
Theoretical Computer Science 340 (2005) 3–56
www.elsevier.com/locate/tcs

Measuring the confinement of probabilistic systems

Alessandra Di Pierroa,1,3, Chris Hankinb,∗,2,3, Herbert Wiklickyb,3
aDipartimento di Informatica, Universitá di Pisa, Italy

bDepartment of Computing, Imperial College, London, UK

Abstract

In this paper we lay the semantic basis for a quantitative security analysis of probabilistic systems
by introducing notions ofapproximate confinementbased on various process equivalences.We re-cast
the operational semantics classically expressed via probabilistic transition systems (PTS) in terms of
linearoperatorsandwepresenta technique fordefiningapproximatesemanticsasprobabilistic abstract
interpretations of the PTS semantics. An operator norm is then used to quantify this approximation.
This provides a quantitative measureε of the indistinguishability of two processes and therefore of
their confinement. In this security setting a statistical interpretation is then given of the quantityε

which relates it to the number of tests needed to breach the security of the system.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Security analysis; Probabilistic bisimulation; Probabilistic weak bisimulation; Static program
analysis; Statistical testing

1. Introduction

Since the early 1970s,when it was first raised by Lampson[43], the problemof preventing
a program P from leaking private information to unauthorised users (also known as thecon-
finement problem) has been extensively studied and various approaches have been proposed

∗ Corresponding author. Tel.: +442075948266; fax: +442075818024.
E-mail addresses:dipierro@di.unipi.it(A. Di Pierro),clh@imperial.ac.uk(C. Hankin),herbert@doc.ic.ac.uk

(H. Wiklicky).
1Alessandra Di Pierro is partly funded by Progetto MEFISTO.
2 Chris Hankin is partly funded by the EU FET project SecSafe.
3All three authors are partly funded by the EPSRC project S77066A.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.03.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81103802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:dipierro@di.unipi.it
mailto:clh@imperial.ac.uk
mailto:herbert@doc.ic.ac.uk

4 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

for its solution.After the introduction in the 1980s of the seminal notion ofnon-interference
by Goguen and Meseguer[31], and in the 1990s ofprobabilistic non-interferenceby Gray
[32], most of the work on confinement has been based on models which exploit the non-
interference-based formalisation of the problem: since (probabilistic) interference can be
exploited by a Trojan horse to reliably leak high information to unauthorised users, the
absence of any illegal information flow will guarantee the perfect confinement of a system.
Such models ultimately depend on some notion of process equivalence by identifying the
absence of information flow between two processes via the indistinguishability of their
behaviours [59]. As already noticed in [32] these models aim to achieve perfect security.
This is in practice hardly achievable [58]. The definition of the confinement property can
be made more usable (i.e. systems are more likely to satisfy the definition) by weakening it
so as to allow for a quantifiable amount of interference. This also allows system developers
to formally quantify the security of the system, e.g. to precisely determine the capacity of
(probabilistic) covert channels. They are then able to trade off the security of the system
with other design goals such as performance, reliability or costs [13].
We have previously studied confinement properties in the setting of a simple probabilistic

programming language [52,53,55]. The main contribution of this earlier work has been the
development of a notion ofapproximate confinementwhich allows for the leakage of a
certain amountε of information. Such a quantity gives a measure of how hard an attacker
has towork in order to breach security. Theprocess equivalencewehavebasedour definition
on considers I/O observables. Moreover, this definition refers to special kinds of attackers
which can be external or internal and are equipped with a specific limited power.
In this paper we present a significant generalisation: we cast our work in the context

of probabilistic transition systems [39]. These systems are probabilistic extensions of la-
belled transition systems which represent a well-established semantics for concurrent and
distributed systems. Various models have been proposed in the literature which differ in
the way probability is introduced in the underlying non-deterministic model. In the most
simple extension probabilistic branching completely replaces non-deterministic branching,
although transition probability distributions may depend on the occurrences of actions in
different ways. In [29] these different ways are classified in three alternative models called
respectively ‘reactive’, ‘generative’ and ‘stratified’. In other probabilistic extensions some
form of non-determinism is allowed in order to represent under-specification [36,38,61,65].
Non-determinism can be useful for specifying the behaviour of concurrent processes, i.e.
for expressing the different interleavings in the parallel execution of concurrent proba-
bilistic processes; for this reason the models of probabilistic transition systems including
non-determinism are often calledconcurrentprobabilistic systems [4].
We will adopt the purely probabilistic model concentrating in particular on the reactive

and the generative variants. The basic difference between these two variants is that while
in the reactive systems, first introduced by Larsen and Skou in [44], each action determines
a probability distribution on the states reachable on that action, in the generative systems
probability distributions are defined on pairs of actions and states, thus implicitly assigning
probabilities also to the occurrences of actions. In this context wewill considerbisimulation
andweak bisimulationas the basic process equivalences for defining confinement both in
its exact and approximate versions. The notion of probabilistic bisimulation we will adopt
is the one introduced by Larsen and Skou in [44] for reactive systems. This is elegantly

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 5

characterised by means of a testing language so that two states are probabilistic bisimilar
if and only if they react with the same probability distribution to each test. By interpreting
tests as possible attackers, this notion immediately translates into a definition of confine-
ment for probabilistic systems. In fact, two processes which are probabilistic bisimilar are
indistinguishable under any attack (or test). These tests are formalised in[44] as processes
in a generic language, called atesting language, and can be used to represent different
kinds of attacks. In particular, for generative systems these tests arepassiveas they do not
determine the probabilistic behaviour of the system. Thus, the definition of confinement
induced by probabilistic bisimulation generalises the definitions introduced in our previous
work where we consider a probabilistic language with a generative semantics and restrict
to a particular kind of spies, namely passive and memoryless spies [51,52].
One main result of this paper is the introduction of a characterisation of probabilistic

bisimulation equivalence via probabilistic abstract interpretation [56,57]. This translates
into the probabilistic setting a result that was already established in the classical setting
by Schmidt [60]. Our characterisation is obtained via the representation of a probabilistic
transition system by means of a linear operator. The equivalence between two systems is
then established by the existence of certain linear transformations (abstractions). In the
bisimulation semantics, such abstractions result in a “lumped” process [41]; in fact, as
pointed out by [63], Larsen and Skou’s notion of probabilistic bisimulation is a recasting
of Kemeny and Snell’s lumpability condition. The use of linear operators to represent
relations provides us with a means to define a notion of distance via an appropriate operator
norm. In particular, we will use the operators representing probabilistic bisimulation to
define a quantityε which measures “how much” two processes are not bisimilar. We also
show how these same notions can be used to capture weak probabilistic bisimulation and its
approximate variant. Our definition of weak bisimulation for probabilistic systems is similar
to the one introduced in [4] for generative systems. Because of the presence of� actions,
a straightforward application of the technique we use for probabilistic bisimulation is non-
trivial for weak bisimulation. In particular, the linear operator representing the abstracted
system must be defined so as to take into account possible looping on�-transitions.
Computing anε measure can be computationally expensive, if not infeasible; thus we

show how to establish a bound forε which is easy to compute. Finally, we give a statistical
interpretationofεwhich, in thesettingof security, allowsus to relate the level of confinement
to the number of tests a spy has to perform in order to breach the system.

2. Probabilistic transition systems

In this paper we will considerprobabilistic transition systems(PTS), that is labelled
transition systems with a probabilistic branching.
Given a setS, we call a function� : S �→ [0,1] a probability distributionon S iff∑
s∈S �(s) = 1.We call the function� asub-probability distributioniff

∑
s∈S �(s)�1.We

denote byDist(S) and SDist(S) the set of all probability and sub-probability distributions
on S, respectively. Given an equivalence relation∼ on a finite setSand a distribution�
onS, the lifting of � to the set of equivalence classes of∼ in S, S/∼, is defined for each
equivalence class[s] ∈ S/∼ by: �([s]) = ∑

s′∈[s] �(s′). It is straightforward to show that

6 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

Fig. 1. A reactive probabilistic transition system.

this is indeed a distribution onS/∼ (e.g.[39, Definition 1, Theorem 1]). Analogously, we
can show that if� is a sub-probability distribution onS then its lifting is a sub-probability
distribution onS/∼.
We recall the definition of a PTS as given in [39, Definition 2].

Definition 1. A probabilistic transition systemis a tuple(S,A,−→,�0), where:
• S is a non-empty, countable set ofstates,
• A is a non-empty, finite set ofactions,
• −→ ⊆ S × A× Dist(S) is atransition relation, and
• �0 ∈ Dist(S) is aninitial distribution onS.

For s ∈ S, � ∈ A and� ∈ Dist(S) we writes
�−→ � for (s, �,�) ∈ −→. By s

p:�−→ t we
denote the transition to individual statest with probabilityp = �(t), on action�.
The above definition of a PTS is very general and allows for purely probabilistic models

where each transition is assignedaprobability (as in e.g.[14,29,44]) aswell asmodelswhere
both non-deterministic and probabilistic branching are present (as in e.g. [36,38,61,65]).
We will consider in this paper two particular variants of this definition which correspond
to thereactiveandgenerativemodels in [29]. In reactive systems each action determines a
probability distribution and for each statesand action� only one distribution is possible, i.e.
if s

�−→ �1 ands
�−→ �2 then�1 = �2. In the generative systems distributions implicitly

assign a probability also to the occurrences of actions. Formally we can define the reactive
and generative model as a particular case of Definition 1 where the transition relation is a
partial function from the set of states intoDist(A× S), and from the set of the pairs (state,
action) intoDist(S), respectively. More formally, we will consider the following definition.

Definition 2. A reactive systemis a PTS(S,A,−→,�0), where the transition relation is a
partial function−→: S × A ↪→ Dist(S).
A generative systemis a PTS(S,A,−→,�0), where the transition relation is a partial

function−→: S ↪→ Dist(S × A).

An example of a reactive PTS is depicted in Fig.1. The environment provides three
possible actionsa, b andc. Once an action has been chosen (or in the terminology of [45],
the experiment of pressing the associated button succeeds) the process makes an internal
state transition according to the probability distribution associated to that action.
For generative systems, the sameprobability distribution is used to govern both the choice

of the action and the (internal) state transition. This model, also calledfully probabilisticin

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 7

Fig. 2. A generative probabilistic transition system.

[4], ismoreconcrete than the reactivemodel asall choicesarenow resolvedprobabilistically.
In Fig. 2 we give an example of a generative PTS. Here it is the process which decides
according to a given probability which of the actionsa,bandcprovided by the environment
it will react to.
Note that the fact that in Definition 2 transition relations are partial functions is due to

the presence of terminal states, i.e. states where no transitions are possible for any actions.
While reactive systems are similar in their structure toMarkovDecisionProcesseswherewe
abstract from the reward function [26], generative systems are effectively discrete Markov
chains labelled with actions. This will be made more clear in Section 3.4 where we will
introduce linear representations of PTS.

3. Operator representation of quantitative relations

In order to provide an appropriate mathematical framework for the quantitative study of
non-interference and confidentiality for probabilistic processes we will recast the common
relational presentation of probabilistic transition systems in terms of linear maps and oper-
ators. To this purpose we first introduce quantitative relations and present a general way to
represent them via linear operators; then we instantiate this method to the particular case of
transition relations which are binary, quantitative relations−→ ⊆ S ×W× S on the setS
of the program states, and with “weights” taken from some appropriate set (ring, field, etc.)
W.
In the case whereS is finite the framework we will consider is essentially algebraic as

linear operatorsonfinitedimensional spacesare canonically representedby (finite)matrices.
This simple finite setting is sufficient for the treatment of terminating processes and covers
also the case of processes with infinite execution paths as long as only finitely many states
are involved. In the more general case whereSis countably infinite we will need to develop
additional topological notions which go beyond basic linear algebra and require the use of
functional analytical and operator algebraic methods.

3.1. Quantitative relations

Transition relations and probabilistic transition relations are special kinds ofquantitative
relations. As already mentioned, we will consider in this paper at most countable state
spaces.

8 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

Definition 3. Given a countable setX and a setW, aquantitative relation RoverX with
weights inW is a subsetR ⊆ X ×W×X.

For numerical weights—i.e. forW being a ring, field, etc.—we can interpretR ⊆ X ×
W× X as a functionR ⊆ X × X→ W by adding all the weights associated to the same
pair (x, y) ∈ X ×X, i.e.

R(x, y) = ∑
(x,w,y)∈R

w.

Classical orqualitative relationsare quantitative relations withW = {0,1} andR(x, y) ∈
{0,1}. A probabilistic relationon a setX is a subsetR ⊆ X×[0,1]×X such thatp(x) = 1
for all x ∈ X, where

p(x) =∑{p | (x, p, y) ∈ R andy ∈ X} = ∑
y∈X

R(x, y).

In the case ofp(x)�1,Rwill be called asub-probabilistic relation.

3.2. Linear maps and operators

The idea of representing quantitative relations, and in particular transition relations, as
matrices is quite straightforward. By amatrixwesimplymeana (possible countably infinite)
rectangular arrangement of weights (see e.g.[33, Definition 3.1.]). We associate to each
classical relationR ⊆ X ×X a 0/1-matrix defined by

(MR)xy =
{
1 iff (x, y) ∈ R,

0 otherwise,

wherex, y ∈ X, and(MR)xy denotes the entry in columnx and rowy in the matrixMR.
Analogously, the matrix representing a quantitative relationR ⊆ X×W×X is defined by

(MR)xy =
{
p iff R(x, y) = p,

0 otherwise.

For probabilistic (sub-probabilistic) relations we obtain a so-calledstochastic
(sub-stochastic) matrix, that is a positive matrix where the entries in each row sum up
to one (are less than or equal to one).
It is well known from basic linear algebra that matrices are not just schemes for writing

down weights but also a way to specifylinear mapsbetween vector spaces.
Our aim is to investigate the properties of quantitative (transition) relations via their

associated linear maps and operators.A similar approach towards analysing the structure of
(finite and infinite) graphs is at the center of so-calledalgebraic graph theory, e.g.[7,46,68].
In order to achieve this we introduce an appropriate vector space construction:

Definition 4. Thevector spaceV(X) over a setX is the space of formal linear combinations
of elements inX with coefficients in a fieldW; we can represent the elements inV(X) as
infinite vectors with coefficients inW and indexed byX:

V(X) = {(vx)x∈X | vx ∈ W}.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 9

We will assume in our treatment a very general set of weights, namely the complex
numbers. This allows us to embed other weight sets of interest in a single general structure,
as{0,1} ⊆ [0,1] ⊆ R ⊆ C. The use ofC as “the field” is also standard practice in operator
theory as it avoids various technical problems (e.g. related to the roots of polynomials).
Clearly,V(X) has indeed the algebraic structure of a vector space; multiplication with a

scalarc ∈ C and vector addition can be defined component-wise simply by:

c(vx)x∈X = (cvx)x∈X and (vx)x∈X + (wx)x∈X = (vx + wx)x∈X,

while the zero vectoro is given byox = 0 for allx ∈ X. Every (sub-probability) distribution
corresponds to a vector inV(S).
For finite setsXof cardinalityn, the representation of quantitative relations onXas linear

operators onV(X) is straightforward sinceV(X) is isomorphic to then-dimensional vector
spaceCn. The matrix representationMR of a relationR onX defines a linear operator on
V(X) which, by abuse of notation, we also denote byMR : V(X) → V(X) and which is
defined via

(MR ((vx)x∈X))y∈X =
(∑

x∈X
vx(MR)xy

)
y∈X

.

