

the channel status at the receiver side counts for successful transmission [1].

2.3.1.4 Deployment Scheme

In spite of the above factors, the deployment scheme [41, 54] is still considered

the main factor. In a Planned scheme, usually the nodes locations are prede-

fined according to a certain plan. This gives more control over the density and

can manipulate node placement as one of the design parameters. Neverthe-

less, the initial distribution can be changed in some applications where nodes

are attached to moving objects, but a good study of the mobility pattern [76]

can minimize this effect. In contrast, a Random scheme is uncontrollable and

different problems can arise; especially the existence of isolated nodes (i.e.,

where they are out of the transmission range of other nodes) or interference

and collisions due to high population of nodes within certain area.

2.3.2 Self-organization

In WSN domain, the term self-organization is tightly coupled with routing

protocols, so the term self-organizing may be confused with the term routing.

Routing is the action of relaying data from one node to another through a

communication path. Routing decision may be centralized or decentralized

depending on the network architecture. Self-organization is the action of re-

orienting network nodes. This reorientation can be a result of a change in

location, hardware or software configuration to alter the role that a node plays

in the network. The decision of self-organizing is taken by the node itself in

response to the surrounding environment.
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Self-organization is of great importance to manage and save the node’s

scarce resources. Power consumption can be greatly reduced when transmis-

sion range is efficiently managed. In addition, node location can dramatically

affect the choice of an efficient transmission range. Also, it has an influence

on network traffic where it can reduce congestion in locations with high nodes

density [1].

An important issue in WSN is that system requirements usually conflict

with its physical limitations. A WSN is used for gathering and sending data.

At the same time, WSN suffers from limited resources such as power source and

hardware limitations [90], and limited computational capabilities that needs

specific application structure [91]. Further more, WSN are used in differ-

ent applications ranging from civil [92] and environmental [44] applications

to military [48] ones. This wide range of applications needs different system

architectural requirements. It is of a great importance to try to define a gen-

eral basic architecture, and to find out its requirements. Different application

requirements can be added to this generic architecture to obtain the desired

outcome. We are trying to highlight the role of different networking layers that

affect self-organization. Thus, we are interested in showing general structural

requirements for MAC, Network, Transport, and Application layers that make

them suitable for the WSN environment.

2.3.2.1 MAC Layer

According to the search done by Nait-Abdesselam [93], it was stated that MAC

protocols can be categorized into Time Division Multiplexing Access (TDMA),

and Carrier Sense Multiple Acces (CSMA). The former is basically a technique

that allows nodes to share a communication media by synchronizing them to

share available time slots. Its scheduling nature helps to reduce power losses

due collisions. However, there still exists the non ignorable synchronization

overhead. The later is dependent on an agreement between the sender and

receiver to share the media instead of waiting for time slots. However, there
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are losses due to collision, idle listening, and overhearing.

Areas with high density of nodes suffer from congestion due to sharing of

same communication medium. Further more, recent improvements in hard-

ware raised the importance of finding appropriate MAC protocols. Ilker

Demirkol [94] introduced a survey for different MAC protocols where criti-

cal WSN properties for the design of MAC protocols were highlighted. They

were also investigated to show their points of weakness and strength. It was

mentioned that communication patterns can be categorized into four patterns,

broadcast, convergecast, local gossip, and multicast. The differences between

these patterns were discussed, and different attributes of a good MAC proto-

col were proposed. These attributes include energy efficiency, scalability, and

adaptability to network changes. In spite of their importance, other attributes

can be considered as secondary attributes when compared with the main goals

of a MAC protocol, such as Latency, Throughput, and Bandwidth Utilization.

Furthermore, using certain technologies can improve MAC Layer perfor-

mance. Ryoo [95] showed that using directional antennas can be used to reduce

MAC level interference.

2.3.2.2 Network Layer

The way data are routed between nodes is of great importance. An efficient

routing or placement algorithm can save a lot of lost energy. In a WSN envi-

ronment, nodes are usually deployed randomly causing unintended node dis-

tribution. In such situation, it is usually impossible to establish a single hop

communication link; this makes it very important to find out a way to transfer

packets through multi-hop path(s) efficiently and accurately. This can mini-

mize the energy lost due to packet losses, and sending packets in inappropriate

or obsolete paths.

Most of the routing protocols, proposed for the wireless networks domain,

do not consider limited resources constrain that exists in WSN environment.

In addition, traditional addressing scheme doesn’t work well in such dynamic
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environment [41]. A well defined routing protocol can solve these issues, but

it is impossible to have a single general design, so it is of great importance

to identify different categories of protocols. Al-Karaki [41] proposed a good

categorization of WSN routing protocols through different points of view ac-

cording to network structure, and protocol operation. According to the former

view, they can be categorized as flat, hierarchical, and location based routing.

According to the latter, they can be categorized as negotiation, multi-path,

query, QoS, and coherent based routing. In addition, Yazeed Al-Obaisat [96]

showed that protocols can also be categorized according to routing discovery;

they can be divided into proactive, reactive and hybrid protocols.

Different surveys agreed on common network layer challenges [41, 96, 97,

98], such as Node placement, Energy saving, Scalability, and Mobility. Node

placement, sensors are deployed in either a deterministic or random way. In

either case, the network must keep a communication link between nodes. En-

ergy saving, routing protocols must try to increase the network life time by

adopting an efficient algorithm to minimize energy required for routing. Scal-

ability, node sensors are usually deployed in numerous numbers, the routing

protocol must be able to handle extra nodes joining the network and preserve

the required performance even if some nodes left the network (i.e., due to

power depletion). Mobility, depending on the application, nodes can be either

dynamic or static. These issues must be considered during the protocol design.

In addition, the role that the node plays in the network must be considered

during the design. In a heterogeneous network environment specialized nodes

can exist. A sensing node may be only able to communicate with a router

node where there is no need to communicate with neighbouring sensing nodes.

Router nodes can communicate with each other to relay data between different

groups of sensing nodes. A sink node can be used to collect data sent by sensing

nodes. On the other hand, a homogeneous network can exist where each node

can play different roles; it can sense as well as route data.
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2.3.2.3 Transport Layer

On the other hand, transport protocols have their own attributes of interest.

Chonggang Wang [99] submitted a survey on transport protocols for WSN,

where challenges in using transport protocols in sensor environment such as

Energy-efficiency, Quality of Service, Reliability, and Congestion Control were

mentioned. These challenges (which are due to the especial characteristics of

WSN) raises the need to design either new transport protocols or to adapt the

existing ones because ordinary transport protocols such as UDP or TCP, which

do not behave well in WSN [53, 100]. A guideline for transport protocol design

was proposed [99]. This guideline discusses common performance metrics (i.e.,

reliability, QoS, and fairness), and required functions of transport protocols

(i.e., congestion control, and loss recovery) with respect to WSN environment.

Chonggang Wangl [53] presented different design issues for transport layer in

WSN. In [99] and [53] different types of transport protocols dedicated for WSN

were discussed.

WSN are not an isolated network; for certain applications it is necessary

to be connected to other types of networks such as internet or a database.

Most of these networks, if not all, are dependent on the TCP protocol. Un-

fortunately, TCP does not behave well in WSN. So, if this type of connection

is really needed, then adapting the transport layer should be considered to

be able to establish this type of connection. Wangl [53] presented the disad-

vantages of using TCP and UDP, with respect to a WSN environment, which

were originally designed for wired, or in the best cases for wireless networks.

Kosanovic [100] proposed solutions to overcome this type of problems in order

to connect WSN to other TCP networks. He discussed the Proxy Architec-

ture, and the Overlay Based Architecture. The Proxy Architecture allows TCP

users and sensor nodes to communicate through a proxy server. This allows

free choice for communication protocol at the sensor side. This approach has

two drawbacks. First, the proxy server represents a single point of faliure. Sec-

ond, the proxy implemetation usually depends on a particular set of protocols
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for the sensor side. The Overlay Based architecture implements the TCP/IP

protocol to a microcomputer system with very poor resources (i.e., memory

and processing).

2.3.2.4 Application Layer

From the first sight, it seems that self-organization is only dependent on the

lower communication layers. In fact, a WSN application layer can have a

considerable impact on self-organization and node performance. The basic

software level is the Operating System (OS). It is the responsibility of the

OS to manage node resources such as, memory, CPU, and communication

capabilities. Requirements for such OS were introduced by Ming-hai [101].

When the node structure is too complex, the applications may need a so-

lution to hide this complexity for easier development process. In this case,

intermediate software is required to handle the situation; this type of software

is called middleware. Middleware was presented in a survey by Wang [102],

where different issues were discussed including a study for the topic to deter-

mine the challenges, the services required, and provide a reference model for

determining the required functionalities and services. In addition, he showed

the current work related to this topic, as well as proposing a way to organize

the relations between the middleware features to give a better understanding

for the issue.

Although different programming models were introduced for the networking

domain, but programming for WSN applications needs extra attention due to

the different constrains that exist in WSN environment. Sugihara [103], intro-

duced a comprehensive survey for representing the programming requirements,

showing the challenges that arises due to limited resources, and introducing

available programming models of WSN.

Another issue that shows the importance of application layer for self-

organization is software update. When an environmental change occurs, such

as the existence of new type of nodes, extra phenomena to be measured, and a
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change in the node’s task; a software update may be vital for the node to cope

with these changes. Brown [104], introduced a survey for software update in

WSN. It showed different issues such as the effect of update on performance,

security, and energy saving, as well as known research categories for software

update.

2.4 IFE systems

IFE systems are famous for their ability to provide video contents, audio tracks,

and games. Actually, the entertainment service is just a single service of a

grand set of services. The IFE system is capable of providing other services

such as e-business, e-commerce, information services, and health monitoring.

Achieving all these services in a single system requires the utilization of multi-

ple technologies and techniques capable of being integrated together to form a

single IFE system. As IFE designers are welling to use wireless communication;

various problems arise, mainly the interference problem. Thus, an IFE system

is considered as a high dense network due to the large number of short distance

neighboring nodes; in addition to the cabin structure and the obstacles that

affects wireless signal which can be added constructively in some parts and

destructively in others. Moreover, it is difficult to have the luxury of on-board

technical support when IFE system fails or need to be configured. That is

why, IFE systems must be self-organized to be able to start automatically and

reconfigure itself, when failure occurs, without any external intervention.

2.4.1 The need for IFE systems

The basic idea behind IFE systems was to provide passengers with comfortable-

ness during their long range flights; especially with long transatlantic flights

where passengers see nothing but a large blue surface, so that services were

initially based on delivering food and drinks to passengers [87]. As passengers’

demand for more services grows, accompanied with an increase in airlines
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competition and technology advancement, more services were introduced and

modern electronic devices played a remarkable role. This caused a change in

the basic concept behind IFE systems; it becomes more than just giving phys-

ical comfortableness and providing food. It is extended to provide interactive

services that allow passengers to participate as a part of the entertainment pro-

cess as well as providing business oriented services through connectivity tools.

Moreover, it can provide means of health monitoring [3, 4] and physiological

comfort [5].

Hao [88] mentioned that the enclosed environment of the aircraft can cause

discomfort or even problems to passengers. IFE systems can greatly reduce

these negative effects. This can be done by using e-books, video/audio broad-

casting, games, internet, and On Demand services. The fact that passengers

from highly heterogeneous pools (i.e., age, gender, ethnicity, etc...) can impact

the adaptive interface systems.

2.4.2 IFE system components and services

In fact, the entertainment starts from the passenger’s seat design where most

of the IFE system components are embedded. Wiring cables connect together

all of the electronic devices in the seat as well as connecting them to the whole

system in the cabin. They run through the cabin’s walls, floor, and seats.

Unfortunately, conveying signals and power to the seats with a connector for

each seat would cause reliability and maintenance problems, and hinder cabin

reconfiguration.

Nowadays, IFE systems are interactive systems, so a Personal Control Unit

(PCU) is usually needed to control the surrounding devices. The PCU should

be compact and easily held. Moreover, the pocket holding the PCU has to be

placed in a way that makes it easily reached and not to affect the passenger’s

comfort.

A Visual Display Unit (VDU) is usually fixed to the back of the front seat.

Depending on the required features of the system, ordinary displays can be
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used to display the visual contents or touch screens can be installed to act as

input devices. Another orientation is to be fixed in the ceiling as a shared

display for a group of seats.

A Seat Electronic Box (SEB) can be used to connect the system’s different

components together. It is used to connect the passenger’s devices and the

IFE system instead of having a separate channel for each signal. For example,

to transmit communication and video signals, two different networks should

be available if the SEB is not used. When using the SEB, the communication

and video devices are connected directly to it for conveying signals to the rest

of the IFE system through one single network. Accordingly, it simplifies and

facilitates maintenance procedure since malfunctioning devices can be easily

replaced without affecting the IFE connections.

