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Abstract: 

Complexity is a significant factor in the development of new products and systems; generally 

speaking, the higher the complexity, the more difficult products and systems are going to be to 

design and develop. There are a number of different factors that influence complexity within 

systems, namely: interoperability; upgmdability; adaptability; evolving requirements; system 

size; automation requirements; performance requirements; support requirements; sustainability; 

reliability; the need for increased product lifespan; and finally, the length of time systems take to 

develop. 

There is, at present, no common language to describe complexity within engineered systems; this 

language needs to be developed in order to help industry cope with increasing product 

complexity and thus meet customer demands. This thesis represents a start in the development 

of that language, and thus an understanding of systems complexity. The thesis offers a 

framework for complexity analysis within systems, one which identifies some of the key 

complexity characteristics that need to be taken into consideration, and which embraces 

complexity problems, definitions, concepts and classifications, origins and coping mechanisms. 

It has also has been developed in terms of a measurement approach, thereby allowing for a 

meaningful comparison between products, and an understanding of the complexities within 

them. This framework was developed using information collected from academic literature and 

from more specific case studies. Each complexity characteristic was investigated, and the 

interactions between characteristics were identified; these interactions allow us to understand 

complexity and help to develop a common language. 

The thesis develops a measurement technique that quantifies various complexity characteristics 

in terms of the framework laid down, thus enabling a quantified understanding of complexity 

within systems. This new measurement approach was tested on a set of recent case studies, and 

the complexity characteristics produced by the measurement technique were, in turn, tested 

against attributes of the system. 'Me framework itself is always evolving - it incorporates new 

complexity characteristics. Nevertheless, such evolution can only further our understanding of 

complexity. 

Further work, to explore and integrate the approach demonstrated in this thesis into an automated 

tool, and test its robustness, along with a continual development of other elements of the 

fi-amework, such as a classification of complexity, is recommended. 
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1 Introduction 
This chapter introduces the research that was conducted, outlines the structure ofthe 
Thesis, andprovides an overview ofthe work 

1.1 Thesis Overview 
"Ourpla(forms and equipment are increasingly complex. " (UK Ministry of Defence) 

Complexity is a significant factor in the development of new products and systems. 

Generally speaking, the higher the complexity of these products, the more difficult 

they are going to be to design and develop. 

The production of more complex systems within the defence sector arises from the 

need for increased product capability due to ever evolving threats (Wilson 2002). 

This increased capability requirement is the result of new technologies that arc able to 

support greater fimctionality, a greater speed of operation, increased automation and 

an improved accuracy, while also reducing support costs, increasing sustainability and 

system reliability. 

With the need for increased product capability, companies must innovate their 

products through the development of technology and through savings in manufacture 

costs. However, with this requirement for innovation in products which incorporate 

new technologies comes higher costs; in addition there is a need to ensure that 

systems are servicable for longer periods of time. The engineering lifecycles of these 

products are lengthening, and programmes are frequently started with projected life 

spans of 40 years or more, significantly longer than projects started 20 or 30 years 

ago. With longer running programmes come higher costs; moreover, these products 

are expected to last longer and to be adaptable to an ever evolving capability 

requirement that follows threat changes. Products are expected to be upgradeable (as 

it is too expensive to continue replacing them in their entirety), robust, reliable, 

sustainable, adaptable and increasingly interoperable (in particular new defence 

systems as they move towards Networked Enabled Capability or NEC (UK Ministry 

of Defence 2005). 

As product functionality, intricacy and interoperability increases, often the intrinsic 

complexity of these products also increases. This increase in intrinsic complexity 
leads to difficulties in accurate modelling and accurate fault finding, often lengffiening 
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development times; moreover intrinsic complexity may, potentially, lead to an 
increase in emergent properties within systems, something which may or may not be 

desirable. 

Induced complexities occur as a result of the development process, and have a 

potential to increase the effort, and perhaps the cost, required to develop a system. 
With the emergence of additional, undesirable complexity, namely, complexity that 

offers no benefit to the development programme or system, there are, again, further 

effects on modelling accuracy, and accuracy in fault finding; furthermore, emergent 

properties, along with development times and costs, all become problematic, and all 

are potentially avoidable. However, not all induced complexity is detrimental to 

product development, and in some cases enhancing the complexity of a system 

reduces the workload and development times; this is achieved, perhaps, with the 

introduction of already proven commercial or military technology, which may have 

intricacies within it arising from additional and unnecessary functionality (and 

therefore unnecessary complexity), but which nevertheless provides a high cost 

benefit and a reduced development time as a result of its implementation. 

Such complexity within systems needs to be understood in an engineering context; 

complexity needs to be classified and quantified in a way that takes into account 

specific engineering issues, and in a way that provides useful feedback to 

programmes. Classifications, characteristics, measures and approaches that minimise 

intrinsic complexity, while simultaneously managing the desirable and undesirable 

induced complexities within development programmes need to be developed. 

Currently, the words "complexity" and "complex" are often used within industry as 

'buzz-words': thus comments such as "we develop complex products"; "these 

systems are complex "; "we're dealing with a lot ofcomplexity ", etc. 'Mese phrases 

are often used without any concrete meaning, let alone any common understanding of 

useful definition or utility. An agreed understanding of complexity in engineering 

systems is needed, one that can be applied consistently across all engineering 
domains, so that industry is able to say: "the system is complex because oft", and go 

on to support the statement. 

Before this can be done, an understanding of complexity has to be developed. This 

thesis produces such an understanding, a "complexity understanding". This 
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"complexity understanding" can be used and applied within engineering in a clear 

and consistent manner, providing a tangible meaning to the word "complex " within 

systems development in engineering. 

Ile complexity understanding was developed by means of an exploration of the 
literature of complexity across a number of disciplines (biology, physics, chemistry, 

psychology, engineering, etc. ). This exploration was further subdivided into 

complexity definitions, origins, measures and classifications; finally, concepts found 

within each of these areas were related, if possible, to the engineering domain. For 

example: 

9 Complexity Definitions - Reducible (can the system be made any smaller? Is 

it bloated? ); Intricate/Coupled/Highly Connected (interfaces that are highly 

coupled generate interactions that dramatically effect system behaviour - if 

this is not understood, then undesirable effects may result, which add to the 

risk of system failure or of poor system performance); Difficult to Analyse 

(the modelling of the system is too difficult to effect accurately - how, then, 

can we be sure it will work when built? ), etc. 

Complexity Concepts - Detail (Static Hierarchical System Structures or 

organisations are generally easy to model because the flow of information is 

only up or down the structure); Dynamic (Static Non-Hierarchical System 

Structures or organisations are much more difficult to understand as elements 

can exchange information laterally and up and down the structure); Adaptive 

(Changing System Structures are constantly shifting, and so are difficult to 

model, understand or predict). 

4, Complexity Measures - Connectivity (simple connectivity measures of 

connections/elements); Intricacy of Connections (understanding and 

quantifying the complexity of interfaces either quantitatively or qualitatively); 
Complexity of Elements (same as intricacy, but for elements); Commonality 

(variation in the design - how much is duplicated? ). 

These aspects form the complexity understanding, and offer and a very simple, bite- 

sized view of complexity terms. There are hundreds of definitions, but essentially 

they can be reduced to basic themes - the same is true for concepts and measures. 

Craig Read Page 28 12111/2008 



Complexity Characteristics and Measurement within Engineering Systems 

These themes form the basis of the complexity understanding and can be universally 
used within industry, and attributed to systems relatively easily: 

"System X exhibits a non-hierarchical structure but it is stable, it hasfew connections 
flow connectivity) between its elements but these connections are data buses 

transferring vast amounts of information which can dramatically change the 
behaviour ofthe elements they are connected to. " 

In this way, we are thus able to describe complexity in a common and consistent way, 

using bite-sized chunks; these chunks are referred to as "Characteristics" of the 

complexity within systems. Moreover, like whole systems with elements and 

connections between them, the characteristics (elements) can be connected or linked. 

Complexity definition characteristics can be linked with measurement characteristics, 
for example; definition of the type "Intricate/Coupled/Highly Connected" can link up 

conveniently with measures of connectivity and interface complexity; definition type 

"Difficult to Analyse" links to systems which are difficult to understand (perhaps in 

terms of the nature of the information flows within them), and with complexity 

concepts such as "Non-Hierarchical Static System Structures". 

These links between the complexity characteristics form the basis of the "Complexity 

Framework" which is a more comprehensive understanding. This is a framework 

which includes origins, definitions, concepts and approaches to mitigate or control 

complexity, allowing the user to identify and characterise the complexity within their 

system, and by using the fi-amework identify all the other linking characteristics; thus, 

he may, perhaps, be able to look for them in the system, and identify an appropriate 

mitigation to reduce or control the complexity of the system. 

Case studies were used to explore problems arising in programmes and to see how 

these problems might be caused or influenced by complexity in some way. Six 

different business areas were chosen within a single company to form the basis of 

these case studies. The case studies covered air, sea and land base systems, and in 

total over 20 different problem issues were identified. From these 20 problems, a set 

of common problem issues were found and the relationships between them and the 

complexity characteristics within the framework were identified. These relationships 

were then fed back into the fi-amework. 
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The thesis later examines how these characteristics, once identified, can be quantified, 

so not only is the complexity within the system understood - what it is, the nature of 
it, where it comes from, what we can do about it, etc - but also how "big" it is: 

"The system exhibits a predominantly hierarchical structure x% with some non- 
hierarchical structures contained within it y% " 

This approach enables a clear, non-subjective, repeatable, consistent and 

comprehensive method of understanding complexity within engineered systems, and 

also an ability to understand its size. This is not a part of the conventional industrial 

process - this approach prevents the use of 'complexity' as a subjective 'buzz-word'. 

Complexity can now be defined consistently, from system to system, and then 

quantified. Systems can be compared and analysed; systems can be better understood. 
Furthermore, as systems are being developed using architectural type tools, this 

method can be easily incorporated and automated in order to provide feedback to 

engineers and project managers within programmes. 

Such a toolset as this approach provides allows complexity to be managed, monitored 

and checked. The intrinsic complexity of the system can be found within the basic 

functional flow diagrams and early system designs;, and as these components are 

replaced by real engineered designs, the complexities within them, and within the 

concept as a whole, can be compared to give an approximation of the induced 

complexity which has been added by design. If detailed designs differ substantially 
from conceptual designs in terms of their complexity, then this may well be an issue 

in future - by using the framework such effects can explored in more detail. 

Although this approach does not directly influence the costs of programmes, it does 

provide an additional layer of control other than the standard cost and time controls. 
The complexity dimension, added to the common standard programme metrics, mean 

that programmes can be managed more effectively. 

1.2 The Thesis Background 

1.2.1 A Brief Overview of Systems Engineering 

Systems engineering is the basis for the project lifecycles of most modem 

engineering, and the systems engineering lifecycle (Haskins 2006) is the backbone of 

product development. The lifecycle consists of a capability or requirement definition 
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which follows through an iterative process, thus refining set requirements. After this 

refinement, conceptual designs for the system and sub-systems are created, and 
detailed designs then follow. The integration of the sub-systems then begins, and as 
the integration progresses, testing is carried out at sub-systcrn and system level until 
the integration is completed. Once this testing is complete, then overall system tests 

finalise product compliance in terms of the customers' needs. 

The systems engineering process is used widely within the defence industry, and also 

within a number of commercial industries. It supports large scale projects such as 
Eurofighter, Astute and CVF. The use of this process is expanding, and more 
investment in research into systems engineering tools, and techniques is going ahead. 

SysML tools (Weilkiens 2008, SysML Partners, Bock 2005) is but one example of 
investment in new tools to aid systems engineering in the future. 

1.2.2 An Overview of the Challenges of Increased Product 

Complexity for Systems Engineering 

However, the systems engineering process is facing some tough challenges, as 

systems become larger, more intricate, more interoperable, and in need of greater 

functionality (IBM 2004, Charles, Philip 2003). Coupled with this is the move from 

static requirement bases to evolving requirements, and to capability acquisition rather 

than product acquisition. All of this can increase the difficulties associated with the 

design, developmentý modelling, integration and testing exercises within the lifecycle. 

Ile systems engineering process is used on a number of projects. It is considered 

robust and is particularly strong when applied to projects with a fixed requirement, or 

with fixed capability definitions. The process attempts to finalise the requirements 

during the requirements capture phases, and then use these requirements to design 

sub-systems which are later integrated into the whole. Design and development of 

sub-systems can be planned, managed and conducted concurrently, as the 

requirements are fixed, and interfaces between sub-systems are, as a result, fixed and 

documented in specifications. However, with requirements which do not stay fixed 

throughout product lifecycles, and which need constant updates, the systems 

engineering process has to deal with new complexities and challenges. Most modem 
defence projects are no longer based on a fixed requirement; indeed, the majority now 
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have an initial capability based requirement, from which the detailed requirement 
specification is derived. 

With the move towards capability based requirements (Taylor 2003), taking the 
format 'we wish to have an ability to achieve set out goals', rather than, 'the system 

shall do x, there is an emphasis on the contractor to translate the capabilities into an 

agreed requirement specification, which is then used for design. The move from a 

product-dclivery perspective, i. e. 'the system shall do x, to a capability-delivery 

perspective, i. e. 'we wish to have an ability to achieve set out goals'in procurement - 
currently evident in many systems engineering domains, including defence - adds an 

additional process to the systems engineering lifecycle, and one which must be 

addressed. The process represents the translation of capability needs into functional 

requirements on which the design is based. Invariably, increasing the scope of the 

process will increase the complexity and resource requirement of that process. 

With the introduction of smart procurement (UK Ministry of Defence 1999), and the 

integration of the Defence Procurement Agency (DPA) and the Defence Logistics 

Organisations (DLO) to form a new organisation, Defence Equipment and Support 

(DE&S), an additional requirement on product development becomes evident, one 

which sets out to integrate support strategies and products with the main product as 

one package. As a result product capability requirements include not only design, 

development and testing, but sustainability and logistic support as well. The systems 

engineering process currently ends at customer acceptance, but product lifecycles will 

now be much longer as products will include the logistic support element. 

Defence companies are already creating businesses that specialise in the support and 

logistics element of defence systems. Some companies have anticipated this change 

in procurement strategy and have created customer support and solutions divisions, 

dedicated to ensuring that customers not only get good products, but that part of that 

product is the logistic organisation that supports and maintains those systems. The 

UK Ministry of Defence as part of its Acquisition Operating Framework (UK 

Ministry of Defence 1999) employs the lines of development which encompass what 
is expected from newly procured systems: 

1. Training 

2. Equipment 
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3. Personnel 

4. Infonnation 

5. Concepts and Doctrine 

6. Organisation 

7. Infrastructure 

8. Logistics 

9. Interoperability 

(UK Ministry of Dcfcncc 1999) 

The systems engineering lifecycle (Haskins 2006) is built upon a fixed blueprint 

design strategy: requirements are collected, refined, agreed, and then (in an ideal 

world) fixed. Once the requirements are fixed, engineering practices can be adopted 

that accelerate the design and production of the product. The systems engineering 

approach enables a product to be split into sub-systems with their own requirement 

and interface specifications; these can then be designed simultaneously, using a 

concurrent engineering approach. Unfortunately, concurrent engineering practices 

can be troublesome when the requirements for a sub-system are subject to evolution 
due to technological changes, and demands from customers for these changes to be 

included. To combat this, interface specifications are then produced which fix the 

interfaces between system elements in an attempt to deal with evolution in design; 

however, this is not always effective, and can restrict the level of evolution within the 

sub-systems, sometimes even preventing customers' demands from being met. This 

design evolution, due to time scales and technology progression, coupled with the 

increased interoperability and increased functionality requirements of system 

elements, has the potential to increase product complexity. The increase in product 

complexity may affect costs, time scales, reliability, predictability, and, in some cases, 

even safety; as a result it is important that industry takes steps to understand 

complexity within their designs in order to mitigate against risk that could potentially 

cost a programme. This presents yet another challenge for systems engineering. 
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1.2.3 The Problem Overview 

One of the challenges facing systems engineering in the future is the need to better 

understand complexity within systems. At present industry does not have a 

mechanism for recognising, quantifying or classifying complexity in design - there are 

no tools, processes or approaches that characterise or measure complexity effectively. 
The tools that are available, although not specifically directed towards complexity, 

attempt to characterise or measure complexity and then use their measures to 
determine a level of risk. COSYSMO (Valerdi, Boehm et al. 2003) is an example of 

this, one which uses a composite complexity measure as a factor in budget estimation. 
Industry does not understand complexity - the origins of complexity, its effects, 

complexity measurements or metrics, concepts of complexity and approaches to 

complexity, all remain elusive and unaddressed. 