The application ofMR to a vectorv = (vx)x∈X ∈ V(X) is thus simply implemented by
vector/matrix multiplication. It is easy to see that this indeed defines alinear operatoron
V(X), i.e.MR(v + w) = MR(v) + MR(w), andMR(cv) = cMR(v) for all c ∈ C and
w, v ∈ V(X). We denote the set of all linear maps between two vector spacesV andW
by L(V,W) and the set of linear operators onV by L(V) = L(V,V). Note thatL(V)
is itself again a vector space with(cM)(v) = cM (v) and(M + N)(v) = M (v) + N(v).
We writeMR(v) for the application ofMR to v, but vMR when we consider the matrix
multiplication which implements this application. Similarly, function composition of linear
maps can be implemented by (reverse) matrix multiplication: given two linear mapsM and
N their compositionM ◦ N is represented by the matrix we obtain as the productNM .
In the case of finite setsX, i.e. for finite dimensional vector spacesV(X), there is in fact a

one-to-one correspondence between matrices and linear maps, e.g.[33, 3.2]. Furthermore,
the finite dimensional case also leads to a unique topological structure [33, 1.22] and every
linear map/operator is automatically continuous.
For countably infinite sets, however, the situation is more complicated. It is no problem

to utilise an infinite countablematrix in order to define amap in the sameway as in the finite
case. However, for a general infinite matrix we have no guarantee that

∑
x∈X vx(MR)xy

exists. As an example, forvx = 1 and(MR)xy = 1 for all natural numbersx, y ∈ N, then
this results in an infinite vectorwwith wx = ∞ for all x ∈ N.
Furthermore, even if we restrict ourselves to only those relations for which their matrix

representation results in a well-defined linear map we still have the problem that the algebra
of infinite matrices which we obtain this way is topologically “unstable”. This algebra has
no universal topological structure (like in the finite dimensional case) and the notions of
linearity and continuity do not coincide. It is therefore difficult to define the limit of a
sequence of infinite matrices in a general way.

10 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

To overcome these problems, we will restrict our attention to relations which can be
represented concretely as so-called bounded linear operators on a Hilbert space or, in other
words, correspond to elements of a C∗-algebra. From a topological viewpoint C∗-algebras
are particularly well behaved operator algebras. The algebraic structure of a C∗-algebra
allows for exactly one (norm) topology[47, Corollary 2.1.2], and thus offers in some sense
the same advantages as the linear algebra of finite dimensional matrices.

3.3. Some operator theory

We assume in the following a basic knowledge of concepts infunctional analysisand
operator theory, as one can find for example in [15,27,47,69].
To simplify our treatment we consider only complex vector spaces and algebras, i.e. we

assume, as before, that the base field isC. We denote by. the complex conjugation inC,
i.e.x + iy = x − iy.

3.3.1. Normed vector spaces
The notion ofnorm is essential for our treatment of the countable case and therefore we

recall here the basic definition.

Definition 5. A normon a vector spaceV is a map‖.‖ : V �→ R such that for allv,w ∈ V
andc ∈ C:
(i) ‖v‖�0 ,
(ii) ‖v‖ = 0⇔ v = o,
(iii) ‖cv‖ = |c|‖v‖,
(iv) ‖v + w‖�‖v‖ + ‖w‖,
with o ∈ V the zero vector.

We can always use a norm to define a metric topology on a vector space via the distance
functiond(v,w) = ‖v − w‖.

Definition 6. Given a normed vector spaceV theoperator normfor linear operatorsM :
V → V onV is defined by

‖M‖ = sup
v∈V

‖M (v)‖
‖v‖ = sup

‖v‖=1
‖M (v)‖.

The operator norm, if defined, is indeed a norm onL(V) and depends on the particular
vector norm‖.‖. Common examples of (vector) norms are:
1-norm or taxi cab-norm: ‖(vi)i‖1 =∑

i

|vi |,

2-norm or Euclidian norm: ‖(vi)i‖2 =
√∑

i

|vi |2,
∞-norm or supremum-norm: ‖(vi)i‖∞ = sup

i

|vi |.
In the case of finite dimensional vector spaces—although in general resulting in numerically
different values, all these norms induce equivalent topologies, i.e. convergence in one norm

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 11

implies convergence in any of the others. However, for infinite dimensional vector spaces
this is not any more the case.

3.3.2. Bounded operators on Hilbert spaces
In order to deal with “well-behaved” relations on countable infinite spaces we first define

a restricted vector space onX.

Definition 7. TheHilbert space�2(X) over a countable setX is the space of formal linear
combinations of elements inX with coefficients inC which we can represent as infinite
vectors with complex coefficients and indexed by elements inX such that:

�2(X) =
{
(vx)x∈X | vx ∈ C and

∑
x∈X

|vx |2 <∞
}
.

Clearly, �2(X) ⊆ V(X) and scalar multiplication and vector addition can be defined in
the same way as forV(X). In the finite dimensional case we can identifyV(X)��2(X).
Furthermore, the standard inner product〈., .〉 : �2(X)× �2(X)→ C defined by

〈(vx)x∈X, (wx)x∈X〉 = ∑
x∈X

vxwx

can beused to define the standard normon�2, that is theEuclidian norm, as‖v‖2 = √〈v, v〉.
Well-known results show that this is indeed a norm, and that the induced metric topology
is complete, i.e. all Cauchy sequences converge. Furthermore, one can show that every
separable Hilbert spaceH is isomorphic to the “standard” Hilbert space�2 = �2(N), see
e.g.[40, Corollary 2.2.13].
The second element of ourmodel of “well-behaved” relations on countable infinite spaces

is a restriction to a particular class of linear operators.

Definition 8. A linear operatorM ∈ L(H) on a Hilbert spaceH is said to beboundedif its
operator norm is bounded, i.e. if‖M‖ <∞. We denote byB(H) the set of bounded linear
operators onH.

Obviously we haveB(H) ⊆ L(H) and thatB(H) is a vector space, i.e. the vector space
operations inherited fromL(H) do not lead out ofB(H). Furthermore, we can define an
algebra product between elements inB(H) as the function composition.
It is straightforward to show that a linear operatorM onH is continuous if and only if

it is bounded, e.g.[15, Proposition 1.1]. This means that as in the finite dimensional case
linearity and continuity coincide for operators inB(H).

3.3.3. C∗-Algebras
In the following we will utilise operators inB(�2(X)) as our model of “well-behaved”

quantitative relations on a countable infinite spaceX. The domainB(�2(X)) is important
as it provides the standard example of a so-calledC∗-algebra. We recall some of the basic
definitions and results from the theory of C∗-algebras.
An algebrais a vector spaceA together with a mapA×A → A denoted by(a, b) �→

a · b = ab, which is bi-linear—i.e.a(�b) = �ab, (za)b = zab for z ∈ C, and(a + b)c =

12 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

ac + ab, a(b + c) = ab + ac—such thata(bc) = (ab)c. An algebra with a norm (as
a vector space) which is also sub-multiplicative, i.e.‖ab‖�‖a‖‖b‖, is called anormed
algebra. A normed algebra which is complete is called aBanach algebra. An involutive
algebraor a *-algebrais an algebraA together with a conjugate-linear—i.e.(za)∗ = za∗
for z ∈ C, and(a + b)∗ = a∗ + b∗—mapA �→ A denoted bya �→ a∗, such thata∗∗ = a

and(ab)∗ = b∗a∗. A Banach *-algebrais a complete, normed, involutive algebra such that
‖a∗‖ = ‖a‖. A C∗-algebra is then defined as follows, e.g.[47, p. 36].

Definition 9. A C∗-algebrais a Banach *-algebra such that:

‖a∗a‖ = ‖a‖2.

A simple example of a C∗-algebra is the setM(n) of complex, finite dimensionaln× n

matrices. The scalar multiplication, addition and algebra product are the usual ones for
matrices. The unique C∗-norm of a ∈ Mn is given by the square root of thespectral
radius—i.e. the largest eigenvalue—ofa∗a: ‖a‖2 = �(a∗a).
Other examples of C∗-algebras includeC the complex numbers,C(X) the algebra of

continuous functions on a compact spaceXwith pointwise operations andB(H) the algebra
of bounded linear operators on Hilbert spacesH. In fact C∗-algebras are all isomorphic to
a sub-algebra ofB(H) (e.g.[27, Theorems 2.2.1, 5.4.1]).

Proposition 10(Gelfand–Naimark). Any C∗-algebra is isometrically*- isomorphic to a
C∗-subalgebra of someB(H), i.e.C∗-algebra of bounded, linear operators on a Hilbert
spaceH. If theC∗-algebra is separable thenH can be taken to be separable.

All infinite dimensional, separable C∗-algebras can therefore be represented as C∗-
subalgebras ofB(�2). It is common to distinguish betweenabstract C∗-algebraswhich
we denote byA, B, etc. with elementsa, b, . . . ∈ A andconcrete C∗-algebras, i.e. C∗-
algebras which are given as C∗-subalgebras of someB(H) and whose elements are linear
bounded operators denoted byA,B, . . . ∈ B(H).
TheC∗-algebraic settingallows the investigationof propertiesof linearoperators indepen-

dently of their concrete representation. For example, one can use anabstract characterisation
to define certain types of operators, such as an (orthogonal) projection operatorP which
has to fulfill the conditionsP2 = P andP∗ = P.
Although C∗-algebras have a unique C∗-norm, there are several important (in the infinite

dimensional case non-equivalent) topologies on the concrete C∗-algebraB(�2), e.g.[20,
Section I.6], in particular:

norm or uniform topology: a sequence(An)n inB(�2) convergesuniformlyif there exists
an operatorA ∈ B(�2) such that limn→∞ ‖An − A‖ = 0.

strong operator topology: a sequence(An)n in B(�2) convergesstrongly if there exists
anA ∈ B(�2) such that for allx ∈ �2: limn→∞ ‖Anx − Ax‖ = 0.

We write limAn for the uniform limit and s-limAn for the strong limit. The strong
operator topology is weaker than the uniform or norm topology, i.e. convergence in the
norm implies convergence in the strong topology but not vice versa.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 13

3.4. Representation of probabilistic transition systems

We now return to the issue of how we will represent probabilistic transition systems on
at most countably infinite state spaces.
Our aim is to establish whether transition relations for generative and reactive PTS’s

are “well-behaved”, i.e. if they are represented by bounded linear operators on�2(S). We
will not address the general problem of when a transition relation can be represented by a
bounded operator but only aim to establish a simple criterion which guarantees that a given
transition relation corresponds to an operator inB(�2(S)).
Definition 2 implies that for both generative and reactive PTS if we fix a� ∈ A the

relation
�−→ is a partial functionS ↪→ SDist(S). In particular, while for reactive sys-

tems this function always results in a distribution whenever is defined, for generative
systems it gives in general a sub-probability distribution. We now show that for PTS

satisfying a certain condition, relations
�−→ can be represented by bounded linear

operators.
For a states in a generative or reactive PTS(S,A,−→,�0) we denote by out-deg(s) the

number ofsuccessorsof s, i.e. the cardinality of the set:

{t ∈ S | ∃� ∈ A andp �= 0 : s p:�−→ t}

and by in-deg(s) the number ofpredecessorsof s, i.e. the cardinality of the set:

{t ∈ S | ∃� ∈ A andp �= 0 : t p:�−→ s}.

Proposition 11. Let S be a countable set and−→: S ↪→ SDist(S) such thatsups∈S
in-deg(s) < ∞ and sups∈S out-deg(s) < ∞. Then the matrixM−→ defines a bounded
linear operatorM (−→) ∈ B(�2(S)).

Proof. In the following we will denoteM−→ byM . We show that for allv = (vs)s∈S ∈
�2(S)) such that‖v‖2 = 1, we have‖M (v)‖2 <∞. We have that

‖M (v)‖22 =
∞∑
j=1

(∞∑
i=1
M ij vi

)2
.

Letm = sups∈S in-deg(s) andn = sups∈S out-deg(s). This means that in each columni of
M there are at mostm(i)�m non-zero entriesMf1(i)i ,Mf2(i)i , . . . ,Mfm(i)i . The functions
f1, . . . , fm are functions picking out the non-zero entries in each columni in decreasing
order, i.e. we assume thatvf1(i)�vf2(i)� · · · �vfm(i)(i). SinceM ij �1 for all i, j , we get

‖M (v)‖22 =
∞∑
j=1

(
m(j)∑
i=1

Mfi(j)j vfi(j)

)2
�

∞∑
j=1

(
m(j)∑
i=1

vfi(j)

)2
�

∞∑
j=1

(mvf1(j))
2.

14 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

Since sups∈S out-deg= n <∞, we have that for every rowk the number ofi’s such that
f1(i) = k cannot be greater thann. We therefore have

‖M (v)‖22�m2
∞∑
j=1

v2f1(j)�m2n
∞∑
k=1

v2k = nm2‖v‖22

Therefore,‖M‖2 = sup‖v‖2=1 ‖M (v)‖2�nm2 <∞. �

This result is closely related to a well-known theorem regarding the so-called adjacency
operator in the algebraic theory ofnon-orientedinfinite graphs, e.g.[46, Theorem 3.1] or
[68].
Note that the condition in Proposition 11 is indeed only a sufficient condition. There are

simple infinitely branching PTS’s which also give rise to bounded linear operators on�2(S),
for example:

For computational purposes, infinite dimensional matrices, even when they represent a
bounded linear operator inB(�2(S)) are anything but easy to handle. However, it is possible
to define anapproximating sequencefor an operatorM ∈ B(�2(S)) as a sequence of finite
dimensional approximations.
Given an operatorM ∈ B(�2), consider a sequence of (orthogonal) projectionsPn :

�2 → �2 onto the firstn coordinates of�2, that is operators such thatP2n = Pn = P∗n. We
call Mn = PnMPn a finite sectionof M . It corresponds effectively to taking then × n

sub-matrix in the upper left corner of the matrix representingM . The sequence(Mn)n is
anapproximating sequencefor M in the sense thatM is the strong limit of this sequence,
i.e.M = s-limMn = s-limn→∞ PnMPn (see e.g.[9, Section 2.1]. This so calledfinite
section methodplays an important role in the numerical analysis of general operators. We
will adopt this method in the case of PTS’s with countable infinite state spaces.

Knowing that we can represent thepartial transition relations
�−→ of generative and

reactive PTS by bounded linear operators on�2(S) we can now define the representation of
a PTS.

Definition 12. Given a (generative or reactive) PTSp = (S,A,−→,�0), we define its
matrixor operator representation(M (X),M (�0)) as the direct sum of the operator repre-

sentations of the transition relations
�−→ for each� ∈ A:

M (p) = ⊕
�∈A

M (
�−→),

and|A| copies of the vector�0 representing�0: M (�0) =⊕�∈A �0.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 15

We recall that for a set{M i}ki=1 of ni ×mi matrices, thedirect sumof these matrices is

defined by the(
∑k

i=1 ni)× (
∑k

i=1mi) matrix:

M =⊕
i

M i =

M1 0 0 . . . 0
0 M2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . M k

 .

This definition extends in the obvious way to countable infinite matrices, and it is the
case that if theM i represent bounded linear operators on some space�2(Si) then

⊕
i M i

represents a bounded linear operator on�2(S1× S2× · · · Sk).
Given a PTSp = (S,A,−→,�0) and a states ∈ S, we denote byRs ⊆ S the set of all

states reachable froms, by T (s) the transition system induced on the restricted state space
Rs , and byM (s) the matrix representation ofT (s).

3.4.1. Examples

Example 13. Consider the simple finite PTSA in Fig. 3. The matrix representation of this
PTS is given by

M (A) = Ma(A)⊕Mb(A) =
(
0 1

2
0 0

)
⊕
(1

2 0
0 0

)
.

Example 14.We can also represent an infinite PTS as a bounded linear operator. Consider
for example thePTSB in Fig.3.This infinite process requires an infinite dimensionalmatrix,
i.e. an operator, to describe it. Utilising the finite section method we can approximate this

Fig. 3. Two probabilistic transition system.

