11 research outputs found

    Influence of surface roughness sample size for C-band SAR backscatter applications on agricultural soils

    Get PDF
    Soil surface roughness determines the backscatter coefficient observed by radar sensors. The objective of this letter was to determine the surface roughness sample size required in synthetic aperture radar applications and to provide some guidelines on roughness characterization in agricultural soils for these applications. With this aim, a data set consisting of ten ENVISAT/ASAR observations acquired coinciding with soil moisture and surface roughness surveys has been processed. The analysis consisted of: 1) assessing the accuracies of roughness parameters s and l depending on the number of 1-m-long profiles measured per field; 2) computing the correlation of field average roughness parameters with backscatter observations; and 3) evaluating the goodness of fit of three widely used backscatter models, i.e., integral equation model (IEM), geometrical optics model (GOM), and Oh model. The results obtained illustrate a different behavior of the two roughness parameters. A minimum of 10-15 profiles can be considered sufficient for an accurate determination of s, while 20 profiles might still be not enough for accurately estimating l. The correlation analysis revealed a clear sensitivity of backscatter to surface roughness. For sample sizes > 15 profiles, R values were as high as 0.6 for s and similar to 0.35 for l, while for smaller sample sizes R values dropped significantly. Similar results were obtained when applying the backscatter models, with enhanced model precision for larger sample sizes. However, IEM and GOM results were poorer than those obtained with the Oh model and more affected by lower sample sizes, probably due to larger uncertainly of l

    Multi-dimensional characterization of soil surface roughness for microwave remote sensing applications

    Get PDF

    Development of a Multiband Remote Sensing System for Determination of Unsaturated Soil Properties

    Get PDF
    A multiband system including active microwave sensing and visible-near infrared reflectance spectroscopy was developed to measure unsaturated soil properties in both field and laboratory environments. Remote measurements of soil volumetric water content (Ξv), soil water matric potential (ψ), and soil index properties (liquid limit [LL], plastic limit [PL], and clay fraction [CF]) were conducted. Field-based measurement of Ξv was conducted using a ground-based radar system and field measurements within 10 percentage points of measurements acquired with traditional sampling techniques were obtained. Laboratory-based, visible and near infrared spectroscopy was found to be capable of obtaining empirical, soil specific regression functions (partial least squares [PLS]) with coefficient of determination (R2) values greater than 0.9 for the LL, PL, and CF. A silt sized granite material, a silt sized illite clay, and a silt sized kaolinite clay were optically characterized within the visible to near-infrared wavelength range and were found to have absorption coefficient values of 0.81 to 78.8cm-1, 0.93 to 150.0cm-1, and 0.12 to 4.02cm-1, respectively. Measurements of Ξv and ψ using an analytical solution based on the Kubelka-Munk color theory were found not to provide viable results. Soil water characteristic curves (SWCC) were fitted to both laboratory-obtained and remotely-sensed data between -10 and -1500kPa. Ξv for the laboratory-obtained SWCC (SWCC-L) and remotely-obtained SWCC (SWCC-R) for the granite silt were within 1 percentage points for ψ values less than -100kPa. The SWCC-L and SWCC-R values for the silt sized illite clay were within 2 percentage points for values of ψ greater than 400kPa. The SWCC-L and SWCC-R for the silt sized kaolinite clay were within 8 percentage points for all ψ values. For the Donna Fill and illite soil types ψ values within 150kPa of the applied pressure were obtained. Specific contributions of this research project were the evaluation of remote and proximal (active microwave and diffuse reflectance spectroscopy) sensing techniques as a means of acquiring measurements of soil properties. Microwave measurements of field Ξv were demonstrated for ground based systems. Additional areas of research in both laboratory- and field-scale measurements of soil hydraulic and index properties are identified and discussed

    Estimation de l'humidité du sol à l'aide d'images RADARSAT-2 et de réseaux de neurones : application aux bassins versants Trent et Severn, Ontario

