5 research outputs found

    Doelgericht beoordelen van software

    Get PDF

    Model driven language engineering

    Get PDF
    Modeling is a most important exercise in software engineering and development and one of the current practices is object-oriented (OO) modeling. The Object Management Group (OMG) has defined a standard object-oriented modeling language the Unified Modeling Language (UML). The OMG is not only interested in modeling languages; its primary aim is to enable easy integration of software systems and components using vendor-neutral technologies. This thesis investigates the possibilities for designing and implementing modeling frameworks and transformation languages that operate on models and to explore the validation of source and target models. Specifically, we will focus on OO models used in OMG's Model Driven Architecture (MDA), which can be expressed in terms of UML terms (e.g. classes and associations). The thesis presents the Kent Modeling Framework (KMF), a modeling framework that we developed, and describes how this framework can be used to generate a modeling tool from a model. It then proceeds to describe the customization of the generated code, in particular the definition of methods that allows a rapid and repeatable instantiation of a model. Model validation should include not only checking the well-formedness using OCL constraints, but also the evaluation of model quality. Software metrics are useful means for evaluating the quality of both software development processes and software products. As models are used to drive the entire software development process it is unlikely that high quality software will be obtained using low quality models. The thesis presents a methodology supported by KMF that uses the UML specification to compute the design metrics at an early stage of software development. The thesis presents a transformation language called YATL (Yet Another Transformation Language), which was designed and implemented to support the features provided by OMG's Request For Proposal and the future QVT standard. YATL is a hybrid language (a mix of declarative and imperative constructions) designed to answer the Query/Views/Transformations Request For Proposals issued by OMG and to express model transformations as required by the Model Driven Architecture (MDA) approach. Several examples of model transformations, which have been implemented using YATL and the support provided by KMF, are presented. These experiments investigate different knowledge areas as programming languages, visual diagrams and distributed systems. YATL was used to implement the following transformations: * UML to Java mapping * Spider diagrams to OCL mapping * EDOC to Web Service

    Model driven language engineering

    Get PDF
    Modeling is a most important exercise in software engineering and development and one of the current practices is object-oriented (OO) modeling. The Object Management Group (OMG) has defined a standard object-oriented modeling language the Unified Modeling Language (UML). The OMG is not only interested in modeling languages; its primary aim is to enable easy integration of software systems and components using vendor-neutral technologies. This thesis investigates the possibilities for designing and implementing modeling frameworks and transformation languages that operate on models and to explore the validation of source and target models. Specifically, we will focus on OO models used in OMG's Model Driven Architecture (MDA), which can be expressed in terms of UML terms (e.g. classes and associations). The thesis presents the Kent Modeling Framework (KMF), a modeling framework that we developed, and describes how this framework can be used to generate a modeling tool from a model. It then proceeds to describe the customization of the generated code, in particular the definition of methods that allows a rapid and repeatable instantiation of a model. Model validation should include not only checking the well-formedness using OCL constraints, but also the evaluation of model quality. Software metrics are useful means for evaluating the quality of both software development processes and software products. As models are used to drive the entire software development process it is unlikely that high quality software will be obtained using low quality models. The thesis presents a methodology supported by KMF that uses the UML specification to compute the design metrics at an early stage of software development. The thesis presents a transformation language called YATL (Yet Another Transformation Language), which was designed and implemented to support the features provided by OMG's Request For Proposal and the future QVT standard. YATL is a hybrid language (a mix of declarative and imperative constructions) designed to answer the Query/Views/Transformations Request For Proposals issued by OMG and to express model transformations as required by the Model Driven Architecture (MDA) approach. Several examples of model transformations, which have been implemented using YATL and the support provided by KMF, are presented. These experiments investigate different knowledge areas as programming languages, visual diagrams and distributed systems. YATL was used to implement the following transformations: * UML to Java mapping * Spider diagrams to OCL mapping * EDOC to Web ServicesEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Complexity characteristics and measurement within engineering systems