16 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

operator via a sequence of finite dimensional operators, i.e. matrices inM(2n) of the form:

(
M2n

a (B)
)
ij
=

1/2 for i = 2k − 1 ∧ j = 2k,

with k = 1 . . . n,
0 otherwise,

(
M2n

b (B)
)
ij
=

1/2 for i = 2k − 1 ∧ j = 2k + 1,

with k = 1 . . . n− 1 and,
for i = 2n− 1 ∧ j = 2n− 1,

0 otherwise.

Then we can represent the infinite PTSB by the strong limit of this sequence,

M (B) = s- lim
n→∞(M

2n
a (B)⊕M2n

b (B)).

3.4.2. Properties of PTS representations
We recall that a matrix is calledstochasticif the elements of every row sum up to 1; it is

calledsub-stochasticif this sum is less than or equal to 1.
Thematrix representation of reactive systemswill always lead to a direct sum of a special

kind of sub-stochastic matrices. More precisely, for every action� the corresponding factor
M� in the direct sum is such that the sum on thesth row is 1 if the states is not terminal
and 0 otherwise.
For generative systems the factors in the direct sum

⊕
�M� are sub-stochastic matrices.

However, as one intuitively expects, the sum of all factors always results in amatrix
∑

�M�
which is stochastic but for the terminal states. This is due to the fact that the combined
probabilities for all actions leaving a non-terminal statesdefine a distribution inDist(A×S)
which corresponds to thesth row in

∑
�M�.

Consider the simple generative process in Example13. The sum

Ma(A)+Mb(A) =
(
0 1

2
0 0

)
+
(1

2 0
0 0

)
=
(1

2
1
2

0 0

)

is not row-normalised in the second row, corresponding to the terminal state 2.We can nev-
ertheless overcome this technical difficulty and associate to a generative process a stochastic
matrix. One way is to introduce a silent� transition on terminal states.

Example 15. Consider again Example13 and extend the execution tree as follows:

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 17

The extended linear operator representation ofA does now correspond to a stochastic
matrix:

Ma(A)+Mb(A)+M �(A) =
(
0 1

2
0 0

)
+
(1

2 0
0 0

)
+
(
0 0
0 1

)
=
(1

2
1
2

0 1

)
.

In the following, we will always assume such astochastic extensionfor terminating
processes, even if we omit to mention explicitly the silent moves on the terminal states.

4. Probabilistic abstract interpretation

In Section5 we will present a technique for defining approximate versions of process
semantics and ultimately of security properties which makes use of the framework ofprob-
abilistic abstract interpretation(PAI). This was introduced in [56,57] as a probabilistic ver-
sion of the classicalabstract interpretation(AI) framework by Cousot and Cousot [16,17].
Classical abstract interpretation provides general techniques for the analysis of programs

which are based on the construction ofsafeapproximations of the concrete semantics of
programs via the (order-theoretic) notion of aGalois connection[18,49].
Probabilistic abstract interpretation re-casts these techniques in a probabilistic setting

where linear spaces replace the classical order-theoretic domains, and the notion of the
so-calledMoore–Penrose pseudo-inverseof a linear operator replaces the classical notion
of a Galois connection. The abstractions we get this way arecloseapproximations of the
concrete semantics. Thus, closeness is a quantitative replacement for classical safety which
does not require any approximation ordering.
The definition of a probabilistic abstract interpretation is given in terms ofprobabilistic

domains. A probabilistic domain is essentially a space which represents the distributions
Dist(S) on the state spaceSof a PTS, i.e. in our setting the Hilbert space�2(S). For finite
state spaces we can identifyV(S) � �2(S).

Definition 16. Let C andD be two probabilistic domains. Aprobabilistic abstract inter-
pretation is a pair of bounded linear operatorsA : C → D andG : D → C, between
(the concrete domain)C and (the abstract domain)D, such thatG is the Moore–Penrose
pseudo-inverse ofA, and vice versa.

A simplemethod for constructing a probabilistic abstract interpretationwhichwewill use
in this paper is as follows: Given a linear operator� on someHilbert spaceV expressing the
probabilistic semantics of a concrete system, and a linear abstraction functionA : V �→W
from the concrete domain into an abstract domainW, we compute the Moore–Penrose
pseudo-inverseG = A† of A. The abstract semantics can then be defined as the linear
operator on the abstract domainW:

� = A ◦ � ◦G.
We will now introduce in some more detail the central notion of Moore–Penrose pseudo-
inverse.

18 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

4.1. Moore–Penrose pseudo-inverse

For an abstract C∗-algebra we can define the notion of a Moore–Penrose pseudo-inverse
purely algebraically[9, Section 4.7] (see also [12, Definition 1.1.1] and [24, 8.43]). This is
sufficient for the finite dimensional setting, while for dealing with the infinite dimensional
case we will need some topological considerations which we will use for a more concrete
definition.

Definition 17. An elementa ∈ A in a C∗-algebraA is said to beMoore–Penrose invertible
if there exists an elementb ∈ A such that:
(i) aba = a,
(ii) bab = b,
(iii) (ab)∗ = ab,
(iv) (ba)∗ = ba.

If an elementa ∈ A is Moore–Penrose invertible then there exists a unique elementb = a†,
theMoore–Penrose pseudo-inverseof a, which fulfills the above conditions[9, Proposition
4.20].
An alternative but equivalent definition for concrete C∗-algebras is given in [24, 8.43]

(see also [12, Definition 1.1.2]).

Definition 18. Let C andD be two Hilbert spaces andA : C �→ D a bounded linear map
between them. A bounded linear mapA† = G : D �→ C is theMoore–Penrose pseudo-
inverseof A iff
(i) A ◦G = PA, and
(ii) G ◦ A = PG,
wherePA andPG denote orthogonal projections onto the ranges ofA andG.

For finite dimensional C∗-algebras—in particular for matrix algebrasM(n)—every op-
erator is Moore–Penrose pseudo-invertible[6,9,12,24].
For operator algebras over infinite dimensional Hilbert spaces things are a bit more

complicated. In the case of concrete C∗-algebras, i.e. ofA ∈ B(H), the answer is given by
the following result which also states how we can “construct” the Moore–Penrose pseudo-
inverse [9, Theorem 4.24].

Proposition 19. An operatorA ∈ B(H) is Moore–Penrose invertible if and only if it is
normally solvable,i.e. the range{Ax|x ∈ H} is closed. In this caseA∗A + P—withP the
orthogonal projection ofH onto the kernel ofA, i.e. onto{x ∈ H|Ax = o}—is invertible
and

A† = (A∗A + P)−1A∗.

It is easy to see that if the range of an operator is finite dimensional then it is normally
solvable.
For the finite dimensional case, various algorithms are known for the construction of

the Moore–Penrose pseudo-inverse[12]. A general technique for computing the Moore–

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 19

Penrose pseudo-inverse of infinite operators is via finite sections. For an operatorA with
an approximating sequence(An)n we can construct the Moore–Penrose pseudo-inverse as
established by the following proposition[9, Corollary 4.34].

Proposition 20. Let H be a separable Hilbert space, A ∈ B(H) andAn a sequence of
finite dimensional operatorsAn ∈M(n) with supn ‖A‖ <∞ and such thatAn → A and
A∗n → A∗ strongly. ThenA is normally solvable andA†

n → A† strongly.

In other words, if we can approximateA by a sequence(An)n and the sequence(A†
n)n of

Moore–Penrose pseudo-inverse converges in the strong operator topology thenA† exists
and is identical to the limit of(A†

n)n.

4.2. Special classes of abstraction operators

In this section we introduce the definition and the properties of some particular operators
which we will use in Section5 to define different abstractions of the PTS semantics into
various process equivalences.Wewill also use these special operators to define approximate
versions of the process equivalences and their corresponding confinement properties.

4.2.1. Permutation operators
The first class of operators we consider represents very simple abstractions consisting of

the permutation of the system’s states.

Definition 21. Ann×n-matrixSis called apermutationmatrixif there exists a permutation
� : {1, . . . , n} → {1, . . . , n} such that

Sij =
{
1 if j = �(i)
0 otherwise.

In other words,S is the matrix representation of a relation on{1, . . . , n} which is a
bijection. This notion can be extended to infinite structures as follows.

Definition 22. A bounded linear operatorS∈ B(H) on a Hilbert space is called apermuta-
tion operatoriff there exists a sequence of permutation matricesSn such that s-limSn = S
and s-limS∗n = S∗.

We denote byS(n) the set of alln × n permutation matrices and byS(H) the set of
permutation operators onH; obviously we haveS(n) = S(Cn).

Proposition 23. For any permutation matrixS∈ S(n) the following holds:

S−1 = S∗ = ST = S†,

i.e. inverse, adjoint, transpose,andpseudo-inversecoincide.

20 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

4.2.2. Classification operators

Definition 24. Wecall ann×m-matrixK aclassificationmatrixiff K representsasurjective
function� : {1, . . . , n} → {1, . . . , m}, i.e.

K ij =
{
1 if j = �(i)
0 otherwise.

Again we can generalise this notion to the infinite case.

Definition 25. A bounded linear operatorK ∈ B(H) on a Hilbert space is called aclassifi-
cation operatoriff there exists a sequence of classificationmatricesKn such that s-limKn =
K and s-limK ∗n = K ∗.

We denote byC(n,m) the set of alln×m-classification matrices, and byC(H1,H2) the
set of classification operators; again we haveC(n,m) = C(Cn,Cm).
Classification matrices are stochastic matrices corresponding to a particular type of ab-

straction which stems from an equivalence relation. For a finite setXwe can show that there
is a one-to-one correspondence between equivalence relations≈ on X and classification
operators on the vector spaceV(X).

Proposition 26. Let X be a finite set. Then for every equivalence relation≈ on X there
exists a classification operatorK ∈ C(n,m) � C(�2(X), �2(X/≈)) and vice versa.

Proof. The characteristic map�≈ : X �→ X/≈ which associates to eachx ∈ X its equiv-
alence class[x] ∈ X/≈ is a surjective function and therefore has a matrix representation
(as a relation�≈ ⊆ X×X/ ≈) in C(n,m). Vice versa, by definition a classification matrix
K ∈ C(n,m) induces a partition (and therefore an equivalence relation) on the set of its row
indices. �

In the infinite case we can show that:

Proposition 27. Let X be a countable set and≈ an equivalence relation on X such that
X/≈ is finite. Then there exists a classification operatorK ∈ C(�2(X), �2(X/≈)) which
represents≈.

Proof. Firstly, we observe thatK defines a∞×nmatrix. This maps everyx ∈ �2(X)with
‖x‖ = 1 into a vector‖K (x)‖ <∞. Thus we haveK ∈ B(�2(X), �2(X/≈)).
Secondly,K is the strong limit of a sequence of finite dimensional classification matrices

Kn; to see this simply take an enumeration ofXandKn = �nK�n (cf. finite section method
[9]). �

Obviously, every permutation matrix is also a classification matrix:S(n) ⊆ C(n, n). As
a consequence, every permutation operator is a classification operator:S(H) ⊆ C(H,H).

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 21

4.2.3. Moore–Penrose pseudo-inverse of classification operators
Although a classification operatorK represents a classical function, i.e. corresponds to

an (infinite) 0/1-matrix, the pseudo-inverse will in general not be an (infinite) 0/1-matrix.
This is because it isnormalised. ThenormalisationoperationN is defined for a matrix
A by

N (A)ij =

Aij

aj
if aj =∑iAij �= 0,

0 otherwise.

Proposition 28. The pseudo-inverse of a classification operatorK corresponds to its nor-
malised transpose or adjoint:

K † = N (KT) = N (K ∗).

Proof. Showby computation thatN (K) fulfils theMoore–Penrose conditions ofDefinition
17 or Definition 18. �

4.2.4. Probabilistic abstract interpretation of stochastic matrices
For a stochastic matrixM and any abstractionA with Moore–Penrose pseudo-inverse

G we can in general not guarantee that the abstract operatorGMA induced byA is also a
stochastic matrix.

Example 29. Consider the following stochastic matrix:

M =

1
2

1
2 0

1
3

1
3

1
3

0 0 1

 ,

together with abstraction and concretisation maps represented by

A =

 1 0 0
1 0 0
1 0 0

 , G = A† =

 1

3
1
3

1
3

0 0 0
0 0 0

 .

A simple calculation shows that

GMA =

 1 0 0
0 0 0
0 0 0

which isnota stochastic matrix. Similarly, if we take

A =

 2
1
1

 , G = A† = (1

3
1
6

1
6

)

22 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

we get as induced operator the following 1× 1 matrix:

GMA = (8
9

)
which again is not a stochastic matrix.

For classification matrices however, we can show the following.

Proposition 30. For any stochastic matrixM and classification matrixK we have that
K †MK is again a stochastic matrix.

Proof. By Proposition28 we know thatK † is a stochastic matrix as it is (row) normalised.
The same is true forK (by definition) andM (by hypothesis). ThusK †MK is stochastic
since the product of stochastic matrices is stochastic.�

5. Approximating process equivalences

Several notion of process equivalences have been proposed in the literature on concur-
rency theory, each one defining a different process semantics. A comparative study of most
of these semantics can be found in [28]. The purpose of this section is to present a technique
for approximating process equivalences by using probabilities as numerical information
for quantifying such an approximation. This provides us with a quantitative measure of
the indistinguishability of the process behaviour (according to a given semantics), that is
in a security setting a measure of their propensity to leak information. Therefore, for each
semantics we are able to measure the confinement of a given system according to the no-
tion of behavioural equivalence established by the given semantics. In order to numerically
estimate such a measure we first re-formulate each process equivalence in terms of linear
operators using the PAI framework introduced in Section 4. Then we use an appropriate
notion of operator norm to calculate the closeness of two processes.
We illustrate this technique for three behavioural equivalences, namely tree equivalence,

bisimulation and weak bisimulation, but the method can be extended to deal with all the
other semantics in a similar way.

5.1. Graph isomorphism

To illustrate our basic strategy for approximating process equivalences let us first look at
the strongest—in some sense too strong [28, Fig. 1]—notion of process equivalence, that
is tree equivalence. Following [28, Definition 1.3] the graph associated to a processp of a
labelled transition system with actionsA is a directed graph rooted inp whose edges are
labelled by elements inA. Two processes aretree equivalentif their associated graphs are
isomorphic. Graph isomorphism is defined as follows (e.g. [28, Definitions 1.3,1.4], [30,
p. 2], [25, p. 3]):

Definition 31. An isomorphismbetween directed graphs(V1, E1) and(V2, E2) is a bijec-
tion	 : V1 �→ V2 such that〈v,w〉 ∈ E1⇔ 〈	(v),	(w)〉 ∈ E2.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 23

In the usual way, we define theadjacency operatorA(G) of a directed graphG =
(V ,E) as an operator on�2(V) representing the edge-relationE [46]. Then the notion of
isomorphism between (finite graphs) can be re-stated in terms of permutation matrices.
We have the following result [30, Lemma 8.8.1]:

Proposition 32. LetG1 = (V ,E1) andG2 = (V ,E2) be two directed graphs on the same
set of nodesV. ThenG1 andG2 are isomorphic if and only if there is a permutation operator
Ssuch that the following holds: STA(G1)S= A(G2).

Byusing thesenotionsand theoperator representationof (probabilistic) transitionsystems
(cf. Definition12) we can reformulate tree-equivalence of processes as follows.

Proposition 33. Given the operator representations p and q of two probabilistic transition
systemsp = (S,A,−→, s0) andq = (S′, A,−→′, s′0) with |S| = |S′|, then p and q are
tree-equivalent iff there existsS∈ P(�2(S)) = P(�2(S′)), such that:

STM (p)S= M (q),

i.e. for all � ∈ A we haveSTM (
�−→)S= M (

�−→′
).