    Get PDF
    L’humiditĂ© du sol joue un rĂŽle important dans le partitionnement de l’eau entre l’infiltration et le ruissellement de surface, qui influence directement les dĂ©bits en riviĂšre et les niveaux des rĂ©servoirs. La connaissance de la distribution spatiale de l’humiditĂ© du sol permet donc d’optimiser les diffĂ©rents usages de la ressource en eau en pĂ©riodes sĂšches et d’aider la prĂ©vision et la gestion d’inondations lors de fortes pluies. La grande variabilitĂ© spatiale de l’humiditĂ© du sol rend toutefois difficile l’utilisation de capteurs in situ pour en faire le suivi sur de grands territoires tels que les bassins versants. La tĂ©lĂ©dĂ©tection peut apporter une valeur ajoutĂ©e de par son potentiel pour estimer l’humiditĂ© du sol Ă  l’échelle du bassin versant. Le prĂ©sent projet porte sur l’estimation de l’humiditĂ© du sol dans les bassins versants Trent et Severn en Ontario qui possĂšdent une superficie combinĂ©e de 18 360 kmÂČ. L’approche adoptĂ©e est basĂ©e sur les rĂ©seaux de neurones artificiels (RNA). Deux approches ont Ă©tĂ© Ă©valuĂ©es. La premiĂšre, l’approche polarisation simple et double utilise uniquement des donnĂ©es radar acquises en polarisation HH ou HV. La seconde approche, soit l’approche polarimĂ©trique, utilise des donnĂ©es en polarisation HH, HV et VV en plus de paramĂštres polarimĂ©triques. Au total, 37 images RADARSAT-2 ont Ă©tĂ© acquises en diffĂ©rentes polarisations et rĂ©solutions spatiales entre les mois de mai 2012 et aoĂ»t 2013. En plus des coefficients de rĂ©trodiffusion radar, des donnĂ©es de pente, de texture du sol et de vĂ©gĂ©tation ainsi que des paramĂštres obtenus suite Ă  une dĂ©composition polarimĂ©trique de la cible ont Ă©tĂ© utilisĂ©s comme intrants aux RNA. Des cartes d’humiditĂ© du sol moyenne et d’incertitude, reprĂ©sentant, dans l’ordre, la moyenne et l’écart-type des estimations faites par les 30 RNA sĂ©lectionnĂ©s, ont Ă©tĂ© produites. Les performances et les cartes obtenues ont Ă©tĂ© analysĂ©es afin de dĂ©terminer l’approche la plus avantageuse pour cartographier l’humiditĂ© du sol Ă  l’échelle du bassin versant. Ce projet de recherche a illustrĂ© le potentiel, mais aussi les enjeux, liĂ©s Ă  l’estimation de l’humiditĂ© du sol Ă  l’échelle du bassin. Il a Ă©tĂ© dĂ©montrĂ© que, dans un contexte opĂ©rationnel, l’approche polarisation simple et double est la plus avantageuse. Les cartes d’humiditĂ© produites avec l’approche polarimĂ©trique, plus coĂ»teuses, n’ont pas montrĂ© d’amĂ©liorations statistiquement significatives par rapport Ă  l’approche polarisation simple et double. De tous les RNA testĂ©s, celui offrant la meilleure performance utilise l’angle d’incidence et les coefficients de rĂ©trodiffusion radar HH et HV comme donnĂ©es d’entraĂźnement. Il a aussi Ă©tĂ© dĂ©montrĂ© que l’incertitude sur l’estimation de l’humiditĂ© du sol est Ă©troitement liĂ©e aux donnĂ©es d’entraĂźnement. Le recours Ă  des variables statiques dans le temps, comme la texture du sol, a affectĂ© nĂ©gativement et de maniĂšre importante les cartes d’humiditĂ© du sol, et ce, malgrĂ© de bonnes performances selon des critĂšres statistiques comme le coefficient de Pearson et l’erreur quadratique moyenne. L’analyse visuelle des cartes d’humiditĂ© du sol demeure donc un moyen privilĂ©giĂ© pour Ă©valuer la performance des RNA. Des pistes de recherche sont suggĂ©rĂ©es en vue d’amĂ©liorer la performance des RNA. Une premiĂšre avenue serait le recours Ă  une plus grande quantitĂ© de donnĂ©es pour leur entraĂźnement, qui pourraient ĂȘtre gĂ©nĂ©rĂ©es Ă  partir de modĂšles de rĂ©trodiffusion Ă  base physique. On pourrait Ă©galement corriger les coefficients de rĂ©trodiffusion pour diminuer l’influence de la vĂ©gĂ©tation sur le signal rĂ©trodiffusĂ© avant l’entraĂźnement des rĂ©seaux

    Determination of Soil Moisture and Vegetation Parameters from Spaceborne C-Band SAR on Agricultural Areas