1.3 The Thesis Objectives in Detail 

The understanding of complexity in design and development is of prime importance 

when tackling systems with high levels of interoperability, such as are becoming more 

and more common. Knowledge of the origins, definitions, measures, coping 

mechanisms, approaches and problem issues or effects related to complexity in 

systems are part of this understanding; such knowledge increases awareness of 

associated risk in products (lack of functionality, not meeting requirements, emergent 

properties, inability to model effectively, etc. ) and their development lifecycles 

(resource requirements, budgets, personnel, time). The more complex a system is, the 

more it contains a high number of intricate and coupled components (Evans 1987), the 

higher the associated risk. 

The understanding of complexity in design means developing tools and processes that 

enable organisations to reduce, understand or better assess and quantify the 

complexity in products, and the risk, effort and potential costs associated with it. This 

thesis is a step towards developing that understanding of complexity in engineering 

systems, by providing a framework for the understanding of complexity 

characteristics in systems and developing a method of quantifying them. 
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The Aims of this thesis are: 

1. To produce a framework for further research into complexity within 
engineering. 

2. To provide valuable input into the complexity theme within the SEIC. 

The Objectives of this thesis are: 

1. To develop an analysis technique that can be used to create a common 

understanding, appreciation and concept of complexity within systems 

engineering in an industrial context. 

2. To determine complexity characteristics within real life systems using 

metrics and analysis techniques. 

3. To provide a system wide view of complexity within the interfaces and 

sub-systems independently as well as a system whole. 

4. To validate the tool using real systems and conceptual systems. 

Unfortunately, due to time constraints it has not been possible to test the analysis 

technique or tool on a real system in the conceptual phase. Defence has been the 

primary focus of research, and all major engineering programmes in this industry run 
in excess of the 3 years it has taken to conduct this research. It would be much better 

to validate the tool output following a real development programme, but in this case it 

was impractical. 

This research work was conducted closely with a defence company as a part of the 

complexity theme within the SEIC (Systems Engineering Innovation Centre (SEIC)) 

which is a collaborative effort between BAE Systems, Loughborough University and 

the East Midlands Development Agency (emda). As a result the work carried out is 

highly business and engineering orientated, and is focused primarily on defence 

systems. The approach and analysis technique, however, remains applicable outside 

of the defence industry, where complex systems are developed. 

1.4 Methodology 

The problem of complexity spans a number of distinct areas that are all key to 
improving industrial performance when developing complex systems. In order to 
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develop a toolset that can cope with and address complexity in design and 
organisation of all kinds, a number of questions need to be answered. 

1. What are the origins of complexity? 

2. What are the effects of complexity? 

3. Is complexity within design always a bad thing? 

4. How can complexity be measured and understood? 

S. What are the best approaches to complex problems? 

6. How can emergence be quantified or measured? 

7. How can intrinsic and induced complexity be reduced? 

The answer to these questions will provide an understanding of complexity, and one 
that can then be used to develop tools, analysis techniques, models and new 

engineering or organisational approaches. These will then improve the ability of 
industry to develop complex systems with a reduced risk. 

The area of research set out by the questions above is obviously too large for a single 

research project; in fact some of the questions on their own are too great for a single 

research project (question 5 for example). As a result, a focus for this research project 

was required, and this focus was one of measurement, and an understanding of 

complexity characteristics in systems - that is to say that this research produces an 

approach to complexity measurement in systems, and an understanding of the 

complexity characteristics that form that measurement. This was chosen as it seemed 

the most useful to the projects industrial sponsor. 

The following bullet points outline a summary of the method used to develop this 

measurement approach in the research project. Initially, of course, the focus was not 

one of measurement, but one of understanding complexity and all its facets from a 

systems engineering viewpoint; in order to do this the methodology was as follows: 

1. The initial step when conducting the research was to gather information 

surrounding the subject in order to form a comprehensive literature review of 
the subject area (chapter 2). This was achieved by dividing the information 

collected into categories, namely: complexity origins; effects; measures; and 
approaches and classifications from a number of different disciplines (biology, 
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engineering, mathematics, etc. ). This method ensured that the breadth of 

complexity concepts across disciplines was covered, and specific themes for 

each category could be explored; these could later be related to engineering 
issues. The literature did not address specifically developmental issues within 

programmes, but rather the origins of complexity within development 

programmes; consequently, the literature review needed to be bolstered by 

case studies from within industry that identified typical industrial problems. 
Once collected, each category identified themes within the literature. These 

themes (referred to as 'types' within the framework) were focused on a 

commonality between various characteristics identified within each category 

under scrutiny. The definition of each category of complexity contained the 

following themes: reducibility; difficulty in modelling difficulty in 

understanding, etc. 

2. information was collected regarding problems within industrial programmes. 
Case studies were used, and an interview technique was utilised, in order to 

gather data, and any accounts of the difficulties that exist or have existed 

within engineering programmes, along with any solutions that were 
implemented. The issues that arose from the case studies were then later 

explored in more detail, linking them to phases of the development lifecycle 

and attributes of the programmes, such as timescales, budget, and resources. 
Although each interviewee was given a directive as to the focus of the 

research, there was a distinct risk that some problem issues identified and 
documented would not be a result of complexity within the system or design 

process. 

3. The problem issues identified in each case study were linked to complexity 

themes or characteristics found within each category, as explored in the 

literature review. These links enabled an identification of the common 

complexity characteristics as they exist between different problem issues; only 

the most common characteristics of complexity were linked, along with 

problems that have similar complexity characteristic mappings. The difficulty 

in linking problem issues with complexity characteristics is that, in some 

cases, there may not be a clear relationship between the issue or issues and the 

complexity characteristics, as no clear distinction has been made between 
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issues resulting from complexity and those which have not. In addition, some 

complexity characteristics are more easily mapped than others. 

4. A framework was developed, based upon the links between complexity 

characteristics; this included definitions, origins, problem issues, measures, 

concepts and classifications. The development of this framework was 

achieved by means of an analysis of any linkages between complexity themes 

within the categories, along with the previous analysis of linkages between 

problem issues within industry. These linkages form the basis of the 

complexity understanding, and thus form the Complexity Framework. 

This was the point at which the research moved towards the production of a concept 

of complexity measurement, a quantifying strategy for complexity in systems. This 

production was built upon the understanding gathered from the work described above. 

The next stage in the methodology was to create the analysis approach for complexity 

in systems, and to test this approach. This was achieved in the following way: 

5. A measurement tool was built, together with an approach to complexity within 

engineering. This was achieved by utilising a typical product development 

lifecycle consisting of requirements capture, design, development, testing and 

validation. 

a. Discussions were conducted which aimed to gather requirements from 

the industrial sponsor. These discussions helped to highlight issues or 

concerns raised by the sponsor concerning the development or future 

use of the tool or approach in development. 

b. 'Me development phase was iterative, with the initial tool developed 

and tested using real system data. The results generated by the tool 

were then analysed, and improvements made to the tool; the data was 

revisited if necessary. 

c. 71be testing and validation of the approach, and of the tool developed, 

was difficult under the circumstances encountered. In order to validate 

the tool outputs there needs to be a datum to validate against; currently, 
the tool has been tested against already existing systems. 
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An overall weakness in the methodology is that of not testing the too] within a 

complete lifecycle of a product. Unfortunately the sponsors' typical programmes, 

within which they plan to utilise such a tool, frequently run to in excess of 5 years. 

Figure I shows the research plan, beginning in October 2004 and finishing in October 

2007 with a write up period extending to April 2008. The activities shown within the 

gant chart are linked to the methodology described above. 

2004 

Q3 

Figure I- Research plan. 

03 

Table I below shows the links between the methodology approach and the activities 

outlined within the schedule in Figure 1. 

2 3 4 5 

a b c 

Literature Review 

Collect Case Study Data I 

Analyse Case Study Data 

Develop Complexity Framework 

Anslyse Complexity Measures 

Collect Case Study Data 

Develop Analysis Tool 

Evaluate Tool 

Table I- Mapping of activities to methodology. 
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1.5 Introduction of the Roadmap 

This section is an overview of the thesis structure in detail - it provides a roadmap 
that will act as a guide throughout, and will be offered again as key milestones in the 

thesis are reached. 

The thesis is structured as follows: 

1. Introduction - This chapter introduces the research that was done, outlines 

the structure ofthe thesis andprovides an overview ofthe work 

2. State of the Art Review on Complexity - This chapter is a literature review 

which serves to generate a comprehensive and detailed understanding of 

various complexity components or characteristics in systems engineering: 
definitions,, examples of system; causes or origins of complexity, concepts or 

classifications of complexity; measures and approaches, or coping 

mechanisms of complexity. This understanding is then used to create a 
framework of complexity in engineering. 

3. Statement of the Complexity Problem with regard to the Engineering 

Lifecycle - This chapter uses the literature review (chapter 2) to determine 

what the potential complexity issues are within engineering systems. This 

section evaluates the changes in the defence sector andprocurement strategies 

and outlines the problem to be tackled by the research. This is then 

elaborated by comparison with 'real world'PrOblems investigated within 

chapter 3. 

4. Initial Complexity Case Studies - Thefollowing section analyses a set of 

case studies which identify typical industrial problems and also how they may 
be complexity issues, or related to complexity issues. It expands on the 

theoretical nature ofthapter 2, and the problems identified within chapter 3. 

5. Introduction to Complexity Characteristics and Mapping of 

Characteristics to Complexity Problem Issues - This chapter identifies some 

ofthe key and common aspects ofcomplexityproblems in engineering systems 

using information gatheredftom the literature within chapter 2 and alsoftom 
the initial case studiesft0n; chapter 3. The case studies within chapter 4 are 
then mapped onto these complexity characteristics, which leads onto the 
Complexity Framework which is described in chapter 6. 
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6. The Characteristics of Complexity and their Inter-relations: A 

Complexity Framework - This chapter examines the relationships between 

various complexity characteristics. These characteristics were determined 

firom the literature search in chapter Z the case studies and the interactions 

within the case studies ofcomplexity components in chapter 4. The output is a 
framework ofcomplexity which can be used as an aid to creating various 

measurements, coping mechanisms or management approachesfor complexity 
in engineering' 

7. Measurement of Complexity in Engineering - This chapter narrows the 

scope of the thesis tofocus on measuring complexity characteristics. It 

contains a summary ofthe complexity measures that werefound in the 

literature search within section ZZ These are then down selected against 

what is considered usefulfor engineering: the background to complexity 

problems in engineeringfrom chapter 3, the problems and issues within 

engineering that may need addressing in chapter 4 and the understanding of 

their relationships to different complexity characteristics in chapter 5, and 

assessments of how easy to apply the measures are (available data etc. ). This 

information thenfilters into creating the complexity measurement tool in 

chapter & 

8. Industrial Case Study Data and the Complexity Measurement Tool - This 

chapter takes the information regarding complexity issues and their mappings 

to complexity characteristics in chapters 4 and 5, and then using the measures 

that are usefulfrom chapter 7, creates an analysis toolfor complexity in 

systems (including the sub-systems and interfaces). 

9. Results Analysis - This chapter details the results that were generatedftom 

the second set ofcase studies outlined within section 8.2 using the complexity 

analysis tool outlined within section &3. Once the results are collected and 

shown they are then compared and conclusions made regarding the tool and 
data. 

10. Changes to the Tool -This chapter details the changes that were made to the 

complexity measurement tool as a result ofthefirst set ofresults and the 

analysis within chapter 9. The conclusionsformedftom those results lead to 
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the introduction ofsome other metrics, the removal ofsome metrics. The new 

resultsfrom the new metrics have been included here, and these metrics are; 
maturity, increased statistics and spreadsfor interface types and commonality. 

11. Discussion - Aefollowing chapter reviews all the work sofar, the initial 

development ofpolential complexityproblemsfrom case studies (chapter 4), 

the mapping ofthose case studies onto complexity characteristics and the 

creation ofthe Complexity Framework (chapter 5), the understanding ofthe 

relationships between different complexity characteristics (chapter 6), the 

understanding ofmeasurement o complexity and how it relates to complexity )f 

characteristics (chapter 7), the development ofa complexity measurement tool 

and strategy (chapter 8), the analysis ofthe resultsfrom that measurement 

strategy (chapter 9) and the improvements made to the tool as a result of 

evaluation (chapter 10). Finally a reflection back on the work; what could be 

improveit what work is required and an assessment ofhow well the work met 

the set out objectives. 

12. Conclusion - Thefollowing chapter details the conclusions ofthis thesis. The 

conclusions refer back to the discussion within chapter II against the aims set 

out within section 1.3. 

A flowchart has been developed as a guide through the thesis, indicating sections in 

the work, and the relationships between these sections. This roadmap and summary is 

first presented here, and from this point will appear at the beginning of every chapter 

with a short introduction and summary. 

1.6 Outputs of the Thesis 

The following is a diagrammatical view of the layout of the thesis including the 

different outputs, and the flow of work. 
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Literature Review 
Chapter 2 

Complexity 
Measures 
Chapter 7 

Complexity 
Framework 
Chapter 6 

Complexity Problem 
Issues From Case 
Studies Chapter 4 

Complexity 
Component and 

Characteristic Store 

Complexity Problem 
Table 

Chapter 5 

Complexity Problem 
Matrix Chapter 5 

Complexity 
MeasurementTool 

Chapter 8 

Complexity 
MeasurementTool 

Refinement 

Figure 2- The layout of the work and the thesis outputs road map. 

The following are the elements within the flow diagram shown within Figure 2: 

Complexity Component and Characteristic Store (CCCS) -A product of 
the literature review, and problem analysis, the store contains different 

complexity attributes and problem issues. 

Complexity Problem Table (CPT) -A table which describes how the 

various aspects of the problems inter-relate. It also contains details regarding 
any coping mechanisms or approaches that were implemented. These are 
recorded and related, in order to improve the understanding of the problem 
issues within engineering. 
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Complexity Framework - The Complexity Framework or Complexity 

Framework shows the various attributes and characteristics of complexity, and 
how they interact and affect each other. 

Complexity Problem Matrix (CPM) -The mapping of complexity 

characteristics from within the CCCS to the complexity problems identified 

within the case studies. 

Complexity Measurements -A detailed look at complexity measurement, 

using data gathered from the literature review and the CCCS. 

Complexity Measurement Tool (CMT) - The complexity measurement tool, 

and approach is the primary output of the thesis. 
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2 State of the Art Review on Complexity 
This chapter is a literature review which serves to generate a comprehensive and 
detailed understanding ofvarious complexity components or characteristics in 

systems engineering; definitions, examples of systems, causes or origins, concepts or 

classifications, measures and approaches or coping mechanisms of complexity. This 

understanding is then used to create aframework ofcomplexity in engineering. 

zi Introduction 

This section of the thesis is an outline of the literature review undertaken to collect 
information concerning complexity from various disciplines. The review is centred 

on information regarding the following areas of complexity, and in the following 

order, with an introduction to complexity in engineering: 

* Definitions of Complexity and their appropriate domains, providing different 

views for how complexity is described, what constitutes complex systems, and 

what attributes are common to complex systems. This also enables common 

themes within definitions to be established. 

e Complex System Examples, from both engineering and from nature, 

providing insight into what constitutes a complex system, and how these 

systems compare with definitions. 

9 The Causes of Complexity, the origins and effects of complexity in 

engineering and other disciplines, helping to understand how complexity 

affects engineering design processes, products or systems. 

9 Complexity Concepts and Classifications, the conceptual ideas suffounding 

complexity in various domains, and the types of complexities that can exist 

also form a valuable part of the complexity understanding that the literature 

review is trying to develop. 

* Complexity Measurement, the various different measures and their 

approaches are of great importance to the industrial sponsor, as measurement 

of complexity is one method of showing improvement in engineering 

processes at reducing complexity in systems that is costly. 
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* Complexity Coping Mechanisms and Approaches, help to control the 

unnecessary complexity in industrial products or systems. Understanding 

what the available mechanisms or approaches are is of key interest to the 
industrial sponsor and is very useful when considering the complexity 

understanding. 