Therefore, tree equivalence of two systemsp andq corresponds to the existence of an
abstraction operator (the operatorS) which induces a probabilistic abstract interpretation
p of q.

5.1.1. Approximate graph isomorphism
In the case where there is noSwhich satisfies the property in Proposition33, i.e.p andq

are definitely not isomorphic, we could still ask how closep andq are to being isomorphic.
The most direct way to define a kind of “isomorphism defect” would be to look at the
differenceM (p)−M (q) between the operators representingp andq and then measure in
some way, e.g. using a norm, this difference.
Obviously, this is not the idea we are looking for: It is easy to see that the same graph—

after enumerating its vertices in different ways—has different adjacency operators; it would
thus have a non-zero “isomorphism defect” with itself. To remedy this we have to allow
first for a reordering of vertices before we measure the difference between the operators
representing two probabilistic transition systems. This is the underlying idea behind the
following definition.

Definition 34. Let p = (S,A,−→,�0) andq = (S′, A,−→′,�′0) be probabilistic tran-
sition systems over the same set of actionsA, and letM (p) andM (q) be their operator
representations. We say thatp andq areε-graph equivalent, denoted byp ∼ε

i q, iff

inf
S∈P

‖STM (p)S−M (q)‖ = ε

where‖.‖ denotes an appropriate norm.

24 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

Note that, in the case of finite probabilistic transition systems, forε = 0 we recover the
original notion of (strict) graph equivalence, i.e.∼i=∼0

i .

Proposition 35. An ε-isomorphism forε = 0, i.e. ∼0
i , of finite transition systems is an

isomorphism.

Proof. Observe that there are only finitely manyS ∈ P(n), n < ∞. Thus the inf can be
replaced by min. That means that there exists a permutation operatorS ∈ P(n) such that
‖STM (p)S−M (q)‖ = 0. The properties of the norm then imply thatSTM (p)S−M (q) =
O, the null operator, i.e.STM (p)S= M (q). �

5.2. Bisimulation

Thefinestprocessequivalenceaftergraphequivalence isbisimulationequivalence[28,45].
Bisimulation is a relation on processes, i.e. states of a labelled transition system. Alterna-
tively, it can be seen as a relation between thetransition graphsassociated to the processes.
The classical notion of bisimulation equivalence for labelled transition systems can be

stated as follows [28, Definition 12]:

Definition 36. A bisimulation is a binary relation∼b on states of a labelled transition
system satisfying for all� ∈ A:

p ∼b q and p
�−→ p′ ⇒ ∃ q ′ : q �−→ q ′ and p′ ∼b q

′,
p ∼b q and q

�−→ q ′ ⇒ ∃ p′ : p �−→ p′ and q ′ ∼b p
′.

Given two processesp andq, we say that they arebisimilar if there exists a bisimulation
relation∼b such thatp ∼b q. Bisimulations are equivalence relations[28, Proposition 8.1].
The standard generalisation of this notion to probabilistic transition systems, i.e.proba-

bilistic bisimulation, is due to [44, Definition 4], where it is defined for reactive systems.

Definition 37. A probabilistic bisimulationis an equivalence relation∼b on states of a
probabilistic transition system satisfying for all� ∈ A:

p ∼b q and p
�−→ �⇒ q

�−→
 and � ∼b
.

The same definition can be given also for generative systems with the only difference that
in this case� and
 are sub-probability distributions.
This definition is equivalent to the characterisation of probabilistic bisimulation given

in [44] in terms of “button pressing” tests. Such tests are formally defined by means of
a language which specifies the syntactical structure of algorithms for experimenting on a
process (i.e. which button to press when). The same button pressing interpretation can be
given also in the case of generative systems but for the way experiments are performed:
here the observer may attempt to depress more than one button at a time and it is the
process which decides which action to react to according to a given probability distribution.
In our security setting these tests represent possible interferences by a spy, and observing

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 25

the probabilistic result of an experiment corresponds to establishing whether a system is
confined (the spy is not able to distinguish the processes in the system) or not. The first case
corresponds to a system whose processes are probabilistic bisimilar. This is intuitively the
idea behind the following definition of probabilistic confinement for processes specified by
a PTS.
Note that in the case of generative systems tests representpassivespies, in the sense that

it is not possible for an observer to actively interfere in the process internal behaviour by
deciding which action has to be chosen.

Definition 38. Let T = (S,A,→,�0) be a probabilistic transition system and letT (p)

andT (q), with p, q ∈ S, represent two processes in a probabilistic language modelled by
T. Then we say thatpandqareprobabilistically confinediff they are probabilistic bisimilar.

It is easy to see that a probabilistic bisimulation equivalence∼ on a PTST = (S,A,

→,�0) defines a probabilistic abstract interpretation ofT. In fact, by Proposition27, there
is a classification operatorK ∈ C(�2(S), �2(S/∼)), which represents∼. If M (T) is the op-
erator representation ofT thenK †M (T)K is the abstract operator induced byK . Intuitively,
this is an operator which abstracts the original systemT by encoding only the transitions
between equivalence classes instead of the ones between single states.
Consider now two processesp, q ∈ S and their operator representationsM (p) andM (q).

The restrictions ofK to these two sets of nodes,whichwe callKp andKq , are the abstraction
operators for the two processesp andq and allow us to express exactly the condition for
the probabilistic bisimilarity ofp andq:

Proposition 39. Given the operator representationM (p) andM (q) of two probabilis-
tic processes p and q, then p and q are probabilistic bisimilar iff there exists aKp ∈
C(�2(Rp), �

2(S)) andKq ∈ C(�2(Rq), �
2(S)) for some set S such that

K †
pM (p)Kp = K †

qM (q)Kq .

Proof. We assume in the following that there is an enumeration of the processes{pi}npi=1 =
Rp and{qj }nqj=1 = Rq . Therefore,M�(p) is anp × np matrix, and i.e.M�(q) is anq × nq
matrix, for each� ∈ A.
(only if) Suppose that there is a probabilistic bisimulation relation∼ between processesp
andq. This relation determines a partition onRp as well as onRq such that|Rp/∼| =
|Rq/∼|. DefineSas the set of all the∼-equivalence classes with a given enumeration
{[rk]}mk=1 = Rp/∼ = Rq/∼, withm = |S|.
Let us define the two matrices

(Kp)ik =
{
1 if pi ∈ [rk],
0 otherwise,

for all pi ∈ Rp,[rk] ∈ S, and

(Kq)jk =
{
1 if qj ∈ [rk],
0 otherwise,

for all qj ∈ Rq , [rk] ∈ S.

26 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

We have thatKp ∈ C(�2(Rp), �
2(S)) andKq ∈ C(�2(Rq), �

2(S)). We now show that
for every base vectorxk ∈ �2(S) representing an equivalence class[rk] the following
holds:

xkK †
pM (p)Kp = xkK †

qM (q)Kq .

Then by linearity we can conclude that the above equation holds for allx ∈ �2(S).
• xkK

†
p andxkK

†
q are two (row) vectors inV(Rp) andV(Rq) respectively which represent

uniform distributions on all those processes inRp andRq belonging to the equivalence
class[rk]:

(xkK †
p)i =

1

nkp
if pi ∈ [rk],

0 otherwise,

(xkK †
p)j =

1

nkq
if qi ∈ [rk],

0 otherwise,

wherenkp andn
k
q represent the number of processes inRp andRq belonging to[rk].

• The application ofM�(p) andM�(q) (for each� ∈ A) to these vectors gives us a
distribution on those processes inRp andRq which canbe reached fromastate belonging
to the equivalence class[rk] in one step:

(xkK †
pM�(p))i′ = ∑

pi ∈ [rk]
pi

�−→� pi′

�(pi′)
nkp

,

(xkK †
qM�(q))j ′ = ∑

qj ∈ [rk]
qj

�−→� qj ′

�(qj ′)

nkq
.

• The classification of these vectors viaKp ∈ C(np,m) andKq ∈ C(nq,m) gives us the
distributions over equivalence classes:

(xkK †
pM�(p)Kp)k = ∑

pi , pi′ ∈ [rk]
pi

�−→� pi′

�(pi′)
nkp

,

and

(xkK †
qM�(q)Kq)k = ∑

qj , qj ′ ∈ [rk]
qj

�−→� qj ′

�(qj ′)

nkq
,

which must be the same since by hypothesis∼ is a probabilistic bisimulation.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 27

Fig. 4. Two reactive probabilistic transition systems.

(if) Suppose that we haveKp ∈ C(np,m) andKq ∈ C(nq,m) such thatK †
pM (p)Kp =

K †
qM (q)Kq . Define a relation∼K between processes inRp and processes inRq as

follows:

pi ∼K qj iff piKp = qjKq .

In order to show that∼K is a probabilistic bisimulationwe have to show that∼K satisfies
for all � ∈ A, p ∈ Rp andq ∈ Rq :

p ∼K q and p
�−→ �⇒ q

�−→
 and � ∼K

or, equivalently

[p]K = [q]K and p
�−→ �⇒ q

�−→
 and � ∼K
.

We will use the notation[��
p]K = [
�

q]K to indicate the condition above. For processes
pi ∈ Rp andqj ∈ Rq belonging to the same equivalence class[rk] = [pi]K = [qj]K
we know that

piKp = qjKq .

Since by hypothesisK †
pM (p)Kp = K †

qM (q)Kq , we then conclude that[��
p]K = [
�

q]K .
Thus∼K is a probabilistic bisimulation. �

Corollary 40. LetM (p) andM (q) be the matrix representations of two processes p and
q. If p and q are probabilistic bisimilar then there exists a PTS x which is the probabilistic
abstract interpretation of both p and q.

Proof. Consider the PTS with states inRp ∪ Rq and the classification operator associated
to the relation∼K constructed in the proof of Proposition39. �

28 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

Example 41. Consider the two reactive processesA and B in Fig. 4 taken from
[44, Fig. 4]. The corresponding matrices are:

M (A) = Ma(A)⊕Mb(A) =

0 1
3

1
3

1
3 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⊕

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

and

M (B) = Ma(B)⊕Mb(B) =

0 2

3
1
3 0

0 0 0 0
0 0 0 0
0 0 0 0

⊕

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

Consider the classification operatorsKA andKB , and their pseudo-inverses defined by

KA =

1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

, K †

A =

1 0 0 0 0 0
0 1

2
1
2 0 0 0

0 0 0 1 0 0
0 0 0 0 1

2
1
2

andKB andK †
B are simply 4× 4 identity matrices. We then get

K †
AMa(A)KA =Ma(B)

K †
AMb(A)KA =Mb(B)

which shows thatA andB are probabilistic bisimilar.
By Corollary40 we can therefore construct a system which abstracts bothAandB. Since

A andB are probabilistic bisimilar we can define an equivalence relation on the unionT
of the two PTS’s in Fig. 4 which is compatible withKA andKA. This is given by the
classification operator

K =
(
KA

KB

)
.

We can then see thatK †M (T)K is a system which abstracts bothA andB. In fact, given
thatM (T) = M (A)⊕M (B), and that

K † =
(|A|
|A| + |B|K

†
A

|B|
|A| + |B|K

†
B

)
,

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 29

where|A| (|B|) is the cardinality of the set of states in the PTS forA (B), we have that

K †M (T)K =K †(M (A)⊕M (B))K
=K †(M (A)⊕O)K + K †(O⊕M (B))K

=
(|A|
|A| + |B|K

†
AM (A)KA + |B|

|A| + |B|K
†
BOKB

)

+
(|A|
|A| + |B|K

†
AOKA + |B|

|A| + |B|K
†
BM (B)KB

)

= |A| + |B||A| + |B|K
†
BM (B)KB = |A| + |B|

|A| + |B|K
†
AM (A)KA

=K †
BM (B)KB = K †

AM (A)KA,

where we denote byO the null matrix of the appropriate dimensions.

Example 42. It is easy to see that the two generative processesAandB in Example13 and
14 are probabilistic bisimilar. To show that these processes are bisimilar we construct an
operatorK such that:

Ma(A)=K †Ma(B)K ,
Mb(A)=K †Mb(B)K ,

and then we simply takeKA = I andKB = K .
We need to construct again an infinite operatorK as a sequence of 2× 2n-matrices:

(
K 2n

)
ij
=

1 for i = 2k − 1 ∧ j = 1 and,

for i = 2k ∧ j = 2 with k = 1 . . . n,
0 otherwise,

with their 2n× 2 pseudo-inverses:

(
K 2n

)†
ij
=

1

n
j = 2k − 1 ∧ i = 1 and,

j = 2k ∧ i = 2 with k = 1 . . . n,
0 otherwise.

We therefore have that

K = s- lim
n→∞K

2n and K † = s- lim
n→∞(K

2n)†

and from Example14 we know that

M (B) = s- lim
n→∞(M

2n
a (B)⊕M2n

b (B)).

The operator multiplication is in general not strongly continuous, but it is if one of the
factors is restricted to a bounded set, see e.g.[40, 2.5.10] or [20, I.6]. Clearly, all theK 2n

30 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

and(K 2n)† are from a bounded set, therefore we have

K † ·M (B) · K = (s-lim(K 2n)†) · (s-limM2n(B)) · (s-limK 2n)

= s-lim((K 2n)† ·M2n(B) · K 2n)

=M (A).

The matrix formulation of (probabilistic) bisimulation makes it also easy to see how
graph and bisimulation equivalence are related. AsP(n) ⊂ C(n, n) we have:

Proposition 43. If p ∼i q thenp ∼b q.

5.2.1. Approximate bisimulation
In the case in which it is not possible to find a bisimulation equivalence for two states

p andq of a PTST, we can still identify them although only approximately. In order to
do so, we introduce anε-version of probabilistic bisimilarity. The intuitive idea is to find a
classification operatorK which is the closest one to a bisimulation relation in whichp and
q are equivalent. The difference between the abstract operators induced byK for the two
processeswill give us anestimate of the non-bisimilarity degree ofpandq. ByDefinition38,
this will also be an estimate of the confinement of the system formed by the two processes
p andq, which tells us how much the system is actually secure.

Definition 44. Let T = (S,A,−→,�0) be a probabilistic transition system and letp and
q be two states inSwith operator representationsM (p) andM (q). We say thatp andq are
ε-bisimilar, denoted byp ∼ε

b q, iff

inf
Kp,Kq∈C

‖K †
pM (p)Kp − K †

qM (q)Kq‖ = ε,

where‖.‖ denotes an appropriate norm.
Note that it is possible to use this definition also to introduce an approximate version of

the classical notion of bisimulation. Furthermore, forε = 0we recover partially the original
notion of strict (probabilistic) bisimulation:

Proposition 45. Anε-bisimulation withε = 0, i.e.∼0
b, is a(probabilistic) bisimulation for

finite (probabilistic) transition systems.

Proof. By hypothesis there are only finitely manyKp andKq . Thus inf can be replaced by
min.Thatmeans that thereexist classificationoperatorsKp andKq such that‖K †

pM (p)Kp−
K †
qM (q)Kq‖ = 0. This impliesK †

pM (p)Kp − K †
qM (q)Kq = O, i.e. K †

pM (p)Kq =
K †
qM (q)Kq . �

However, for infinite PTS the concepts 0-bisimulation and (probabilistic) bisimulation
will differ in general.

Example 46. Let us compare the three, obviously somehow “similar” PTS’s in Fig.5.
These processes are not probabilistic bisimilar. However one can try to determine how

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 31

Fig. 5. Three generative probabilistic transition systems.

similar they are. The matrixA = M (A) is the same as in Example13; for the others we get

B = M (B) = Ma(B)⊕Mb(B) =

0 1

4 0 0

0 0 0 0
0 0 0 1

2
0 0 0 0

⊕

0 0 3

4 0

0 0 0 0
0 0 1

2 0

0 0 0 0

 ,

C = M (C) = Ma(C)⊕Mb(C) =

0 1

2 0 0

0 0 0 0
0 0 0 51

100
0 0 0 0

⊕

0 0 1

2 0

0 0 0 0
0 0 49

100 0

0 0 0 0

 .