Halid [89] stated that Power Line communication (PLC) can provide a way

of communication through power lines networks. Power lines and communica-

tion networks have different physical characteristics, so a PLC modem must

be used as an interface between the two networks. They must be designed to

provide accepted network operation under typical power lines transmission con-

ditions. However, power lines are not designed as a good transmission media.

It suffers from attenuation, fading, and noise. Nevertheless, the great advances

in digital signal processing, error detection and correction, modulation, media

access control techniques encourage the use of PLC in communication field.

2.4.3 IFE as a self-organized dense network

The cabin environment imposes various constraints on using IFE systems;

ranging from technical to business constraints. For example, the long narrow

metallic structure of the cabin, with many obstacles (i.e., seats and passengers

bodies), makes wireless communication a real challenge. Wireless signals can

be reflected in some areas to give a noticeable multipath effect, and may fade in

other areas due to absorption or adding up destructively. In addition, airlines

are welling to increase the number of seats per flight to increase their revenue,
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so high number of wireless devices can exist in a very small area. The high

density of passengers using their wireless devices causes wireless networking to

be highly dense.

Furthermore, in avionic systems, failure mode is not accepted even for

entertainment systems. A failing device can cause a sever un-satisfaction to

passengers especially in long flights, causing airlines to loose their clients in

a competitive business environment. In fact, there is not on-board technical

support to configure or maintain a device. Accordingly, failing IFE equipments

will not recover until the flight reaches its destination. Such situation can be

avoided by having self-organized devices. This means that during startup or

after replacing a failing device with a new one, the device is able to self-

configure itself and join the IFE system. We believe that techniques inspired

from ad-hoc and WSN can introduce solutions for IFE systems.

2.5 Conclusion

In this chapter, we presented the main characteristics of ad-hoc networking,

showing its structure and the factors affecting node communication. Energy

conservation is a paramount need which can be enhanced through power con-

servation techniques. WSN is characterized by its high number of nodes which

can use different communication schemes. They also suffer from limited re-

sources and energy censervation problems. Network density is affected by

different factors such as mobility, surrounding obstacles, transmission power,

and deployment scheme.

IFE systems exist in a constrained environment where wireless communi-

cation faces many challenges. An IFE system is capable of providing different

services through its components. However, connecting these components to-

gether is not an easy task. Using wireless technology can solve part of the prob-

lem. However, traditional techniques are not enough for such environment, but

infrastructureless wireless technologies can provide appealing solutions.
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3.1 Introduction

The term Dense Network is usually used in the ad-hoc networking context to

represent high concentration of nodes within certain area. There are alter-

native terms (i.e., massively dense networks, and very large networks), other

than “Dense networks”, used in the context, but the term “Dense Networks”

is the most used one. However, this term can be misleading because it gives

the impression that the population around all nodes is high, although it may

be true for only some of them [105].

In other words, when nodes are randomly distributed, their concentration

can be high in some regions and low in others, so we propose considering two

different scopes of network densities; the Global and Local densities. The Local

density represents the density of direct connected neighbors who are within the

transmission range of the node. The Global density represents the distribution

of nodes for the whole network. This means that the Global density consists

of groups of Local densities.

In a dense ad-hoc network, too many communication links are detrimental

for energy consumption, network throughput, and quality of service. In spite

of the imposed difficulties, some WSN techniques prefer the usage of a dense

network to obtain better performance since it encourages the cooperation be-

tween sensors. Scaglione [106] proposed a strategy to show that the efficient

acquisition of correlated data mandates that nodes transmit cooperatively, in-

stead of contending to report their local information. Toumpis [105] introduced

different researches that investigated the concept of cooperative transmission;

he mentioned that complexity is the price we have to pay for such cooperation.

In this chapter, we firstly examine the effect of network size over its per-

formance, then introduce a metric to determine if a network is considered as

a “dense network” or not. Thus, we apply our metric on experimental results
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published in the CRAWDAD1 dataset [107] site to verify our metric. Sec-

ondly, we present a case study to show how a wired network can be replaced

by multiple networking technologies to form a heterogeneous network capa-

ble of eliminating the ordinary wired network and providing users with more

services.

3.2 Measuring network density

Toumpis [105] surveyed different wireless networks solutions based on analo-

gies with physics. He noted that, most of these solutions are based on the

assumption that the network has high node density. However, few attempts

were done to find a measure for density. Bulusu [71] proposed an equation to

calculate the network density and many other publications had used it [14] [72].

He said that Network Density (µ) can be roughly calculated as µ=(NπR2)/A;

Where N is the number of nodes in area A, and R is the radio transmission

range for a disk communication model. A more precise equation was proposed

by Toumpis [105] who defined the node density as d(r) = lim|A|→0
N(A)
|A| , where

density is measured as the number of nodes per m2.

These equations are derived from the idea that network density is the

amount of certain quantity (i.e., number of nodes) within certain area, and

that this quantity is only dependent on the node’s transmission range. How-

ever, it seems to us that such assumption is very abstract, since there are other

factors (i.e., mobility, obstacles, etc...), which are not considered in the equa-

tion and can affect the number of connected nodes. For example, a node can

have 5 neighbors because they are located within its transmission range even

if some of them are not really connected to it due to their short transmission

range.

1CRAWDAD is the Community Resource for Archiving Wireless Data At Dartmouth
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3.2.1 A metric for evaluating network density

Although different solutions are based on the assumption of having a dense

network, there is still a question that needs further investigations; Is the num-

ber of nodes per unit area considered the only required measure to identify a

dense network? Furthermore, it seems to us that it is of great importance to

be able to determine the level of network density. In other words, it is not only

a matter of either dense or non-dense, but it may be also extended to degrees

of densities.

To show the importance of defining a new metric, let us consider the fol-

lowing examples. First, an area containing x nodes, with data traffic y, and is

considered as non-dense area due to the small value of x, can have a degrada-

tion of performance for different reasons other than the number of nodes. In

this situation, x nodes can be considered as a part of dense network, because

the network structure is not capable of handling this number of nodes. For

example, a network using a Bluetooth technology can be considered as dense

when having 8 nodes, in contrast to a WiFi network, which can be considered

as a non-dense network for the same number of nodes. This is not only lim-

ited to the physical components of the network; a MAC protocol capable of

handling a large number of nodes and keeping a good performance can pre-

serve the network as non-dense. On the other hand, a low performance MAC

protocol can change the network to be considered as a dense network. Second,

a network layer with poor routing protocol can sense the surrounding envi-

ronment as highly dense, even though, a MAC Layer beneath it is capable of

preserving good performance.

According to the above examples, we can deduce the following:

• The number of nodes within the transmission range is not enough to

measure network density.

• The minimum number of nodes to achieve a dense network depends on

different factors in addition to the number of neighboring nodes.
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• It may be necessary to have different degrees of density not only dense

and non-dense in a network.

For these reasons, we need a metric that encompasses the network per-

formance as well as the number of neighboring nodes within the transmission

range. We propose the usage of Effective Density (ED) as an indication of the

density level. The ED of a node is the ratio between the number of single

hop connected nodes (N ), and the node Throughput (th), where ED = N
th

.

In other words, we can consider ED as a measure to find out how much each

additional node is going to participate in changing the Throughput.

When more nodes enter the transmission range of a node, the node’s con-

nectivity increases causing Throughput to increase, so that the enhancement

of Throughput decreases the effect of increasing neighbors over the effective

density. In other words, the increase of Throughput suppresses the effect of

increasing N.

However, after a certain limit, the accumulated increase of direct connected

neighbors imposes interference problems causing a degradation in Throughput.

In this situation, the node will start to consider the network as being dense

because the increasing number of neighbors started to affect its performance.

3.2.2 Simulation results and validation

The simulation was done by the NS2 simulator with two objectives? First, to

study the effect of increasing the number of nodes over the receiver Through-

put. Second, to show the Effective Density and how it is changed with respect

to nodes number, and throughput.

The configuration of the simulated scenario is as follows; the network field

is 500m x 500m with the Tx and Rx nodes located at (0, 0) and (500, 500),

respectively. Node transmission range is adjusted so that the Tx and Rx are

not directly connected, but they are connected through a group of single hop

connected neighbors. The simulation is repeated 9 times where 10 randomly
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distributed nodes are added to the network each time. CBR connection of

0.3 Mb is used to inject data traffic to the network, and Throughput was

calculated at the Application Layer level. After many experimentations, the

simulation duration was chosen to be 600 sec since longer duration would not

give significant changes in results.

3.2.2.1 Simulation validation

Each simulation result is considered as a sample of the whole pool of ex-

pected results (i.e., population). Using the wrong sample can lead to wrong

conclusions. Thus, the first step is to select a representative sample for the

population. In other words, this sample should be unbiased to be a good rep-

resentative for the targeted population. This means that the sample has the

same characteristics of its parent population. This takes us to the second step

which is selecting the matching parameters of the unbiased sample. An unbi-

ased sample should have a mean ’X’ (i.e., average) and standard deviation ’σ̂’

near to the mean ’µ’ and standard deviation ’σ’ of the population. Standard

deviation is a way of saying how far typical values are from the mean. The

smaller the standard deviation, the closer values are to the mean.

The simulation was repeated 10 times. The results of these simulations

are considered as the source of our tested population; where Throughput is our

targeted population, and its sampling unit is bits/sec. The sampling frame was

selected as 10 nodes per sample where samples are taking when 10 nodes enters

the simulation. The samples start with 10 nodes and end with 90 nodes. To get

different results for each repetition, the seed of the simulator Random Number

Generator (RNG) was changed with a constant interval. Each simulation is

named after the value of its seed; for example, the simulation named ’seed 401’

means that the seed of its RNG was 401.

First, the mean of each simulation was calculated and compared with the

mean of the whole population. Figure 3.1 shows the difference between the

mean of each sample and the mean of population. The selected samples are
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Figure 3.1: Mean

those which have the least difference with the population mean. This guar-

antees that these samples are good representatives to the population. This

criterion allows us to extract three simulations (i.e., seed 001, seed 101, and

seed 801).

Second, to minimize the variations that may exist in our sample, we select

the sample with the least standard deviation. Figure 3.2 shows the standard

deviation of selected samples; sample ’seed 801’ represents the sample of least

expected variations, so we will take it as the representative sample to extract

our simulation results
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Figure 3.2: Standard Deviation

3.2.2.2 Simulation results

Gathering too many nodes within the same coverage area increases the in-

terference level, and consequently the number of collisions, so we consider a

network to become denser if its performance degrades due to the increase of

nodes.

Figure 3.3 shows that for the first 40 nodes, the Throughput did not de-

crease too much. This means that the network is still capable of handling this

number of nodes without a noticeable effect over its performance. However, as

more nodes are injected, the Network is not able to perform efficiently since

packets collisions and dropping increase. This causes a dramatic decrease in

Throughput.

Figure 3.4 shows the change of Effective Density with respect to the number

of nodes. It is noticeable that the rate of change had increased after adding

50



CHAPTER 3. ON THE DESIGN OF HETEROGENEOUS DENSE
WIRELESS NETWORK

Figure 3.3: Receiver Throughput

40 nodes. This means that the network became crowded, so each additional

node causes more collisions and Throughput degradation becomes obvious.

Any protocol, which sets its behaviour according to the network density can

utilize the ED value to determine if the network is becoming dense or not.

However, there is still one more question, what is the value after which the

network is considered dense. In fact, there is not an exact value; each protocol

and application should determine its own threshold values. This helps to

have different levels of densities. For example, an application can consider the

network, represented in Figure 3.4, as a non-dense until it has 40 nodes, then

semi-dense until 80 nodes, and finally highly dense for more than 80 nodes.

On the other hand, another application can consider it as non-dense till 80

nodes, and highly dense after that.

To sum up, the number of nodes within a certain area does not determine

if the network is dense or not, but the increasing number of nodes that in-

creases the interference level, and number of collisions causing a degradation
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Figure 3.4: Effective Density

in performance makes the network more dense.

3.2.3 Real life data

CRAWDAD [107] provides rich datasets originating from different real exper-

imentations in various networking domains; one of them was conducted by

Liu [108]. He used a test bed to have a practical outdoor comparison be-

tween different ad-hoc protocols. The aim behind using a real life dataset is

to show the applicability of the new metric over a real experimentation. The

experimentation was held in an area of 225m x 365m where 40 laptops were

moving randomly. They were divided into groups, of 10 laptops each, where

each group was randomly distributed into one of the 4 areas in the terrain.

The moving pattern is as follows; each device randomly chooses a location in a

different area and moves straight toward it, then the process is repeated after

reaching the destination. GPS location data and traffic data are located for
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each device.