    Get PDF
    Soil moisture is an important factor influencing hydrological and meteorological exchange processes at the land surface. As ground measurements of soil moisture cannot provide spatial-ly distributed information, remote sensing of soil moisture using Synthetic Aperture Radar (SAR) offers an alternative. To derive soil moisture from vegetated areas with SAR, the influ-ence of vegetation parameters on SAR backscatter must be considered, though. The first part of the study analyses the potential to use a qualitative soil moisture index from ERS-SAR with high spatial resolution that can be used without ground truth soil moisture and vegetation data. The index ranges from low to high soil moisture instead of giving absolute soil moisture values. The method is applied to agricultural areas in the catchment of the river Rur in Germany. The soil moisture index represents wetting and drying tendencies well when compared to precipitation records and behaves like in-situ soil moisture regarding its variabil-ity. The analysis of spatial patterns from the soil moisture index by using semivariograms re-veals that differences in management that result for example in differences in evapotranspira-tion from one to the next agricultural field, are the only influence on spatial patterns of soil moisture in the Rur catchment. This study confirms the applicability of a high-resolution soil moisture index for monitoring soil moisture changes and to analyze spatial soil moisture pat-terns. The soil moisture index could be used as input to hydrological models and could substi-tute antecedent precipitation, which needs precipitation stations, as a proxy to soil moisture. The second part of the study examines the capability of dual-polarimetric C-Band SAR data with high incidence angles from the Sentinel-1 satellites to derive soil moisture and vegetation parameters quantitatively. A processing scheme for Sentinel-1 Level-1 data is presented to produce images of different SAR observables that are compared to extensive ground meas-urements of soil moisture and vegetation parameters. It shows that soil moisture retrieval is feasible from bare soil and maize with an RMSE of 7 Vol%. From other land use types, dif-ferent vegetation parameters could be retrieved with an error of around 25 % of their range, in median. Neither soil moisture nor vegetation parameters could be derived from grassland and triticale due to the influence of the thatch layer and the missing of a clear row structure. Both grassland and triticale are in contrast to the other crops not sown in rows on our research fields. The analysis has shown that the incidence angle is of main importance for the capability of C-band SAR to derive soil moisture and that the availability of at least one co- and cross-polarized channel is important for the quantitative retrieval of land surface parameters. The dual-pol H2α parameters were not meaningful for soil moisture and vegetation parameter re-trieval in this study

    Quantitative Estimation of Surface Soil Moisture in Agricultural Landscapes using Spaceborne Synthetic Aperture Radar Imaging at Different Frequencies and Polarizations

    Get PDF
    Soil moisture and its distribution in space and time plays an important role in the surface energy balance at the soil-atmosphere interface. It is a key variable influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Due to their large spatial variability, estimation of spatial patterns of soil moisture from field measurements is difficult and not feasible for large scale analyses. In the past decades, Synthetic Aperture Radar (SAR) remote sensing has proven its potential to quantitatively estimate near surface soil moisture at high spatial resolutions. Since the knowledge of the basic SAR concepts is important to understand the impact of different natural terrain features on the quantitative estimation of soil moisture and other surface parameters, the fundamental principles of synthetic aperture radar imaging are discussed. Also the two spaceborne SAR missions whose data was used in this study, the ENVISAT of the European Space Agency (ESA) and the ALOS of the Japanese Aerospace Exploration Agency (JAXA), are introduced. Subsequently, the two essential surface properties in the field of radar remote sensing, surface soil moisture and surface roughness are defined, and the established methods of their measurement are described. The in situ data used in this study, as well as the research area, the River Rur catchment, with the individual test sites where the data was collected between 2007 and 2010, are specified. On this basis, the important scattering theories in radar polarimetry are discussed and their application is demonstrated using novel polarimetric ALOS/PALSAR data. A critical review of different classical approaches to invert soil moisture from SAR imaging is provided. Five prevalent models have been chosen with the aim to provide an overview of the evolution of ideas and techniques in the field of soil moisture estimation from active microwave data. As the core of this work, a new semi-empirical model for the inversion of surface soil moisture from dual polarimetric L-band SAR data is introduced. This novel approach utilizes advanced polarimetric decomposition techniques to correct for the disturbing effects from surface roughness and vegetation on the soil moisture retrieval without the use of a priori knowledge. The land use specific algorithms for bare soil, grassland, sugar beet, and winter wheat allow quantitative estimations with accuracies in the order of 4 Vol.-%. Application of remotely sensed soil moisture patterns is demonstrated on the basis of mesoscale SAR data by investigating the variability of soil moisture patterns at different spatial scales ranging from field scale to catchment scale. The results show that the variability of surface soil moisture decreases with increasing wetness states at all scales. Finally, the conclusions from this dissertational research are summarized and future perspectives on how to extend the proposed model by means of improved ground based measurements and upcoming advances in sensor technology are discussed. The results obtained in this thesis lead to the conclusion that state-of-the-art spaceborne dual polarimetric L-band SAR systems are not only suitable to accurately retrieve surface soil moisture contents of bare as well as of vegetated agricultural fields and grassland, but for the first time also allow investigating within-field spatial heterogeneities from space