The problem is to find aKA,KB , andKC ∈ C such that the norm of the difference between
K †
AAKA andK †

BBKB orK †
CCKC is minimal. There is only a finite (though exponentially

growing) number of possible classification operatorsK ∈ C.A brute force approach looking
at all possibleK allows us to determine theε-bisimilarity of A andB, and ofA andC.
Interestingly, the optimalK = KB = KC is coincidentally the same in both cases:

K =

1 0
0 1
1 0
0 1

 , K † =

(1
2 0 1

2 0

0 1
2 0 1

2

)
,

while forKA we can take the identity.
Measuring the difference (by means of the operator norm) leads to the following result:

inf
K∈C

‖A − K †BK‖ = 1
8, inf

K∈C
‖A − K †CK‖ = 1

200.

32 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

In a security setting, this result allows us to conclude that although both the systems{A,B}
and{A,C} are not probabilistic confined, the latter is “more secure” than the former in the
sense that the chances of an information leak by observing the system are much smaller.

5.3. Weak bisimulation

Several authors have argued that bisimulation, although weaker than graph isomorphism,
is still a too strong requirement for many purposes and suggested a number of variations
(see[28] for a detailed account).
Weak bisimulation was introduced in [45] as a bisimulation which abstracts from internal

computation by considering transitions of the form⇒ �−→⇒, where⇒ is the transitive,

reflexive closure of
�−→, and� is an internal action representing some invisible computation.

Various probabilistic extensions of weak bisimulation have been proposed by several
authors in the context of fully probabilistic systems [4], as well as for a generalisation of
reactive systems [61], for probabilistic systems which allow for both non-deterministic and
probabilistic branching [50], and for generative-reactive models [1]. In a language-based
setting, a notion of probabilistic weak bisimulation has been introduced in [63] for a multi-
threaded language modelled via discrete Markov chains. Applications to the problem of
secure information flow are considered in [1,63].
At the base of a weak bisimulation semantics for probabilistic systems is the problem

of determining the probability with which a weak transition⇒ �−→⇒ may take place. In
a fully probabilistic model such as the generative one, all the necessary information is
available to compute such a probability, as all actions including� are governed by some
internally chosen probability distribution [4]. It is also possible to determine the probability
of weak transitions in models which also includes some form of nondeterminism, provided
all nondeterminism is first resolved according to criteria which depend on the particular
model [50,61]. However, it is hard to imagine how such a probability can be established
in a purely probabilistic model such as the reactive model, unless one reserves a different
treatment to the internal action�, thus effectively constructing a mixed reactive-generative
model [1].
Based on this argument, we have chosen to exclude the reactivemodel from our treatment

of the weak bisimulation semantics, and to apply linear operator based techniques similar
to those we have used for bisimulation to re-cast the probabilistic weak bisimulation notion
introduced in [4] for generative systems. As a first step we will show how we can represent

the relation
�−→∗ �−→ �−→∗

in terms of the transition matrices introduced in Section 3.4.
The probability of reaching a state or a certain class of states by sequences of actions or

tracesis defined in [4] for strings in a generic language� ⊂ A∗ recursively as follows:

P(s,�, C)= 1 if s ∈ C and ε ∈ �,
P(s,�, C)= ∑

(a,t)∈A×S
P (s, a, t) · P(t,�/a, C) otherwise,

where�/a denotes the set of all strings� such thata� ∈ �, andε denotes the empty string.
By considering the language� = �∗a�∗∪ε, the notion of probabilistic weak bisimulation

can be defined as follows.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 33

Definition 47. A weak bisimulation is an equivalence relation∼w on S such that for all
s ∼w s′ and all� ∈ A \ {�} ∪ ε and all equivalence classesC ∈ S/ ∼w we have

P(s, �∗��∗, C) = P(s′, �∗��∗, C).

Weobserve that the base case in the recursive definition ofP(s,�, C) ensures the unique-
ness of the solution of the second equation in the definition by forcing the consideration of
only the minimal trace in� leading froms to C; all extensions of this minimal trace the
languagemay contain and which also reach the target class do not contribute toP(s,�, C).
We will now show how to define a linear operatorF with entries(F)sC corresponding to

the probabilitiesP(s, �∗a�∗, C) for all s ∈ S andC ∈ S/ ∼w.
The first step towards the definition of a linear operator expressing the probabilistic weak

bisimulation relation introduced above is to look at the reachability of a state from another
state via a single trace. In particular we are interested in traces of the form�n��m, with
n,m ∈ N, n,m�0.
It is well known that iterating a transition matrixn times gives the probability of reaching

states from t in exactly nsteps. This is sometimes known as the Chapman–Kolmogorov
equations, e.g.[34, Theorem 6.1.7]. Generalising this idea slightly leads us to introduce the
following operatorsE�(p)(n,m).

Definition 48. Given the operator representationM (p) of a probabilistic processp with
A = {�,, . . . , �}, then we define, for all� ∈ A,

E�(p)(n,m) = M �(p)
nM�(p)M �(p)

m.

We denote byE(p)(n,m) the direct sum
⊕

�∈A E�(p)(n,m).

It is easy to show the following result:

Proposition 49. Given the operator representationM (p) of a probabilistic process p, then
for all statess, s′ ∈ S,

(E�(p)(n,m))s,s′ = P(s, �n��m, s′).

The next step is to look at the probability of reaching a state from any other state by any
trace in�∗��∗. The straightforward idea is to determine this probability by summing up all
the probabilities for reaching a statet from sby ε, a, ��, ��, ���, etc., i.e. via the operator

E�(p) =
∞∑

n,m=0
E�(p)(n,m),

for all � ∈ A.
Unfortunately, for essentially the same reasons explained for the recursive definition of

P, this simple solution does not work. The problem is that some “reaching probabilities”
are counted too often, in particular those associated to traces which are extensions of the
minimal trace leading fromagiven statesto a target statet. The followingexample illustrates
this problem.

34 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

Example 50. Consider the following simple PTS with only one actiona:

In order to calculate the probabilitiesP(s, a∗, {t}), we construct the operators:

Ma =

0 1

2
1
2

1
2 0 1

2

0 0 1

 , lim

n→∞M
n
a =

 0 0 1
0 0 1
0 0 1

 ,

∞∑
i=0
M i

a =

4
3

2
3 ∞

2
3

4
3 ∞

0 0 ∞

 .

This result is obviously not reflecting the probabilities we would expect. In fact, the entries
in
∑∞

i=0M i
a are not probabilities at all.

In order to obtain a correct result we have to compute the probability of reaching a state
t thefirst time, i.e. along the minimal trace leading tot. This means we have to “block” out
all contributions which come from paths which already passed throught before.
We can achieve this by projecting out all transitions fromt in the operatorM�(p). We

define a projection intot as a diagonal matrix which contains a single entry 1 at the position
(t, t), and its “negation”, i.e.

(Pt)ij =
{
1 for i = j = t,

0 otherwise,
(P⊥t)ij =

{
1 for i = j �= t,

0 otherwise.

If we thus consider the modified transition operator

M�,¬t (p) = P⊥t M�(p),

we get the same transitions as inM�(p) except that all transitions fromt are cancelled
out—as thematrixM�,¬t (p) is identical toMa(p) except for the fact that the rowt contains
only zeros.
If we consider now the columnt inMn

�,¬t (p)we obtain for each states the probability of
reachingt in exactlyn steps without passing throught, i.e. for the first time.We can extract
this t column by multiplying with the projectionPt , i.e.

(P⊥t M�(p))
n · Pt = (M�,¬t (p))n · Pt .

The probability of getting from any states to t via the minimal trace in at mostn steps is
then given by

n∑
i=0

(P⊥t M�(p))
i · Pt =

n∑
i=0

(M�,¬t (p))i · Pt .

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 35

This operation avoids the pitfalls of our previous attempt: once we have a trace from a state
s reaching statet the first time, all its extensions are ignored as inM�,¬t (p) there is no
transition which leaves the statet again.
By combining this information for all statest we obtain for all� ∈ A the matrix

∑
t∈S

(
n∑

i=0
(P⊥t M�(p))

i · Pt
)
= ∑

t∈S

(
n∑

i=0
(M�,¬t (p))i · Pt

)
.

Example 51. Consider again the simple process in Example50. The projection operators
for t = 2 are:

P2 =

 0 0 0
0 1 0
0 0 0

 , P⊥2 =

 1 0 0
0 0 0
0 0 1

 ,

and the corresponding modifieda-transition operator

Ma,¬2 = P⊥2Ma =

 1 0 0
0 0 0
0 0 1

 0 1

2
1
2

1
2 0 1

2
0 0 1

 =

 0 1

2
1
2

0 0 0
0 0 1

 .

The second column of thenth iteration ofMa,¬2 then gives us the probabilities that we get
from any state to the second state in exactlyn steps the first time:

M0
a,¬2P2 =

 0 0 0
0 1 0
0 0 0

 , M1

a,¬2P2 =

 0 1

2 0

0 0 0
0 0 0

 , M2

a,¬2P2 =

 0 0 0
0 0 0
0 0 0

 . . .

The first iteration means that if we start in the second state we “reach” it in zero steps, but
there is no other state from which we can reach it in zero steps. The second iteration tells us
that we reach the second state in one step only from the first one with probability 1/2.After
that all iterations indicate that there is no path of length larger than one reaching the second
state (the first time). Obviously there is, for example, a three step path from state one to
two back to one and then again to two: the probability of this path is 1/2 · 1/2 · 1/2= 1/8,
however it is ignored in this construction as it visits the state twice.
We can combine the information on the probability of reaching all states ini steps in

the operator
∑

t∈SM i
a,¬tPt , whose iteration results in the following sequence of transition

matrices:

 1 0 0
0 1 0
0 0 1

 ,

 0 1

2
1
2

1
2 0 1

2
0 0 0

 ,

 0 0 1

4

0 0 1
4

0 0 0

 ,

 0 0 1

8

0 0 1
8

0 0 0

 ,

 0 0 1

16

0 0 1
16

0 0 0

 , . . .

36 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

Finally we can compute the probability of reaching a state from any other by any string in
the languagea∗ by

∑
t∈S

(∞∑
i=0
M i

a,¬tPt
)
=

∞∑
i=0

(∑
t∈S
M i

a,¬tPt
)
=

 1 1

2 1
1
2 1 1
0 0 1

 .

Proposition 52. Given the operator representationsM (p) of a probabilistic transition
systemp = (S,A,−→, s0) then for all� ∈ A:

P(s, �∗, {t}) =
(∞∑

i=0

(∑
t∈S
M i

�,¬t (p)Pt
))

st

.

The example above suggests that in order to compute the probabilities of reaching a given
state with traces in the language�∗��∗, we first have to appropriately modify the operator
E�(p)(n,m) in Definition48.

Definition 53. Given the operator representationsM (p) of a probabilistic transition system
p = (S,A,−→, s0) with A = {a, b, . . . , �}, then we define for all� ∈ A:

F�(p)(n,m) = ∑
t∈S
M �(p)

n ·M�(p) · (P⊥t M �(p))
m · Pt .

We denote byF(p)(n,m) the direct sum
⊕

�∈A F�(p)(n,m) of all F�(p)(n,m).

Note that we treat the final�’s in a trace differently from the initial ones (and from the
� transition as well). We allow repeated visits in the initial phase, while in the final phase
we again “block out” multiple visits to the terminal state. This asymmetry is due to the
fact that until the� transition has been performed we cannot terminate our path, only in
the second part of a word in�∗��∗ will we terminate our attempt to find a trace connecting
two states as soon as we reach the intended target. This is also reflected in the definition
of P(s, �∗��∗, {t}): we can invoke the rule for the base case only once removing the initial
actions from all words in�, i.e. when�/a, results in a language containing the empty trace
ε. No removal of an initial� can achieve this, only once the� step has happened is this
possible.
The operatorF�(p)(n,m) encodes the probabilities of reaching a state by the trace�n��m,

for some fixedn,m ∈ N. The extension to the language�∗��∗ can be achieved by the
operator

F�(p) =
∞∑

n,m=0
F�(p)(n,m),

which gives us the probabilities for any string in�∗��∗. More precisely we have:

Proposition 54. Given the operator representationM (p) of a probabilistic transition sys-
temp = (S,A,−→, s0) then for all� ∈ A:

P(s, �∗��∗, {t}) = (F�(p))st .

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 37

The last step towards the definition of a linear operator representing the probabilistic weak
bisimulation equivalence in Definition47 is to introduce projection operators on classes of
states. LetC ⊆ S be a set of states, then the projection onC and its negation are defined by

(PC)ij =
{
1 for i = j ∧ i ∈ C,

0 otherwise,
(P⊥C)ij =

{
1 for i = j ∧ i �∈ C,

0 otherwise.

As recalled in Section4.2.2, an equivalence relationR has a linear representation given by a
classification matrixKR. If K is the classification matrix associated to a probabilistic weak
bisimulation equivalence on a state spaceS, then we can use it to construct the projection
operatorsPCi

andP⊥Ci
for all classesCi in the partition of the state spaceS =⋃i Ci induced

by that relation.We denote byK .,i theith column ofK , corresponding to classCi . ThenPCi

can be constructed as the diagonal matrixdiag(K .,i) with theith column ofK as diagonal,
andP⊥Ci

asI − PCi
= I − diag(K .,i) with I the identity matrix.

Definition 55. Given the operator representationM (p) of a probabilistic transition system
p = (S,A,−→, s0) with A = {a, b, . . . , �}, and a partitionC = {Ci}i of Srepresented by
a classification matrixK then we define for all� ∈ A:

F�(p,K)(n,m) = ∑
Ci∈C

M �(p)
n ·M�(p) · (P⊥Ci

M �(p))
m · PCi

.

We denote byF(p,K)(n,m) the direct sum
⊕

�∈A F�(p,K)(n,m), and

F�(p,K) =
∞∑

n,m=0
F�(p,K)(n,m).

This operators “blocks” out all repeated visits to the same class in essentially the same way
as discussed in Section5.3. We therefore have, as expected, the following result:

Proposition 56. Given the operator representationsM (p) of a probabilistic transition
systemsp = (S,A,−→, s0) and a partitionC = {Ci}i of S represented by a classification
matrixK then for all� ∈ A:

P(s, �∗��∗, C) = (F�(p,K) · K)sC.

The following proposition gives a necessary and sufficient condition for two processes
being probabilistic weak bisimilar.

Proposition 57. Given the operator representationsM (p) andM (q) of two probabilistic
transition systemsp = (S,A,−→, s0) andq = (S′, A,−→′, s′0) then p and q are prob-
abilistic weak bisimilar iff there exist classification matricesKp ∈ C(|S|, n) andKq ∈
C(|S′|, n) for somen�1 such that

K †
p · F(p,Kp) · Kp = K †

q · F(q,Kq) · Kq,

i.e. for all � ∈ A we haveK †
p · F�(p,Kp) · Kp = K †

q · F�(q,Kq) · Kq .

38 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

When thereareno terminal� loops ina transitiongraph,weobviously have(P⊥Ci
M �(p))

m·
PCi

= M �(p)
m. Thus, in this case we can useE in place ofF in order to decide whether

two processes are probabilistic weak bisimilar.

5.3.1. Approximate weak bisimulation
An approximative version of this notion allows us to capture how close two processes

are to being weakly bisimilar.

Definition 58. Given the operator representationsM (p) andM (q) of two probabilistic
transition systemsp = (S,A,−→, s0) andq = (S′, A,−→′, s′0), we say thatp andq are
probabilisticε-weak bisimilar, denoted byp ∼ε

w q, if

inf
Kp,Kq∈C

‖K †
p · F(p,Kp) · Kp − K †

q · F(q,Kq) · Kq‖ = ε,

where‖.‖ denotes an appropriate norm.