Four types of packets were recorded, TOUT, TIN, SOUT, and SIN where

TIN represents the packets injected to the network by the transmitter, TOUT

represents the receivers’ packets, which are received from the network, SIN

shows the incoming packets to be forwarded, and SOUT represents the out-

going forwarded packets. For example, if a packet is transmitted from node 1

and received by node 3, the following records are created; node 1 will have

the values TIN and SOUT, intermediate nodes will have SIN and SOUT and

node 3 will have TOUT and SIN

We used the dataset generated by Liu [108] to show the effect of changing

the number of neighboring nodes over Throughput. As nodes move, the num-

ber of direct connected neighbors changes, and is calculated through the SIN

values, so that inactive nodes are excluded from the calculations.

Figure 3.5: Effective Density, Throughput, and Nodes Vs time

Figure 3.5 shows The values of Effective Density (ED), Throughput, and
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number of nodes (N ) as they change with time. It is noticeable that Through-

put has the same pattern as the change of number of nodes. This is because

almost all network parameters are kept constant and it is the number of neigh-

boring nodes that changes due to mobility.

The graph is divided into three zones. In Zone1, ED started at its maxi-

mum, because N was high and Throughput was very low. This means that the

large number of nodes did not enhance Throughput. However, ED decreased

dramatically with decreasing N because Throughput did not change too much.

This indicates that at this period, the current distribution of high number of

nodes did not increase connectivity, but it affected Throughput negatively;

this can be noticed in the trivial change of Throughput when compared to

the large drop in number of nodes. Consequently, ED decreased quickly as N

decreases.

In Zone2, the rate of change of nodes is almost the same as the rate of

change of Throughput, so there was no great change in the ED. This means

that when ED is constant, any change in N is accompanied with the same

proportional change in Throughput. In other words, the new injected nodes

are affecting the network positively and causing an increase in Throughput.

Zone3 has the same effect as Zone2, but in the opposite sense. ED is

almost constant due to, approximately, the same decreasing rate of both N

and Throughput.

We deduce that ED can be used as a measure for the effect of injected or

leaving nodes over performance in terms of Throughput.

3.3 Case study: Building a Heterogeneous

Network for IFE Systems

A primary difficulty when investigating communication requirements in an

aircraft cabin is the diverse needs of passengers when compared to the strict

constraints inside the cabin. It is recognized that there is an increasing need of
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passengers to use their electronic devices as well as the need for entertainment

during the flight. This case study aims at integrating heterogeneous available

communication technologies, showing their pros and cons -within this context-

while considering the imposed communication restrictions inside the aircraft

cabin.

As stated by Niebla [109] users are becoming more and more familiar to

personal equipments, such as mobile phones, laptops, and PDAs. This shows

the importance of providing aircrafts with facilities that support these equip-

ments.

In addition, usage of the wireless technology will help in decreasing the

connecting wires; this is a valuable criterion in aircrafts design. However, us-

ing off-the-shelf technologies inside the cabin is usually not applicable when

using them in the usual manner; the environment inside the cabin has very

strict constraints since safety is a major requirement. Consequently, using

just one technology can not give a feasible solution. In fact, using a combi-

nation of different technologies can provide a better service while overcoming

the existing constraints. Allowing passengers to use their Personal Electronic

Device (PED) (i.e., mobile phones, laptop, etc.) was usually done through

specialized devices [109, 110]. Nevertheless, there is no current research to use

a combination of off-the-shelf technologies inside the cabin.

Section 3.3.1 discusses the communication challenges that may hinder the

usage of wireless communication inside the cabin. The proposed technologies

that we suggest to overcome these challenges are mentioned in section 3.3.2.

Finally, section 3.3.3 describes how each technology can be used inside the

cabin.

3.3.1 Communication challenges

The recognized economics of wireless networks and communications systems

have made them an attractive target for environments where individual wires

are cumbersome. An airplane cabin is such an environment. Dwayne [111] said
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that due to the need of rapidly reconfiguring the cabin seating, it is further

assumed that wireless networking, rather than cable or fiber optics, must be

used to interconnect passenger’s entertainment equipment with other elements

of the system.

The use of wireless communication technologies on board of an aircraft

provides an opportunity to remove wiring and save weight on the aircraft. The

weight savings can be directly measured in terms of fuel savings and improved

operating economics over the life time of an aircraft.

Aircraft security may be seen as another burden due to its very strict re-

quirements, but it is a mandatory parameter that should be included during

the design of communication and data services. A major concern for using

wireless devices in aircraft cabin is their interference with the aircraft commu-

nication and navigation system, especially unintended interference from the

passenger’s Personal Electronic Device (PED). Holzbock [112] said that the

installed navigation and communication systems on the aircraft are designed

to be sensitive to electromagnetic signals, so they can be protected against

passenger’s emitters by means of frequency separation. In addition, Jahn [110]

mentioned that there are two types of PEDs’ interference, intentional and

spurious. The former is the emissions used to transmit data over the PED’s

allocated frequency band. The latter is the emissions due to the RF noise

level. Moreover, the existing systems suffer from bandwidth limitations; the

trend toward bandwidth-consuming Internet services currently can not be sat-

isfied [110]. The passengers number and categories can be considered as a

factor that affects network scalability. For example, the network bandwidth

should be increased if the number of the first class passengers was increased

to support the increasing need for video stream.

It is stated by Holzbock [112] that existing indoor channel models mainly

investigate office or home environments, thus these models may not be ap-

propriate for modeling an aircraft cabin channel. Attenuation of walls and

multi path effects in a ’normal’ indoor environment are effects, which are not
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expected to be comparable to the effect of the higher obstacle density in a

metallic ’tunnel’. The elongated structure of a cabin causes smaller losses,

than that expected in other type of room shapes. However, the power addi-

tion of local signal paths can lead to fading of the signal in particular points.

In addition, small movements of the receiver can have a substantial effect on

reception. The same opinion was emphasized by Diaz [113]. To overcome

this problem, Youssef [114] used the commercial software package Wireless

Insite to model the electromagnetic propagation of different wireless Access

Points (APs) inside different types of aircrafts. Another challenge is that the

cabin of an aircraft and the aeronautical environment in general define a very

specific scenario that presents several constraints, which affect the coverage

and capacity planning. This is due to the fact that the space is very lim-

ited in an aircraft cabin, and its design allows installing equipments only in

specific locations, where the configuration of panels is easy to disassemble for

maintenance [109]. Therefore, the replacement technique associated with the

IFE system components, may affect the companies willingness to use them.

Replacing time consuming parts can lead to a long aircraft downtime or flight

delays. Also, a device that fails during the flight, and is difficult to be replaced,

will cause the passenger to be unsatisfied. Consequently, it is advisable to de-

sign components that are easily replaced with the minimum required technical

skill.

3.3.2 Proposed communication technologies

As mentioned by Holzbock [112], wireless cabin aims at developing a com-

munication infrastructure consisting of heterogeneous wireless access networks

to provide aircraft passengers and crew members with access to IFE system.

Passengers are able to access different services through state-of-the-art wireless

access technologies such as W-LAN IEEE 802.11, and Bluetooth.
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3.3.2.1 Ethernet

The Ethernet standard is specified in the IEEE 802.3 standard. An Ether-

net LAN typically uses coaxial cable or special grades of twisted pair wires.

Ethernet is also used in wireless LANs. Ethernet uses the CSMA/CD access

method to handle simultaneous demands. The most commonly installed Eth-

ernet systems are called 10BASE-T and provide transmission speeds up to 10

Mbps. Devices are connected to the cable and compete for access using a

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol.

CSMA/CD enables devices to detect a collision when using data channel si-

multaneously. After detecting a collision, a device waits a random delay time

and then attempts to re-transmit the message. If the device detects a collision

again, it waits twice as long to try to re-transmit the message. Fast Ethernet

or 100BASE-T provides transmission speeds up to 100 megabits per second

and is typically used for LAN backbone systems, supporting workstations with

10BASE-T cards. Gigabit Ethernet provides an even higher level of backbone

support at 1000 megabits per second.

Ethernet devices make use of a broad range of cable and connector speci-

fications. Ethernet can use Unshilded Twisted Pair (UTP) copper cables and

optical fiber to interconnect network devices via intermediary devices such as

hubs and switches. Ethernet is currently the standard for wired communication

in different fields. Haydn [115] showed that it is characterized by interesting

features such as good communication performance, scalability, high availabil-

ity, and resistance to external noise. However, Ethernet cabling is considered

a burden for aircraft design because these cables impose more constraints on

free spacedesign needed for cable routing, and reconfiguration of cabin layout

becomes more difficult with larger number of cables.

3.3.2.2 WiFi

WiFi is used to connect devices together in one of two network configurations;

ad-hoc and infrastructure. In an ad-hoc mode, wireless nodes communicate
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with each other directly, without the need for any intermediary or central

control. This means that when one WiFi node comes within range of another,

a direct communication channel can be set up between them and allowing

additional devices to join the network. In infrastructure mode, wireless nodes

communicate with each other via a wireless Access Point (AP) which also acts

as a connector between a wired network and the wireless network. The access

point is effectively a base station that controls the communication between the

other nodes.

A WiFi node determines whether it is in range of an AP by transmitting an

enquiry and waiting for a response. If more than one AP responds, the station

will choose to communicate with the one that has the strongest signal. Each

node is uniquely identified by a MAC address. Every message data frame sent

must contain the MAC address of the source, destination and access point,

as well as other management data that enables the frames to be correctly

sequenced and errors to be detected. It is based on the 802.11 standard;

different version of this standard are presented in table 3.1

The 802.11 standard specifies a common Medium Access Control (MAC)

Layer, which provides a variety of functions that support the operation of

802.11-based wireless LANs. In general, the MAC Layer manages and main-

tains communications between 802.11 nodes (radio network cards and access

points) by coordinating access to a shared radio channel and utilizing protocols

that enhance communications over a wireless medium. The 802.11 MAC Layer

uses an 802.11 Physical (PHY) Layer, such as 802.11b or 802.11a, to perform

the tasks of carrier sensing, transmission, and receiving of 802.11 frames. Be-

fore transmitting frames, a node must first gain access to the medium, which

is a radio channel that nodes share. The 802.11 standard defines two forms of

medium access, Distributed Coordination Function (DCF) and Point Coordi-

nation Function (PCF). DCF is mandatory and based on the Carrier Sense

Multiple Access with Collision Avoidance (CSMA/CA) protocol. With DCF,

802.11 nodes contend for access and attempt to send frames when there is no
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Versions characteristics
802.11 applies to wireless LANs and provides 1 or 2 Mbps

transmission in the 2.4 GHz band
802.11a an extension to 802.11 that applies to wireless

LANs and provides up to 54 Mbps in the 5GHz band
802.11b an extension to 802.11 that applies to wireless

LANS and provides 11 Mbps transmission in the 2.4 GHz band
802.11d Enhancement to 802.11a and 802.11b that allows for

global roaming
802.11e Enhancement to 802.11 that includes quality of

service (QoS) features
802.11g offers wireless transmission over relatively short

distances at 20 - 54 Mbps in the 2.4 GHz band.
802.11n builds upon previous 802.11 standards by adding MIMO

(multiple-input multiple-output). IEEE 802.11n offers
high throughput wireless transmission at 100Mbps - 200 Mbps

Table 3.1: 802.11 standard

other node transmitting. If another nbode is sending a frame, nodes are polite

and wait until the channel is free.

There is no standard limit that defines the upper limit on the number of

nodes that can join a network, though some particular equipment manufac-

turers may specify a limit. However, as the number of communicating nodes

increases, the channel capacity available for each node decreases. A point will

eventually be reached when the network becomes too congested to provide an

adequate service.

WiFi are used in different commercial, industrial, and home devices,

and can easily coexist with other technologies to form a heterogeneous net-

work [109]. For example, Jim [116] stated that WiFi and Bluetooth technolo-

gies are two complementary not competing technologies. They can cooperate

together to provide users with different connecting services.
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3.3.2.3 Wireless USB

Wireless USB (WUSB) follows similar architecture as wired Universal Serial

Bus (USB), but Ultra Wide Band (UWB) radio is placed in place of wired

connectivity medium. This enables almost seamless migration of USB appli-

cations over WUSB. WUSB provides adaptation to UWB through Protocol

Adaptation Layer (PAL). Figure 3.6 shows the WUSB protocol with UWB

radio platform.

Figure 3.6: UWB platform with WUSB

Ultra Wide Band (UWB), short-range radio technology, complements other

longer range radio technologies such as WiFi, and cellular wide area commu-

nications. UWB’s combination of broader spectrum and lower power improves

speed and reduces interference with other wireless spectra. It is used to relay

data from a host device to other devices in the immediate area (up to 10 meters,

or 30 feet). UWB radio transmissions can legally operate in the range from

3.1 GHz up to 10.6 GHz, at a limited transmition power. Consequently, UWB

provides dramatic channel capacity at short range that limits interference.

Universal Serial Bus (USB) is the de facto standard in the personal com-

puting industry. It allows different peripherals to be connected to the same PC

more easily and efficiently than other technologies such as serial and parallel

ports. However, cables are still needed to connect the devices. This raised the

issue of Wireless Universal Serial Bus (WUSB) where devices can have the

same connectivity through a wireless technology.