As complexity is such a widely researched topic, the categories were chosen for an 

exploration of complexity in a variety of different disciplines, not merely engineering; 

some mathematical and biological sources are also included. The inclusion of a 

number of different disciplines allowed cross fertilisation of ideas and concepts; 
however, engineering is the focus of the work. 

Problem areas were excluded from the literature review as they were case study 

specific, and specific to the industrial sponsor. Problem issues were identified from 

these case studies (see chapter 4) and consequently do not form a part of the literature 

review. 

2.1.1 Complexity Research Programmes In the UK, Europe 

and Worldwide 

Ilere are a number of complexity research programmes within the UK, Europe and 

worldwide. A large investor in complexity research in the UK and Europe is the 

Engineering and Physical Sciences Research Council (EPSRC). The EPSRC has a 

number of research and teaching strands within the complexity domain, including: 

4, E12 million of research funded in novel computation: coping with complexity 

* EO. 6 million for taught courses in complexity and complex systems 

e flO million investment in a 5-year centre in Large Scale Complex IT Systems 

e L8 million over five years for two Doctoral Training Centres in complexity 

science 

e L2.5m for Fundamentals of Complexity Science 2007 

The EPSRC also co-ordinates the Complexity-NET organisation, which aims to link 

complexity research and training activities carried out at different institutions 

throughout Europe using the ERANET scheme for Complexity Science. 
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The Santa Fe Institute, founded in 1984, is a private, non-prof it based independent 

research and education centre, specialising in multidisciplinary collaborations in the 

physical, biological, computational, and social sciences. The institute specialises in 

the complexity domain and considers the understanding of adaptive complexity to be 

critical when addressing key cnviromncntal, social, technological, economic and 

political challenges. The research strands or "topics" are founded on these concepts 

and are detailed within Table 2 below. 

Santa Fe Institute Topics Programmes within Topic 

Physics of Complex Non-equilibrium Statistical Physics and Self-Organization 

Systems Quantum Information and Dccoherence 

Networks: Social, Biological, and Technological 

Scaling, Universality, and Quantitative Laws of Life 

Emergence, Innovation & Innovation in Biological Systems 

Robustness in Innovation in Technological Systems 

Evolutionary Systems Innovation in Markets 

Robustness in Biological and Social Systems 

Information Processing & Quantum Algorithms and Cryptography 

Computation in Complex Phase transitions in NP-Hard Constraint Satisfaction Problems 

Systems Pattern Discovery in Time Series and Spatiotemporal Data 

Evolving and Understanding Computation in Cellular Arrays 

Statistical Order and Robust Information Processing 

Biologically Inspired Solutions to Computational Problems 

Dynamics & Quantitative Financial Markets as an Empirical Laboratory 

Studies of Human The Cost of Money as a Public Good 

Behaviour Emergence and Robustness of Community Structures 

Geographic Structure, Demographic History, and Approximate Bayesian 

Computation 

War-timc Sexual Violence 

Agent-based Modelling in the Social Sciences 

The Dynamics of Civilizations 

The Evolution of Human Behaviours, & Institutions 

The Evolution of Human Languages 

Emergence, Organization Origin, Synthesis & Form of Life 

& Dynamics of Living The Emerging Ecology of Living Systems 

Systems The Emergence of Social Ecosystems 

HIV Propagation and Treatment 

Table 2- Santa Fe Institute topics, programmes and research activities. 
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The Santa Fe Institute attracts scientists and researchers from universities and 

governments globally, and also offers educational courses that reside with the topics 

above. The institute is involved with other projects and businesses in its research 

activities. 

The Institute for Complexity Sciences (ICC) supports research within the complexity 
domain, contributing to workshops, conferences and seminars. Tle ICC aims to: 

a) Promote interdisciplinary collaboration in scientific domains where the notion 

ofcomplexity has an essential role, such as: 

a Net structure and dynamics 

b. Languages, computation and system simulation; 

c. Socio-economic system dynamics 

d Natural computation and new computational techniques 

e. Auto-organization: organisms and aggregates 

Management and development of resources 

b) Support the development ofa common language between mathematicians, 

physicians, economists, sociologists, biologists, linguists and computation 

scientists, as well as to maintain aforum, opened to researchers in the above 
domains, allowing crossedfertilization of their disciplines; 

c) Provide services to the community; 

d) Cooperate with public andprivate entities, concerning mutual interests in the 

domain ofresearch, education and services to community, 

e) Promote contacts and cooperation withforeign universities and research 

centers and international entities 

Organize advanced educalion courses 

g) To attain its goals, ICC must develop thefollowing activities: 

h) Research projects 

i) Seminars, conferences and similar activities 

Publications 
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k) Advanced education courses and research direction 

(ICC 2008) 

The New England Complex Systems Institute (NECSI) is an independent academic 

research and educational institution. In addition to its own faculties, NECSI also has 

co-faculties, students and affiliates from MIT, Harvard, and other universities both 

nationally and internationally (NECSI 2008). The areas of study of NECSI include 

networks, agent-based modelling, multi-scale analysis and complexity, chaos and 

predictability, evolution, ecology, biodiversity, systems biology, cellular response, 
health care, systems engineering, negotiation, military conflict, ethnic violence, and 
international development. NECSI also offers practical courses and a variety of 
literature to support the educational strand of the organisation. 

2.1.2 Complex Systems Societies 

The Complexity Society is based in Manchester, within Manchester business school 

and institute of innovation and research. The society was formed in 2002, as a result 

of conversations between Peter Allen of Cranfield University and Elizabeth McMillan 

of the Open University. These conversations resulted in the invitation to attend a 

meeting at the Open University to present their ideas. 

The aims of the society are as follows: 

"The Society seeks to COAWECT, DISSEMINATE, INFORM, TAKE ACTION. 

o CONNECTING individuals and groups enthusiastic about complexity and 

providing a 'homefor complexity in the UK 

9 DISSEMINATING, communicating and spreading ideas and insights using 

public seminars, conferences, Internet, publications 

9 17VFORMING and educating individuals, organisations, government and 

policy makers at local and national levels 

* TAKING ACTION, practising the values we espouse and moving Complexity 

into the mainstream of UK and European life " 

(Complexity Society 2008) 
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Today it has a growing membership and has produced a number of papers on various 

subjects including Organisational. Design (Elizabeth McMillan 2001) and agent based 

modelling (Volterra Consulting Ltd 2003). 

Ile Centre for Social Complexity (CSS) of George Mason University aims "to 

advance the knowledgefrontiers ofpure and applied social science, by using and 
developing computational and interdisciplinary approaches that yield new insights 

into thefundamental nature ofsocialphenomena at all levels ofsocial complexity, 
from cognitive networks to the world system. " The centre "aspires to contribute as a 

scholarly collaboratory ofexcellence, discovery, and invention, pursuing the highest 

standards, andfunctioning as an active, cutting-edge leader andparticipant in the 

emerging international computational social science community. " 

The Complexity Science Research Centre is an Open University based research centre 

which was established in spring 2001. The Complexity Research Centre has four key 

objectives which are set out within four distinct themes - exploration, design, 

innovation and implementation. The ob ectives; are as follows: j 

e "Exploration -To carry out, encourage and assist interdisciplinary research 

and collaborative explorations on complexity science within the University, 

the UK and internationally. " 

e "Design - To create imaginative and robust models using the latest concepts 

and techniques in such areas as organisations and management, computer 

simulations, traffic systems and environmental systems. " 

* "Innovation - To encourage creative and highly innovative research while 

working closely with other research groups, interested individuals and UK 

and international organisations. " 

e "Implementation - To Promote and apply the theoretical andpractical 

applications of complexity science with seminars, conferences, networking, 

publications and consultancy. " 

(Complexity Science Research Centre 2008) 

This centre maintains links with the Open University Complexity Society, and has the 
following overall objective "to establish the Open University as an international 

centre ofexcellence and expertise in complexity science research. " 
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The Centre for the Study of Complex Systems or CSCS, is a group of rcsearchcrs 
from a variety of disciplines including biology, cognitive science, computer science, 

political science, psychology, information, physics and political science. Established 

in 1999, it has been driven by the following goals: 

To calaJyze and encourage research in complex adaptive systems at the 
University ofMichigan 

* To expand and coordinate educational opportunities in complex adaptive 
systems at UM 

e To explore the boundaries and overlaps between the complex systems 

approach and more traditional approaches within the University and business 

communities 

9 Toform a community ofcomplex systems researchers and students-both at 
UM and throughout southeast Michigan 

9 To enhance the University ofMichigan's world-wide reputation in complex 

systems research and education 

e To raisefunds through government andfoundation grants, private and 

corporate donations to support CSCS activities. 

The centre is conducting a number of different research activities: 

9A weeldy Complex Systems seminar series 

* An annual UM-Santa Fe Institute Workshop 

* Complex Systems Graduate Certificate Program 

e An annual Nobel Symposium 

e Regular co-hosting ofconferences on complex systems with other research 

groups on campus 

* Regular workshops on complex systems techniques 

eA complex systems computer laboratoryfor teaching and research on agent- 
based models 

oA CSCS web site (www. cscs. umichedu) 
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e Complex SystemsAdvancedAcademic Workshop (CSAAH9 

* Complex Systems Reading Group (CSRG) 

e Support of interdisciplinaryfaculty research projects 

9 Coordinated hiring ofcomplex systemsfaculty in departments across UM 

* Development ofnew initiatives andproposalsfor externalfundingfrom 

government agencies, privatefoundations and corporate partners. 

(Center for the Study of Complex Systems 2006) 

These activities contribute to the goals of the centre, covering a range of different 

disciplines, and providing links between the centre and other institutions that are also 

working on similar projects. 

There are also various complexity research centres within Warwick University and 

Hertfordshire University which provide contributions to the area of complexity 

science. 

2.1.3 Centres of Excellence in Complexity Systems, Design 

and Engineering 

There are a number of centres of excellence concerned with complexity systems, 
design and engineering throughout Europe and the rest of the world. The Systems 

Engineering hmovation Centre (SEIC) is one such centrc, a collaboration between 

Loughborough University, BAE Systems and the East Midlands Development 

Agency. The SEIC offers both training and research facilities, working closely with 

industrial partners to develop cffective toolsets, processes and expertise, in order to 

improve overall industrial cffectiveness, and was set up to: 

9 To promote and enhance Systems Engineering as a strategic discipline 

* To create multi-disciplinary engineering 

* To focus on the core competencies underpinning profitability and growth, 

namely Systems Engineering and Project Management 

9 To address the Systems Engineering challenges associated with increased 

complexity, degree of integration, novelty and risk. 
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* To encourage a collaborative hub with other strategic academic and industrial 

partners. 

* To obtain cross -fertilisation of ideas through involvement with partners in 

other sectors and applications 

To apply the benefits of integrated research-lcd teaching to the commercial 

world. 

Ile research was divided into themed areas, and each theme contains its own strands 

of research; one of these themes is complexity, focusing on the difficulties in 

developing large complex systems. 

Systems Engineering and Integrated Systems for Defence - Autonomous and Semi- 

autonomous Vehicles Defence Technology Centres (SEAS-DTC) are virtual centres 

of excellence established in broad technology areas that are of significant importance 

to the delivery of UK defence capabilities. It consists of a consortium of industrial 

partners including BAE Systems, MBDA, Selex, AOS, Rolls-Royce, Roke and CAE. 

Their strategic aim is to provide more rapid pull-through of low maturity research into 

the UK MOD's defence equipment programme. 

The Cambridge Engineering Design Centre (EDC) conducts research activities with 

the aim of generating knowledge, and improving understanding, methods and tools 

that contribute to the design process (EDC 2008). The Cambridge University EDC 

conducts its activities within research themes: 

4, Knowledge Management 

e Process Management 

o Change Management 

e Computational Design 

o Healthcare Design 

9 Inclusion Design 

o Design Practice 

9 Service Design 
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These themes, along with a number of collaborative projects working closely with 
industrial partners enable this EDC to innovate and develop new tools, ways of 

working, modelling approaches, knowledge and education within the complexity 
domain which is of utility for engineering systems. 

Ile Newcastle University EDC has spccific research and educational strands within 
the complexity domain, namely the "COMPlex Process integration and coordination " 

theme (Newcastle University EDC 2008). 

It has continued to develop its reputation within industry for delivering original and 

practical research, developing methodologies for tackling, designing, sustaining, 

modelling, supporting and optimising complexity within engineered systems. The 

EDC works closely with the EPSRC to ensure its activities provide benefit to 

industrial stakeholders. 

The Santa Fe Institute is another centre which provides education and research 

material within the complexity domain (see Table 2). Also linked with industry 

working in a number of different disciplines, the Santa Fe Institute contributes heavily 

to the complexity domain as a centre of knowledge, research and industrial 

collaboration. 

2.2 What is Complexity in Engineering? 

Systems complexity in engineering is one of the challenges faced by systems 

engineering (IBM 2004, Charles, Philip 2003, Bar-Yam 2003). 

Complexity in systems is not limited to design. Indeed, it occurs in a number of ways 

within systems; the requirements capture phases, design phases, integration phases, or 
in some cases capability capture phase. In other words, it has a presence throughout 

the whole lifecycle. Complexity exists within design; within new technologies 

(perhaps immature technologies); within the interfaces between system elements; 

within the size of the system; and within hardware and software. There is complexity 
in the organisation that develops the system; in the internal policies between business 

units, mergers and acquisitions; and in policies between prime and sub-contractors. 
There are complexities that are associated with manufacturing the system; the supply 
chain to manufacture, the manufacture process, and lack of commonality in 

manufacture procedures. There are complexities in the operation of the systems; and 
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in the emergent properties within new systems in an operational environment that 

wcrc not prcdictcd. 

In order to improve the understanding of complexity, various different definitions 

were examined and the relevance of these definitions to complexity issues within 

engineering was identified. 

2.2.1 Early Research into Complexity and Systems Design 

and Engineering 

Kemal A. Delic and Ralph Dum (Kemal A. Delic, Ralph Dum 2006) discuss the 

"Historical Prologue to Present Research " within their paper titled "On The 

Emerging Future ofComplexity Sciences ", found on the ubiquity website (Ubiquity 

2008). This brief account uses their article to describe how complexity science 

evolved into what it is today. In their paper they discuss the beginnings of em of 

complexity science; they write that "approximately as the war-related work on large 

scale system optimizations and intensive simulations in nuclear research. Practical 

needs andproblems evolved into academic work engaging some ofthe most brilliant 

scientist ofthat time. " 

Their paper discusses the emergence of Complexity Science and the evolution of that 

science over the years, identifying Weaver's paper (Weaver 1948) as potentially one 

of the first significant works within the field of complexity science. The paper points 

to different research stages which span 350 years, starting with 'simplicity', to 

'disorganised'and moving toward 'organised complexity'. 'Simplicity'represents a 

stage of low dimensional problems with perhaps two variables; Visorganised 

complexity' involves a much higher number of dimensions or variables (billions); 

while 'organised complexity'is a space within which both living and man-made 

systems reside. 

Traditionally, the scientific approach to the understanding of systems was to vary 

single variables within systems, and study the effects of this change. This approach 

would work for small, simple systems, and an understanding of their behaviour could 
be formed by this method; however, with systems that are complex, varying a single 

value would not necessarily produce results that were readily interpretable. 

Understanding these systems (economic systems, large human organisations, weather, 

etc), and working with them required a new approach. Cybernetics, "Ihe science of 
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control and communication, in the animal and the machine " (Wiener 1965), was a 
key stage within the evolution of complexity science as it offered an approach to 

dealing with complexity; and among the pioneers of this area of research were Ashby 

and Weiner (Wiener 1965, Ashby 1976). 

In his work, Ashby offered a law of pre-requisite variety, a law that states that "the 

complexity ofa control system must be equal to or greater than the complexity ofthe 

system it controls. " This means that simple systems only require simple controllers, 

whereas complex systems require complex controllers. 