For ε = 0 we recover the original notion of strict probabilistic weak bisimulation:

Proposition 59. For finite probabilistic transition systems, a probabilisticε-weak bisimu-
lation for ε = 0, i.e.∼0

w, is a probabilistic weak bisimulation.

Example 60.We consider here a slightly modified version of an example taken from[63]
where thesetting is amulti-threaded languagewithaMarkovchain semantics.Theprocesses
P,QandRare described by the transition graphs in Fig. 6. Their matrix representations are
given by

Ma(P) =

0 0 1

3
1
6

0 0 2
3

1
3

0 0 1 0
0 0 0 1

 , M �(P) =

1
3

1
6 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , Ma(Q) =

 0 2

3
1
3

0 1 0
0 0 1

 ,

Fig. 6. Three generative probabilistic transition systems:P,Q andR.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 39

Ma(R) =

0 0 1

3
1
6

0 0 1
2

1
2

0 0 1 0
0 0 0 1

 , M �(R) =

0 1

2 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 .

Partitioning the states in three classes and using the classificationmatrixKP and its Moore–
Penrose pseudo-inverseK †

P ,

C1 = {s1, s2},
C2 = {s3},
C3 = {s4},

KP =

1 0 0
1 0 0
0 1 0
0 0 1

 , K †

P =

 1

2
1
2 0 0

0 0 1 0
0 0 0 1

 ,

allows us to compute the transition probabilitiesP(si, �∗a�∗, Cj) and the abstracted system

Fa(P,KP) · KP =

0 2

3
1
3

0 2
3

1
3

0 1 0
0 0 1

 , K †

P · Fa(P,KP) · KP =

 0 2

3
1
3

0 1 0
0 0 1

 .

ProcessesPandQare thusprobabilisticweakbisimilar aswehaveK †
P ·Fa(P)·K = Ma(Q),

(we can use the trivial abstractionKQ = K †
Q = I for the processQ). It is interesting to note

that in this example the “naive” approach based on the operatorE gives the same result, i.e.
Ea(P) · KP = Fa(P,KP) · KP and thus:

K †
P · Ea(P) · KP = K †

P · Fa(P,KP) · KP .

This is due to the fact that in this example there are no� loops or cycles possible afterahas
happened.
When we compare processesPandRwe see that they are not weakly bisimilar. However,

we can look for abstractions which make the difference between themminimal. Coinciden-
tally, these are given by exactly the same classification matrices as before. ForKQ = KR

andKQ = I we obtain a minimal distance betweenQ andRwhich we calculate by using
the supremum norm as

‖K †
R · Fa(R,KR) · KR −Ma(Q)‖ =

∥∥∥∥∥∥

 0 13

24
11
24

0 1 0
0 0 1

−

 0 2

3
1
3

0 1 0
0 0 1

∥∥∥∥∥∥ =

1

4
.

40 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

Example 61. Consider the probabilistic transition systemP in Fig. 7 taken from [4]. Its
matrix representation is given byMa(P)⊕Mb(P)⊕M �(P):

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 .1 0 0
0 0 0 0 0 0.1 0
0 0 0 0 0 0 0.2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⊕

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 .5 0 .4 0 0
0 0 0 0 0 0.4 0
0 0 0 0 0 0 0.8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⊕

0 .5 .5 0 0 0 0 0
0 0 0 .6 .4 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 .5 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 .5 .5 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

.

In [4] a probabilistic weak bisimulation relation on the states ofp is computed which
consists of four classes. The classification operatorKP corresponding to this relation and
its Moore–Penrose pseudo-inverseK †

P are as follows:

C1 = {s1},
C2 = {s3},
C3 = {s2, s4, s5},
C4 = {s6, s7, s8},

KP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1

, K †

P =

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1

3 0 1
3

1
3 0 0 0

0 0 0 0 0 1
3

1
3

1
3

 .

Fig. 7. A generative probabilistic transition system.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 41

The resulting abstract system is given by

K †
PFa(P)KP =

0 0 0 0.15
0 0 0 0.10
0 0 0 0.20
0 0 0 0.00

 , K †

PFb(P)KP =

0 0 0.25 0.60
0 0 0.50 0.40
0 0 0.00 0.80
0 0 0.00 0.00

 ,

is obviously probabilistic weak bisimilar toP.
Note that the use of the operatorsEa(P) andEb(P) would give in this case an incorrect

result:

K †
PEa(P)KP =

0 0 0∞
0 0 0∞
0 0 0∞
0 0 0 0

 , K †

PEb(P)KP =

0 0 0.38∞
0 0 0.75∞
0 0 0.00∞
0 0 0.00 0

 .

We can now measure how much statess2 ands3 are not equivalent with respect toKP by
comparing the associated reduced abstract systems

K †
s2
Fa(s2,K s2)K s2 =

0 0 0 0.0
0 0 0 0.0
0 0 0 0.2
0 0 0 0.0

 , K †

s2
Fb(s2,K s2)K s2 =

0 0 0 0.0
0 0 0 0.0
0 0 0 0.8
0 0 0 0.0

 ,

K †
s3
Fa(s3,K s3)K s3 =

0 0 0 0.0
0 0 0 0.1
0 0 0 0.2
0 0 0 0.0

 , K †

s3
Fb(s3,K s3)K s3 =

0 0 0.0 0.0
0 0 0.5 0.4
0 0 0.0 0.8
0 0 0.0 0.0

 .

By using again the supremum norm we get

‖K †
s2
· F(s2,K s2) · K s2 − K †

s3
· F(s3,K s3) · K s3‖ = 0.9,

which gives us an upper bound to the measureε in Definition58.

6. Bounds for ε

It is in general not an easy task to determine the infimum over all possible classifica-
tion matrices in order to calculateε. For finite processes we at least know that we have

42 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

only finitely many classification matrices, but their number is increasing exponentially with
the number of states. A brute force approach is therefore not computationally feasible.
The complexity for deciding if two processes are probabilistically bisimilar (i.e. the case
ε = 0) gives a lower bound for the complexity of the more general problem of determining
a possibly non-zeroε.
One of the main advantages of an approximative approach towards the various security

notions basedonprocess equivalences is that in practical circumstances itmight be sufficient
to determine an upper bound forε. This means that instead of trying to prove the perfect
similarity of two processes, e.g. (weak) bisimilarity, our aim is to determine a bound for
their dis-similarity as this gives us a bound for the possible or expected chances of a security
breach. Such a conservative approximation is closely related to the approach taken in static
program analysis.

6.1. One dimensional abstractions

A very crude but computationally cheap way to obtain a rough estimate—or more
precisely an upper bound—forε is to compare the one dimensional abstractions of two
processes. That is, we can consider a classification matrix which maps all states into
one single abstract state. If processp hasn states and processp hasm states thenKp

is a n × 1 matrix andKq is a m × 1 matrix, both of which contain 1’s for each en-
try. The corresponding Moore–Penrose pseudo-inverses are given byK †

p an 1× n ma-

trix containing 1/n for each entry andK †
q an 1× m matrix containing 1/m for

each entry.

Kp =

1
1
...

1

 , Kq =

1
1
...

1

 ,

K †
p =

(
1

n

1

n
. . .

1

n

)
,

K †
q =

(
1

m

1

m
. . .

1

m

)
.

This allows us to construct one dimensional abstractions of both processes which we can
compare in oder to obtain a “most general approximation” which we callε'.

Definition 62. Given two probabilistic processesp andq, let Kp andKq be their one
dimensional abstraction operators. Then we define

ε'(p, q) = ‖ K †
pM (p)Kp − K †

qM (q)Kq ‖.

As ε is defined to be the infimum over all possible differences between abstractions ofp
andqwe have that ifp ∼ε

b q, thenε�ε'(p, q). In other words,ε' gives us a safe upper
bound for the approximationε.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 43

Fig. 8. Three generative probabilistic transition systems:P,Q andR.

Example 63. Consider the processesP, Q andR in Fig. 8 which are variations of the
example [44, Fig. 4]. These processes are represented by the following matrices:

M (P) =

0 2

3 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⊕

0 0 1

3 0

0 0 0 1
0 0 0 0
0 0 0 0

 ,

M (Q) =

0 1
3

1
3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⊕

0 0 0 1
3 0 0

0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

44 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

M (R) =

0 1
12

1
4

1
4

1
12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⊕

0 0 0 0 0 1
3 0 0 0 0

0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

.

It is easy to see that these three processes are probabilistically bisimilar, the common
abstraction for all three being the processP. However, it is not always so easy to determine
the optimal abstractions. In this case one can determine upper bounds forε by constructing
theonedimensional abstractions. IfwedenotebyKP ,KQ andKR the classificationmatrices
we get

K †
PM (P)KP =

(2
3

)⊕ (1
3

)
,

K †
QM (Q)KQ =

(11
18

)⊕ (7
18

)
,

K †
RM (R)KR =

(17
30

)⊕ (13
30

)
,

from which we can calculate (using the supremum norm)ε'(P,Q) = 1
18, ε'(P,R) = 1

10
andε'(Q,R) = 2

45, and conclude that

P ∼ε
b Q with ε� 1

18,

P ∼ε
b R with ε� 1

10,

Q ∼ε
b R with ε� 2

45.

In other words, we have calculated correct over-approximations for the optimalε; as we
know that all processes are bisimilar,ε = 0 is optimal for all three processes.

From Proposition30 we know that the abstraction of any stochastic matrix using classi-
fication matrices gives us again a stochastic matrix. As there is only a single one dimens-
ional stochastic matrix, namelyM1 = (1), one might expect that all the one dimensional
abstractionsK †

pM (p)Kp result inM1 and that thereforeε'(p, q) = 0 for all processesp
andq.
However, unless we have only a single actiona, the linear representationsM (p) of

generative processes are in general not stochastic (only the sum of their factors gives a
stochastic matrix). It thus makes sense to compare the one dimensional abstractions of
processes in order to obtainε', as in the above example where we have:

K †
PM (P)KP �= K †

QM (Q)KQ �= K †
RM (R)KR.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 45

6.2. On transitivity

Consider the situation in which we have three processesp, q andr, and we know that
p ∼ε1

b q andq ∼ε2
b r. If ε1 = ε2 = 0, then we can conclude thatp ∼ε

b r with ε = 0 (since
probabilistic bisimulation is an equivalence relation). What can we say about the numberε

(without concretely computing it) in the general case whereε1 �= 0 or ε2 �= 0?
Let us first assume that the abstractions ofp andr which we use to determine the values

for ε1 andε2 are of the same dimension.

Proposition 64. Consider the processes p, q and r such thatp ∼ε1
b q and q ∼ε2

b r, i.e.
there exist classification matricesKp,Kq,K q andK r such that

‖K †
pM (p)Kp − K †

qM (q)Kq‖ = ε1 and‖K †
qM (q)K q − K †

rM (r)K r‖ = ε2.

Assume also that the dimensions ofK †
qM (q)Kq andK

†
qM (q)K q are the same.

Define� = ‖K †
qM (q)Kq − K †

qM (q)K q‖. Then

p ∼ε
b r with ε�ε1+ ε2+ �.

Proof.

ε = inf
K1,K2

‖K †
1M (p)K1− K †

2M (r)K2‖
� ‖K †

pM (p)Kp − K †
rM (r)K r‖

= ‖K †
pM (p)Kp − K †

qM (q)Kq + K †
qM (q)Kq)

−K †
rM (r)K r + K †

qM (q)K q − K †
qM (q)K q)‖

= ‖(K †
pM (p)Kp − K †

qM (q)Kq)+ (K
†
qM (q)K q − K †

rM (r)K r)

+(K †
qM (q)Kq − K †

qM (q)K q)‖
� ‖K †

pM (p)Kp − K †
qM (q)Kq‖ + ‖K †

qM (q)K q − K †
rM (r)K r‖

+‖K †
qM (q)Kq)− K †

qM (q)K q‖
= ε1+ ε2+ �. �

Note that in the case whereKq = K q we have:ε�ε1+ ε2, i.e. the triangular inequality
applies in this case.
Suppose now that the dimension of the abstractions ofp andr and the one forq andr

which we use to determine the minimalε1 andε2 are different. The intuitive idea is to “fill
up” the smaller one in order to obtain a similar upper bound forε as in the previous case.
We first state a number of properties of the direct sum of operators[12, Theorem 3.4.1].

LetA be am1× n1 matrix,B be am2× n2 matrix,C be am3× n3 matrix,D be am4× n4
matrix, then the following holds:
(i) (A ⊕ B)† = A†⊕ B†,
(ii) (A ⊕ B) + (C ⊕ D) = (A + C) ⊕ (B + D) if m1 = m3, n1 = n3, m2 = m4, and

n2 = n4,

46 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

(iii) (A ⊕ B) · (C⊕ D) = (A · C)⊕ (B · D) if n1 = m3, andn2 = m4,
(iv) ‖A ⊕O‖ = ‖A‖ for any null matrixO.
Suppose thatK †

qM (q)Kq is ann × n matrix whileK
†
qM (q)K q is anm × m matrix and

n > m. In order to allow for a comparison betweenK †
qM (q)Kq andK

†
qM (q)K q we “fill

up” the smaller onewith zero entries by constructing thematrixK
†
qM (q)K q⊕On−m, where

Ok indicates thek-dimensional null matrix, that is thek × k matrix with only zero entries.

Operationally thismeans that we considerK
†
qM (q)K q as a processwhich operates on the

same number of abstract states (classes) asK †
qM (q)Kq but without any transitions between

the “extra” states.

Proposition 65. Suppose we have three processes p, q and r such thatp ∼ε1
b q and

q ∼ε2
b r for some classification matricesKp,Kq,K q and K r . Assume that the dimen-

sion ofK †
qM (q)Kq is m and that the dimension ofK

†
qM (q)K q is n withn > m. Then we

have that

p ∼ε
b r with ε�ε1+ ε2+ �′,

where�′ = ‖K †
qM (q)Kq − K †

qM (q)K q ⊕On−m‖.

Proof. Theproof is essentially the sameas in the previous case,making useof the properties
listed above. For ak × l1 matrixA with k� l1 andl2� l1 we denote by(A|Ol2−l1) ak × l2
matrix where the first 1, . . . , l1 columns are identical withA and the columnsl1 + 1, l1 +
2 . . . , l2 are filled with zeros.

ε = inf
K1,K1

‖K †
1M (p)K1− K †

2M (r)K2‖
� ‖K †

pM (p)Kp − (K r |On−m)†M (r)(K r |On−m)‖
= ‖K †

pM (p)Kp − K †
rM (r)K r ⊕On−m‖

= ‖K †
pM (p)Kp − K †

qM (q)Kq + K †
qM (q)Kq

−K †
qM (q)K q ⊕On−m + K †

qM (q)K q ⊕On−m − K †
rM (r)K r ⊕On−m‖

� ‖K †
pM (p)Kp − K †

qM (q)Kq‖
+‖K †

qM (q)Kq − K †
qM (q)K q ⊕On−m‖

+‖K †
qM (q)K q ⊕On−m − K †

rM (r)K r ⊕On−m‖
= ε1+ ε2+ �′. �

The construction of safe bounds forε is consistent with our overall conceptual approach
in which we aim in a quantification of the behavioural “similarity” of processes as a means
for establishing a “confidentiality level”. As we will see in the next section, the value
of ε corresponds to the distinguishability of processes via certain statistical tests. This
is proportional to the information leakage and can be interpreted as a measure which is
indirectly proportional to the minimal effort (number of tests/attacks) an attacker needs in
order to obtain some confidential information (e.g. the identity of processes). A safe upper

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 47

bound forε thus gives us a safe lower bound for this effort, and thus a minimal guaranteed
“confidentiality level”.