USB is based on centralized bus architecture, with host acting as master

and device as slave entity. Host and devices are electrically connected to each
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other. Similar to USB, WUSB is also classified in WUSB host and WUSB

device. WUSB devices can be quickly connected to WUSB host, configured,

used, and disconnected. The WUSB host and connected devices are called

WUSB cluster. More than one cluster can coexist in overlapping spatial en-

vironment when using different channels. Thus, architectural changes due to

evolving from USB to WUSB are minimal, so USB applications can seamlessly

work on WUSB

Neal [117] stated that although it is difficult to achieve a wireless perfor-

mance similar to wired USB, but the rapid improvements in radio communi-

cation can make WUSB a competitive rival. Although WUSB was designed

to satisfy client needs, but it can also be used in a data centre environment.

He discussed how WUSB characteristics can match such environment. This

application can be of a great help in IFE systems, which strive to massive data

communication to support multimedia services and minimizing the connection

cables. Moreover, Jong [118] discussed the design issues related to WUSB. He

stated that WUSB can support up to 480Mbps, but in real world it does not

give the promised values; and he showed the effect of design parameters on the

device performance.

3.3.2.4 Power Line Communication

In the Power Line Communication (PLC) communication systems, the power-

line is not only used for energy transmission, but also is used as a medium for

data communication. Powerline networking is an emerging home networking

technology that allows the end-users or consumers to use their already exist-

ing electrical wiring systems to connect home appliances to each other and to

the Internet. Home networks utilizing the high-speed powerline networking

technology are able to control anything which plugs into the AC outlet This

includes lights, television, thermostats, and alarms. To support data transmis-

sion over the power grid, a PLC modem is installed into the household power

socket. It handles the up and down streams between the telecommunication
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network and the powerline grid.

The commonly used technology for high speed LANs and data distribution

is Ethernet. Classical non-optical Ethernet requires cables comprising several

copper pairs, possibly additional shielding, and appropriate con-nectors. Ca-

bles and connectors must be mechanically robust to meet cabin environmental

requirements. Regarding an onboard IFE network, an entire cabin seat-to-seat

Ethernet installation may add significant weight, which can be avoided with

a PLC-based system. Wiring complexity is an important issue since airline

operations require frequent changes of cabin seat lay-out. A simple cabin seat

wiring is therefore certainly advantageous.

A Power Line Communication (PLC) network can be used to convey data

signals over cables dedicated to carry electrical power; where PLC modems

are used to convert data from digital signal level to high power level; and vice

versa. Using an existing wiring infrastructure can dramatically reduce costs

and effort for setting up a communication network. Moreover, it can decrease

the time needed for reconfiguring the cabin layout since less cables are going

to be relocated.

However, such technology suffers from different problems. A power line ca-

ble works as an antenna that can produce Electromagnetic Emission (EME).

Thus, the PLC device must be Electromagnetic Compatible (EMC) to the sur-

rounding environment. This means that it must not produce intolerable EME,

and not to be susceptible to them. To overcome this problem, the transmis-

sion power should not be high in order not to disturb other communicating

devices [89]. However, working on a limited power signal makes the system

sensitive for external noise. In spite of this, the PLC devices can work without

concerns of external interference due to two reasons. Firstly, the PLC is di-

vided into segments; this minimizes signal attenuation. Secondly, all the cabin

devices are designed according to strict rules that prevent EME high enough

to interfere with the surrounding devices.

Yet, current design and implementation of electrical network inside the
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cabin does not consider the usage of PLC networks in terms of cable routing

and PLC segment distribution. Design companies have to consider these points

in their future designs.

3.3.3 Evaluation of proposed technologies

IFE system is a field starving for unusual ideas. Passengers can be satisfied

by receiving services dedicated to a single user, but it will be more interesting

if they can be offered services for multiple users, where passengers of similar

interests can share their time. Using a single communication technology inside

the cabin can not yield satisfactory results, but a combination of different

technologies can have a great impact on the provided services.

We mean by heterogeneity, the existence of different networking technolo-

gies cooperating together to achieve certain services. The network can be

divided into User Technology and System Technology. A User Technology is

the technology apparent and directly used by the user (i.e., Bluetooth, WiFi,

etc...) to connect his devices to the system. A System Technology is the

technology used by the system and is hidden from the user (i.e., PLC).

3.3.3.1 PLC

In this section, we introduce some experimentation results to show the appli-

cability of using PLCs for a cabin IFE system. As shown in Figure 3.16, the

PLC system consists of a Power Line Head Box (PLHB) and a Power Line

Box (PLB). The PLHB connects the two terminals of the power line to con-

nect the data server with the seats. Each PLHB serves a group of seats, which

are equipped with a PLB per seat. The PLB is responsible for distributing

the signal received by the PLHB to the seat SEB. Each PLHB can support up

to 20 PLBs at a rate of 3480 bit/sec. Both PLHB and PLB devices can be

configured through their internal web interface to define their IP address and

other configuration parameters.
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The MGEN (version 4.2) [119] traffic generator was used to emulate the

traffic produced by the data server, and a laptop was used as a substitute to

the SEBs. The target of the test was to collect different statistics to study

the behavior of the PLC system by injecting periodic traffic flows at constant

intervals.

Figure 3.7: Flow rate of all flows

Figure 3.7 shows the sum of flows rates. The constant stepping of flow rate

indicates that the PLC connection is able to carry the 20 flows. In addition,

Figure 3.8 represents the packet count of the first flow. It is clear that the

packet count stayed constant from the start to the end of the simulation with-

out being affected by the injection of the subsequent flows. This emphasis the

same results derived from Figure 3.7

However, it is normal to have packet dropping during transmission; this is

illustrated in Figure 3.9 showing the obtained loss fraction. It is less than 0.05,

which can be considered as a good value. Such configuration can provide the

IFE with a way to provide video services by using the existing power cabling.
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Figure 3.8: Packet count of the first flow

Figure 3.9: Loss Fraction

3.3.3.2 WiFi

We held different NS2 [120] simulations to propose a good distribution for the

wireless Access Point (AP) inside the cabin. The objectives of this simulation is

to verify the importance of using channel separation and transmission power
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control in solving problems of dense wireless networks, and to identify the

procedure to find the minimum possible number of APs.

We used the same cabin configuration used by Alexandaros [121]. The

cabin consists of 26 rows with 6 seats each (3 on each side of the aisle); this

gives a total of 156 seats. The cabin is 21m long and 3.54m wide. The rows

separation distance is 81cm.

A wireless node - representing a passenger’s device - is located at the po-

sition of each seat, and APs are used to connect them with the data server.

Using large number of wireless devices in a very narrow metallic tunnel like

the cabin has a dramatic effect on network performance. For this reason, we

are studying the effect of using frequency separation between APs. However,

we need to determine the minimum number of APs required to cover the whole

cabin, and their distribution inside the cabin, so we experimented with three

scenarios. In scenario ’A’, all nodes (each has a transmission range covering

the whole cabin) are using the same communication channel. Scenario ’B’

uses nodes with short transmission range, which allows connection only to the

nearest AP, while using the same channel. Scenario ’C’ shows nodes with short

transmission range and using channel separation. The channel separation in

the third scenario is based on the fact that 802.11 only allows the usage of three

non interfering channels (i.e., channels 1, 6, and 11). The impact of the three

scenarios over average throughput, average delay, and number of transmitted

packets is studied.

Each scenario was repeated several times while using different numbers

of Aps located at the aisle. We started by using one AP and the number

is incremented until we reached the maximum number of APs, which was

determined according to the cabin dimensions. The AP transmission power

was adjusted to minimize the transmission range, so the signal can travel a

distance just enough to reach the seat beside the window in order to minimize

the effect of its reflection. This allowed us to use a maximum number of 5 APs

(Figure 3.10).
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Figure 3.10: APs distribution

Number of Transmission range
Rx threshold

APs (meters)

1 10.5 8.97474e-9
2 5.25 3.58989e-8
3 3.5 8.07726e-8
4 2.625 1.43596e-7
5 2.1 2.24368e-7

Table 3.2: Rx threshold values

For all scenarios, the nodes (156 node + APs) were configured to have a

large queue that can hold up to 1000 packets in order to prevent packet drop-

ping. The transmission power was adjusted to 10mW as the minimum value

defined in the 802.11 standard. In scenarios that use different channels, Chan-

nels 1, 6, and 11 were adjusted to their frequencies 2.412e9 GHz, 2.437e9 GHz,

and 2.462e9 GHz respectively. The Rx threshold was determined according to

the required transmission range. It was calculated by the ”Threshold” tool,

which is provided as a separate program with the NS2 simulator. Table 3.2

shows the values used with each number of APs. For each simulation, the APs

were distributed evenly throughout the aisle to provide a full coverage for the

cabin.

When comparing the three scenarios A, B, and C, we can find that using
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Figure 3.11: Packets sent by the transmitter

just different number of APs does not have a great impact on network per-

formance, but when accompanied with channel separation the network per-

formance is drastically enhanced. Figure 3.11, Figure 3.12, and Figure 3.13

combine the results of scenarios A, B, and C. It is noticeable that there is no

great difference between scenario A and B; this is due to the existence of large

number of nodes in a small area. In addition, there are many nodes in the

shared zone between every two APs. In this zone, nodes are able to detect two

APs, but they select just one of them. In other words, on the physical level

signals are interfering, while on the logical level only one AP is seen. However,

as the number of APs increase, the difference between scenario A and B starts

to increase slightly; this is because the number of nodes in the shared zone

becomes less, so the interference decreases. On the contrary, when using chan-

nel separation (i.e., scenario C) performance was drastically enhanced after

using 3 APs.

It is worthy to note that the number of nodes assigned to each AP affects

its performance; the fewer nodes we use, the higher performance we get. When

using 1, 2, 3, 4, and 5 APs, each AP will have 156, 78, 52, 39, and 32 nodes

respectively. However, the difference in the number of assigned nodes with 3,

4, and 5 APs is small. This justifies the reason for saturation after using more
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Figure 3.12: Average Throughput

than 3 APs; where APs almost handle the same amount of nodes.

Figure 3.13: Average Delay

To sum up, interference between large number of wireless nodes can be min-

imized through using channel separation and controlled transmission power.

Consiquently, this can solve communication problems in a high density wireless

environment
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3.3.3.3 WUSB

Using WUSB to connect passenger’s devices seems to be an appealing solution

since it does not require any additional adapters or connectors, and avoids

interference with other wireless technologies (i.e., WiFi, Bluetooth, etc...) by

using different bandwidth.

Figure 3.14: WUSB test-bed

Figure 3.14 shows our WUSB experimentations test-bed. WUSB Host

and Device dongles were used to connect USB devices. The Host dongle is

connected to the computer USB port, while the Device dongle connects the

USB devices. The dongles driver allows changing of transmission power as well

as transmission channel.

1. Connecting different USB devices: The objective of this test is to

find the best way to connect multiple USB devices through WUSB don-

gles. Connecting multiple USB devices (i.e., mouse, and keyboard) was

done in two different ways; firstly by using two Device dongles for each

USB device, secondly by using a USB hub. The results of the first ap-

proach were not satisfactory because the two dongles were using the

same channel causing interference between them. The Host dongle has

the ability to choose between seven different channels. In other words, it

is possible to use seven Hosts at the same transmission range without any

interference between them. However, the channels are only allowed to

be changed manually, and this is not allowed in the cabin environment.

The second approach gave better performance. Moreover, a hub is much

more economical than using a WUSB dongle dedicated for each device.
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Elapsed time Delay ratio

WUSB 915secs
((344/915) ∗ 100)− 100 = 62.4%

Wired USB 344secs

Table 3.3: WUSB vs Wired USB

2. File transfer: The objective of this test is to find the difference in

performance between WUSB and Wired USB. It is important to know if

WUSB is able to transfer large files, and to what extent it is comparable

to wired USB, so 4064 files of size 892MB were transferred to a flash

USB storage device using WUSB and wired USB. The results shown in

Table 3.3 indicate that WUSB is slower by almost 60% than wired USB.

3. Transmission range with different power levels: The objective

of this test is to find the transmission range capabilities of WUSB de-

vices. The test started by putting the Host dongle and the Device dongle

on the same line of sight; then the device dongle is moved away until it is

disconnected. The same procedure was repeated while using two Device

dongles. The two dongles are placed at the same horizontal level with

a separation of few centimeters, and are moved together. The whole

experiment was repeated while changing the dongles transmission power

level (i.e., low, normal, and strong).

As shown in Table 3.4, the existence of two dongles at the same area,

and working at the same channel has a dramatic effect on transmission

range, so when considering that the distances between seats inside the

cabin is considerably short when compared with the minimum transmis-

sion range, then it is highly recommended to use different channels for

neighboring dongles.