The concept of complexity was later expanded upon by the Nobel Laureate for 

economics, Herb Simon (Simon 1962). Kemal A. Delic and Ralph Dum discusses, in 

his paper 'The Architecture ofComplexity, "hierarchy as a distinctive structure 

feature ofcomplex systems and at the property of "near decomposability " simplifying 

the description ofcomplex systems. " This idea was later enhanced by a paper, 'More 

is Different', by P. W. Anderson (Anderson 1972), which focuses on the idea that 

complex systems are more than the sum of their parts; in a sense, complex systems 

represent a Gestalt, one which exists as a result of various connections between 

elements within systems that exhibit emergent properties that otherwise could not be 

predicted. Anderson, Gell-Mann and Kenneth Arrow later went on to found the Santa 

Fe Institute in 1984. Kemal A. Delic and Ralph Durn's account of the history 

describes this as a "n-fflestone in the development of a science of complexity". 

2.2.2 The Development of Measures of Complexity 

Cosma Rohilla Shalizi's, in his brief notes (Shalizi 2008) which cover the 

development and early history of complexity measurement, states that, usually, the 

first complexity measure is traced back to Kolmogorov complexity (later renamed 
"algorithmic information"), a measure of the shortest computer program capable of 

producing a given output (string of characters). Kolmogorov complexity is not easily 

computable, and does not specifically calculate the complexity of a string; rather, it 

describes how random the information contained within that string is. It is, therefore, 

a measure that is very difficult to apply, and has described as "solemnly taken out, 

exhibiteg andsolemnlyput away as uselessfor anypractical application ". Cosma 

Rohilla Shalizi goes on to say that "generally speaking, complexity measures either 
take after Kolmogorov complexity, and involvefinding some computer or abstract 
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automaton which willproduce the pattern ofinterest, or they take after information 

theory andproduce something like the entropy" (Shal izi 2008). 

Those measures that have been developed as a consequence of Kolmogorov include 

Bennett's logical depth (Bennett 1988), other information theory measures (Shannon 

1948), and computational complexities. Since these initial ideas, complexity 

measures have been under development within a number of different domains, 

including engineering. Connections with network theory have enabled complexity 

measurements to be applied to architectures and system designs, along with biological 

ecosystems; and the field of research continues to expand. 

2.2.3 The Development of Network Theory 

Marta Gonzalez describes networks as "a set of items, called nodes or vertices, with 

some connections between them called links or edges. " (Gonzalez 2006). Systems 

that take the form of networks exist all around us - financial systems, the intemet, 

social networks (facebook, MySpace), infrastructure (roads, communications, power 

distribution), information networks in defence systems (Network Enabled Capability, 

NEC); even within the biological world networks exist, such as food chains or 

ecological networks. 

While all very different, these networks all contain nodes and links, and can be 

analysed using graph theory (Reinhard 2005). Graph theory can be used to 

understand networks, and includes concepts of network theory such as spanning trees 

(Irvine 1996), where links between nodes have "length7' and direction, so information 

flow throughout the network can be modelled. Network theory can be applied when 

modelling complex systems, determining the potential paths for information between 

nodes (links to Senge's (1994) concepts of dynamic and detail complexity, see section 

2.6). 

Research into the social aspect of network theory has included the "strength of weak 

ties" within social networks (Tesson 2006). Mark Granovetter conducted research 

which looked at wherejob applicants heard about thejobs they were applying for 

(Granovetter 1974). This research determined that the strong links within the 

applicants' social network (i. e. friends, family, immediate work colleagues) were 

often not responsible for providing information which ultimately leads to finding a 
job; instead, it was the weaker links - acquaintances, for example - that provided this 
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information. Granovetter suggested that these weak links acted as "network bridges " 

between two networks with strong connections that would otherwise remain 

unconnccted. 

The "small world" concept of network theory developed by Watts and Strogatz, 

further expanded on the idea of the strength of weak links by seeking a mathematical 

explanation. The model developed by Watts and Strogatz showed that these "small 

world" networks were neither random nor regularly organised, but were, in fact, a 

structure that sat between the two. As with Granovetter's concept of the strength of 

weak links, Watts and Strogatz determined that small networks contain long length 

links within the structure that are able to join together two highly connected nodes or 

hubs. 

Tle concept of hubs has been further expanded by Albert-Laszlo Barabasi (2002), 

who argued that there are some nodes which are often more highly connected than 

others, and these are known as "hube' within networks. Ideas such as this can be 

applied to failure analysis within systems, whereby one system component is highly 

connected to other system components, and consequently is a leading cause of overall 

system failure as a result of being on many information flow paths within the 

network. 

Network theory, combined with graph theory, continues to be a driving force in the 

development of concepts to support, understand, quantify and model complex 

systems, be they social, engineered, or mathematical in nature. 

2.2.4 Agent-Based Modelling 

An agcnt-based model (ABM) is a computational model for simulating the actions 

and interactions of autonomous individuals in a network, with a view to assessing 

their effects on the system as a whole. Each element or agent within the network acts 
in its own interests, with individual goals or objectives; simulating the interactions of 

these agents enables the identification of the emergent behaviour, or complex 

phenomena that results from them. ABM combines elements of game theory (game 

of life), complex systems, emergence, computational sociology, multi-agent systems, 

and evolutionary programming along with using Monte Carlo Methods to introduce 

randomness within simulations. The simulation technique is powerful, and suggests a 
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variety of applications in a number of different disciplines (engineering, commerce, 
AT). 

The Multi-Agent Systems Lab (MAS Labs 2008) is part of the Computer Science 

Department at the University of Massachusetts at Amherst. It is concerned with 
developing and analysing sophisticated artificial intelligence problem solving and 

control architectures for single and multiple agent-based systems. Organisational 

design, performance and adaptation research projects within KB-ORG (an automated 
knowledge based organisation designer for multi-agent systems) were created for 

developing organisations with different requirements and environment expectations 

(MAS Lab 2008). 

Engineering projects have included the Autonomous Negotiating Teams (ANTS) 

project. This project analyses the coordination of constrained resources in an 

uncertain real-time domain. Within this project the coordination of radar sensors was 

explored when tracking targets, thus developing negotiating strategies dependant on 

the demands of the environment on the system at any particular time (MAS Labs 

2008). 

ABM can be used to model organisational structures where agents may be usiness 

units, individuals, or groups within an engineering development team. ABMs may 

also be applied to engineering designs, such as autonomous sub-systems which 

exchange information with the individual sub-systems, making decisions based on 

this information, such as autonomous reconnaissance systems. 

2.2.5 Dynamical Systems and Chaos 

Dynamics is the study of change, and a Dynamical System is a system containing 

variables which interact and change in time. Examples of dynamical systems are the 

stock market and the economy, climate, population, ecosystems, and also 

mathematical systems (Spiegelman 1997). 

Lorenz studied mathematical dynamical systems and developed the concept of strange 

attractors within those systems, which show how the trajectory plot of a dynamical 

system moving through time in 3D space, in some cases, tends towards specific points 

- attractors. 
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Figure 3- Lorenz attractor. 

Figure 3 (Filip Larsen 2001 ) shows the Lorenz Attractor. The system never reaches a 

steady state, but remains chaotic, shifting from attractor to attractor, and is highly 

sensitive to initial conditions. 

The notion ofthe "butterfly effect" illustrates how small changes in the initial 

conditions can lead to dramatic changes in later system behaviour. Complex systems 

sometimes exhibit these characteristics, in that small changes in inputs to tile system 

can lead to effects which totally change the behaviour of the system. and perhaps lead 

on to unexpected changes in system behaviour (emergent properties). 

An interview with Professor Robert MacKay (Warwick Universitv 2008) includes an 

illustration of a dynamical model of infection spreading between individuals. As the 

Professor notes in the interview, although the model exhibits the appearance of 

random chaos. sometimes the infection dies out within the model. and at other times it 

spreads. The Professor comments that the behaviour and overall result of the model is 

highly dependent on the initial conditions, and that this is typical of dynamic systems 

at the edge of chaos. 

2.2.6 Scaling and Power Laws 

Scaling behaviour and power laws are often found within highly complex dynamical 

systems. Power laws enable relationships to be found between variables within 
dynamical systems; examples of power laws are metabolic rate and mass, optimum 

cruise speed, and size of flying obýjects. 
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Changes in the relationship between two variables in some cases are independent of 

scale, an example of which is the optimum cruise speed and size of flying objects. 
This relationship has been followed through from objects such as insects right through 

to 747 civil airliners. 

Scaling and power laws enable a much richer understanding of the relationships 

which can exist within dynamical system variables. These relationships that can be 

established within systems might otherwise have been overlooked or missed, and may 
be crucial to understanding how the system works. 

In the field of complexity, relationships between variables is extremely important - 
increasing the ability to understand variable relationships means that networks of 
interaction within systems can be greatly increased. This improved knowledge and 
increase in the understanding of the relationships within systems means that science is 

able to determine the reason for the relationships existence and improve knowledge of 

that system. 

2.2.7 Cellular Automata and the Edge of Chaos 

Cellular automata is name given to the relationship between a cell within a network 

and its neighbours. Examples of such a system is the "game of life" (Conway 2000) 

in which a cell is either lit or kept in darkness, and will change colour depending on 

the current state of neighbouring cells on the next clock cycle, depending on a user- 

provided rule. In this example with a grid of perhaps 50 by 50 cells, with a 

randomised initial state for each cell (lit or dark), processed clock by clock, the cells 

change their state depending on the user-defined rule. Initially, the behaviour of the 

grid seems to be random - cellular states flicker with little or no pattern; however, as 

the process continues regular patterns emerge, in some cases rapidly. The point at 

which a system (like the game of life grid of Conway), moving from a state of 
disorder or randomness (a chaotic state) to one of order and regularity with little to no 

transition period, is known as the "edge ofthaos ". 

Jeffery Johnson's article, entitled "Can complexity help us understand risk? " 

(Johnson 2006), describes the history of the development of cellular automata 

research, beginning with Conway's gatne of life. 

Wolfram (1994) studied cellular automata and was surprised to find that the outputs 
were not simple regular patterns; rather, what emerged from running these grids of 
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cells with a set rule was a "pattern that seems extremely irregular and complex. 
Wolfmm. later determined four classes of output from such a system: 

1. All cells become alive or all the cells die, irrespective of the initial conditions. 

2. The final state consists of simple structures that may repeat. 

3. The behaviour is more complicated with triangle and small structures 
appearing at random. 

4. A mixture of order and randomness; localised structures are produced which 

on their own are simple but interact with other structures in complicated ways. 

(Wolfram 1994) 

Langton suggested a value lambda to investigate the behaviour of cellular automata; 

as this value increased the behaviour of the system was found to progress through 

Wolframs classes in the order 1,2,4 and finally 3. Langton discovered there was a 

critical value at which class 4 existed, between ordered, structured, and random 
behaviour. This was later called the "edge of chaos", a point at which the behaviour 

is a mixture of structured and chaotic behaviour. 

2.2.8 Simulation 

Edmonds' paper titled "Simulation and Complexity" (Edmonds 2005) begins with the 

question "Do simulation models really help us understand complexphenomena? " In 

some domains the system is sufficiently complex that standard equation-based and 

statistical models are often impractical or even impossible to apply (Edmonds 2005), 

posing its own problems and issues. Often it is not possible to model the phenomena 

completely; in order to do so would mean a direct replication of it and this is often 
impractical and defeats the point of modelling. Edmonds also states that 
"inappropriate use of any kind of modelling generates more confusion than it sheds 
light " and states that this danger is increased for complex phenomena. 

In his paper Edmonds identifies three distinct problems regarding simulation 

modelling of complex phenomena: 

e The presentation ofmodels that are intuitivelyplausible but with little solid 
relation to their intended domain. Such models are developed to aid 
conceptual orformal exploration but then convince their authors to such an 
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extent that they then project the model upon their domain, drawing unjustified 

conclusions about it. 

e Different types of models are conflated in terms of use andjudgement, so that 

a model that was developed and validatedfor one kind ofuse is then used or 
interpreted as ifit were validfor a different use. For example a model may be 

developed as if it were a predictive model but then tested according to criteria 

suitablefor an explanatory one. 

Since programming is apparently much more accessible than doing 

mathematics (going by the numbers able to do each) - many more people can 

build models and discover something. This has both positive and negative 

aspects, its accessibility has the effect ofdemocratising afield making it less 

prone to persuasion via mathematical opaqueness but on the other hand the 

lack ofthe implicitfilter that mathematical competence means that there are 

more badly constructed or sloppily applied models around to confuse. 

Edmonds also identifies the use of models. 

9 Simulation models can be usedfor manypurposes, including: 

o, Entertainment, as in 'SimCity' 

9 Art, to produce pleasing or expressive artefacts 

* Illustration, to animate aphenomena one wants to communicate 

e Pseudo-Mathematics, to determine the properties ofthe simulation in the 

abstract 

e Mediation, as a medium with which to communicate or negotiate 

* Desig? 4 as a way of testing an ideafor a design before most costly 

construction occurs 

o Science, Le. helping to understand observedphenomena 

Agent-based modelling or simulation consists of software objects (agents) which 
interact with each other and a virtual envirorunent. Each agent is independent and can 

react to and have influence upon the virtual enviromnent within which it resides. This 

method of modelling or simulation can be used to create models of complex systems. 
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Examples of models of this nature are computer programs such as "Sim City" 

(Electric Arts 2008), a computer based game/simulation of a city environment where 
independent agents interact with each other based on a set of rules defined by the 

game player. The results of these generated rules (assigning land to residential, 

commercial or industrial zones, for example) then influence the behaviour of the 

agents, and in turn this behaviour generates feedback to the game player in the form 

of economic prosperity, crime rates or approval rates within the virtual city. 

Nigel Gilbert of the Centre for Research on Social Simulation (Nigel Gilbert 2004) 

talks of computer simulations using agent-based modelling approaches, such as the 

SimCity computer game. He notes that "the breakthrough came when it was realised 

that computer programs offer thepossibility ofcreating 'artificial'socielies in which 
individuals and collective actors such as organisations could be directly represented 

and the effect oftheir interactions observed " He also notes that "another benefit of 

simulation is that, in some circumstances, it can give insights into the 'emergence'of 

macro levelphenomenafrom micro level actions. " 

A lot of additional simulation tools have been developed within engineering that 

model and simulate engineering systems. These simulations include packages such as 

Telelogic's Rhapsody tool which can simulate systems created in SysML. These 

models can be used to dynamically model systems in software and hardware with 

software representations. These simulations have proved to be extremely effective in 

the product development process, and the use of 'synthetic environments' within 

which real or mock systems can operate is becoming a frequently used tool within 
industry when developing large systems with many interconnections, or when 

connecting a series of systems for the first time (networked enabled capability). 

2.3 Definitions of Complexity 

There are a large number of different definitions of complexity from a variety of 
different disciplines. In order to enhance our understanding of complexity, an 

appreciation for the different definitions and their implications is necessary. 

Some of the definitions are specifically engineering focused, and perhaps relate to 

specific engineering domains such as software or hardware. Others are biological or 
mathematical. However it is necessary to explore as many avenues as possible and 
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different disciplines will have different focuses for their definitions. Before this can 
be done, an understanding of what is required by a definition must be formulated. 

The International Organisation for Standardisation. (ISO) adopts a standard approach 
when creating definitions (ISO 1999), and this approach is the basis on which the 
definitions collected here will be compared and contrasted. The standard states that 
definitions should: 

* Be as concise and brief as possible while being complete. 

* Describe what the concept is, and not what it is not. 

9 Avoid circular definitions; a definition of the first concept needs explanation 

of that concept, and that explanation refers back to the first concept. 

These requirements are considered when analysing definitions of complex and 

complexity in this section. 

The obvious place to start when looking for any definition is the dictionary. The 

American Heritage Dictionary of the English Language (American Heritage 

Dictionary 2000) describes complexity as "the quality or condition ofbeing complex" 

and "something complex: a maze ofbureaucratic and legalistic complexities ". The 

dictionary also describes complexity as "consisting of interconnected or interwoven 

parts,, composite. Involved or intricate, as in structure; complicated Havingparts so 
interconnected as to make the whole perplexing. " (American Heritage Dictionary 

2000). The Oxford English Dictionary (Oxford University 1992) describes 

complexity as a "composite nature or structure", an "involved nature or structure, 
intricacy", and also "an instance ofcomplexity; a complicated condition, a 

complication " The dictionary also describes complex as "consisting ofor 

comprehending various parts united or connected together; formed by combination of 
different elements,, composite, compound Said of things, ideas, etc. " and also as 
"consisting ofparts or elements not simply co-ordinated, but some ofthem involved in 

various degrees ofsubordination; complicated, involved, intricate, not easily 

analysed or disentangled "' 

The dictionary definitions are not directly related to complexity within engineered 
systems. The first definitions from the American Heritage Dictionary are not 
particularly useful, as they simply denote complexity as a condition of being complex 
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without offering any further information - it is, then, a circular definition. The latter 

definition from the American Heritage Dictionary is more informative, describing 

complexity in terms of intricacy within systems and the difficulty in understanding 

such systems, making the whole 'perplexing'. 