7. The meaning ofε

Given two processesp andq of which we know thatp ∼ε
b q: What property of the

two processes, or their difference doesε actually describe in a security context? We will
investigate this question in the case ofε-bisimilarity and finite systems; forε-weak bisimi-
larity and other approximate similarity notions as well as for infinite systems corresponding
arguments can easily be developed along similar lines.

7.1. Process similarity and operator norm

Wehave already seen thatε in someway describes how (bi)similar the two processes are:
In the case thatε = 0 we know that they are indistinguishable in the sense of a bisimulation
semantics. Otherwise, we know that two “optimal” abstractions ofp andq exists such that

‖K †
pM (p)Kp − K †

qM (q)Kq‖ = ε.

In general the norm of a matrix defined as‖A‖ = sup‖x‖=1 ‖xA‖ describes the maximal
“stretching factor” of normalised vectors. The exact numerical value depends, of course,
on the vector norm used (e.g. Euclidean or supremum norm).
The ε value which determines the similarity ofp andq thus describes how much the

effect of applyingK †
pM (p)Kp andK †

qM (q)Kq differ in the worst case. In other words,ε
is a measure for how much the abstractions ofp andq differ in a single step. Ifp andq are
bisimilar, i.e. forε = 0, there is a single, common abstraction of both processesp andq
and we thus obtain the same “trace of distributions”.
If we utilise the 1-norm, then the value ofε has a direct interpretation as the (positive)

unitary vectors are exactly distributions (over abstract equivalence classes).AsK †
pM (q)Kp

andK †
qM (q)Kq are positive matrices the norm of their difference describes exactly the

maximal difference between the (abstract) distributions we obtain in one step (executing
K †
pM (p)Kp orK

†
qM (q)Kq).

Restricting to the case of finite dimensional matrices, i.e. considering probabilistic transi-
tion systemswith finitelymany states, allows us to replace the supremum in the definition of
an operator normby themaximum, i.e. there is always a vector (distribution)xwith ‖x‖ = 1
for which the norm difference betweenxK †

pM (p)Kp andxK
†
qM (q)Kq is maximal.

Proposition 66. Given two stochasticn× n-matricesSandT then

max‖x‖1=1
‖xS− xT‖1

is obtained for an extremal vectorx = (0, . . . ,0,1,0, . . . ,0), i.e. xi = 1 for exactly one
i = 1, . . . , n, andxj = 0 for j �= i.

Proof. Consider the casen = 2.The general case can be shownanalogously (by induction).

48 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

Suppose thatx = (x1, x2) is the maximal vector with‖x‖1 = 1, i.e.‖xS− xT‖1 is
maximal. Without loss of generality assume that 1�xi �0. We therefore have‖x‖1 =
|x1| + |x2| = x1+ x2 = 1. The 1-norm ofx(S− T) is given by

‖x(S− T)‖1
= ‖((S11− T11)x1+ (S12− T12)x2, (S21− T21)x1+ (S22− T22)x2)‖1
= |(S11− T11)x1| + |(S12− T12)x2| + |(S21− T21)x1| + |(S22− T22)x2|
= |S11− T11|x1+ |S12− T12|x2+ |S21− T21|x1+ |S22− T22|x2
= (|S11− T11| + |S21− T21|)x1+ (|S12− T12| + |S22− T22|)x2.

We know thatS andT are stochastic matrices, i.e. all 1�Sij �0 and 1�Tij �0, as well
asS11+ S12 = 1, etc. We therefore know that for all absolute values in this expression we
have: 0� |S11−T11|�1, etc. We also know that in each row ofS−T one entry is positive
and that the other is negative, and that the sum of the entries in the first row is the negative
of the entries in the second row. There are now the following possible cases:
(i) S= T in which case we get‖S− T‖1 = 0 and thus any vector, in particular extremal

ones, are maximal.
(ii) One row ofS− T is zero, e.g. the first one. Then either|S21− T21| > |S22− T22| or

vice versa. In the first case, any increase ofx1 (up to the maximal valuex1 = 1 results
in a larger 1-norm of‖x(S−T)‖1, i.e. themaximum is achieved for an extremal vector.

(iii) None of the absolute values in the above expression vanishes. If we increase ei-
therx1 or x2 the above expression increases too, except when|S11− T11| + |S21−
T21| = |S12− T12| + |S22− T22| which can never happen (except in the two cases
above). �

This means that it is sufficient to check howmuchxK †
pM (p)Kp andxK

†
qM (q)Kq differ

by looking at all the extremal (basis) vectorsei .

7.2. A statistical interpretation

Our basic approach towards confidentiality and non-interference is based on the concept
of identity confinement[51].According to this notion, the problem for an attacker or spy is to
distinguish between several processes; the “secret” which should be protected in this setting
is therefore the “identity” of theprocesses running. It is easy to translate the traditional notion
of confidentiality(where the value of some “high level variable” constitutes the relevant
“secret”) into this essentially behavioural framework and vice versa.
Given now the role ofε for distinguishing two processespandq—namely as single-step

divergence factor—the question arise how one can make use of this information in order to
describe how vulnerable some processes are against an attack. To simplify the arguments
we only consider the problem of two processesp andqwith p ∼ε

b q.
Using standard statistical methods we can analyse the question of how many tests are

needed to distinguish two processes which areε-bisimilar with a certain confidence�. The
framework of so-calledhypothesis testing(see e.g. [62]) provides a simple way to estimate
these parameters� andn.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 49

7.2.1. Identification by testing
Let us consider the situation where we have two processesp andqwhich we assume to

be ε-bisimilar, for someε�0. In order to simplify the situation, we assume that there is
only a single labela. We can identify some abstract states, i.e. equivalence class of states
[s] and a point distribution (extremal vector)xs representingssuch that:

max‖x‖1=1
‖xK †

pM (p)Kp − xK †
qM (q)Kq‖1 = ‖xsK †

pM (p)Kp − xsK †
qM (q)Kq‖1.

Following the standard interpretation of probabilities as “long-run” relative frequencies
[35], we can expect that the number of times a certain class of states[t] is reached (via
a transition labelled bya) from s is given exactly by the corresponding coordinates in
xsK

†
pM (p)Kp andxsK

†
qM (q)Kq . This means that if we executep or q “infinitely” often

we can determineps,t = (xsK
†
pM (p)Kp)t andqs,t = (xsK

†
qM (q)Kq)t as the limit of the

frequencies with which we obtain a successor state in[t].
In fact, for any unknown processxwe can attempt do determinexs,t experimentally by

executingxover and over again in states. Assuming thatx is actually the same as eitherpor
qwe know that thexs,t we obtain must be eitherps,t or qs,t . We thus can easily determine
this way ifx = p or q, i.e. reveal the identity ofx (if ε �= 0), simply by testingx in states.
The above described experimental setup is unfortunately only of theoretical value; we

have noway to repeat this experiment—as required—infinitely often. For practical purposes
we need a way to distinguishp andq by finite executions ofp andq. If we executep and
q only a finite number of—sayn—times, we can observe a certain experimental frequency
pn
s,t andq

n
s,t . Each time we repeat a finite sequence ofn tests we may get different values

for pn
s,t andq

n
s,t (only the infinite experiments will eventually converge to the same constant

valuesps,t andqs,t).
Analogously, we can determine the frequencyxns,t for an unknown processx by testing,

i.e. by looking atn executions ofx. We can then try to comparexns,t with pn
s,t andq

n
s,t or

with ps,t andqs,t in order to find out ifx = p or x = q. Unfortunately, there is neither a
single value for eitherxns,t , p

n
s,t or q

n
s,t (each experiment may give us different values) nor

can we test ifxns,t = pn
s,t or x

n
s,t = qns,t nor if x

n
s,t = ps,t or xns,t = qs,t .

For finite experiments we can only make a guess about the true identity ofx, but never
definitely reveal its identity. Theconfidencewe can have in our guess orhypothesisabout the
identity of an unknown agentx—i.e. the probability that wemake a correct guess—depends
obviously on two factors: The number of testsn and the differenceε = ‖xsK †

pM (p)Kp −
xsK

†
qM (q)Kq‖1.

7.2.2. Hypothesis testing
The problem we are faced with is to determine experimentally if an unknown processx

is one of two known processesp andq. The only way we can obtain information aboutx is
by executing it in states. In this way we can get an experimental estimate for thexs,t . We
then can compare this estimate withps,t andqs,t .
In other words, based on the outcome of some finite experiments (involving an unknown

processx) we formulate a hypothesis H about the identity ofx, namely either that “x is p”

50 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

or that “x is q”. Our hypothesis about the identity ofx will be formulated according to a
simple rule: depending if the experimental estimate forxs,t is closer tops,t or to qs,t we
will identify xwith p or q, respectively.
More precisely, the method to formulate the hypothesis H about the identity of the un-

known processx consists of the two following steps:
1. We executex in sexactlyn times in order to obtain an experimental approximation, i.e.

an average,xns,t .
2. Depending ifxns,t is closer to the observablesps,t or qs,t we formulate the hypothesis

H :

x = p if ‖(xns,t)t − (ps,t)t‖�‖(xns,t)t − (qs,t)t‖ or

if ‖(xns,t)t − xsK
†
pM (p)Kp‖�‖(xns,t)t − xsK

†
qM (q)Kq‖,

x = q otherwise.

The question is nowwhether the guess expressed by the hypothesis H about the true identity
of the black boxx, which we formulate according to the above procedure, is correct; or
more precisely: What is the probability that the hypothesis H holds? To do this we have to
distinguish two cases or scenarios:
x is actually p: what is the probability (in this case) thatwe formulate thecorrecthypothesis
H =“x is p” and what is the probability that we formulate theincorrect hypothesis
H =“x is q”?

x is actually q: what is the probability (in this case) thatwe formulate thecorrecthypothesis
H = “x is q” and what is the probability that we formulate theincorrect hypothesis
H =“x is p”?
Clearly, in each case the probability to formulate a correct hypothesis and the probability

to formulate an incorrect hypothesis add up to one. Furthermore, it is obvious that both
scenarios “x is actuallyp” and “x is actuallyq” are symmetric (just exchange the “names”
of the processespandq).Wewill therefore investigate only one particular problem:Suppose
thatx is actually processp, what is the probability that—according to the above procedure—
we formulate the—in this case—correct hypothesis H=“x is p”.
In the following we use the notationxs,t andxns,t to denote the probability assigned tot

in the distribution representing the transitions fromsaccording to the theoretical behaviour
of x and in the experimental average, respectively. Furthermore, we look at a simplified
situation where we are considering only a single statet. Let us assume without loss of
generality thatps,t < qs,t as in the diagram below:

If the experimental valuexns,t = pn
s,t we obtained in our test is anywhere to the left of

ps,t + ε/2 then the hypothesis H we formulate (based onpn
s,t) will be the correct one: “x

is p”; if the experimental value is to the right ofps,t + ε/2 we will formulate the incorrect
hypothesis: “x is q”.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 51

Under the assumption that “x is actuallyp” the probabilityP(H) that we will formulate
the correct hypothesis “x is p” is therefore:

P
(
pn
s,t < ps,t + ε

2

)
= 1− P

(
ps,t + ε

2
< pn

s,t

)
.

To estimateP(H) we have just to estimate the probabilityP(pn
s,t < ps,t + ε/2), i.e. that the

experimental valuepn
s,t will be left of ps,t + ε/2.

7.2.3. Confidence estimation
The confidence we can have in the hypothesis H we formulate is true can be determined

by various statistical methods. These methods allow us to estimate the probability that an
experimental averageXn—in our casepn

s,t—is within a certain distance from the corre-
sponding expectation valueE(X)—hereps,t—i.e. the probabilityP (|Xn − E(X)|�ε) for
someε�0. These statistical methods are essentially all based on thecentral limit theorem,
e.g.[8,35,62].
The type of tests we consider here to formulate a hypothesis about the identity of the

unknown agentX are described in statistical terms by so calledBernoulli Trialswhich are
parametric with respect to two probabilitiesp andq = 1− p. The central limit theorem
for this type of tests [35, Theorem 9.2] gives us an estimate for the probability that the
experimental valueSn = n · Xn aftern repetitions of the test will be in a certain interval
[a, b]:

lim
n→∞P(a�Sn�b) = 1√

2�

∫ b∗

a∗
exp

(−x2
2

)
dx

wherea∗ = a − np/
√
npq and b∗ = b − np/

√
npq.

Unfortunately, the integral of the so calledstandard normal densityon the right hand
side of the above expression is not easy to obtain. In practical situations one has to resort
to numerical methods or statistical tables, but it allows us—at least in principle—to say
something aboutP(H).
IdentifyingSn with n ·pn

s,t we can utilise the above expression to estimate the probability
P(ps,t + ε/2�pn

s,t) which determinesP(H). In order to do this we have to take:a =
ps,t + ε

2, b = ∞, p = ps,t andq = 1− ps,t . This allows us—in principle—to compute
the probability:

lim
n→∞P

(
ps,t + ε

2
�pn

s,t �∞
)
.

Approximating—as it is common in statistics—P(ps,t + ε/2�pn
s,t) by lim P(ps,t + ε/2

�pn
s,t) we get

P(H) = 1− P
(
ps,t + ε

2
�pn

s,t

)
≈ 1− lim

n→∞P
(
ps,t + ε

2
�pn

s,t

)
= 1−

∫ ∞

a0

exp

(−x2
2

)
dx

with a0 = nε/2 1/
√
npq = ε

√
n/2
√
pq = ε

√
n/2

√
ps,t (1− ps,t).

52 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

We see that the only way to increase the probabilityP(H), i.e. the confidence that we
formulate the right hypothesis about the identity ofx, is by minimising the integral. In order
to do this we have to increase the lower bounda0 of the integral. This can be achieved—as
one would expect—by increasing the numbern of experiments.
We can also see that for a smallerεwehave to performmore testsn to reach the same level

of confidence,P(H): The smaller then the harder it is to distinguishpandqexperimentally.
Note that forε = 0, the probability of correctly guessing which of the agentsp andq is in
the black box is12, which is the best blind guess we can make anyway. In other words, for
ε = 0 we cannot distinguish betweenp andq.