Figure 3.15 shows the difference between the above transmission ranges

with respect to seat spacing in the cabin model we are using. Since the seat

distance is relatively short when compared with the transmission range; then
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Transmission power
Max achieved distance in meters between Tx and Rxs

Single device Dual device
Low 7 4.2

Normal 12 6.3
Strong 16 8.4

Table 3.4: Transmission range

it is highly recommended to use different channels for neighboring dongles.

Figure 3.15: WUSB range Vs seat spacing

3.3.3.4 WUSB vs Wifi

Both WiFi and WUSB can provide wireless connectivity. However, each of

them has its own characteristics (Table 3.5) that need to be studied and find

out its applicability inside the cabine and what applications it can serve.

Specification WUSB (ver1.1) WiFi (802.11n)

Frequency Band 3.1 GHz10.6 GHz 2.4 GHz/5 GHz
Bandwidth 53 - 480 Mbit/s Max. 600 Mbit/s
Distance 3 - 10 m 100 m

Table 3.5: WUSB vs WiFi
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WUSB utilizes the UWB technology. UWB is a new legalized frequency

spectrum, which uses frequencies from 3.1 GHz to 10.6 GHz; a band more than

7 GHz wide. Each radio channel can have a bandwidth of more than 500 MHz,

depending on its center frequency. To allow for such a large signal bandwidth,

there are severe broadcast power restrictions. By doing so, UWB devices can

make use of an extremely wide frequency band while not emitting enough

energy to be noticed by narrower band devices nearby, such as 802.11a/b/g

radios. This sharing of spectrum allows devices to obtain very high data

throughput, but they must be within close proximity.

In terms of energy consumption, WiFi consumes more power to cover a

larger area than WUSB which is designed to cover less area with low trans-

mission power. UWB’s low power requirements make it feasible to develop

cost-effective CMOS implementations of UWB radios. With the characteris-

tics of low power, low cost, and very high data rates at limited range, UWB

is positioned to address the market for a high-speed WPAN.

In terms of distance, WUSB supports short distances (between 3 to 10 m)

which is suitable for Wireless Personal Networks (WPAN); WiFi can provide

a larger distance up to 100 m, which makes it more feasible for Wireless Local

Area Network (WLAN). For an aircraft cabin of small area and large number

of obstacles, using wireless devices of large transmission range can increase

interference especially when we consider the larger number of IFE terminals,

so WUSB can produce less interference than WiFi in such environment.

In terms of security, WiFi is a well known comercial technology that exists

in almost all personal wireless devices. However, WUSB is a new technol-

ogy that uses a different frequency spectrum, so more system security can be

achieved when using WUSB rather than WiFi, because both intentional and

non-intentional intrusion can be minimized.
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3.3.4 The proposed architecture

In our proposed heterogeneous architecture (see Figure 3.16) are integrated

togethezr so that each of them solves a part of the networking problem. The

objective of this architecture is to minimize wiring complexity while maintain-

ing the same connectivity, performance, and allowing IFE systm to enhance

its services.

Figure 3.16: Heterogeneous network architecture

PLC system is proposed as the network backbone to convey data between

a data server and the passenger’s seat where he uses his PEDs. The evaluation

results of using a PLC network showed that it is able to convey multimedia

contents with up to 20 seats per PLC segment. This allows us to use the

existing electrical network for data communication, so that no data dedicated

cables need to be extended between seats and data server. All these features

make PLC an appealing solution as part of the IFE system.

USB technology becomes a part of modern personal devices where it can

provide an easy way to connect to other devices. WUSB can be used as an

alternative to give USB devices wireless capabilities. Our experimentations

showed that WUSB can be used to transfer simple data flows because its per-

formance is much less than wired USB. However, using it will help to reduce

traditional USB wiring between seats. It is enough to have the WUSB dongole
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in the armrest and the other dongole to be the network backbone. This config-

uration (PLC and WUSB) was successfully implemented in Airbus-Hamburg

site during the E-CAB [123] project.

Furthermore, controlling the transmission range and channels of wireless

Access Points can help us to use them inside the cabin. the Access Points are

connected to the PLC backbone, so that wireless devices can be connected to

the system. However, good performance is not guaranteed for such high dense

network, so passengers should expect to only have a best effort service.

The combination between these three technologies provides us with a het-

erogeneous architecture that can solve many of current problems such as the

burden of using a dedicated communication network, connecting personal de-

vices to the IFE system, and interface compatibility by using WUSB to connect

USB devices.

3.4 Conclusion

In this chapter, we showed the effect of network density over its performance

and how it is usually calculated in the literature. Generaly, network density

is usually measured according to the number of neighboring nodes, which we

believe tat it is not enough. So, we proposed the Effective Density metric. It

considers both of the population surrounding the node and its performance.

Encompassing throughput as a performance measure allows us to consider the

effect of neighbors within the node transmission range. The metric feasability

was verified by using real experimental results from the CRAWDAD data set.

An IFE system has a very special environment. Th emetalic tunnel struc-

ture of the cabin, the various obstacles (i.e., seats) within it, and safety con-

straints impose many difficulties on wireless communication inside the cabin.

In such environment, Effective Density can be a measure to show the effect

of additional wireless nodes over network performance. As a solution for such

dense network, we proposed a heterogeneous networking architecture that uti-

76



CHAPTER 3. ON THE DESIGN OF HETEROGENEOUS DENSE
WIRELESS NETWORK

lizes different technologies which are capable of working together as an inte-

grated solution to overcome existing communication challenges.
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4.1 Introduction

In recent years, market surveys have revealed a surprising and growing trend

in the importance of In-Flight Entertainment (IFE) with regard to choice of

airline. With modern long range aircraft the need for ”stop-over“ has been

reduced, so the duration of flights has also been increased. Air flights, es-

pecially long distance, may expose passengers to discomfort and even stress.

IFE can provide stress reduction entertainment services to the passenger. The

IFE system is an approach that can utilize the wireless technology for the

purpose of exchanging data -in both directions- between passengers and the

entertainment system. It can be also used to improve the passenger’s service

satisfaction level. When wireless technology is introduced to IFE systems,

self-organization can provide solutions for many existing problems.

In this chapter, we present the importance of the self-organization concept

and how it differs from self-configuration. Then we introduce a case study to

present our proposed protocol that uses the capabilities of smart antennas to

provide the PCU and VDU with self-organization capabilities.

4.2 Self-organized networks

Wireless Sensor Network (WSN) and ad-hoc networks have their own char-

acteristics that differentiate them from other types of wireless networks.

These differences raise new challenges to be overcome; one of them is self-

organization. As in any rising domain, it is essential to specifically define the

meaning of new terminologies. The terms self-organizing and self-configuring

are an example of such terms that may have overlapping meaning. For exam-

ple, in order not to degrade passenger satisfaction, any failing device must be

fixed or replaced instanteneously. The crew members do not have the technical
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background to install a failing device since it is beyond their assigned tasks.

In other words, when a device fails the crew member has to replace it without

performing any configuration; the device should identify itself and join the

system.

In this section, we try to make a definition for both terms to determine their

role, and stress on the differences between them. Consequently, we try to show

the importance of self-organization in enhancing sensor network performance,

and efficient usage of its resources.

4.2.1 Self-organization Vs Self-configuration

Self-organization is not a man made concept. Mills [12] showed that it is a

natural phenomenon that exists in different natural systems. Most of artificial

self-organization techniques were inspired from natural ones. For example,

some anti-virus programming concepts were derived from the natural immune

system. Natural systems are full of self-organizing mechanisms and concepts

that can solve different WSN issues.

The terms self-organization and self-configuration are used interchange-

ably in the domain to express changes in the current network status to cope

with certain environmental change or to enhance network and/or node perfor-

mance [124], but the term self-organization is used more frequently. However,

some contributions considered a difference between the two terms [125] to

emphasize certain ideas, but there is still a need for a general definition to

precisely specify the differences between the two terms. In this section, we will

try to highlight the differences and propose a clear definition for both of them,

so that they can be used unambiguously.

According to Merriam-Webster dictionary [13], “Organization” is derived

from the verb “Organize”. It has different meanings; those we may be inter-

ested in are as follows:

• To form into a coherent unity or functioning whole.
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• To set up an administrative structure.

• To persuade to associate in an organization.

• To arrange by systematic planning and united effort.

• To arrange elements into a whole of interdependent parts.

From the above meanings we can deduce that the verb “Organize” means to

arrange different independent entities into a single unity to cooperate together

for performing a certain task. Applying the same meaning on the Wireless

networking domain, we can define Self-organization as “the changes that the

node does in its behaviour to cooperate with its neighbours in the network to

perform a certain task or achieve a certain goal“.

On the other hand, ”Configure” was defined as “to set up for operation

especially in a particular way“ [13]. Applying the same meaning on WSN

domain, we can define Self-configuration as ”the changes that the node makes

in its parameters to perform certain task”.

To sum up, we can say that a node may perform self-configuration actions

to achieve self-organization that helps the node to have certain behaviour. For

example, if there is an environmental change that causes frames to collide

frequently, then each node must be self-organized to overcome this problem in

order to minimize power loses. To achieve this behaviour, the node starts to

configure its MAC protocol to control the number of sent frames. In this case,

we can say that self-configuration had lead to self-organization.

In other situations, self-organization can be achieved without self-

configuration. If we considered the case when a node detects a weakness in the

received signal due to moving in a certain direction, then it starts to change

its direction to keep the signal. This happens without setting up any inter-

nal changes, so its behaviour (i.e., self-organization) was changed without any

change in its internal parameters (i.e., self-configuration). This assumption is

greatly dependent on the level of abstraction when considering self-configuring
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parameters. In other words, do we consider changes in the values that cause

alteration in direction as being changes in configuration or not.

4.2.2 The need for self-organization

A system can be defined as a group of entities that interact together to perform

a certain task. The more entities and interactions we have, the more complex

is the system. In complex systems, the system parts are usually coupled in a

nonlinear fashion; when there is many nonlinearities, the system usually ex-

hibits unpredictable actions. In such situation, individual components should

be able to acquire, understand (i.e., process), and react probably with respect

to the surrounding changes. In other words, components can perform indi-

vidual changes that can give the overall system a new behavior or property.

Such self-organizing activities can give the complex system more flexibility to

respond to unpredicted phenomena, which it may face. However, if the en-

vironment changes too rapidly or if modifications are out of tolerance range,

then instability may occur to the system.

Self-organizing systems usually show common characteristics such as:

• Absence of external control : Each component acts according to its indi-

vidual decision.

• Adaptation to changing condition

• Complexity : It is an inherent characteristic due to the complex feature

of the system, so that complex processing are usually required to react

probably.

• Dynamic operation: Self-organization is a dynamic process that allows

the system to react continuously to any surrounding changes over time.
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4.3 Case study: A device identification proto-

col for IFE systems

As mentioned before, In-Flight Entertainment (IFE) systems are widely spread

in modern flights. As forementioned, an IFE system usually consists of a Seat

Electronic Box (SEB), the passenger’s terminal hardware, plus a Passenger’s

Control Unit (PCU), the remote control to select the service, and a Visual Dis-

play Unit (VDU), the screen. Using the wireless technology in these systems

can increase the satisfaction level of both the passengers and the avionics com-

panies. From that, we propose a new protocol, which utilizes the smart anten-

nas technology to allow PCUs to be recognized and configured autonomously

without any external intervention.

Section 4.3.1 introduces a brief description of smart antennas and how they

can be used with the proposed protocol, which is discussed in section 4.3.2.

Finally, the evaluation of the protocol is given in section 4.3.3

4.3.1 Smart Antennas

The traditional omni-directional antennas have a radiation pattern that is

donut shaped (see Figure 4.1(b)) with the antenna at the center of the donut.

In other words, it radiates radio wave power uniformly in all directions in one

plane, with the radiated power decreasing with elevation angle above or below

the plane, dropping to zero on the antenna’s axis which is described as dough-

nut shaped. Note that this is different from an isotropic antenna, which radiates

equal power in all directions and has a spherical radiation pattern. This means

that with the omnidirectional antenna oriented vertically, the signal coverage

is equal in all directions in the horizontal plane (see Figure 4.1(a)). Omnidirec-

tional antennas are widely used for radio broadcasting antennas, and in mobile

devices such as cell phones, and wireless computer networks. These antennas

are not an effective technique to avoid interference (see Figure 4.1(c)).

On the other hand, a Smart Antenna is a multi-element antenna where each
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(a) radiation top and side
view

(b) Donut
shape

(c) interfer-
ence

Figure 4.1: Omni antenna

element can be controlled separately, so that the antenna beam can be directed

towards a certain direction as well as controlling the transmission power [126]

(see figure 4.2). An antenna element is not smart by itself; it is a combination

of antenna elements to form an array and the signal processing software used

that make smart antennas effective. This shows that smart antennas are more

than just the antenna, but rather a complete transceiver concept. This feature

is of great importance for ad-hoc networks domain where interference and

power saving are two major issues.