    Assimilation d'observations de débit et d'humidité du sol dans un modÚle hydrologique distribué, application au bassin versant de la riviÚre des anglais

    Get PDF
    Les techniques d’assimilation de donnĂ©es permettent non seulement d’amĂ©liorer les simulations et prĂ©visions d’un modĂšle par l’intĂ©gration d’observations, mais permettent aussi de porter un diagnostique sur le modĂšle et les observations. Peu de publications se sont intĂ©ressĂ©es Ă  l’assimilation d’observations Ă  un modĂšle hydrologique distribuĂ© Ă  base physique simulant autant les dĂ©bits en riviĂšre que l’humiditĂ© du sol. L’objectif de cette thĂšse est donc d’évaluer l’impact de l’assimilation d’observations de dĂ©bit et d’humiditĂ© du sol sur les simulations du modĂšle hydrologique CATHY. Un filtre d’ensemble de Kalman a Ă©tĂ© utilisĂ© afin d’assimiler des observations de dĂ©bit Ă  l’exutoire, dĂ©bits en amont, humiditĂ© du sol Ă  diffĂ©rentes profondeur (15 cm, 45 cm et 90 cm) mesurĂ©es Ă  l’aide de sondes (stations hydromĂ©tĂ©orologiques) ainsi que des observations d’humiditĂ© du sol en surface estimĂ©es Ă  l’aide de la tĂ©lĂ©dĂ©tection radar. Une mĂ©thodologie permettant d’estimer l’humiditĂ© du sol en surface pour des sols nus ou de faible vĂ©gĂ©tation Ă  l’aide d’images radar multipolarisations (ENVISAT-ASAR) et polarimĂ©triques (RADARSAT-2) a Ă©tĂ© dĂ©veloppĂ©e. Une analyse de l’impact de la vĂ©gĂ©tation a Ă©galement Ă©tĂ© effectuĂ©e. L’utilisation de donnĂ©es polarimĂ©triques plutĂŽt que multipolarisation a permis d’amĂ©liorer l’estimation de l’humiditĂ© du sol pour les champs de faible vĂ©gĂ©tation. La recherche a Ă©galement permis de conclure que l’assimilation d’observations de dĂ©bit Ă  l’exutoire amĂ©liore les simulations de dĂ©bits en amont. Par contre, l’assimilation des observations de dĂ©bit (exutoire ou en amont) dĂ©tĂ©riore les simulations d’humiditĂ© du sol. L’assimilation des observations d’humiditĂ© du sol a mise en Ă©vidence la prĂ©sence d’un biais entre le modĂšle et les observations. L’élimination de ce biais devra faire l’objet de futures recherches. L’assimilation des observations d’humiditĂ© du sol a tout de mĂȘme permis de constater que l’assimilation d’observations provenant d’une seule station a un impact similaire sur les simulations d’humiditĂ© du sol que l’assimilation d’observations provenant de cinq stations. De plus, elle a mise en Ă©vidence l’importance de la frĂ©quence d’assimilation. L’assimilation d’observations d’humiditĂ© du sol en surface (radar) Ă  seulement deux moments sur la pĂ©riode de 90 jours a eu trĂšs peu d’impact sur les simulations. Enfin, l’assimilation d’observations d’humiditĂ© du sol en plus de celle de dĂ©bit Ă  l’exutoire amĂ©liore les simulations de dĂ©bits (exutoire et en amont) sans dĂ©tĂ©riorer les simulations d’humiditĂ© du sol
    corecore