Oxford's definitions like the American Heritage Dictionary offer two rich 
descriptions, without much reference back to other concepts, and three somewhat less 

useful definitions. Descriptions of complexity, such as a "composite nature or 

structure", a system with "involved nature or structure, intricacy ", or "an instance of 

complexity, ý a complicated condition; a complication " offer little insight into what 

complexity actually is. As with the American Dictionary, the last description is a 

circular definition and of little use on its own. 

However, in both sets of definitions there are a number of key words that describe 

complexity well, namely, intricacy, intricate, composite, connected, elements, appear 
in the definitions, along with concepts such as disentangled and not easily analysed, 

which bare a good resemblance to large scale systems designed today. The 

"elements" could be interpreted as sub-systems, the "intricacies" and 'entanglement' 

as the interfaces and the level of coupling between those interfaces. Large scale 

systems developed by defence contractors do consist of sub-systems that are not 

simply connected; rather, they are connected with data buses, data lines internal 

software links, and mechanical links. 

A number of definitions of complexity follow the theme of intricacy between 

components, or elements. Evans (1987) is an example - he describes complexity 

within the software domain in a more concise fashion as "the degree ofcomplication 

ofa system or system component, determined by suchfactors as the number and 
intricacy of interfaces, the number and intricacy ofconditional branches, the degree 

ofnesting, and the types ofdata structure ". This definition expands on the intricacy 

aspect of complexity in systems by providing a source of that intricacy. Although 

focused on software systems in particular (they are the focus of the complexity 

sources) Evans identifies a number of factors that influence complexity (or the level 

of intricacy), introducing the concepts of nesting, conditional branches and data types 

and structures which are appropriate for the software domain. 
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There are complexity measures specific to software systems, Cardoso uses this 

description of process complexity, utilising that taken from (IEEE 1992): process 

complexity is "the degree to which a process is difficult to analy7e, understand or 

explain. It may be characterized by the number and intricacy ofactivity interfaces, 

transitions, conditional andparallel branches, the existence ofloops, roles, activity". 

(Cardoso 2005) This is very similar to the definition of Evans (1987), with added 

specific software terminology (loops, roles, transitions, etc. ). 

Evans' definition is applicable not only to the software domain, but also to the wider 

systems engineering domain. Conditional branches (see Cyclomatic Number for 

measurement in section 2.7 Complexity Measures) and nesting within systems are not 

only properties of software systems but exist in organisational and technological 

systems as well; as a result, the definition is appropriate for the systems engineering 
domain, as well as other domains while meeting the criteria set for the dcf initions 

outlined above (concise, not circular, and does not describe complexity using 

negatives). 

Other definitions or descriptions of complexity also take up this point. J. M. Sussman 

(1999), for example, states that "a system is complex when it is composed ofa group 

ofrelated units (subsystems), for which the degree and nature ofthe relationships is 

imperfectly known Its overall emergent behaviour is difficult to predict, even when 

subsystem behaviour is readilypredictable. The time-scales ofvarious subsystems 

may be very different (as we can see in transportation - land-use changes, for 

example, vs. operating decisions). Behaviour in the long-term and short-term may be 

markedly different and small changes in inputs or parameters may produce large 

changes in behaviour. " Although not specifically created with the engineering 
domain in mind (it was actually created for transportation systems), there are 

similarities, or common concepts in this definition, to concepts of complexity found in 

engineering. The recurring theme of interwoven sub-systems (mentioned directly) 

and their not fully appreciated or understood intricacy (which is 'imperfectly known', 

perhaps due to the difficulties in modelling systems in their entirety), along with the 

additional references to the difficulties in understanding the whole system and 

predicting emergent properties is quite appropriate to engineering issues. There are 

other relevant aspects of this description to engineering as well - the concept of 
different time scales for sub-systems is not mentioned in the previous definitions. 
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This is also present in engineering design and systems engineering, with many 

products having sub-systems that are vastly different, some human, some electrical, 

some mechanical and some software. These different sub-systcms run within very 
different time frames - electrical and software systems are very fast, processing 
information extremely quickly; human interaction is slower, but despite this they must 
be integrated to form a complete coherent whole. 

The final aspect covered by Sussman's definition, is the sensitivity of complex system 
behaviour to small changes in input parameters. This sensitivity of developed 

systems is indeed an important issue for systems engineering, as it implies that small 

changes in conditions cause large variations in behaviour (see section 2.2.5) making 

modelling and predictions awkward and error prone. This is different from system 
instability - complexity occupies the space between stability and instability (although 

leaning towards instability). 

Sussman's definition (or, perhaps more appropriately, his description) meets the 

criteria for a definition - it is concise and complete, with no circular references or 

concepts; it does not describe complexity using negatives, and it has highlighted a 

new concept that should be considered, although the time scale differences in 

operation is perhaps more a cause of complexity than a definition of it. Finally the 

addition of system sensitivity is useful, but is perhaps a result of the lack of 

understanding or inability to model or predict the system correctly. 

Modelling and predictability in systems is also a theme found in definitions of 

complexity. Edmonds suggests that a complex system is "a system where it is 

difficult toformulate its overall behaviour in a given language, even when given 

reasonably complete information about its atomic components and their inter- 

relations " (Edmonds 1999), and that it is "not easy to understand or analy7e " 

(Edmonds 1999). This indicates that systems complexity is related to the difficulty in 

understanding the system, or modelling, estimating or predicting the behaviour of 

systems. The IEEE also describes complexity in a similar manner, as "the degree to 

which a system or component has a design or implementation that is difficult to 

understand and verify "(IEEE 1990), but a lack of understanding perhaps points to 
ignorance rather than anything else - although, as Edmonds argues, "complexity is 
distinguishedfrom ignorance " (Edmonds 1999), it cannot be an excuse for it. 

Sussman's (1999) idea of system sensitivity could be the result of ignorance in the 
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engineering process. Ignorance or lack of understanding of a system does not 

necessarily mean that the system is complex; in light of this the IEEE definition is 

incomplete, whereas Edmonds' definition includes the caveat that complexity is a lack 

of understanding despite having "reasonably complete information about its atomic 

components and their inter-relations " (Edmonds 1999), which eliminates room for 

ignorance. 

Similar to un-model able, unpredictable, and non-understandable definitions of 

complexity, Langefors (1967) describes an unperceivable system, which can come "to 

mean a system such that the number of its parts and their interrelations is so high that 

all its structure cannot be safely perceived or observed at one and the same time. " 

This definition is appropriate for complex systems; indeed an unperceivable system is 

beyond comprehension, beyond understanding. It is complex, which makes this 

definition appropriate. Again it is concise, there are no circular concepts; however, it 

is just an addition to the definitions of complexity that hinge around the unpredictable 

nature of complex systems. However this concept is perhaps more in tune with the 

scale issues of complex systems, with the number of parts, and interrelations. Scale is 

a common problem in definitions of complexity; the two do not necessarily go hand in 

hand with each other (such as the Boolean NK networks of Kauffman), as a result the 

definition is perhaps incomplete. 

Ile definitions of complexity outlined thus far centre around complexity properties 

within systems; the difficulties in modelling or predicting complexity, the levels of 
intricacy, the coupling within the system, the levels of variety, the size, the loops 

within the system. However, complexity within engineering systems can be split up 
into those complexities that are unavoidable or intrinsic to the system and those that 

are a result of the development process, or induced complexities. Mus6s (Mus6s 

2002) proposed splitting complexity into three "kindsP, and developed definitions or 
descriptions of those complexity "kinds", the first of which is: 

"Complexity I- Inherent in almost all natural phenomenorL " 

Muses uses the "wealth ofspecies, the incredibly rich repertoire ofweather and 

sunsets, the turbulentflow ofrapids and waterfalls, the endless kinkiness ofcoasilines 

and individuality offides " (Mus6s 2002) as examples of this. Mus6s' Complexity I 
(although describing natural systems) can be adapted to refer to the intrinsic 
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complexity of the system. For systems engineering, Mus6s' Complexity I can bc re- 

phrased as; 

Complexity I- The ineluctable complexity which exists within a system as a result of 
the irreducible functional or capability requirements placed upon it. 

Mus6s continues to describe additional levels of complexity within systems, focusing 

on over-complication, which he describes as "simply needless over-complication 

arisingfrom not seeing things clearly enough - either through lack oferperience or 

ability, orfrom an excess ofobfuscating conditioning beclouding the perceptive 

mind " Systems engineering over-complication is induced complexity within the 

development cycle of products. The difference between Mus6s' definition and the 

perception of the systems engineering world is that over-complication is not 

necessarily 'needless' as a result of being inexperienced of unperceptive, but can 

actually be both needed and needless. 

Experience in some cases would tell us that the over-complication is in fact beneficial 

as technologies are mature; in other cases over-complication is in fact an accidental 

and perhaps detrimental result of the development process. 

Mus6s' definition for 'Complexity 11' is the following: 

"Complexity H- Simple over-complication caused by lack of insight into the 

problem. " 

This needs adaptation before it can be applied to systems engineering problems. 
From an engineering viewpoint this is clearly the addition of unnecessary complexity 

into the system that is not beneficial to the system or its development lifecycle. 

Complexity 11 - The avoidable and detrimental unnecessary complexity which exists 

within a system as a result of the development process. 

Finally Mus&s describes the third kind of complexity as: 

"Complexity III - Problems cannot be solved by pseudo-solutions that are not on 
target, such as whitewashed solutionsfor large scale problems in elaborate often 
logorrhoeic terms ofcomplexily ofthe second kind with large amounts of 
inappropriately misapplied complexity of type L Simply diagnosing systems is not 
enough here. " 
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Complexity III is quite an appropriate definition when considering the new challenges 
faced by systems engineering (evolving requirements, capability requirements). It 

suggests that the process (the solution) may be incorrect and a new solution specific to 

the procurement strategy may be required (UK Ministry of Defence 1999). 

Complexity III focuses on the point that, often, complexity problems cannot be solved 

using already existing solutions that are not specific to the system in question, but 

solutions that are created using the long over-complicated Complexity 11 of miss- 

applied Complexity I. Complexity III means independent strategies must be realised 

to find solutions. 

In systems engineering, the equivalent is the application of the same engineering 

processes to all product development programmes, or the same metrics as the method 

of quantifying various aspects of the development cycle or product. The suggestion 
by Mus6s is that often, the process of engineering in some cases may be bespoke to 

that development prograrnme. This of course goes against the general perception of 

systems engineering, the lifecycle which is applied to development programmes of all 

shapes and sizes as a blanket "whitewashed" solution. 

Another definition of a complex system is one that exists at the "edge ofthaos " 

(Waldrop 1987). This term, although not strictly a definition in its own right as it 

does not refer to the complexity concept, refers to a system whose behaviour is almost 

random, at a point where complexity within the system is said to be at its maximum. 

Stuart Kauffman developed a game of life model based on Boolean NK networks 
(Kauffman 1993); these networks were simulations of life based on a natural selection 

principle. These models demonstrated the transition from chaotic behaviour to order, 
demonstrating the principle of "self-organisation" in cellular automata. 

"Irreducible complexity", a term first coined by Michael Behe (2006), and revisited 
by William Dembski in Irreducible Complexity Revisited, refers to a system 
"composed ofseveral well-matched, interacting parts that contribute to the basic 

function, wherein the removal ofany one ofthe parts causes the system to effectively 

ceasefunctioning. " (Dembski 2004). Despite the fact that this complexity definition 

was initially developed in support of intelligent design, the irreducibility idea could be 

applied to a system which cannot be reduced any further, indicating that there are no 
added induced complexities within this system which result from process. 
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2.3.1 Complexity Characteristics 

Charles Perrow describes complex systems as having the following characteristics: 

9 Proximity ofcomponents that are not in a production sequence. 

9 Many common mode connections between components in a production 

sequence. 

* Unfamiliar or unintendedfeedback loops. 

e Many control parameters with potential interactions. 

* Indirect ofinferential information sources. 

* Limited understanding ofsome processes. 

(Perrow 1999) 

Commonality between these characteristics, that define a complex system for Charles 

Perrow, exist between a number of the definitions explored elsewhere in this thesis 

(Edmonds, Musýs, Sussman, the dictionaries, etc. ). 'Ilie context within which this 

definition or description of complexity arises is the sphere of process, be it the 

engineering process, maintenance process or operating process. Nonetheless, the 

characteristics here are quite pertinent to systems engineering; the more specific 

reference to "tuýntended feedback loops" suggests that even closely and carefully 

developed systems will have unintended behaviours (emergent properties) that could 

be detrimental to system performance, or as Perrow points out, safety. 

Hitchins writes that "a generic system can be stated as "complex " when it is 

composed ofan open set ofcomplementary, interacting paths with properties, 

capabilities and behaviours emerging bothfrom the parts andfrom their 

interactions " (Hitchins 1992). Like a number of the other definitions this, too, focuses 

on the intricacies within the system elements and interfaces, and with emergent 

properties arising from these interactions. The definition is not so useful in the 

engineering domain, as it is limited in its description of complexity. There is no 

mention of testing, the number of interactions, or the lack of understanding or 

comprehension of the system. 

Further definitions of complexity or descriptions of complexity centre on the inability 

to describe systems, and the inability to model or predict their behaviours. 
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"Complexity is the property ofa real world system that is manifest in the inability of 

any oneformalism being adequate to capture all its properties " (Mikulecky 2007). 

Tlis is a definition, again, that only partially tells the story for engineering systems; 

although relevant, there is no reference to the intricacies that are the root cause of the 
difficulty in describing complexity. However Mikulecky does not finish here - he 

goes on to state that complex systems arc non4mgmentable: 

"It is non-fragmentable. Ifa complex system werefragmentable it would be a 

machine. We require the distinction to be dichotomous. Therefore complex systems 

are notfragmentable. That is not to say that they are incapable ofbeing reduced to 

parts, but such reduction destroys important system characteristics irreversibly. 

(Mikulecky 2007) 

In fact Mikulecky continues his description of complexity, and it is highly detailed 

one; he further explains that a complex system: 

,, consists ofreal components that are distinciftom its parts. At least one set ofthese 

components is defined by itsfunctions. Thesefunctional components are not simply 

collections ofparts. Ifthey were the system would befragmentable in the above sense. 

Thesefunctional components are therefore defined by the system and have their 

ontoloV dependent on the context of1he system. Outside the system they have no 

meaning. Further, ifthey are "removed"ftom the system in any way the system loses 

its original identity as a whole system. 

(Mikulecky 2007) 

In its entirety, Mikulecky's description is very thorough. Although not referring to 

intricacies and coupling within systems, it does acknowledge the presence of 

properties within systems that contribute to their complexity. In addition to this, he 

advances a concept of complex systems as being unfragmentable or irreducible. A 

variation, and another description or definition used to describe complex systems 

often concerns ideas of reducibility. Complex systems are considered to be 

irreducible; indeed it is often considered that the only way to model the system 

correctly is in fact to replicate it. 

What is needed is an understanding of complexity specific to the engineering domain, 

one which incorporates elements of definitions or complexity characteristics from 
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other disciplines that are applicable to engineering. All the definitions so far 

encountered seem to fit one, or a nurnber of up to four distinct themes: 

e Irreducibility or unfragmentable. 

* Intricacy and coupling. 

e Indescribable or cannot be modelled without complete system replication 
(intricacies and understanding). 