Figure 4.2: Multi-element antenna

Moreover, Okamoto [127] stated that smart antennas can provide the wire-

less environment with different advantages. First, it can significantly reduce

the multi-path fading effect. Second, it minimizes the power consumption

required for communication. Third, it can improve the system Signal-to-

Interference Ratio (SIR). As shown in figure 4.3, when the nodes on route

ABCF are communicating, other neighboring nodes (i.e., D and G) can not

detect the signal. This minimize the interference problem and save energy of
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retransmitted packets due to collision.

Figure 4.3: Communication using smart antennas

Smart antennas can be used for node localization. Zhuhong [128] mentioned

two methods for determining node position, the range-based, and range-free

methods. The first depends on the distance and angle information, while the

later depends on estimating the location through the information of transmit-

ted packets. He used an antenna with K elements can cover the surrounding

region (i.e., 360◦), see figure 4.4 . The more elements we have the more accu-

racy we get; for simplicity he used k = 6. Each element is capable of indepen-

dantly send messages in different power level to obtain approximate distance.

At first, it starts by minimal power so that the near neighbors within the range

will reply, then it increases its power. The process is repeated until it detects

all neighboring nodes. Thus, this mechanism provides the distance information

between the transmitter and the receiver, and the direction is determined by

the segment performing the transmission. Such mechanism provides our pro-

posed protocol with the information necessary to allow each VDU to determine

the position of its own PCU.

Figure 4.4: Smart antenna with K sectors
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With respect to its usage in IFE systems, smart antenna location can be

an issue for many arguments. One opinion is to fix the antenna in the seat’s

arm and to be directed towards the VDU, so the PCU will only act as a

keyboard. Although this is an appealing solution, but it decreases the easiness

of installation and reconfiguration of seats, and it may require physical changes

to the seat arm design. In addition, any changes in the position of the front

seat back, or the seat’s arm itself (which can change its orientation in some

types of seats) can affect the connection. For these reasons we propose to

locate the antenna in the PCU itself.

4.3.2 Design of the proposed protocol

For every VDU in the IFE system, there is a dedicated PCU to allow the

passenger to choose his selections. Thus, each VDU is surrounded by different

number of PCUs. Selecting the appropriate comrade is not an easy task espe-

cially if we considered that PCUs are neither predefined nor pre-assigned for

any VDU. Nevertheless, using non-configured PCUs makes the system more

maintainable with respect to device failure where any failing device can be

replaced instantaneously, and automatically recognized by the system. Ac-

cordingly, each VDU has to find its own PCU.

The smart antenna technology can provide a significant help in such envi-

ronment. First, it can overcome the drawbacks of some physical hindrances

such as interference, and multipath fading. Second, it can provide the system

with the location information between each transmitter and receiver in terms

of distance and angle.

This information can be used in the coupling process between VDUs and

PCUs; when a VDU is able to know the location information of the surrounding

PCUs, it will be possible to select the required partner. However, such process

needs a selection mechanism able to differentiate between the targeted and

the non-concerned neighboring devices. Accordingly, the proposed protocol

can use this information to allow the VDU to select its PCU without being
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confused by the large number of surrounding devices. The protocol is able

to sense all the devices within range, identify the required device, and finally

select it. Moreover, it is able to detect if the required device is out of service

or not.

4.3.2.1 General requirements

Depending on the seats layout, each VDU is surrounded by one or more PCUs.

When the system is started, these PCUs are not assigned to any VDU, so it is

the task of each VDU to find its own PCU. The following problems may occur:

• A situation may exist where more than one PCU exist in the range of the

same VDU. In this case, the protocol should be able to use the provided

location information (i.e., angle, and distance) to determine the suitable

PCU.

• When the link between a VDU and its PCU is broken, the protocol must

be able to detect the situation.

• When a failing unit is replaced (either a VDU or a PCU), it must be

self-configured to take its role in the network

Figure 4.5 shows a normal seat configuration where each VDU is fixed in its

own seat and surrounded by different PCUs. The protocol has three phases, a

configuration phase, a normal operation phase, and a re-configuration phase.

• Configuration Phase: This phase occurs during the system startup. It

is responsible for determining the network topology. Each VDU checks

the availability of its PCU and responds with its status.

• Normal Operation phase: In this phase, the protocol must be aware of

the availability of its assigned PCU.

• Re-configuration phase: It occurs when a VDU fails to connect to its PCU

or vice versa. After the failing unit had been replaced or re-operated, it

should be able to join the network automatically.
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Figure 4.5: VDUs and PCUs distribution

4.3.2.2 Specifications

The protocol should be able to allow each VDU to find its own PCU and

provide their connection status. In other words, it is not the protocol’s re-

sponsibility to transfer data between nodes. Transferring data like audio or

video streams can be accomplished by other protocols (i.e., TCP/IP).

The protocol should provide the running applications with information

required to take certain actions (i.e., warnings due to a failing PCU). The

following is a list of the proposed services:

• Multiple PCUs awareness: The protocol should be able to detect multiple

PCUs that may exist in the VDU range and select the appropriate one.

• ID assignment: The protocol should automatically assign a unique ID

to both of the PCU and the VDU so they can communicate with each

other.

• Failure reports: A failing VDU or PCU should be detected and reported.

• Self adaptation: After replacing a failing device, it must be able to join

the network automatically.

• PCU out of range: when a user moves or directs the PCU away of the

VDU, the protocol should be able to identify this situation.
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4.3.2.3 Functionality and selection mechanism

When the system is started, the Configuration Phase is initiated. The protocol

is based on the idea that the required PCU is placed on the right hand side

and have the shortest distance to the VDU. Algorithm 1 shows the main steps

done by a VDU to detect its PCU. The VDU broadcasts a QRY search request

and waits for replies within a predetermined time interval to prevent indefinite

wait states, then it creates a list of the surrounding PCUs containing their

location information. The next step is to use the angle information to exclude

the PCU(s) behind it (since it is only interested in the PCUs at its front side)

and starts to handle the other PCU(s) of valid replies. Finally, the selection

procedure starts.

Algorithm 1 VDU initialization

Require: startup or search signal
Ensure: PCU search result

broadcast search request
while WaitPeriod not expired do

receive PCU replies
add responding PCU to PCU-List

end while
if no replies received then

return no PCU found
else

exclude PCUs behind the VDU
CALL selection procedure
return the selected PCU

end if

Algorithm 2 shows how the selection procedure is implemented. The re-

maining PCUs are stored in two lists; a list for PCUs in the left zone (i.e.,

left-list) and another list of PCUs in the right zone (i.e., right-list). Each list

is sorted in ascending order according to angle value. The number of PCUs

at left and right zones are indicated as L and R, respectively. If R = 0, this

means that the dedicated PCU is not present within the detection range, so
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Algorithm 2 Selection procedure

Require: List of valid PCUs
Ensure: selection result

create a list of all PCUs in the left zone
create a list of all PCUs in the right zone
arrange the two lists in ascending order according to the angle value
if L ≥ 0 and R = 0 then

raise an error
return no PCU found

end if
if L = 0 and R = 1 then

wait
if PCU is still available then

return right PCU
else

return no PCU found
end if

end if
if L = 0 and R > 1 then

entry-point = 1
CALL select according to angle
return selection result

end if
if L ≥ 1 and R ≥ 1 then

wait
entry-point = 2
CALL select according to angle
return selection result

end if
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no PCU is selected and an error is initiated. This is done regardless of the

value of L

If L = 0 and R = 1, then the PCU is selected after a period of time. This

period is used to allow the PCU to be selected by another VDU if it belongs

to it. In this case, an error is raised because no PCU will be detected.

If R ≥ 1, then a selection according to angles is initiated. The entry points

allow algorithm 3 to determine the actual state at the time it was called.

• Angle selection: When we mention the PCU angle we mean the angle

that the PCU makes with the vertical y axis passing through the middle

of the VDU. The angle value is between 0◦ and 90◦ for both left and right

zones. Algorithm 3 presents how PCU angle can be used in selection.

When the entry point = 1, the values of the first and second right-PCU

are assigned to θ1 and θ2, respectively. If θ1 < θ2, then algorithm 4 is

called to check the distance.

When the entry point = 2, the left-list enters the comparison. θ1 is

assigned the angle of 1st right-PCU, and θ2 is assigned the angle of the

1st left-PCU. If there is only one PCU in the right zone and its angle is

smaller, then it is selected.

If θ1 > θ2, this means that the PCU at the left side is nearer than the one

at the right side; this indicates that the required PCU is not responding,

so an error is raised. In either cases, when θ1 = θ2 or θ1 < θ2 with

R > 1, the selection according to distance is initiated.

• Distance selection:

When a selection according to angle fails to find the correct PCU, a

selection according to distance is performed. Algorithm 4 checks values

of the entry points defined in algorithm 3. It also symbolizes the PCU

distance as dxy, where d means distance; x is equal to r or l to indicate

right and left, respectively; y indicates the index of the PCU in the list.

92



CHAPTER 4. SELF-ORGANIZATION AND IFE SYSTEMS

Algorithm 3 Select according to angle

Require: Angles of PCUs, R
Ensure: selection result

if entry-point = 1 then
θ1 = angle of 1st right PCU
θ2 = angle of 2nd right PCU
if θ1 < θ2 then

return 1st right PCU selected
else

entry-point = 3
CALL select according to distance
return selection result

end if
end if
if entry-point = 2 then

θ1 = angle of 1st right PCU
θ2 = angle of 1st left PCU
if θ1 < θ2 then

if R = 1 then
return the first PCU in the right-list is selected

else
entry-point = 4
CALL select according to distance
return selection result

end if
end if
if θ1 > θ2 then

raise an error
return no PCU found

end if
if θ1 = θ2 then

entry-point = 5
CALL select according to distance
return selection result

end if
end if
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If the entry point = 3, this indicates that there is no PCUs at the left

zone, so the distance of the first two PCUs in the right-list is compared.

If they are equal, then the PCU is not able to find the difference in

location between the two PCUs, so it asks them to initiate a negotiation

session to elect one of them and inform the VDU with the election result.

If the 1st PCU distance is shorter than the 2nd PCU, then it is selected

since it has the smallest angle and shortest distance.

When the entry point is 4 or 5, the comparison is between PCUs in left

and right lists. If dr1 < dl1, then the required PCU exist in the right-list,

so the number of PCUs having the minimum angle and distance in the

right-list are counted. If the count = 1, then the 1st PCU in the right-list

is selected; otherwise, a negotiation procedure is initiated. If dr1 > dl1,

then no PCU is selected and an error is raised. If dr1 = dl1, then a

negotiation session starts.

• Negotiation selection: The negotiation session is shared between the

VDU, which initiates the request, and the PCUs that participate in the

negotiation. Firstly, the VDU creates a Negotiation List for all of the

concerned PCUs, it then sends a negotiation message that includes the

list to each of the participants, and waits for their reply (see algorithm 5).

Each PCU receives the message and tries to find its position with respect

to the others; considering that each PCU is already aware of the VDU

position.

Algorithm 6 presents the negotiation procedure on the PCU side. When

the PCU receives the negotiation list, it tries to retrieve the location

information (i.e., angle and distance) of all PCUs in the list. Then,

it compares its location and their locations with respect to the VDU

position to see if it is the nearest one to the VDU or not. If it detects

that it is the nearest PCU, it informs the other PCUs to see if they agree

on the result according to their calculations. If they agree, the selected
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Algorithm 4 Select according to distance

Require: distance (dr,dl) and angles (θ) of PCUs
Ensure: selection result

if entry-point = 3 then
if dr1 = dr2 then

CALL start negotiate
return selection result

end if
if dr1 < dr2 then

return select first PCU in right-list
else

return no PCU is selected
end if

end if
if (entry-point = 4) or (entry-point = 5) then

if dr1 < dl1 then
search for PCU with minimum angle and distance in right-list
if number of PCUs > 1 then

CALL start negotiate
return selection result

else
select 1st PCU in right-list
return selection result

end if
end if
if dr1 > dl1 then

raise an error
return no PCU is selected

else
CALL start negotiate
return selection result

end if
end if
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PCU sends its index in the negotiation list to the VDU to indicate itself

as the elected PCU. Otherwise, it sends no PCU is selected.

Algorithm 5 start negotiation

Require: PCU right-list
Ensure: negotiation result

prepair negotiation list
send negotiation-list to all participating PCUs
wait for negotiation result
return negotiation result

Algorithm 6 PCU negotiation

Require: negotiation list
Ensure: negotiation result

receive negotiation list
while not end of list do

CALL retrieve distance and angle information of PCUs in the list
end while
compare my location with other PCUs
check if i’m the nearest PCU
send the comparison results to other PCUs
wait for their reply
if PCUs agree on selecting me then

return my index in the negotiation list
else

return no PCU is selected
end if

4.3.2.4 Use cases

The VDUs and PCUs distribution can have diffirent forms according to the

cabin layout; here we present some scenarios and show how the protocol can

select the correct PCU or initiate an error signal.

