125,552 research outputs found

    On the complexity and the information content of cosmic structures

    Full text link
    The emergence of cosmic structure is commonly considered one of the most complex phenomena in Nature. However, this complexity has never been defined nor measured in a quantitative and objective way. In this work we propose a method to measure the information content of cosmic structure and to quantify the complexity that emerges from it, based on Information Theory. The emergence of complex evolutionary patterns is studied with a statistical symbolic analysis of the datastream produced by state-of-the-art cosmological simulations of forming galaxy clusters. This powerful approach allows us to measure how many bits of information are necessary to predict the evolution of energy fields in a statistical way, and it offers a simple way to quantify when, where and how the cosmic gas behaves in complex ways. The most complex behaviors are found in the peripheral regions of galaxy clusters, where supersonic flows drive shocks and large energy fluctuations over a few tens of million years. Describing the evolution of magnetic energy requires at least a twice as large amount of bits than for the other energy fields. When radiative cooling and feedback from galaxy formation are considered, the cosmic gas is overall found to double its degree of complexity. In the future, Cosmic Information Theory can significantly increase our understanding of the emergence of cosmic structure as it represents an innovative framework to design and analyze complex simulations of the Universe in a simple, yet powerful way.Comment: 15 pages, 14 figures. MNRAS accepted, in pres

    Brain complexity born out of criticality

    Full text link
    In this essay we elaborate on recent evidence demonstrating the presence of a second order phase transition in human brain dynamics and discuss its consequences for theoretical approaches to brain function. We review early evidence of criticality in brain dynamics at different spatial and temporal scales, and we stress how it was necessary to unify concepts and analysis techniques across scales to introduce the adequate order and control parameters which define the transition. A discussion on the relation between structural vs. dynamical complexity exposes future steps to understand the dynamics of the connectome (structure) from which emerges the cognitome (function).Comment: In Proceedings of the 12th Granada Seminar "Physics, Computation, and the Mind - Advances and Challenges at Interfaces-". (J. Marro, P. L. Garrido & J. J. Torres, Eds.) American Institute of Physics (2012, in press

    Testing the structure and process of personality using ambulatory assessment data : an overview of within-person and person-specific techniques

    Get PDF
    In the present article, we discuss the potential of ambulatory assessment for an idiographic study of the structure and process of personality. To this end, we first review important methodological issues related to the design and implementation of an ambulatory assessment study in the personality domain, including methods of ambulatory assessment, frequency of measurement and duration of the study, ambulatory assessment scales and questionnaires, participant selection, training and motivation, and ambulatory assessment hard- and software. Next, we provide a detailed outline of available analytical approaches that can be used to analyze the intensive longitudinal data generated by an ambulatory assessment study. By doing this, we hope to familiarize personality scholars with these methods and to provide guidance for their use in the field of personality psychology and beyond

    Complexity, parallel computation and statistical physics

    Full text link
    The intuition that a long history is required for the emergence of complexity in natural systems is formalized using the notion of depth. The depth of a system is defined in terms of the number of parallel computational steps needed to simulate it. Depth provides an objective, irreducible measure of history applicable to systems of the kind studied in statistical physics. It is argued that physical complexity cannot occur in the absence of substantial depth and that depth is a useful proxy for physical complexity. The ideas are illustrated for a variety of systems in statistical physics.Comment: 21 pages, 7 figure

    Dwelling Quietly in the Rich Club: Brain Network Determinants of Slow Cortical Fluctuations

    Full text link
    For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously -- elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala, and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow time scales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding "feeder" cortical regions show unstable, rapidly fluctuating dynamics likely crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.Comment: 35 pages, 6 figure
    corecore