& Level of understanding (ignorance, modelling and predictability) 

In engineering, a definition appropriate to the challenges faced by systems 

engineering is required. Systems engineering, in particular the integration within the 

systems engineering process, is interested in the intricacy and coupling of sub. 

systems, the ability to model and predict that sub-system and overall system (perhaps 

in terms of behaviour, reliability, sustainability, durability and effectiveness). In this 

context the last two definition types listed above are applicable; however, it is not 

obvious how irreducibility fits in the systems engineering domain. Obviously the 

system, if dissected, will not resemble the complete system, but in systems 

engineering and, in particular, in defence system engineering, reducing the system 
(perhaps due to failure or error) is not usually a problem due to redundancy, or 

resilience to failure. In this sense the system still operates despite being reduced; as a 

result developed systems are in fact reducible. 

Finally the level of understanding of the system in question is of vital importance, but 

again must not be confused with ignorance (Edmonds 1999). The idea is that our 

understanding of the component parts of systems are, in fact, at a high level, but our 

understanding of the system as a whole is in fact limited. Our limited understanding 

of the system as a whole, and its operation is related to predictability, or our ability to 

model the system. Beyond this there are systems that are simply beyond our 

understanding, systems in which no patterns of behaviour can be identified. 

As result of all of this, the definition for complexity in systems engineering is an 

amalgamation of different definitions. The appropriate definition of complexity 
includes the intricacy of the interfaces, an assumed level of understanding of the 

components and interfaces, and the difficulty in describing the system. 
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The definition used within this thesis is a combination of Evans and Sussman and 
describes complexity (in systems engineering) as: 

"A system is complex when it is composed of a group ofrelated units (subsystems), 

for which the degree and nature ofthe relationships is imperfectly known. Its overall 

emergent behaviour is diffilcult to predict, even when subsystem behaviour is readily 

predictable. " (Sussman 1999) "The degree ofcomplication ofa system or system 

component [is] determined by suchfaclors as the number and intricacy ofinterfaces, 

the number and intricacy ofconditional branches, the degree ofnesting, and [the 

ovcmll system structure] ". (Evans 1987) 

2.4 Complex System Examples 

In the natural world complexity is in abundance, and ranges from biological to 

geographical systems (Magee, Weck 2004). Ecosystems and their inherent 

complexities, and intricacies such as food chains, climate and weather systems are 

massively complex, although they have been modelled to predict potential effects of 

global warming (Washington 2005), evolution of species (Adami 2002), landscape 

transformations and erosion. 

There are also a number of systems described as complex in the economic world and 

the engineering world. World economics and the World Trade Web (Vy'rW) are other 

complex systems (Arthur 1999, Li, An et al. 2003). These two have network 

properties, with nodes or elements and their intricacies, interfaces, relationships and 

resulting behaviours (synchronisations) in much the same way that designed 

engineered systems have; however the scale is somewhat different. 

Understanding the effects and causes of climate change is also a highly complex 

exercise. Climate change and its effects are the result of a vast number of 

components, variables and intricate interactions existing across a range of disciplines 

(physics, geography, chemistry, biology, etc. ), and these need modelling in a concise 

and valid manner. 

Climate change is a result of interactions between different elements; as with any 

system, these elements could be thought of as sub-systems, and their interactions as 
interfaces. An example of the elements within climate change are rainfWl, heat 

retention of surfaces, evaporation rates, particles in the atmosphere (Stanhill 2007), 

gas content of the atmosphere, oceanic currents, ocean level, ice caps, carbon 
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emissions, and much more. The effects of climate change are also intricate - the 
increase in overall temperature means that where food is imported from has to change, 

as those countries producing some foods will no longer be able, or may have lower 

yields due to environmental conditions no longer being suitable; conversely, the 

warming climates of other countries will accommodate the growth of new produce 
(Parry, Rosenzweig et al. 2004). 

Climate change is caused by a vast number of different things: solar radiation, gas 

composition of the atmosphere, sea temperatures, the size of land masses, sea masses, 

and more. The effects of climate change are also vast, both directly and indirectly: 

rainfall changes, temperature changes, food production impact, flooding, 

desertification, erosion, exports, economies and more. Climate, or the climate system, 
is a complex system with a large number of interactions, intricacies and different 

elements, and is very difficult to model (Jim 2007). 

Biological complex systems exist in ecosystems or cellular systems like the immune 

system (Cadenasso, Pickett et al. 2006, Ferdinando, Genuario et al. 2004, Deem 2005, 

LLC 2008). Ecosystems consist of climatic and biological components: sunlight, 

temperature, rainfall, herbivores, omnivores, carnivores, plants, immigrant species, 

and indigenous species. 'Mese interact in an intricate way through carbon cycles, 

oxygen cycles, reproductive cycles, through food chains and much more. Cellular 

systems, such as the immune system or the human body, also contain different 

elements or components with highly interactive properties. 

As of now we are unable to accurately predict or model all aspects of these systems. 

The human body has many illnesses that are not understood, Lupus for example 
(Anderson 2008); weather systems and climate are very complex and our predictions 

are not always accurate (Jim 2007); ecosystems are fragile and the effect of immigrant 

species or changes in variables is not always understood or modelable (Bolte, Hulse et 

al. 2007). These are systems where the knowledge of their component parts is 

reasonable, and certainly not completely ignorant. 

Systems developed within industry do not have the same scale present in biological 

cellular, ecosystems ecological complexity (Myers 1992), or climate systems: they are 

not as complex as those that exist in the natural world, they do not contain the level of 
intricacy or the number of different variables. The internal chemical reactions of 
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living cells consist of thousands of enzymes, producing thousands of chemical 

reactions every second. With a collection of millions (perhaps trillions) of cells which 

may form a single body, the number of reactions taking place at any one moment is 

enormous. If one imagines a cell with a thousand reactions every second, and a body 

made up of ten trillion cells, that is ten thousand trillion reactions every second in the 

cells alone. 

Products developed by industry may be fast, and consist of a high number of 

components which make sub-systems (cells making organs), but the complexity is not 

on the scale of the natural world as these developed systems have a much lower 

number and lower level of intricacy of component interactions. The space shuttle 

consists of approximately 2.5 million parts (Kridler 2002) and the Boeing 747 

approximately 6 million parts (Boeing 2007). The difference in the scale is obvious, 

although larger in size; the number of components in developed systems are not even 

close to number of "parts" (cells, etc) within a human body numbering in the trillions. 

'Me interactions and intricacies widiin software and electrical systems are relatively 

trivial in comparison to the weather, climate, biological or cellular systems within the 

human body, and as a result make modelling and prediction easier. 

The systems designed and developed through the systems engineering practice are not 

random; they have architectures and designed structures. They consist of sub- 

systems with pre-defined behaviours or properties which in turn consist of known and 

understood components. The system is then formed from the collection of these sub- 

systems (which in some cases may become another sub-system higher in the 

hierarchy). Quite often the interactions of components are limited to the sub-systems, 

and the sub-systems interact with each other as whole entities, these interactions are 

then managed in the design process with interface specifications (Haskins 2006). 

In the engineering world, systems complexity is often associated with scale; the larger 

product or system the more complexity is associated with its development. Of course 
in reality complexity can exist at various scales, from the small cellular systems to 

large scale climate models, ecosystems or aircraft. From an interaction and intricacy 

viewpoint, the scale of the complexity in developed products is low, but none the less 

this complexity is significant as any extra effort required is a cost. 

In engineering systems the complexity comes from: 
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e Amalgamations of companies and their interactions. 

e Intricacy and coupling of the system interfaces along with the nature of the 

architecture. 

9 The size of the system. 

* The number of sub-systems. 

-m The scope of the product; support and operation as well as the design, 

development an testing. 

4m The variation in the skills required developing the product; software, 

hardware, fluid dynamics, control. 

* The budget and resources available to produce the required product. 

(see 2.5 The Causes of Complexity) 

Examples of complex systems produced by engineering processes and composites of 

companies include: 

9 Submarines (Naval-Technology, BAE Systems) 

4, Aircmft, both military and commercial(Boeing 2007, Eurofighter 

Jagdflugzeug GmbH, Air Force Technology, Hayles 2005) 

o Ships, both military and commercial (Naval Technology) 

e Land vehicles, or ground effect (General Dynamics UK, UK Ministry of 
Defence, Pike 2008, R&F Defence Publications 2007) 

* Networked Capability (UK Ministry of Defence 2005). 

There are other examples of engineered complex systems; these systems may be 

organisational systems, communication systems, manufacturing systems, logistic 

systems or computer network systems. Ile examples here reflect the typical products 

of defence industries with some commercial equivalents. However these systems 

consist of elements and interfaces which can be (with a lot of effort) counted and 
described from documentation and specifications. 

Table 3, taken from (CSCS) shows three examples of complex systems in the natural 

world. These systems contain a large amount of interaction and also exhibit dynamic 

and adaptive behaviour. 
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Field Population Immunology Ecology 

-Epidemiology Agent Susccptibles Cellular Individual animals 
material 

Heterogeneity Risk factors Antigens, Eating. ncsting. breeding habits 
antibodies 

Organisation Social groups Cellular Schools, hcrds, food chains 
organisation 

Adaptation Infection Immune I lunting, mating, security 
avoidance or response 
spread 

Feedback Disease spread Immune Success of failure 
response 

Dynamics Disease spread Infection Predator-prcy interactions, competition 
spread 

Emergent Behaviour Epidemics (Un) calthy Extinction niches 
Table 3- Complex system examples. 

These natural systems span a different scale (as discussed above) to hardware 

engineered systems, but the scale and intricacy of an engineering system is significant 
for engineering as a discipline. Engineered Complex Systems (ECS) are not of the 

same scale as natural systems, but this is the complexity that requires understanding. 

2.5 The Causes of Complexity 

Causes of complexity, or complexity origins, are partly described within the 

definitions outlined above. The definitions (see 2.3 Definitions of Complexity) 

identify four main themes: 

Irrcducibility or unfiagmentable. 

e Intricacy and coupling. 

e Indescribable or cannot be modelled without complete system replication. 

9 Level of understanding. 

These definition themes provide a starting point for determining the causes of 

complexity within systems. The causes of these themes are causes of complexity. 

However, there are a number of other origins within engineering and these too need to 

be explored. Taking the themes drawn from the definitions as a guide when exploring 

the origins of complexity is a logical start. 

The intricate nature of systems and the intricacy within systems is a common 
definition of complexity (see 2.3 Definitions of Complexity). Being intricate or 

containing intricacy is one origin of complexity within systems; it represents being 

"Perplexingly entangled or involved; interwinding in a complicated manner " 
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"The quality or state ofbeing intricate; complexity; complicated or involved 

condiliom " 

"An instance ofthis condition; a complication; an entangled or involved state of 

affairs; a perplexing difficulty. " 

(Oxford English Dictionary) 

These definitions of intricacy and the intricate suggest that the levels of coupling in a 

system, that is the number of interfaces, the nature of those interfaces, and the effect 

they have on the system are a cause of complexity in systems. Coupling or 
dependency is the degree to which one element within a system relies on the other 

elements within the system. It is the lack of predictability of the relationships or the 

cohesion of the system elements that makes the system complex; scale is also a factor. 

Along with the definitions of complexity having themes, McDermid (2000) identificd 

a number of themes or key factors; 

"Scale - the number ofelements in the system; 

Diversity - the extent to which systems are made up oftlifferent elements; 

Connectivity - the inter-relationships between the components. " 

He further expands on this by stating that scale is not a problem "ifthe system 

structure is regular, it can be assessed analytically - or ifthe number ofelements is 

sufficiently large it can be assessed statistically " (McDermid 2000). McDermid goes 

on to state that scale can "exacerbate problems with other facets", meaning that the 

combination of scale and other complexity factors are the result of problems. An 

example of such ordered but large scale systems are Kauffinan's NK Networks 

(1993). The system here is comprised of cells in a grid that are connected with cells 

adjacent to them; these cells are attached to a clock, and as this cycles the cell state 

will change (light or dark) depending on the state of the cells around it. Initially cell 

states are chosen at random, and as the clock cycles self organisation occurs as 

patterns are produced. Although Kauffman created these networks to emphasise the 

idea or concept of self-organisation, they are an example of how scale, or the level of 
interaction, is not necessarily a factor for complexity on its own. The NK Network is 

easy to model and predict using computer models, the emergent properties and the 

self-organisation of the system become evident in these models. This is what 
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McDermid means by a regular structure (repeated in this case) and easily assessed 
analytically: 

"Diversity increases the number oftypes ofelement which have to be analysed The 

greater the diversity, the more effort has to be spent in understanding the elements 
individually - and as a composite. " 

(McDemiid 2000) 

Diversity, variability or, perhaps a better description, a lack of commonality in 

systems is most definitely a key factor in system design. The diversity in the system 
leads to the need for multi-discipline design optimisation. 

"Connectivity again increases the difficulty ofassessment - the number ofpair-wise 
interactions increases exponentially with scale, for a (potentially) totally 
interconnected system. " 

(McDennid 2000) 

McDermid refers to connectivity as a complexity contributor; however this is not 

always the case, and the Boolean NK Networks (Kauffman 1993) shows this to be 

incorrect. The connectivity of the system contributing to complexity is a result of the 

level of coupling in the system. Highly coupled systems, in which elements are 
highly dependent on other elements or a number of elements, will be more difficult to 

understand than those with a large number of connections but low coupling. 
Connectivity itself is not a key factor in complexity in systems - coupling and 
interdependency is. 

Although a fairly concise set of key factors, there are three key factors that are 

missing here; 

e The maturity of the technology within the system. 

e 'Me level of commonality within interfaces and components. 

* The level of coupling between system components. 

It could be argued that commonality is, in fact, diversity, but this is not the same as 
commonality. Systems with large ranges in diversity may have a large degree of 
commonality, as the majority of the system elements are in fact the same or similar. 
Diversity on its own as a concept of complexity in systems does not recognise this. 
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Biggiero (2001) distinguished between 9 different sources of complexity in human 

systems; 

9 Pure Logical Complexity 

9 Relational Complexity 

* Pure Gnosiological Complexity 

* Evolutionary Complexity 

* Semiotic Complexity 

9 Semantic Complexity 

e "Pure" Computational Complexity 

e Chaotic Comp exity 

* Sclf-Organizational complexity 

Biggiero mentions the interactive effect studied in psychotherapy and refers to 

Watzlawick (1967). The key complexity origins within engineering systems are as 

follows; 

e The number of system elements. 

e The number of interfaces. 

* The nature of the interfaces and coupling that results from them. 

e The scale of the system. 

The level of maturity of the technology within the system (effectively a result 

of the level of understanding). 

The diversity within the system components, the level of multi-disciplinary 

skill sets required. 

* The level of variation and commonality within the system. 

These sources or origins of complexity will affect engineering systems and their 

complexity and are the key origins that are considered within this project. 
Understanding and managing these sources, how they inter-relate, and their 

relationships with other complexity characteristics, concepts and measures is also of 
importance. 
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2.6 Complexity Concepts and Classifications 

Classifications or concepts of complexity are also of high importance when 

considering complexity within systems. There are a variety of different complexity 

concepts that can be drawn from the natural world (irreducible complexity, often used 

as an anti-evolution argument), the mathematical world, the "edge ofthaos " 

(Waldrop 1987), and the engineering world, in terms of concepts of relational 

complexity. 

Senge (1994) classifies complex systems as exhibiting either "detail" or "dynamic 

complexity". 'Detail Complexity' comprises of systems with essentially hierarchical 

relationship structures with no lateral relationship links between the system elements, 

while 'Dynamic Complexity'describes a hierarchical structure with lateral 

relationships. 

Figure 4-A system that exhibits detail complexity. 

Figure 4 shows a 'Detail Complexity' system structure. The circles represent the 

elements within the system (perhaps sub-systems or components), and the links 

between them represent the interfaces. The hierarchical construction of detail 

complexity systems means that information flow is restricted. There is no lateral 

exchange of information within the system apart from at the top level. 'Me number of 

trees (Irvine 1996) are easily computed, and their associated lengths (depending on 

the interface nature) are also easily computed. 

Figure 5-A system that exhibits dynamic complexity. 
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Figure 5 shows the 'Dynamic Complexily'classification ofa system, as there both 

lateral and vertical flows of intlormation across the system interfaces. Subsequently 

there are a larger number of spanning trees (Irvine 1996) of different lengths that can 
be calculated for an information transfer from one element to another. 