1. No PCU(s): When The VDU does not receive a reply for its search

request, it raises an error to indicate that no PCU(s) are within its

range, and enters a search state until a PCU is found. (i.e., seat ’A’).
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2. Best case: only one valid PCU is located in its correct position within the

VDU range: The VDU sends a QRY join request and the PCU replies

with a QRY accept to confirm the assignment (i.e., seat ’B’ Figure 4.6).

3. Two PCUs: If the VDU received 2 valid replies within the time limit,

then this indicates the presence of two PCUs within the range (i.e., seat

’C’). The PCU with the smallest angle with respect to the ’Y’ axis is

selected. If two PCUs are too close for the system to differentiate the

difference in angle, then the PCU with the shortest distance is selected.

If the difference in distance can not be determined, then the VDU sends

a QRY negotiate request to authorize the PCUs to elect one of them.

The negotiation result is returned to the VDU to know its elected PCU.

Seat ’D’ illustrates the action of excluding PCUs behind the VDU and

considering only those infront of it.

Figure 4.6: Different scenarios for less than three valid PCUs

4. The worst case is the existence of more than two PCUs: If the VDU

received more than two valid replies, then it starts to sort them in as-

cending order firstly according to their angle to the ’Y’ axis , secondly

according to their distance. It is expected that the required PCU has

the smallest angle and the shortest distance on the right of the ’Y’ axis.

There are different scenarios for this situation (see Figure 4.7). Table 4.1

shows how each situation can be handled.

• Seat ’E’: PCU1 was selected because it has the smallest angle on

the right side of the ’Y’ axis.
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Figure 4.7: More than two PCUs within range

Seat Situation
Selection according to

Angle Distance Negotiation
E Small angle PCU 1 - -
F Same angle PCU 1&4 PCU 1 -

G
Too close

PCU 1&2 PCU 1&2 PCU 1
(same angle & distance)

Table 4.1: Selection criteria

• Seat ’F’: PCUs 1&4 are firstly selected since they are at the right

side. However, they have equal angles, so their distance is checked.

Finally, PCU1 is selected because it has a shorter distance.

• Seat ’G’: PCUs 1&2 were selected according to the angle and dis-

tance criteria. They are too close to each other to the extent that

the VDU can not differentiate between their angles and distances,

so the VDU initiates a negotiation session to elect one of them.

During the election process, each PCU can detect the location of

each other (i.e., either on the right or the left). After comparing

their location with the VDU location, the PCU at the right side of

the VDU is selected (i.e., PCU1).

5. Negotiation: Figure 4.8 shows different cases of negotiation. For seat

”L” PCUs 1&2 are able to communicate with each other and to decide

that PCU1 is nearer to the VDU. The same thing happens to seats ”M

& N”. For seat ”P”, they will notice that PCU2 is the nearest but with

98



CHAPTER 4. SELF-ORGANIZATION AND IFE SYSTEMS

larger distance; this may be due to a failing PCU, so an error is raised.

Figure 4.8: Negotiation cases

In fact, the real world is not that simple. If faults exist, then there will

be exceptions in the above scenarios. For example, if the correct PCU is not

functioning, then a wrong PCU can be chosen. This means that a PCU failure

may affect its VDU as well as its neighboring VDU(s). To overcome this

situation, the angle of the 1st PCU in the left quarter is always considered

(i.e., PCU2). For instance, at seat ’H’ (see Figure 4.9), if the angle of the

recommended PCU for selection (i.e., PCU4) is greater than the angle of PCU2,

this indicates that PCU1 is not working. This is due to the fact that the correct

PCU must have the smallest angle and shortest distance to its VDU.

Unfortunately, this scheme does not solve the problem of seat ’I’ where

the angles and distances of PCU3 and PCU4 are equal, so they will enter a

negotiation phase that ends up with electing PCU4 (which is not correct).

Therefore, it is mandatory for PCUs to wait before starting negotiation to

allow the wrong PCU (i.e., PCU4) to be chosen by its appropriate VDU (i.e.,

seat ’J’). In this case, seat ’I’ can raise an error for not finding its PCU.

For seat ’K’, PCU4 angle is equal to PCU2 angle, but with a greater dis-

tance, so PCU4 is not the correct PCU. In addition, each VDU has to inform

all the PCUs in its range that it had found its comrade. On the other hand, a

PCU, which knows that all the surrounding VDUs had found their own PCU

will understand that its VDU is not functioning.
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4.3.3 Protocol modeling

Fixing bugs in a protocol is an important and often the highest priority activity.

Tracking down bugs, in non predefined protocol specifications, is a challenge to

many designers. Checking protocol correctness is often done using verification

techniques such as ”Reachability Analysis” [129], which searches through all

reachable states. It is almost impossible to do an exhaustive test, which often

requires 100% of the reachable states. Another approach can be used, which is

program proof. This requires an automated solution for analyzing and testing

the design, so we used TAU version 3.1 [130] to build and verify our UML

model. UML language is a formal language ensuring precision, consistency,

and clarity in the design that is crucial for mission critical applications. It

has a high degree of testability as a result of its formalization for parallelism,

interfaces, communication, and time. After identifying the protocol function-

ality, NS2 simulator was used to apply more scenarios and show the protocol

performance.

4.3.3.1 The UML model

The informal techniques used to design communication protocols (i.e., timing

diagrams) yield a disturbing number of errors or unexpected and undesirable

behavior in most protocols, so we are interested in formal techniques, which

Figure 4.9: Failing PCUs scenarios
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are being developed to facilitate design of correct protocols. It is accepted

that the key to successfully develop a system is to produce a good system

specification and design. This task requires a suitable specification language,

satisfying the following needs:

• A well designed set of concepts.

• Unambiguous, clear, and precise specifications.

• A thorough and accurate basis for analyzing the specifications.

• A basis for determining whether or not an implementation conforms to

the specifications.

• Computer support for generating applications without the need for the

traditional coding phase.

UML language has been defined to meet these demands.

For our protocol, three different layers were modeled, Upper Layer, Protocol

Layer, and Lower layers. The Upper layer initiates the session by a request to

start the search phase and waits for the results; while the Lower layer provides

the protocol layer with the distance ”r” and the angle ”θ”. The Protocol layer

provides the necessary functionality that our protocol needs to work correctly.

In addition, a model was used to represent the environment and determines

the number of PCUs and their locations with respect to the VDU.

4.3.3.2 The model structure

The protocol model consists of three main classes; VDU class, PCU class (to

represent the behavior of the VDU, and PCU), and the Network class (to

determine the scenario parameters). Each scenario consists of a VDU, and

a set of PCUs of different locations. The Network class is responsible for

informing the working instances of the VDU and PCU(s) with their locations.
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Figure 4.10: Model structure

Figure 4.11: VDU Class

Both of the VDU and PCU classes consist of three internal classes, the

Upper Layer class, the Protocol Layer class, and the Lower Layer class (see

Figure 4.10). The Protocol Layer class represents the core of the protocol, while

the other two layers are just assistances to provide the needed services. The

connection between these layers and the surrounding environment takes place

through the main class (i.e., VDU class, PCU class). Figure 4.11 represents

the VDU class as an example of the implemented UML structures. Each

internal class has input and output interfaces to communicate to each other.
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The lower layer class has interfaces to the containing VDU class to allow it to

communicate with external entities.

For example, to start a search request, the request is sent from the Upper

Layer to the Protocol Layer where the correct decision is taken and the re-

quired action is determined. Now, the action should be sent to a corresponding

instance (i.e., PCU). A signal is sent to the Lower Layer then to the contain-

ing class, which in turn sends the signal to the corresponding instance. When

the corresponding instance receives the signal, the signal reaches the Protocol

Layer of the instance through the same reversal internal path.

On the other hand, the Network class has a different structure since it is

not concerned with the protocol’s behavior. It determines the VDU and PCU

instances, and provides the working instances with their location information

in order to simulate the services provided by the smart antennas

4.3.3.3 The model behavior

An example for the model behavior is shown in Figure 4.12. As an initial

preparation, the Network class sends the location information to the VDU

and PCU(s) instances so that each instance knows its own location (signal 1).

After the VDU had received its initialization data, its Upper Layer sends a

search request to its protocol layer (signal 2). The Protocol Layer broadcasts

this request to the neighboring PCU(s). When the Protocol Layer of a PCU

instance receives the request, it replies with a signal that shows its presence

(signal 3).

The VDU waits until it receives the replies to count the number of available

PCUs. If no PCU had replied, then an error message is sent to the upper layer

(signal 4). If one or more PCU had replied, then a selection procedure starts.

The result of this selection is used to send a ”Join” signal to the selected PCU

(signal 5) and waits for its ”Reply” signal to confirm its joining (signal 6). The

confirmation is sent to the upper layer to inform it with the PCU that belongs

to the PCU (signal 7).
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Figure 4.12: Model signals

4.3.4 Protocol behavior and performance evaluation

Obviously, TAU can provide us with a way to verify the correctness of the

protocol through limited scenarios. It is difficult to use it to experiment with

complicated scenarios, and determine performance issues. NS2 simulator [120]

was used as the next step. It is a part of VINT (Virtual INternet Testbed)

project [131]. It is an open source simulator that can be used to evaluate

different issues for both wired and wireless networks. In the simulation part,

we are trying to verify the written code for the NS2 as well as to find out the

protocol points of weakness.

A problem that faced us was the unavailability of a smart antenna module

embedded in NS2 because the protocol behavior is highly dependent on their

presence. However, this was not a great issue because NS2 keeps track of the

location of each node in the simulation through the class MobileNode. This

means that the results of the simulation represents the actual performance of

the protocol behavior.

The NS2 simulation is defined by TCL scripts, and C++ codes where the

protocol module was implemented in C++ and linked to the TCL script for

further configuration. For example, if we used the provided coordinates we

will never be able to start a negotiation session, because the VDU will always

see that the PCUs are of different angles and distances. In other words, to
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Figure 4.13: Threshold area

implement negotiation scenarios, the VDU must consider the PCUs as if they

are coinciding. This was solved by using a Threshold variable (changed through

the TCL script) through which two PCUs are coinciding if the distance between

them is less than the Threshold value. The Threshold area is represented by

dark circle in Figure 4.13, which represents two coinciding nodes, when they

are located within a circle of radius equal to the Threshold value, and are

considered non-coinciding if the distance between them is greater than the

Threshold.

4.3.4.1 Use Case verification

In addition to the scenarios mentioned before (i.e., seats ”A” to ”P”), we

implemented two extra scenarios (see Figure 4.14) Seat ”Q” represents an

error situation (because there is not any PCUs in the right area). Seat ”R”

represents a normal operation. They are almost like the situations of seat

”A” and ”B” respectively, but we used them just to prove that the existence

of multiple PCUs within the same region does not affect the correctness of

selection. Table 4.2 summarizes the types of messages exchanged between

VDUs and PCUs instances. They are categorized according to the initiating

device. The message sequence depends on the type of situation if it is a normal

operation (Figure 4.15) or an error situation (Figure 4.16) or a negotiation

operation (Figure 4.17).
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Figure 4.14: NS2 extra scenarios

Source Message Meaning

VDU
Search Request Starts the search phase

Search Join Accepts its own PCU
Negotiate Starts a negotiation session

PCU

Search Reply A respond to Search Request
Search Accept A respond to Search Join

Negotiate Request Starts negotiation between PCUs

Negotiate Accept
Confirms acceptance of

Negotiate Request
Negotiate Reply A respond to Negotiate

Table 4.2: Messages list

Figure 4.15: Normal operation sequence diagram

4.3.4.2 Performance evaluation

Figure 4.15, Figure 4.16, and Figure 4.17 show timing diagrams for three cat-

egories of scenarios, normal operation, error operation, and negotiation oper-
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ation respectively. Each message is labeled by its transmission time stamp.

When it happens that the same type of message is sent from different trans-

mitters, we choose the time stamp of the latest one (maximum value). For

example, when the VDU broadcasts a Search Request message, it receives a

Search Reply message from all the neighboring PCUs. In this case, we choose

the time stamp of the last received Search Reply. At the right side of the fig-

ures, we calculated the time delay between each two successive messages. At

the bottom of the figures we indicated the scenarios (i.e., seats), which match

each operation.

Figure 4.15 shows the results of normal operation scenarios where the VDU

broadcasts the request and the PCU(s) send their replies. The VDU decides,

which PCU is the required one and sends a Join Request for the chosen one,

which in turn replies with its acceptance. It is obvious that the maximum

delay in this operation is the wait period, which the VDU uses to wait for

all available PCUs to respond. The delay was set to approximately 2 secs.