    Get PDF
    Complexity is a significant factor in the development of new products and systems; generally speaking, the higher the complexity, the more difficult products and systems are going to be to design and develop. There are a number of different factors that influence complexity within systems, namely: interoperability; upgradability; adaptability; evolving requirements; system size; automation requirements; performance requirements; support requirements; sustainability; reliability; the need for increased product lifespan; and finally, the length of time systems take to develop. There is, at present, no common language to describe complexity within engineered systems; this language needs to be developed in order to help industry cope with increasing product complexity and thus meet customer demands. This thesis represents a start in the development of that language, and thus an understanding of systems complexity. The thesis offers a framework for complexity analysis within systems, one which identifies some of the key complexity characteristics that need to be taken into consideration, and which embraces complexity problems, definitions, concepts and classifications, origins and coping mechanisms. It has also has been developed in terms of a measurement approach, thereby allowing for a meaningful comparison between products, and an understanding of the complexities within them. This framework was developed using information collected from academic literature and from more specific case studies. Each complexity characteristic was investigated, and the interactions between characteristics were identified; these interactions allow us to understand complexity and help to develop a common language. The thesis develops a measurement technique that quantifies various complexity characteristics in terms of the framework laid down, thus enabling a quantified understanding of complexity within systems. This new measurement approach was tested on a set of recent case studies, and the complexity characteristics produced by the measurement technique were, in turn, tested against attributes of the system. The framework itself is always evolving - it incorporates new complexity characteristics. Nevertheless, such evolution can only further our understanding of complexity. Further work, to explore and integrate the approach demonstrated in this thesis into an automated tool, and test its robustness, along with a continual development of other elements of the framework, such as a classification of complexity, is recommended.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modelo de calidad para el software orientado a objetos

    Get PDF
    El software ha obtenido en la actualidad una gran importancia en todos los ámbitos de la vida cotidiana. Es indudable que la calidad del software juega un papel fundamental en todo desarrollo informático, aunque en ocasiones no se le presta la suficiente atención, quizás debido a los relativamente escasos trabajos relacionados con este tema desarrollados hasta la fecha. En el presente trabajo, se plantea la necesidad de un modelo de calidad completo. Para cubrir esta necesidad se presenta un nuevo modelo de calidad, obtenido tras un estudio pormenorizado de los modelos de calidad existentes, centrado en el paradigma orientado a objetos. Este modelo de calidad muestra cómo la calidad del software se descompone en una serie de factores y éstos, a su vez, se descomponen en un conjunto de criterios medibles utilizando medidas. El modelo incluye un amplio conjunto de medidas, diseñadas especialmente para su aplicación dentro del paradigma orientado a objetos. Para completar el modelo, se ha diseñado un sencillo método de aplicación de este modelo de calidad para que pueda ser utilizado de una forma simple por los desarrolladores de sistemas informáticos orientados a objetos. El modelo de calidad definido se ha validado realizando un juego de experimentos. Estos experimentos han consistido en la aplicación del modelo sobre una serie de desarrollos orientados a objetos. Los resultados obtenidos han demostrado su utilidad práctica para determinar tanto la calidad global de los sistemas, como para identificar aquellas partes del sistema susceptibles de ser mejoradas. Con este trabajo, se llena un importante hueco existente en esta área, pues, en primer lugar, no existen modelos de calidad completos para la orientación a objetos. En segundo lugar, aunque hay medidas para la orientación a objetos, no se han asociado a los atributos que determinan la calidad del software, por lo que su utilidad, tal cual fueron definidas, resulta bastante cuestionable. Para finalizar, nunca se ha asociado un modelo de calidad con una método de aplicación, por lo que su utilidad quedaba considerablemente mermada, quedando a expensas de la habilidad y experiencia del Ingeniero del Software que lo utilizara
    corecore