Figure 6 illustrates the differences and potential paths available for systems which 

exhibit 'Detail Complexity'and 'Dynamic Complexity'. The 'Detail Complexity' 

system above shows a start and finish point for a slow ofinformation. Assuming the 

information takes a direct route, there is only one way the information can be 

transmitted from start to finish, and that is shown as the flow vertically up the 

hierarchy. 
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Figure 6- Path interactions within detail and dynamic complexity. 

The lower portion of Figure 6 shows a system that exhibits 'Dynamic Complexity' 

(Senge 1994) with links laterally and hierarchically throughout the structure. These 

links change the nature of the potential information flows. With the same start and 
finish point for the information flow there are a large number of potential infori-nation 

flows (assuming the flow takes a direct route) that can achieve the transfer, only four 

examples are shown. In the dynamic complexity system with fixed direction links 

there is the potential for infinite information flows or loops; within a hierarchical 

detail dynamic system there is no potential for information loops. 
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If the links become bi-directional, there arc an infinite number of trees that describe 

the information transfer in both detail and dynamic complexity systems (the 

information can, in effect, double back on itself an infinite number of times). 
However the information transfers still follow the rigidity of the hierarchy in the 
detail complexity system, and contain some order, where as the information transfer 
in the dynamic complexity system does not have a hierarchical structure, and the 

transfers as a result are more likely to be erratic. 

Dynamic and detail complexity systems link nicely to the definition of complexity, 

the ability to understand and provide a short description of the system. Hierarchical 

systems are more easily understood and described than dynamic complexity systems. 
Of course, a system in which all elements interface with all other elements is the 

ultimate in dynamic complexity, and in terms of interfaces alone is easy to describe, 

however it is the functional properties of that system that make understanding and 
describing difficult. 

Further complication, is the effect of the interface vocabulary. Martin (2004) 

introduces the interface vocabulary as a part of his measurement system of complexity 

(scale complexity, interface complexity, etc). He highlights the importance of the 

interface types between elements as contributing factors to complexity within the 

structure. The nature of the interfaces is critical when considering the complexity of a 

system (Evans 1987, Edmonds 1999), in terms of the interactions, intricacies and 
level of coupling within it. Some interfaces have the potential to offer much higher 

levels of coupling or intricacy than others, and this should be taken into account. 

The semantics surrounding detail and dynamic complexity are unclear, dynamic 

implies that the system is in fact changing, in a state of flux, where as the reality is the 

system is in fact static, the interfaces are defined, the elements are defined. In both 

detail and dynamic complexity cases the system is static and subject to no adaptive 
behaviour - this contradicts the descriptive semantics and can be misleading. 

Dynamic as a description goes beyond these concepts of dynamic and detail 

complexities, truly dynamic systems are capable of adaptive behaviour and self re- 

organisation (Kauffinan 1993), they are able to respond to environmental changes. 

The concept of 'Complex Adaptive Systems' (Heylighen, Dooley, Fryer 1991) or self- 

organising systems (Kauffinan 1993) is a different classification for complexity. 
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Systems are no longer static in construction as interfaces change in nature or even flip 

in and out of existence altogether. Organisations of people show the complex 

adaptive system principle in action, as members are employed into a team, or current 

members of that organisation move from one team to another (elements being created, 

or moving), and their interactions with other members of that organisation change, are 

newly created, or dissolved (interfaces created, destroyed or changing in nature). The 

overall organisation adapts to the changing environment or re-organises itself. This 

re-organisation is not necessarily positive, it can in fact be detrimental, as in the case 

of a system unexpectedly reacting to its environment. 

The concept of the "edge ofthaos " (Waldrop 1987) is a term used to describe 

complex systems that exist at the boundary of order and complete disorder. It can be 

thought of as a concept of complexity and not just a description or definition. 

2.7 Complexity Measures 

A number of numerical and qualitative measures are available that measure 

complexity within systems, organisations, algorithms and more, some measures even 

attempt to measure cognitive processes. 

Edmonds' thesis (1999) provides a comprehensive study of complexity measures that 

are available, in particular numerical measures for complexity. There are a vast array 

of computational and numerical complexity measures that could be applied to systems 

within this problem domain; it is a case of ascertaining their relevance to the problem 

domain being explored. The numerical measuring methods explored by Edmonds 

(1999), Martin and Moody (Martin, Pieffe-Alain J. Y. 2004, Moody 1997) who both 

developed measuring metric and measuring approaches may be usefid, but other 

measuring methods or toolsets of a qualitative nature might also have application 

within the problem domain. 

Some measures have no direct link to systems engineering issues, and as a result, in 

their current format they are of little direct use. However although the measures 

themselves are not directly applicable to engineering, the concept of the measures 

may have an applicability; this was also explored in order to ensure no measures of 

obvious benefit were ruled out. 
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2.7.1 Computational Complexities 

Computational Complexity (Kimon 2007, Papadimitriou 1994, Du, Ko 2000) is a 

numerical complexity measure, and measures the required resources to run software 

or computer system algorithms. The higher the computational complexity of the 

algorithm, the higher the resource requirement to run that algorithm, attempting to 
formulate the relationship between algorithm length and the time take for a given 

system to execute that algorithm. 

The application for such a measure within the software field as computer hardware 

becomes faster and computer resources get cheaper is obvious. Industry can create 

algorithms within software and then, by using predictions of the technology 

progression, be able to ascertain whether or not calculation of that algorithm in an 

allowed time is possible. Processing time becomes particularly important when 

considering real time systems or safety critical real time systems involving software - 
here an understanding of computation complexity is of clear benefit. 

Algorithmic information complexity (Bennett 1988, Edmonds 1999, Vitanyi, Paul M. 

B., Ming 2000, Grunwald, Vitanyi 2003) is a measure of the length of the shortest 

program possible to reproduce a required output string. The more ordered the string, 

the shorter the program, and hence a reduced algorithmic information complexity, the 

more random the string, or the closer to the "edge of chaos" (Waldrop 1987), the 

longer the string must be. Incompressible strings (those outputs with a generation 

program that is not shorter than output itself, in fact to the point where the generation 
is a replication of the output string) are indistinguishable from random strings. 
Closely related to this complexity measurement concept are concepts of arithmetic 

complexity, which is the minimum number of arithmetic operations to complete a task 

(very similar to computational complexity, in that the minimum number of operations 

will govern CPU times, etc. ) and also Shannon information theory, using probability 

to model the output transmitter of a string in order to replicate its output (Shannon 

1948). 

A measure of the computing resource required to compute a result with respect to the 

size of the input. As the input increases in size, the computing resource required to 

compute the result will also increase, this measure, measures that increase. Ilie time 
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may increase for the computation, or the computing power could increase to 

compensate for the time increase. 

Although the measure is mathematically based, there is an application for this 

approach within engineering systems. The resource required for the computation 

could be altered to reflect the resource required to develop a system, and changing 
that system or adding additional requirements to that system could reflect a change in 

the level of resource required, in terms of time or other resource (manpower, facilities, 

etc. ). If the resource required increases dramatically with an increase in the number 

of requirements, the system may be more complex than if the resource were not to 
increase; either that or the requirement changes were more critical. 

Modifying the concept of this measure to assess the level of resource required to 
develop a system (rather than computing resource to ran a programme) is a concept 

that could be used within engineering. 

2.7.2 Information Theory Complexities 

Shannon (1948) complexity again focuses on replicating a message string generated 
from a "transmitter" using a probability based analysis of the message transmitter 

characteristics (how likely it is to produce an A, or B, how likely it is to produce aC 
if the previous two letters are A E, etc. ) in order to produce an output using a 
Stochastic Process technique. This is similar to Kolmogorov complexity (Szabo, Li 

1997). Peter GrAunwald and Paul Vitanyi (2003) in their paper Shannon Information 

and Kolmogorov Complexity distinguish between the two as follows: 

"In the Shannon approach we are interested in the minimum expected number ofbils 

to transmit a messagefrom a random source ofknown characteristics through an 

error-ftee channeL " 

"In Kolmogorov complexity we are interested in the minimum number ofbitsfrom 

which a particular message orfile can effectively be reconstructed., the minimum 

number ofbils that suffice to store thefile in reproducibleformat. This is the basic 

question ofthe ultimate compression ofgiven individualfiles. " 

Peter GrAunwald and Paul Vitanyi (2003) then further expand on this and explain the 
difference and its importance. 
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"A little reflection reveals that this is a great difference [between Shannon Infonnation 

and Kolmogorov Complexityl: for every source emitting but two messages the Shannon 

information (entropy) is at most I bit, but we can choose both messages concerned of 

arbitrarily high Kolmogorov complexity. " 

Rissanens Minimum Description Length (MDL) is another information description 

complexity model (Vitanyi, Paul M. B., Ming 2000, Barron, Rissanen et al. 1998, 

Granwald, Myung et al. 2005, Complex Systems Computation Group), similar to 

those created by Kolmogorov and Shannon. The model describes the MDL of a 

system, and the length of this description forms the basis for the complexity. The 

larger the description the more information the system contains and the higher the 

complexity. 

In both Shannon and Kolmogorov (Shannon 1948, Grunwald, Vitanyi 2003) 

applications for industry are not obvious, but there are potential technical applications 

in data transmission. However, when trying to use this measure with respect to a 

development programme the scope is limited, as one would expect since they are not 

developed for the systems engineering domain. MDL however could be related to the 

requirements that describe a system, COSYSMO (Valerdi, Boehm et al. 2003) and a 

number of other basic complexity measures within development programmes already 

use the number of requirements (the description of the system, the number of 

requirements being related to the description length) in a system specification to 

estimate complexity qualitatively. COSYSMO of course expands on this, with 

difficulty factors for specific requirements, as some requirements may require more 

effort for compliance than others. This, of course, means that the MDL (if it is 

assumed the requirement set is compressed to the maximum while maintaining its 

integrity) although smaller, may in fact be unable to take into account the difficulty in 

meeting each requirement. The depth of the requirement is in fact the issue - what the 

requirement actually means in terms of effort and resource, complexity measurement 

that analyses the true implications of the requirement set along with the 

compressibility within it would be more appropriate to systems engineering practice. 

Bennett's 'logical depth' (Bennett 1988, Edmonds 1999) is defined as the running- 

time to generate the object (string) in question by a near-incompressible program. 
Ile measure gives value to information based on the time taken to calculate or 

produce the information and its usefulness; the time taken to calculate aircraft take off 
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data (weights, runway rolls length, reference speeds, etc. ) means the data is more 

valuable than the equations used to calculate them. Edmonds quotes Bennett saying, 

"Logically deep objects... contain internal evidence ofhaving been the result ofa 
long computation or slow-to-simulate dynamicallyprocess and could not plausibly 
have originated otherwise. " (Bennett 1988) 

In terms of output strings from programs, a random string has low logical depth, if it 

is incompressible and therefore the reproduction requires a simple copy of the string. 
A very simple string also has low logical depth, as the program required to reproduce 
it is also simple. There are distinct links between logical depth and the concept of 

sophistication (Fortnow 2003), which "is the size ofthe projectible part ofthe string's 

minimal description andformalizes the amount ofpIanning which went into the 

construction ofthe string. " Whereas "Depth " defined by Bennett (1988), is the 

amount of time required for the string to be generated from its minimal description 

and formalizes its 'evolvedness'.. Both are a variation of the same theme, and like 

other concepts of information theory (Bennett 1988, Shannon 1948, Barron, Rissanen 

et al. 1998, Complex Systems Computation Group) the complexity hinges around the 

length of the shortest programme to model strings, transmitters and receivers in the 

minimal way. 

it would seem that Bennett's logical depth (Bennett 1988, Bennett 1990, Edmonds 

1999) contradicts some descriptive complexity measures, in that random strings 

would in fact have a low logical depth due to the simplicity of the description of that 

string, but a high complexity in terms of Shannon and Kolmogorov information 

theory in that the directly replicate the string the entire string must be stored and there 

is no compressions possible. 

2.7.3 Information Flow Complexities 

The number of spanning trees relates to the pathways within a system of elements and 
interfaces. The concept of spanning trees is methodology for understanding system 
interfacing and the intricacy and coupling of these interfaces. The more "complex" 

the interface between two system nodes or elements, the longer the "length! ' of that 

interface. From these interfaces between nodes, and their associated lengths, paths 

through the system for information can be measured and compared to gain insight into 

how the system will operate. 
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A system with 4 nodes that arc all connected, has a total of 16 different pathways for 

information flow (Irvine 1996). Ile applicability to developing systems is again 

related to the interfaces between system components, and the potential flows of 
information. Generally it is accepted that the more information flow pathways 

possible, the higher the complexity. However, there are other factors to consider 

when dealing with interface complexity and this measure alone would not be a 

sufficient measure. 

Spanning trees as a concept relate to the idea of dynamic complexity within systems 
(Senge 1994), as the number of spanning trees in a system represent the different 

directions of information flow within a system that are possible, there is potential here 

to measure (Irvine 1996) complexity in systems with changing structures, or 

comparing the complexity of the systems in interfacing and information flow terms. 

2.7.4 Length of Proof 

Proof lengths for mathematical theorem can be used as a measure of complexity. 

However, mathematical proofs can be short and yet be complex, and long carefully 

written proofs can be simple depending on how they are constructed (the use of 

complex axioms and the level of hierarchical information gain (Edmonds 1999), 

perhaps in an explanatory fashion), possibly even unnecessary lengthen added to the 

proof to make it easier to follow, giving rise to "needless complexity" (Edmonds 

1999). If there are two theories or solutions for the same problem, both with equal 

supporting experimental data, the simpler theory using the Goodman's measure 

should be used. 

Similarly, Goodman (1966) developed a categorisation of extra-logical predicates, 
based on expressiveness. A general predicate is deemed more complex than a 

symmetric one, as it includes the latter as an example. Similar to hidden complexity, 

as a general predicate may contain complex proof, as Edmonds (1999) states, "the 

complexity ofa complex statement is merely the sum ofthe complexities ofits 

component predicate, regardless ofthe structure ofthe statement. " Kemeny's 

measure (Kemeny 1953) is similar and also a reformulation of the idea was made by 

Richmond (1996). 

There is a definite applicability for the concepts surrounding Goodman's and Length 

of Proof as a concept for engineering problems. Along with concepts of 
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decomposition, reducibility and unnecessary complexity within developing systems 

they are an analogy for engineering system complexities, in particular within the 

requirements domain. 

2.7.5 ' Reducibility Complexity Concepts 

Holists use the term complexity when referring to systems where reduction of a 

system is not possible, or at least not possible by current practices. Irreducibility and 

elements of information theory are linked as information theory attempts to define 

how reducible information is in terms of "logical deptW' (Bennett 1990) or complexity 

of the algorithmic modelling of transmitters or string outputs (Shannon, Kolmogorov) 

required to accurately replicate real system transmitter or string output behaviour. 

Extending the principles of information theory to systems engineering, an irreducible 

system is like the random sequence example; no model of the system behaviour can 

be achieved without modelling the system or its output completely (essentially 

replicating it). The implication of an irreducible system to designed or developed 

systems is that the system cannot be optimised any further, the complexity that exists 

is purely intrinsic to the system (the system in its current state cannot be reduced in 

any manner software, hardware, human interaction, etc. ). Reducibility in design 

implies an over complication in design, complexity induced by the development cycle 

and not intrinsic to the system. The level of reducibility within a system may be an 

indication of the induced complexity, some of which may be unnecessary or 

undesimble complexity. 

If in order to measure reducibility or unnecessary complexity, work must be 

conducted to uncover the reductions that can be achieved, and then reduce the system 

with these findings if economically viable. 'Iberefore a reducibility measure, 

measures the level of known unnecessary complexity that exists within a system 

where optimisation is uneconomical. Reducibility is not just the level of reduction 

that can be achieved within the system as a whole, but also the possibility of breaking 

down a system into simpler component parts that overall exhibit the same behaviour, 

therefore reducing the system to more manageable chunks. 

Ile concept of reducibility can be applied to system requirements. A standard 

requirements document or specification will contain both intrinsic and induced 

complexities. Specifying interface types such as Ethernet as interfaces between 
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components is an increase in complexity. The minimum size of a requirements 
document (that which Edmonds (1999) describes as a "perfect compression") will 
include only intrinsic complexity. A cross comparison of this with a requirements 
document containing induced complexity as well as intrinsic (specifying interface 

types etc. ) will give the level of induced complexity in the system, providing the basis 

which can be used to reduce unnecessary complexity in design (some induced 

complexity is necessary to reduce cffort levels). 