The value was chosen to be relatively large to show its impact on the protocol

performance; considering that the processing time of the requests is trivial

when compared to the wait time.

Figure 4.16: Error operation sequence diagram

Figure 4.16 shows the fastest operation, which took place when the required

PCU is not detected. After waiting for the delay period (i.e., 2 secs) through

which it receives all the Search Reply messages (if any), the VDU raises an

internal error to show the failure of finding the PCU.

Figure 4.17 shows the most time consuming operation, which takes place
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Figure 4.17: Negotiation operation sequence diagram

during negotiation between PCUs to elect one of them. The first part is the

same as the start of a normal operation, but when the VDU fails to distinguish

the location difference between two PCUs, where one of them is probably the

required one, it asks them to start negotiation and elect one of them. The

most time consuming parts are the waiting periods (mentioned above), and
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the negotiation process between the PCUs. Each of them is about 2 sec.

Figure 4.18: Convergence time

Figure 4.18 shows a comparison for the convergence time of each operation.

It indicates that the negotiation operation is the slowest one, while the differ-

ence between a normal operation and an exception (error) is not large. How-

ever, the delay of the slowest case is still acceptable during the system startup.

On the other hand, no significant comparison can be made to previous work

since the wireless cabin environment is still under research investigation.

By recalling the self-organization and self-configuration concepts, we can

say that the protocol performs self-organization actions to organize the whole

network by coupling each VDU with its corresponding PCU. Although the

protocol does not perform an explicit self-configuration actions, but it asks the

lower layer (i.e., Physical Layer) to configure its smart antenna elements to

scan the surrounding area, and provide the protocol with the required data.

This behavior shows the importance of cooperation between different layers to

achieve self-organization.
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4.4 Conclusion

Self-organization and self-configuration are two terms that are usually used

with autonomous systems. We highlighted the difference between the two

terms and showed the importance of self-organization. Providing IFE systems

with self-organization capabilities can decrease maintenance and cabin recon-

figuration time. We proposed using smart antennas to minimize interference

and benefit of their ability to determine distance and direction between trans-

mitters and receivers. We introduced a new device identification protocol that

allows IFE devices to be identified autonomously without any previous con-

figuration. The protocol specifications and functionality were discussed. It is

evaluated and verified through formal methods and simulations. The timing

values were accepted in the E-CAB [123] project that match the requirements

of airplane architecture.
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Chapter 5

Conclusion and future work

Wireless networking is a wide-ranging and challenging domain. In this work,

we tried to highlight some important topics as well as providing some solutions

for existing challenges. Network density is one of the features that need a

quantitative measure in order to be evaluated. It is highly affected not only

by the number of nodes, but also by nodes performance. Consequently, the

network density calculation, which is presented in the literature is not an

enough metric to judge the network state as being dense or non-dense since

it does not consider network performance. Thus, we propose the usage of

Effective Density as a new measure, which allows us to study the dynamic

effect of the neighbor’s number. Moreover, It allows us to divide the network

into areas of different densities, where each area can behave according to the

influence of its current population.

Furthermore, we conducted a simulation as a proof of the concept, where

we showed how the Effective Density is influenced by the changing number of

node neighbors and its Throughput. Then, we showed the metric applicability

over a data set extracted from a real experimentation.

A future step is to integrate our metric within a protocol that uses network

density as its control parameter to show how our metric can enhance the

protocol behavior.
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Moreover, self-organization is a feature, which is inspired from natural

systems. Natural systems had proven to be good competent, more reliable,

and fault tolerant. These pre-tested natural systems give confidence in ac-

quiring good results when inspiring techniques derived from them. One of

their most interesting features is self-organization. Self-organization and self-

configuration are two different terms, which are usually used interchangeably.

We thoroughly identified them so that they can be used more precisely in the

context of autonomus systems. One of the current features of WSN is that so-

lutions tend to be application dependent, leading to different design concepts

and approaches. We believe that, although each network layer can have a sole

effect on self-organization, a better performance can be achieved if the global

view of all layers were considered, so we show the role of each network layer

to acquire self-organization in order to achieve better understanding as well as

being able to evaluate different approaches.

From the application side, IFE systems are starving for new solutions where

wireless communication can play a great role in improving as well as adding

new services to them. However, the highly constrained environment inside the

cabin imposes many difficulties, so that heterogeneous network architecture

can be considered as a promising solution for such application. Through ex-

perimentation results and simulations, this work proves that it is possible to

build a heterogeneous network, which contains different technologies; each to

solve a certain part of the problem. Using PLC networks can be a compet-

itive solution since it decreases the amount of cabling inside the cabin, and

can be used to connect the APs (to support mobility) directly to the network

system. Moreover, it overcomes the interference constrain, and can provide

enough bandwidth to support heavy traffic required for multimedia services.

When combined with WUSB, it becomes easier for passengers to connect their

PEDs.

Moreover, IFE systems can utilize smart antennas to solve or minimize

interference problems. However, new wireless technologies like smart anten-
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nas require special mechanisms to fully utilize their capabilities. The pro-

posed protocol is designed to use these capabilities to provide the IFE remote

control with self-configurable wireless characteristics. Although the protocol

procedures seems complicated, but in fact they are not, because it depends

on comparing existing information without using excessive messaging. This

behavior enhances convergence time and protocol performance.

An UML model and NS2 simulation were then used to prove that the

proposed protocol is able to utilize the location information provided by the

smart antennas to allow each VDU to detect its own PCU. Moreover, the

protocol considered the probable failure situations, and was able to detect and

handle them. However, the protocol point of weakness is its internal timer.

The simulation results showed that the value of the timer has a great impact

on convergence time. In addition, the usage of an UML model before creating

a NS2 simulation had proved to be of great importance to the protocol design

life time. Although designing the UML model seemed to be a time consuming

part, but it saved the effort of tracking semantic errors during implementing

the NS2 module.

In this phase of the work, we aimed at having a proof of the concept to show

the feasibility of our proposed protocol. The next step is to enhance the written

code by using better data structures to minimize the processing delay and

improve the simulated convergence time. In addition, we are aiming at trying

simulations that represent a real cabin configuration, and inject scenarios with

randomly failing devices. It is also planned to investigate the scalability issues

of WUSB.

Moreover, we believe that self-organization techniques can introduce so-

lutions for different problems that are not well investigated yet in the WSN

domain. For example, time critical applications where time of data transfer is

a great issue, and they need to be zero tolerant for data loss; applications that

need certain level of fault tolerance and reliability. Current WSN designs are

mainly concerned with connectivity and power saving, so that these types of
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applications need to be considered by researchers.

Furthermore, the relation between Effective Density and network QoS

needs to be investigated because Effective Density can be a measure that

shows the pattern of performance change with respect to number of single hop

neighboring nodes.
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Glossary

Ad-hoc Network Ad-hoc network is a wireless network where nodes can
communicate wirelessly with each other without the need for a fixed
infrastructure.. 11

Duty Cycle In terms of WSN energy conservation, it is the fraction of time
when nodes are active during their lifetime. 24

Effective Density (ED) of a node is the ratio between the number of sin-
gle hop connected nodes (N ), and the node Throughput (th), where
ED = N

th
. 45

In-Flight Entertainment is the entertainment available to aircraft passen-
gers during flight.. 3

Personal Control Unit Is a remote control device used in IFE systems to
allow passengers to select options or services of the system.. 32

Seat Electronic Box Is an electronic device used to connect the devices used
by passengers to the IFE system instead of having a separate connecting
network for each device.. 33

Self-configuration Is the changes that the node makes in its parameters to
perform certain task.. 68

Self-organization Is the changes that the node does in its behaviour to co-
operate with its neighbours in the network to perform a certain task or
achieve a certain goal.. 68

Smart Antenna is a multi-element antenna where each element can be con-
trolled separately, so that the antenna beam can be directed towards a
certain direction as well as controlling the transmission power.. 70
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Glossary

Visual Display Unit is a display unit usually fixed to the back of the front
seat for individual use or is fixed in the ceiling as a shared display for a
group of seats.. 32

Wireless Sensor Network Is a special type of networks where nodes are
smart sensors with scarce resources. They are small in size, have lim-
ited computational power, short range communication capabilities, low
energy, limited and storage capacity, and usually numerous in number.
18
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Résumé 
 
 
Le réseau sans fil est l'un des domaines de réseautage les plus prometteurs avec des 
caractéristiques uniques qui peuvent fournir la connectivité dans les situations où il est 
difficile d'utiliser un réseau filaire, ou lorsque la mobilité des nœuds est nécessaire. Cependant, 
le milieu de travail impose généralement diverses contraintes, où les appareils sans fil font 
face à différents défis lors du partage des moyens de communication. De plus, le problème 
s'aggrave avec l'augmentation du nombre de nœuds. Différentes solutions ont été introduites 
pour faire face aux réseaux très denses. D'autre part, un nœud avec une densité très faible peut 
créer un problème de connectivité et peut conduire à l'optension de nœuds isolés et non 
connectes au réseau. 
 
La densité d'un réseau est définit en fonction du nombre de nœuds voisins directs au sein de la 
portée de transmission du nœud. Cependant, nous croyons que ces métriques ne sont pas 
suffisants et nous proposons une nouvelle mesure qui considère le nombre de voisins directs 
et la performance du réseau. Ainsi, la réponse du réseau, respectant l'augmentation du nombre 
de nœuds, est considérée lors du choix du niveau de la densité. 
 
Nous avons défini deux termes: l'auto-organisation et l'auto-configuration, qui sont 
généralement utilisés de façon interchangeable dans la littérature en mettant en relief la 
différence entre eux. Nous estimons qu'une définition claire de la terminologie peut éliminer 
beaucoup d'ambiguïté et aider à présenter les concepts de recherche plus clairement. 
 
Certaines applications, telles que Ies systèmes “In-Flight Entertainment (IFE)” qui se trouvent 
à l'intérieur des cabines d'avions, peuveut être considérées comme des systèmes sans fil de 
haute densité, même si peu de nœuds sont relativement présents. Pour résoudre ce problème, 
nous proposons une architecture hétérogène de différentes technologies à fin de surmonter les 
contraintes  spécifiques de l'intérieur de la cabine. Chaque technologie vise à résoudre une 
partie du problème. Nous avons réalisé diverses expérimentations et simulations pour montrer 
la faisabilité de l'architecture proposée. 
 
Nous avons introduit un nouveau protocole d'auto-organisation qui utilise des antennes 
intelligentes pour aider certains composants du système IFE; à savoir les unités d'affichage et 
leurs systèmes de commande, à s'identifier les uns les autres sans aucune configuration 
préliminaire. Le protocole a été conçu et vérifié en utilisant le langage UML, puis, un module 
de NS2 a été créé pour tester les différents scénarios. 
 
Mot(s)-clé(s) : Réseaux sans fils, Réseaux denses, Systèmes de divertissement en vol, 
Conception et évaluation du protocole 



 
 
 

Summary 
 
 
Wireless networking is one of the most challenging networking domains with unique features 
that can provide connectivity in situations where it is difficult to use wired networking, or 
when ! node mobility is required. However, the working environment us! ually im poses 
various constrains, where wireless devices face various challenges when sharing the 
communication media. Furthermore, the problem becomes worse when the number of nodes 
increase. Different solutions were introduced to cope with highly dense networks. On the 
other hand, a very low density can create a poor connectivity problem and may lead to have 
isolated nodes with no connection to the network. 
 
It is common to define network density according to the number of direct neighboring nodes 
within the node transmission range. However, we believe that such metric is not enough. Thus, 
we propose a new metric that encompasses the number of direct neighbors and the network 
performance. In this way, the network response, due to the increasing number of nodes, is 
considered when deciding the density level. 
 
Moreover, we defined two terms, self-organization and self-configuration, which are usually 
used interchangeably in the literature through highlighting the difference ! between them. We 
believe that having a clear definition for terminology can eliminate a lot of ambiguity and 
help to present the research concepts more clearly. 
 
Some applications, such as In-Flight Entertainment (IFE) systems inside the aircraft cabin, 
can be considered as wirelessly high dense even if relatively few nodes are present. To solve 
this problem, we propose a heterogeneous architecture of different technologies to overcome 
the inherited constrains inside the cabin. Each technology aims at solving a part of the 
problem. We held various experimentation and simulations to show the feasibility of the 
proposed architecture. 
 
Furthermore, we introduced a new self-organizing identification protocol that uses smart 
antennas to help the Display Units and their Remote Controls, of the IFE system, to identify 
each other without any preliminary configuration. The protocol was firstly designed and 
verified using UML language, then, a NS2 module was created to experi! ment with different 
scenarios. 
The experimentation and si! mulation results proved that such heterogeneous architecture can 
provide a solution for the constrained wireless communication inside the cabin. 
 
Keywords: Protocol engineering and evaluation – dense network – In-Flight 
Entertainment system – wireless network 
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