7,533 research outputs found

    Measuring the confinement of probabilistic systems

    Get PDF
    AbstractIn this paper we lay the semantic basis for a quantitative security analysis of probabilistic systems by introducing notions of approximate confinement based on various process equivalences. We re-cast the operational semantics classically expressed via probabilistic transition systems (PTS) in terms of linear operators and we present a technique for defining approximate semantics as probabilistic abstract interpretations of the PTS semantics. An operator norm is then used to quantify this approximation. This provides a quantitative measure É› of the indistinguishability of two processes and therefore of their confinement. In this security setting a statistical interpretation is then given of the quantity É› which relates it to the number of tests needed to breach the security of the system

    A short note on Simulation and Abstraction

    Full text link
    This short note is written in celebration of David Schmidt's sixtieth birthday. He has now been active in the program analysis research community for over thirty years and we have enjoyed many interactions with him. His work on characterising simulations between Kripke structures using Galois connections was particularly influential in our own work on using probabilistic abstract interpretation to study Larsen and Skou's notion of probabilistic bisimulation. We briefly review this work and discuss some recent applications of these ideas in a variety of different application areas.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Quantifying Timing Leaks and Cost Optimisation

    Full text link
    We develop a new notion of security against timing attacks where the attacker is able to simultaneously observe the execution time of a program and the probability of the values of low variables. We then show how to measure the security of a program with respect to this notion via a computable estimate of the timing leakage and use this estimate for cost optimisation.Comment: 16 pages, 2 figures, 4 tables. A shorter version is included in the proceedings of ICICS'08 - 10th International Conference on Information and Communications Security, 20-22 October, 2008 Birmingham, U

    A New Robust Regression Method Based on Minimization of Geodesic Distances on a Probabilistic Manifold: Application to Power Laws

    Get PDF
    In regression analysis for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. In many situations, the assumptions underlying OLS are not fulfilled, and several other approaches have been proposed. However, most techniques address only part of the shortcomings of OLS. We here discuss a new and more general regression method, which we call geodesic least squares regression (GLS). The method is based on minimization of the Rao geodesic distance on a probabilistic manifold. For the case of a power law, we demonstrate the robustness of the method on synthetic data in the presence of significant uncertainty on both the data and the regression model. We then show good performance of the method in an application to a scaling law in magnetic confinement fusion.Comment: Published in Entropy. This is an extended version of our paper at the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2014), 21-26 September 2014, Amboise, Franc

    Space, Time and Color in Hadron Production Via e+e- -> Z0 and e+e- -> W+W-

    Get PDF
    The time-evolution of jets in hadronic e+e- events at LEP is investigated in both position- and momentum-space, with emphasis on effects due to color flow and particle correlations. We address dynamical aspects of the four simultanously-evolving, cross-talking parton cascades that appear in the reaction e+e- -> gamma/Z0 -> W+W- -> q1 q~2 q3 q~4, and compare with the familiar two-parton cascades in e+e- -> Z0 -> q1 q~2. We use a QCD statistical transport approach, in which the multiparticle final state is treated as an evolving mixture of partons and hadrons, whose proportions are controlled by their local space-time geography via standard perturbative QCD parton shower evolution and a phenomenological model for non-perturbative parton-cluster formation followed by cluster decays into hadrons. Our numerical simulations exhibit a characteristic `inside-outside' evolution simultanously in position and momentum space. We compare three different model treatments of color flow, and find large effects due to cluster formation by the combination of partons from different W parents. In particular, we find in our preferred model a shift of several hundred MeV in the apparent mass of the W, which is considerably larger than in previous model calculations. This suggests that the determination of the W mass at LEP2 may turn out to be a sensitive probe of spatial correlations and hadronization dynamics.Comment: 52 pages, latex, 18 figures as uu-encoded postscript fil

    Confinement as a tool to probe amorphous order

    Full text link
    We study the effect of confinement on glassy liquids using Random First Order Transition theory as framework. We show that the characteristic length-scale above which confinement effects become negligible is related to the point-to-set length-scale introduced to measure the spatial extent of amorphous order in super-cooled liquids. By confining below this characteristic size, the system becomes a glass. Eventually, for very small sizes, the effect of the boundary is so strong that any collective glassy behavior is wiped out. We clarify similarities and differences between the physical behaviors induced by confinement and by pinning particles outside a spherical cavity (the protocol introduced to measure the point-to-set length). Finally, we discuss possible numerical and experimental tests of our predictions.Comment: 5 pages, 3 figures and EPAPS (4 pages, 1 figure

    Quark Matter and Nuclear Collisions: A Brief History of Strong Interaction Thermodynamics

    Full text link
    The past fifty years have seen the emergence of a new field of research in physics, the study of matter at extreme temperatures and densities. The theory of strong interactions, quantum chromodynamics (QCD), predicts that in this limit, matter will become a plasma of deconfined quarks and gluons -- the medium which made up the early universe in the first 10 microseconds after the big bang. High energy nuclear collisions are expected to produce short-lived bubbles of such a medium in the laboratory. I survey the merger of statistical QCD and nuclear collision studies for the analysis of strongly interacting matter in theory and experiment.Comment: 24 pages, 14 figures Opening Talk at the 5th Berkeley School on Collective Dynamics in High Energy Collisions, LBNL Berkeley/California, May 14 - 18, 201

    Time scale, objectivity and irreversibility in quantum mechanics

    Full text link
    It is argued that setting isolated systems as primary scope of field theory and looking at particles as derived entities, the problem of an objective anchorage of quantum mechanics can be solved and irreversibility acquires a fundamental role. These general ideas are checked in the case of the Boltzmann description of a dilute gas.Comment: 13 pages, latex, no figures, to appear in the Proceedings of the XXI International Colloquium on Group Theoretical Methods in Physics, 1996 (Goslar, Germany
    • …
    corecore