29 research outputs found

    SwarmTouch: Tactile Interaction of Human with Impedance Controlled Swarm of Nano-Quadrotors

    Full text link
    We propose a novel interaction strategy for a human-swarm communication when a human operator guides a formation of quadrotors with impedance control and receives vibrotactile feedback. The presented approach takes into account the human hand velocity and changes the formation shape and dynamics accordingly using impedance interlinks simulated between quadrotors, which helps to achieve a life-like swarm behavior. Experimental results with Crazyflie 2.0 quadrotor platform validate the proposed control algorithm. The tactile patterns representing dynamics of the swarm (extension or contraction) are proposed. The user feels the state of the swarm at his fingertips and receives valuable information to improve the controllability of the complex life-like formation. The user study revealed the patterns with high recognition rates. Subjects stated that tactile sensation improves the ability to guide the drone formation and makes the human-swarm communication much more interactive. The proposed technology can potentially have a strong impact on the human-swarm interaction, providing a new level of intuitiveness and immersion into the swarm navigation.Comment: \c{opyright} 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. arXiv admin note: substantial text overlap with arXiv:1909.0229

    Development and evaluation of mixed reality-enhanced robotic systems for intuitive tele-manipulation and telemanufacturing tasks in hazardous conditions

    Get PDF
    In recent years, with the rapid development of space exploration, deep-sea discovery, nuclear rehabilitation and management, and robotic-assisted medical devices, there is an urgent need for humans to interactively control robotic systems to perform increasingly precise remote operations. The value of medical telerobotic applications during the recent coronavirus pandemic has also been demonstrated and will grow in the future. This thesis investigates novel approaches to the development and evaluation of a mixed reality-enhanced telerobotic platform for intuitive remote teleoperation applications in dangerous and difficult working conditions, such as contaminated sites and undersea or extreme welding scenarios. This research aims to remove human workers from the harmful working environments by equipping complex robotic systems with human intelligence and command/control via intuitive and natural human-robot- interaction, including the implementation of MR techniques to improve the user's situational awareness, depth perception, and spatial cognition, which are fundamental to effective and efficient teleoperation. The proposed robotic mobile manipulation platform consists of a UR5 industrial manipulator, 3D-printed parallel gripper, and customized mobile base, which is envisaged to be controlled by non-skilled operators who are physically separated from the robot working space through an MR-based vision/motion mapping approach. The platform development process involved CAD/CAE/CAM and rapid prototyping techniques, such as 3D printing and laser cutting. Robot Operating System (ROS) and Unity 3D are employed in the developing process to enable the embedded system to intuitively control the robotic system and ensure the implementation of immersive and natural human-robot interactive teleoperation. This research presents an integrated motion/vision retargeting scheme based on a mixed reality subspace approach for intuitive and immersive telemanipulation. An imitation-based velocity- centric motion mapping is implemented via the MR subspace to accurately track operator hand movements for robot motion control, and enables spatial velocity-based control of the robot tool center point (TCP). The proposed system allows precise manipulation of end-effector position and orientation to readily adjust the corresponding velocity of maneuvering. A mixed reality-based multi-view merging framework for immersive and intuitive telemanipulation of a complex mobile manipulator with integrated 3D/2D vision is presented. The proposed 3D immersive telerobotic schemes provide the users with depth perception through the merging of multiple 3D/2D views of the remote environment via MR subspace. The mobile manipulator platform can be effectively controlled by non-skilled operators who are physically separated from the robot working space through a velocity-based imitative motion mapping approach. Finally, this thesis presents an integrated mixed reality and haptic feedback scheme for intuitive and immersive teleoperation of robotic welding systems. By incorporating MR technology, the user is fully immersed in a virtual operating space augmented by real-time visual feedback from the robot working space. The proposed mixed reality virtual fixture integration approach implements hybrid haptic constraints to guide the operator’s hand movements following the conical guidance to effectively align the welding torch for welding and constrain the welding operation within a collision-free area. Overall, this thesis presents a complete tele-robotic application space technology using mixed reality and immersive elements to effectively translate the operator into the robot’s space in an intuitive and natural manner. The results are thus a step forward in cost-effective and computationally effective human-robot interaction research and technologies. The system presented is readily extensible to a range of potential applications beyond the robotic tele- welding and tele-manipulation tasks used to demonstrate, optimise, and prove the concepts

    Development and evaluation of a collision avoidance system for supervisory control of a micro aerial vehicle