8. Conclusion and related work

Wehave investigated probabilistic transition systems (PTS) in a quantitative setting based
on linear spaces and linear operators. We have argued that Hilbert spaces are suitable do-
mains for representing countable infinite state spaces, and we have defined a linear operator
semantics for probabilistic processes which encode their operational meaning via bounded
linear operators on the Hilbert space of the set of processes.
Based on the framework ofprobabilistic abstract interpretation, previously introduced

in [56,57] in a finite dimensional setting and then extended in [54] to the infinite case,
we also presented a formulation of various (probabilistic) process equivalences in terms of
linear operators. This formulation has a very strong resemblance to notions of similarity in
mathematical control theory, e.g. [64, Definition 4.1.1]. The relation between abstract inter-
pretation and (bi)simulation has been recognised before in the classical Galois Connection
based framework [19,60], but this appears to be the first investigation of such a relation in
a probabilistic setting.
More precisely, we have shown how to represent process equivalences via special linear

operators corresponding to some probabilistic abstract interpretation of the PTS semantics.
For example, the abstraction resulting in the probabilistic bisimulation of Larsen and Skou
is a linear operator satisfying Kemeny and Snell’s lumpability condition for Markov chains,
while the probabilistic weak bisimulation of Baier and Hermanns can be obtained by an
essentially similar technique extended so as to take into account possible looping on�-
transitions.
This formulation made it possible to weaken strict process equivalences to approximate

ones which identify two processes up to a quantityε. This quantity is defined via the norm
of an appropriate operator representing the behavioural difference of the two processes
according to the given semantics. This norm defines a distance on the set of processes.
Other approaches to the definition of such a distance have been proposed in the literature,
starting from the work by Giacalone et al. who first suggested the use of a metric to weaken
the notion of probabilistic bisimulation. In fact, as far as we are aware, all the approaches
which have been proposed since then rely on constructions involvingmetric spaces.Among
them we mention the metrics for probabilistic processes introduced in [66], although it is
mainly inspired by semantical considerations and is not meant for approximation purposes.
The approach in [10,11] is more similar in its motivation to our work; their technique uses
coalgebraic constructions on the category of metric spaces and non-expansive maps and is

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 53

applied toprobabilistic bisimulationonly.Thepseudometric defined in[22] is alsomotivated
by a weakening of the notion of bisimulation and is based on the logical characterisation of
bisimulation for labelled Markov processes in [21]. More recently, this pseudometric has
been extended to consider internal non-determinism and weak bisimulation in [23].
Although the use of different mathematical structures makes it difficult a direct com-

parison with these works, the measure for the distance resulting in our approach seems to
be substantially the same: it is zero exactly when processes are (weak) bisimilar. A more
important difference is in the methodology used to define process equivalences. In our ap-
proach these result in probabilistic abstract interpretations of the underlying Markov chain:
two processes are equivalent if there exists a probabilistic abstraction of both. Moreover, as
shown in [55], we are able to give ameaning to the quantity measuring the distance between
two processes in terms of the number of tests an external observer needs to perform in order
to distinguish them. This statistical interpretation comes from a straightforward application
of standard methods in mathematical statistics. This interpretation also makes our approach
closer to theextensionaltrend in traditional testing theory [37,48], where systems can be
distinguished on the base of their interaction with external observers (i.e. tests).
Weargued that our notions of approximate similarity haveanatural application in security

where theycanbe fruitfully employed for thedefinitionof non-interferencebasedproperties.
We have shown this use via the notion ofapproximate confinement, which was previously
investigated in [52] in a programming language setting. The quantityε which defines the
approximation represents a quantitative measure of the confinement of a system which
from a practical viewpoint offers a more meaningful parameter for evaluating the security
of a system. Aldini et al.[1] have adopted a similar approach to study probabilistic non-
interference in a CSP-like calculus modelled via a generative-reactive transition system. In
their work a notion of probabilistic weak bisimulation withε-precision is introduced, which
allows to identify processes with a small difference in their probabilistic behaviour. This
difference is defined in terms of the probabilities on the transitions on each action.As shown
in [2], computing this difference corresponds in our approach to taking the supremum norm
of a vector encoding the difference between the transition probabilities of two processes for
each action.
The statistical interpretation of the numberεmentioned above corresponds in the security

context to the number of tests needed to a spy to disclose hidden information. In a previous
paper [55] we used very similar arguments for the approximation of probabilistic input–
output observables. The difference to the current setting is in the nature of tests we allow
for. In [55] we were observing the final results in a certain computational context (i.e. a
spy); in the current setting we test in each computational step the chances of reaching a
certain (equivalence) class of states, depending on the initial state. Other options can be
investigated in order to quantify the difference between two processes on the basis of some
(observable) probability distributions—be it the final results as in [55] or the single-step
distributions as in the current setting—are to consider theirmutual information[3] or their
Kullback–Leiber information divergence[67].
We expect that our linear operator approach towards process equivalences may lead

also to efficient implementations. A brute force approach (e.g. checking for all possible
classification matrices) is prohibitively expensive. Given that the matrix representations
of PTS’s are typically very sparse, it seems nevertheless possible to combine efficient

54 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

numerical algorithms—in particular in the area of linear optimisation—and graph based
algorithms in order to develop fast algorithms for checking, for example, if two processes
are weakly bisimilar. A similar hybrid approach appears to have been successfully applied
to probabilistic model checking[42].

References

[1] A. Aldini, M. Bravetti, R. Gorrieri, A process algebraic approach for the analysis of probabilistic non-
interference, J. Comput. Security, 2003, to appear.

[2] A. Aldini, A. Di Pierro, A quantitative approach to noninterference for probabilistic systems, in: M. Bravetti,
G. Gorrieri (Eds.), Electronic Notes in Theoretical Computer Science,Vol. 99. Elsevier Science,Amsterdam,
2004 (Proc. MEFISTO Project 2003, Formal Methods for Security and Time).

[3] D. Applebaum, Probability and Information—An Integrated Approach, Cambridge University Press,
Cambridge, 1996.

[4] C. Baier, H. Hermanns,Weak bisimulation for fully probabilistic processes, in: Proc. 9th Int. Conf. Computer
Aided Verification, Lecture Notes in Computer Science, Vol. 1254, Springer, Berlin, 1997, pp. 119–130.

[5] J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.), Handbook of Process Algebra, Elsevier Science, Amsterdam,
2001.

[6] F.J. Beutler, The operator theory of the pseudo-inverse, J. Math. Anal. Appl. 10 (1965) 451–470, 471–493.
[7] N. Biggs, Algebraic Graph Theory, second ed., Cambridge Mathematical Library, Cambridge University

Press, Cambridge, 1993.
[8] P. Billingsley, Probability and Measure, second ed., Wiley, NewYork, 1986.
[9] A. Böttcher, B. Silbermann, Introduction to Large Truncated Toeplitz Matrices, Springer, NewYork, 1999.
[10] F. van Breugel, J. Worrell, An algorithm for quantitative verification of probabilistic transition systems, in:

Proc. CONCUR’01, Lecture Notes in Computer Science, Vol. 2154, Springer, Berlin, 2001.
[11] F. van Breugel, J. Worrell, Towards quantitative verification of probabilistic transition systems, in: Proc.

ICALP’01, Lecture Notes in Computer Science, Vol. 2076, Springer, Berlin, 2001, pp. 421–432.
[12] S.L. Campbell, D. Meyer, Generalized Inverse of Linear Transformations, Constable and Company, London,

1979.
[13] H. Cavusoglu, B. Mishra, S. Raghunathan, A model for evaluating IT security investments, Comm.ACM 47

(7) (2004) 87–92.
[14] A.Z.R. Cleaveland, S. Smolka, Testing preorders for probabilistic processes, in: Proc. ICALP 92, Lecture

Notes in Computer Science, Vol. 623, Springer, Berlin, 1992, pp. 708–719.
[15] J.B. Conway,A Course in FunctionalAnalysis, second ed., Graduate Texts in Mathematics,Vol. 96, Springer,

NewYork, 1990.
[16] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints, in: Proc. POPL’77, Los Angeles, 1977, pp. 238–252.
[17] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Proc. POPL’79, San Antonio,

TX, 1979, pp. 269–282.
[18] P. Cousot, R. Cousot, Abstract interpretation and applications to logic programs, J. Logic Program. 13 (2–3)

(1992) 103–180.
[19] D. Dams, R. Gerth, O. Grumberg, Abstract interpretation of reactive systems, ACM Trans. Program.

Languages Systems 19 (2) (1997) 253–291.
[20] K.R. Davidson, C*-Algebras by Example, Fields Institute Monographs, Vol. 6, American Mathematical

Society, Providence, RI, 1996.
[21] J. Desharnais, A. Edalat, P. Panangaden, Bisimulation for labelled Markov processes, Inform. Comput. 179

(2002) 163–193.
[22] J. Desharnais, R. Jagadeesan, V. Gupta, P. Panangaden, Metrics for labeled Markov systems, in: Proc. 10th

Int. Conf. on Concurrency Theory, Lecture Notes in Computer Science, Vol. 1664, Springer, Berlin, 1999,
pp. 258–273.

[23] J. Desharnais, R. Jagadeesan, V. Gupta, P. Panangaden, The metric analogue of weak bisimulation for
probabilistic processes, in: Proc. LICS’02, , IEEE, Copenhagen, Denmark, 22–25 July 2002, pp. 413–422.

A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56 55

[24] F. Deutsch, Bet approximation in inner product spaces, CMS Books in Mathematics, Vol. 7, Springer, New
York, Berlin, 2001.

[25] R. Diestel, Graph theory, Graduate Texts in Mathematics, Vol. 173, Springer, NewYork, Heidelberg, Berlin,
1997.

[26] E.A. Feinberg, A. Shwartz (Eds.), Handbook of Markov Decision Processes, Kluwer, Dordrecht, 2002.
[27] P.A. Fillmore, A User’s Guide to Operator Algebras, Wiley, NewYork, Chichester, 1996.
[28] R.J. van Glabbeek, The Linear Time—Branching Time Spectrum I. The Semantics of Concrete, Sequential

Processes, Elsevier Science, Amsterdam, 2001, pp. 3–99 (Chapter 1).
[29] R.J. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative and stratified models of probabilistic

processes, Inform. Comput. 121 (1995) 59–80.
[30] C. Godsil, G. Royle, Algebraic graph theory, Graduate Texts in Mathematics, Vol. 207, Springer, NewYork,

Heidelberg, Berlin, 2001.
[31] J. Goguen, J. Meseguer, Security policies and security models, in: IEEESymp. on Security and Privacy, IEEE

Computer Society Press, Rockville, MD, 1982, pp. 11–20.
[32] J.W. Gray III, Towards a mathematical foundation for information flow security, in: Proc.1991 Symp. on

Research in Security and Privacy, IEEE, Oakland, CA, May 1991, pp. 21–34.
[33] W.H. Greub, Linear Algebra, third ed., Grundlehren der mathematischen Wissenschaften, Vol. 97, Springer,

Berlin, NewYork, 1967.
[34] G.R. Grimmett, D.R. Stirzaker, Probability and Random Processes, second ed., Clarendon Press, Oxford,

1992.
[35] C.M. Grinstead, J.L. Snell, Introduction to Probability, second revised ed., American Mathematical Society,

Providence, RI, 1997.
[36] H. Hansson, Time and probability in formal design of distributed systems, Ph.D. Thesis, Uppsala University,

1994.
[37] M.C.B. Hennessy, Algebraic Theory of Processes, MIT Press, Cambridge, MA, 1988.
[38] B. Jonsson, W.Yi, Compositional testing preorders for probabilistic processes, in: Proc. LICS’95, 1995, pp.

431–443.
[39] B. Jonsson,W.Yi, K.G. Larsen, Probabilistic Extensions of ProcessAlgebras, Elsevier Science, Amsterdam,

2001, pp. 685–710 (Chapter 11).
[40] R.V. Kadison, J.R. Ringrose, Fundamentals of the theory of operator algebras: Vol. I—elementary theory,

Graduate Studies in Mathematics, Vol. 15, American Mathematical Society, Providence, RI, 1997 (reprint
fromAcademic Press edition 1983).

[41] J.G. Kemeny, J.L. Snell, Finite Markov Chains, D. Van Nostrand Company, Princeton, NJ, 1960.
[42] M. Kwiatkowska, G. Norman, D. Parker, PRISM: Probabilistic Symbolic Model Checker, in: TOOLS 2002,

Lecture Notes in Computer Science, Vol. 2324, Springer, Berlin, 2002, pp. 200–204.
[43] B.W. Lampson, A note on the confinement problem, Comm. ACM 16 (10) (1973) 613–615.
[44] K.G. Larsen, A. Skou, Bisimulation through probabilistic testing, Inform. Comput. 94 (1991) 1–28.
[45] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92, Springer,

Berlin, NewYork, 1980.
[46] B. Mohar, W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1988) 209–234.
[47] G.J. Murphy,C∗-Algebras and Operator Theory, Academic Press, San Diego, 1990.
[48] R. De Nicola, M.C.B. Hennessy, Testing equivalences for processes, Theoret. Comput. Sci. 34 (1983) 83–

133.
[49] F. Nielson, H. Riis Nielson, C. Hankin, Principles of ProgramAnalysis, Springer, Berlin, Heidelberg, 1999.
[50] A. Philippou, I. Lee, O. Sokolsky, Weak bisimulation for probabilistic processes, in: Proc. CONCUR 2000,

Lecture Notes in Computer Science, Vol. 1887, Springer, Berlin, 2000, pp. 334–349.
[51] A. Di Pierro, C. Hankin, H. Wiklicky, Probabilistic confinement in a declarative framework, in: Declarative

Programming—SelectedPapers fromAGP2000, LaHavana,Cuba,ElectronicNotes inTheoreticalComputer
Science, Vol. 48, Elsevier, Amsterdam, 2001, pp. 1–23.

[52] A. Di Pierro, C. Hankin, H.Wiklicky,Approximate non-interference, in: Proc. CSFW’02, IEEE, CapeBreton,
Canada, 24–26 June 2002, pp. 3–17.

[53] A. Di Pierro, C. Hankin, H. Wiklicky, Approximate confinement under uniform attacks, in: Proc. SAS’02,
Lecture Notes in Computer Science, Vol. 2477, Springer, Berlin, 2002, pp. 310–325.

56 A. Di Pierro et al. / Theoretical Computer Science 340 (2005) 3–56

[54] A. Di Pierro, C. Hankin, H. Wiklicky, Quantitative relations and approximate process equivalences, in: R.
Amadio, D. Lugiez (Eds.), Proc. CONCUR 2003, 14th Int. Conf. on Concurrency Theory, Lecture Notes in
Computer Science, Vol. 2761, Springer, Berlin, 2003, pp. 508–522.

[55] A. Di Pierro, C. Hankin, H. Wiklicky, Approximate non-interference, J. Comput. Security 12 (1) (2004)
37–81.

[56] A. Di Pierro, H.Wiklicky, Concurrent constraint programming: towards probabilistic abstract interpretation,
in: Proc. PPDP’00, ACM, Montréal, Canada, 2000, pp. 127–138.

[57] A. Di Pierro, H.Wiklicky, Measuring the precision of abstract interpretations, in: Proc. LOPSTR’00, Lecture
Notes in Computer Science, Vol. 2042, Springer, Berlin, 2001, pp. 147–164.

[58] P.Y.A. Ryan, J. McLean, J. Millen, V. Gilgor, Non-interference who needs it? in: Proc. 14th IEEE Computer
Security Foundations Workshop, IEEE, Cape Breton, Nova Scotia, Canada, June 2001, pp. 237–238.

[59] P.Y.A. Ryan, S.A. Schneider, Process algebra and non-interference, J. Comput. Security 9 (1,2) (2001)
75–103 (special issue on CSFW-12).

[60] D.A. Schmidt, Binary relations for abstraction and refinement, in:Workshop on Refinement andAbstraction,
Amagasaki, Japan, November 1999.

[61] R. Segala, N. Lynch, Probabilistic simulations for probabilistic processes, in: Proc. CONCUR 94, Lecture
Notes in Computer Science, Vol. 836, Springer, Berlin, 1994, pp. 481–496.

[62] J. Shao, Mathematical Statistics, Springer Texts in Statistics, Springer, NewYork, Berlin, Heidelberg, 1999.
[63] G. Smith, Probabilistic noninterference through weak probabilistic bi-simulation, in: Proc. 16th Computer

Security Foundations Workshop (CSFW’03), IEEE, 2003, pp. 3–13.
[64] E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Texts in Applied

Mathematics, Vol. 6, Springer, NewYork, Heidelberg, Berlin, 1990.
[65] M. Vardi, Automatic verification of probabilistic concurrent finite-state programs, in: Proc. FOCS’85, 1985,

pp. 332–344.
[66] E.P. de Vink, J.J.M.M. Rutten, Bisimulation for probabilistic transition systems: a coalgebraic approach,

Theoret. Comput. Sci. 221 (1999) 271–293.
[67] J. Whittaker, Graphical Models in Applied Multivariate Statistics, Wiley, Chicester, NewYork, 1990.
[68] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, Vol. 138,

Cambridge University Press, Cambridge, 2000.
[69] K.Yosida, Functional Analysis, Springer, Berlin, Heidelberg, NewYork, 1980.