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 195-108).Recent technological advances have enabled Unmanned Aerial Vehicles (UAVs) and Micro Aerial Vehicles (MAVs) to become increasingly prevalent in a variety of domains. From military surveillance to disaster relief to search-and-rescue tasks, these systems have the capacity to assist in difficult or dangerous tasks and to potentially save lives. To enable operation by minimally trained personnel, the control interfaces require increased usability in order to maintain safety and mission effectiveness. In particular, as these systems are used in the real world, the operator must be able to navigate around obstacles in unknown and unstructured environments. In order to address this problem, the Collision and Obstacle Detection and Alerting (CODA) display was designed and integrated into a smartphone-based MAV control interface. The CODA display uses a combination of visual and haptic alerts to warn the operator of potential obstacles in the environment to help the operator navigate more effectively and avoid collisions. To assess the usability of this system, a within-subjects experiment was conducted in which participants used the mobile interface to pilot a MAV both with and without the assistance of the CODA display. The task consisted of navigating though a simulated indoor environment and locating visual targets. Metrics for the two conditions examined performance, control strategies, and subjective feedback from each participant. Overall, the addition of the CODA display resulted in higher performance, lowering the crash rate and decreasing the amount of time required to complete the tasks. Despite increasing the complexity of the interface, adding the CODA display did not significantly impact usability, and participants preferred operating the MAV with the CODA display. These results demonstrate that the CODA display provides the basis for an effective alerting tool to assist with MAV operation for exploring unknown environments. Future work should explore expansion to three-dimensional sensing and alerting capabilities as well as validation in an outdoor environment.by Kimberly F. Jackson.S.M

    Modelado de sensores piezoresistivos y uso de una interfaz basada en guantes de datos para el control de impedancia de manipuladores robóticos

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Arquitectura de Computadores y Automática, leída el 21-02-2014Sección Deptal. de Arquitectura de Computadores y Automática (Físicas)Fac. de Ciencias FísicasTRUEunpu

    Dynamic virtual reality user interface for teleoperation of heterogeneous robot teams

    Full text link
    This research investigates the possibility to improve current teleoperation control for heterogeneous robot teams using modern Human-Computer Interaction (HCI) techniques such as Virtual Reality. It proposes a dynamic teleoperation Virtual Reality User Interface (VRUI) framework to improve the current approach to teleoperating heterogeneous robot teams

    A white paper: NASA virtual environment research, applications, and technology

    Get PDF
    Research support for Virtual Environment technology development has been a part of NASA's human factors research program since 1985. Under the auspices of the Office of Aeronautics and Space Technology (OAST), initial funding was provided to the Aerospace Human Factors Research Division, Ames Research Center, which resulted in the origination of this technology. Since 1985, other Centers have begun using and developing this technology. At each research and space flight center, NASA missions have been major drivers of the technology. This White Paper was the joint effort of all the Centers which have been involved in the development of technology and its applications to their unique missions. Appendix A is the list of those who have worked to prepare the document, directed by Dr. Cynthia H. Null, Ames Research Center, and Dr. James P. Jenkins, NASA Headquarters. This White Paper describes the technology and its applications in NASA Centers (Chapters 1, 2 and 3), the potential roles it can take in NASA (Chapters 4 and 5), and a roadmap of the next 5 years (FY 1994-1998). The audience for this White Paper consists of managers, engineers, scientists and the general public with an interest in Virtual Environment technology. Those who read the paper will determine whether this roadmap, or others, are to be followed

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers

    The Sixth Annual Workshop on Space Operations Applications and Research (SOAR 1992)

    Get PDF
    This document contains papers presented at the Space Operations, Applications, and Research Symposium (SOAR) hosted by the U.S. Air Force (USAF) on 4-6 Aug. 1992 and held at the JSC Gilruth Recreation Center. The symposium was cosponsored by the Air Force Material Command and by NASA/JSC. Key technical areas covered during the symposium were robotic and telepresence, automation and intelligent systems, human factors, life sciences, and space maintenance and servicing. The SOAR differed from most other conferences in that it was concerned with Government-sponsored research and development relevant to aerospace operations. The symposium's proceedings include papers covering various disciplines presented by experts from NASA, the USAF, universities, and industry

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 2

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) and cosponsored by NASA/JSC and U.S. Air Force Materiel Command. SOAR included NASA and USAF programmatic overviews, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research
    corecore