2.7.6 Interpretive Complexity 

Wgren's (1974) description of interpretive complexity of systems offers another 

method a measurement. Taken from a biological and psychological context, 
Lofgren's descriptive and interpretive complexity is described by Edmonds (1999) as 
"the interpretation process is the translationfirom the description to the system and 
the descriptive process is the other way around For example the "description " could 
be the genooe and the "system " the phenotype. " From a systems engineering point 

of view this relationship could be the system itself and the requirements specification. 
The interpretation is the translation of the requirements base to the system and the 

description, the translation of the physical or conceptual system into requirements. 
Two particular situations are applicable here, one the use of legacy equipment in 

which the descriptive complexity is an issue, interpretive complexity is associated 

with the generation of new products, perhaps from capability to requirement 

specification, and then once again from requirement specification to product. 

When considering descriptions of complete systems, there may be a number of 

different solutions or sets of parameters or logical statements that model the behaviour 

of that system accurately. The number of inequivalent descriptions (Edmonds 1999) 

or models of a system that can be produced can be extended and used as a basis for a 

complexity measurement. The system requirements in particular relate nicely to the 

inequivalent description concept being related to the complexity of that system. This 

in particular relates to capability acquisition, within which a capability is described 

using a requirement set and a system built to the requirement set. The complexity of 

the system may be related to the number of potential inequivalent requirement 
descriptions possible for the system, and then additionally the number of inequivalent 

systems that meet that requirement specification. 
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The smaller and less coupled and inter-related the rcquircmcnt set is, the less the 
likelihood of creating many irreconcilable system designs, the larger the requirement 

set and the higher level of coupling and intcr-relation the higher the likelihood of 
irreconcilable system designs. 

2.7.7 Size and Complexity 

Size in engineering systems, in some cases has links to the complexity of that system, 

and can lead to valuable insights. Generally it is accepted that the larger the product 
the more difficult the design process will be, but the complexity comes with coupling 

and intricacy within that product. In some cases the size of the requirements 
documents, or the technical requirements specifications have been used as measures 

of complexity (Valerdi, Boehm et al. 2003), these of course are a convenient label, but 

the application of size in complexity measurement terms must be supported by other 

measures in order to be meaningful. 

Associating the number of parts and interfaces within a system with a measure of 

systems complexity is a method of assessing size. The relationship is not direct, 

despite a high number of interfaces, elements or parts within a system the complexity 

is not always high; products with many parts that are all identical, and do not interact 

would not be called complex simply due to the size, a panel of 10,000 light bulbs 

wired in series would be considered large, but not complex. 

Edmonds (1999) provides a good example of minimum size, two lists of facts, one list 

100 1 inter-related facts and the other 100 1 unrelated facts. The inter-related facts of 

the first list would suggest that there is some redundancy due to the relationships 

between the facts themselves, perhaps there are simplifications of some of those 

relationships and therefore potential room for compression. This would give this list a 

lower complexity value, as the information can be compressed in a more succinct 
language. The unrelated facts however are incompressible, there are no inter-relations 

and thus more information is held by this list, this would give this list a higher 

complexity value. This of course heavily relates to the concepts of irreducibility 

(Dembski 2004), logical depth (Bennett 1988) and aspects of information theory. 

A similar complexity measurement metric to that of reducibility and minimum size, 
Network complexity (Shih, Janet 2007) measures the minimum number of logical 

gates that are required to implement a logical function. The relationship between the 
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network complexity measure and system design in the engineering domain is clear for 

logical network systems, and the concept that can be applied to system design is that 

similar to reducibility. 

2.7.8 The Nature of System Variables and Complexity 

Weaver and Shannon classified problems initially as simple and complex (Shannon 

1948), now further classification comes with organised and disorganised complexity. 
This directly relates to the number of variables, a system with a large number of 

variables is difficult to model due to the level of randomness, such a system is not 

amenable to statistical analysis and therefore categorised as disorganiscd complexity. 
A system with fewer variables and that can have effective statistical analysis 

conducted upon it is known for exhibiting organised complexity. 

The number of variables (Edmonds 1999) within a statement or algorithm is another 

measure of complexity. The relationship between the number of variables and the 

system complexity assumes more variables will increase system complexity, or 

algorithm complexity. This alone is insufficient as a complexity measure - there is 

not necessarily a correlation between system complexity and the number of variables. 

Ile nature of the variables is important, and the interdependencies between those 

variables also important, a set of independent variables with a simple algorithmic 

relationship would be less complex than a mix of independent and dependent 

variables with intricacies within the algorithmic relationship. They affect the number 

of variables has is dependent on the structure and element interdependencies of the 

system within which they reside. 

Like variables that are required to calculate the output of a formula or algorithm, a 

number of dimensions are required to describe an object in real or conceptual space. 

The higher the number of dimensions required to accurately describe an object, the 

more potential for complexity in that system. Dimensional views within engineering 

may consist of discipline variation, trade off variables, design variable relationships 
(such as aerodynamic properties of wings (Kesseler, Vankan 2006) using 

multidisciplinary design optimisation techniques), the design itself (support, 

development, design, operation, decommission) and resource allocation (budget, 

personnel, facilities). Application of complexity measures within these dimensions to 
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quantify them and a definition of their interactions across a development programme 

or system gives scope for valuable measurement. 

2.7.9 Variety or Lack of Commonality and Complexity 

Variety (Edmonds 1999) or commonality within systems has the potential to increase 

system complexity and to influence the manufacture of products (Kim, Chhajed 2000, 

Thevenot, Simpson 2007, Alizon, Shooter et al. 2007, Jans, Degraeve et al. 2008). 

That variety can be the result of different disciplines in design, variety in capability or 
functional requirements, variety in suppliers and more. Large scale systems with high 

levels of variety are more likely to exhibit a complexity that makes design and 

predictability difficulty; thus variety is associated with the complexity of the system. 

The variety within the behaviour can be measured by the counting of types, spread of 

numerical values or presence of sudden changes. 

Measuring the variety of behaviour within a system, or the diversity of the behaviour 

can be considered in functionality terms; the variety of system functionality and 

diversity of operations. Variety within the system environment is also critical when 

designing systems -a diverse and highly volatile environment that exhibits a large 

variety in behaviour requires. a more robust adaptive system. 

2.7.10 System Information Hierarchy or Scale 

Changing the hierarchy level or scale at which a system is analysed will change the 

level of information available in terms of interfaces, components, interdependencies 

and coupling. The change of depth the system is measured at will change the apparent 

complexity of the system; higher functional levels will give lower complexities than 

detailed component levels. Martin (2004) uses a decomposition method to generate 

complexity measures, but those measures are generated using a selected hierarchy and 

scale of decomposition. It is possible to fiu-ther decompose the system Martin (2004) 

has measured, using the same measurement technique and get a different and perhaps 

more complex result. This decomposition could include processor architectures, 

software architectures and even go down to incredible detail modelling the 

electromagnetic properties of cabling. 

Information hierarchy complexity within algorithms, measures the information level 

change between high level algorithms against the lower level algorithm with detailed 
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descriptions of the axioms within it. These axioms may be more complex than the 

overall higher level algorithm, as they are developed from complex proofs, as a result 
the information gain would be large. This nicely couples with the number of axioms 
(Edmonds 1999) within an algorithm - the more axioms the more complex the 

potential information hidden within the hierarchy. 

2.7.11 Connectivity, Intricacy and Coupling Complexity 

Measures 
Connectivity and the intricacies of the interactions between components is the focus 

for a number of complexity measures that directly relate to engineered systems. 
Connectivity, quite simply, is the measure of the number of interconnections between 

system elements - the more connections, potentially the more intricate and highly 

coupled the system is and the more complex. Failure mode analysis is also a factor as 
failures within systems with higher levels of internal interfaces and intricacies are 

more difficult to analyse. 

The applications for connectivity are obvious to the engineering world, but a direct 

correlation between system complexity and the number of internal interfaces is not 

always applicable. Systems may consist of a large number of connections, and these 

connections may consist of different levels of information transfer or intrinsic 

complexity; simple Boolean interfaces, or large volume data transfers. 

Connectivity can be measured using the number of interfaces, the information that 

flows through those interfaces, the criticality of that information and vocabulary 

(Martin, Pierre-Alain J. Y. 2004) of that information, these principles were discovered 

by Martin (2004) and used to created measures of complexity that were more suitable. 

There are other applications for connectivity within other domains (biology, 

chemistry, ecology), but within the systems engineering domain the key interests are 

within the software and hardware interfaces that contribute to increased difficulty in 

development. Martin's (2004) measures of interface complexity (the measure of 

complexity between the system and its environment) and the link element of internal 

complexity (the complexity of the internal interfaces) provide a good grounding for 

the construction of a connectivity measure appropriate for the engineering domain. 

The single figure output for interface, external and internal complexity, however, do 

not provide any insight into the likelihood of emergent properties, the level of 

Craig Read Page 97 12/11/2008 



Complcxity Charactcristics and Measurcmcnt within EnginccTing Systcrns 

difficulty, feasibility, potential problem areas and the amount of intrinsic or induced 

complexity within the developed product. 

Cyclomatic number, sometimes called program complexity, or McCabe's complexity 
(McCabe 1976), is the number of independent loops within a graph. The measure 

essentially shows the complexity of the flow control through some program code, 
V(g) (cyclomatic number) = Edges - Nodes + Components or V(g) =e-n+2. In a 

program with just sequential control V(g) = 1, the greater the number the more 

execution paths there is. This relates to the Senge (1994) principles of detail and 
dynamic complexity, in programs consisting of sequential only flow, the system 

exhibits primitive detail complexity (V(g) = 1), as the program flow complexity 
increases the system exhibits more detail complexity (essentially a hierarchical system 

with few other paths) however as the cyclomatic number increases the program flow 

structure enters the dynamic complexity state. 

How can this be applied to developed systems? Obviously there is a direct 

application of this measure and others (Wilkie, Hylands 1998) similar to it in the 

software domain, but physical systems can also be modelled in the same way. If the 

system can be modelled in terms of controls then the cyclomatic number can be 

replicated for physical hardware as well as software. The measure in the engineering 

domain is limited due to the shear level of effort required to model large systems with 

detailed mechanical, electrical and software components, and there is no way non- 

controlling or indefinable interfaces (such as power, and human interaction) can be 

modelled and therefore these key elements of systems design would not be considered 

despite their being key to the overall complexity. 

2.7.12 System Complexity Measures 

Martin (2004) developed a set of measures for complexity within engineered systems. 

These complexity measures are called Internal, Interface, External and Socio-Political 

Complexity. 

Internal complexity is a result of what Martin calls Scale and Link complexity, which 

are functions of the number of elements, the links between, and the level of 
functionality of the links (refeffed to as the 'vocabulary). 
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Interface complexity uses the equation described earlier (heading) in which the 

interface complexity is a function of the infonnation required to describe it along with 

the probability of meeting the functionality requirements to produce it. 

External complexity is a function of system failures, the frequency of these failures 

and the magnitude or criticality of the worst failure possible within the system. It is 

defined as "the ration ofthe risk associated with allfailures ofhigher than average 

magnitude over the risk associated with allfailures oflower than average magnitude" 
(Martin, Pieffe-Alain J. Y. 2004). 

Socio-Political complexity is linked to risk perception within the market, but it is 

difficult to place a value on this as complexity measure that can be used in the 

engineering cycle. 

2.7.13 Randomness and Un predictability and Entropy 

Complexity Measures 

Entropy is the measure of disorder within a system; this could be within information 

or energy (Baranger 2001, Lemay 1999). In the case of energy, it is energy within a 

system that cannot be used for work, measuring aspects of gasses such as their state of 

randomness. In engineering information surrounding the system has a level of order; 

the diversity and order of the requirement set, skills required and technologies used. 

When comparing or combining two systems or two components, entropy (disorder) in 

each separate system may reduce (tend to order) when integrated with another system. 

If these two systems are nowjoined together and a combined entropy measurement is 

produced, this is the mutual information. This is the extent of the randomness when 

considered together rather than as a separate entity. 

Mutual Information ofA, B= Entropy A+ Entropy B- Combined Entropy A, B 

Mutual information (Edmonds 1999, Moon) measures the relationship between the 

individual component unpredictability and the combination of the two. In systems 

this principle is very prudent, it may be that two elements of a designed system when 

operating or being developed separately require large information investments due to 
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their high level of randomness, but when considered together rather than apart the 
information level is less than that required to do both systems separately. 

In systems engineering terms, this principle will affect the detailing of sub-system 
boundaries, if these boundaries are chosen poorly, the resulting resource required to 
develop the two sub-systems may be higher than that required to develop them as a 

single clement. 

Perhaps related to mutual information, understanding the boundaries between system 

components to reduce the entropy, the difficulty associated with a system being 

deconstructed into its component parts, or sub-systems can also be considered as a 

complexity measure, the ease of decomposition. In the case of algorithms and 

mathematical proofs, Edmonds (1999) suggests that although the proof may be a 

simple axiom, the meaning of that proof could be complex. An example is the 

meaning of words within the English language; words may have definitions that go 

beyond the syntax of the phrase within which they reside, making the phrase more 

complex and open to interpretation. This is similar to that of hierarchical information 

scaling and interpretive complexity (L6fgren 1974) , possessing characteristics of 

both measurement concepts. 

2.7.14 The Edge of Chaos and Aftractors 

A mathematical measure relating to chaotic processes, small changes in state at an 

early stage cause large changes in state at a later stage making such processes 
impossible to predict beyond a certain time frame. Despite this chaotic appearance 

patterns do emerge out of the chaos where systems tend towards particular states as a 

result of the initial conditions (Waldrop 1987, Lancaster 2007), these are known as 
lattractors' (see section 2.2.5), attractors can differ in complexity, and a measure of 

the dimensions of the attractor for the system is a measure of the complexity of that 

system. 

There is no obvious mapping of this complexity measure to the engineering domain. 

Even the methodology is unsuitable for deriving measures that can be of use. 

The likelihood of complex systems emerging at random is low, and often complexity 
is associated with low probability. On the other hand, if complexity is ftised with 

entropy or other informal measures then the probability of a complex system 

emerging is high. This has led to many developing measures that fit complexity 
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between order and disorder. On the contrary, the philosophy of "simplicity " has led 

to identifying higher priori probabilities supporting the truth of a theory which has a 
low complexity (Edmonds 1999). 

The basic principle surrounding the idea that complexity arises out of low 

probabilities may have an abstract significance for product systems, but as for 

measuring complexity using this concept the application is limited and provides little 

benefit. 

2.7.15 Psychological Complexity 

Cognitive complexity (Bieri 1955, Andrews, Halford 2002, Green 2004) is a much 
discussed topic within the psychological world. An example of an element of 

cognitive complexity is an individual's ability to recognise positive and negative traits 

without being limited by their own bias. The dimension of this mental model the 

individual creates is then referred to as their cognitive complexity. By assigning their 

friends positive attributes and their enemies negative attributes the individual is 

considered to be cognitively simple, by assigning both adversaries and friends 

positive and negative attributes an individual is considered to be cognitively complex, 

possessing a two dimensional model of others. 

The qualitative measure is very time consuming to calculate, however it provides little 

a limited benefit for industry in terms of developing systems. Possibilities for 

incorporation into an understanding of system complexity may arise from 

understanding behaviour within human organisations that form part of the developed 

system, or potentially an understanding of the organisation developing such a system. 
Mindset has proven to be a contributing factor within system complexity, it is 

important to consider in developing systems and the case studies will illustrate how 

mindset can change the outcome of programmes. 

2.7.16 System Simplicity 

Simplicity (Edmonds 1999, Richmond 1996) is a principle that is used when faced 

with two theories that are equally supported by evidence; in such a case it is natural to 

use the simpler theory or look for a simpler theory, and this has been termed 

" simplicity". All purely logical theories are equally and ultimately certain and hence 

" simple" - simplicity does not help us distinguish between them, and it was not meant 
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to. Connected theories are Goodman's and Remeny's (Goodman 1966, Richmond 

1996). 

How can simplicity be tailored for the engineering domain? I am not sure the concept 
has a place within engineering design. In industry the simplest solution may not be 

the most cost effective design, and so the search for simplicity may be uneconomical. 

2.8 Complexity Coping Methods and Approaches 

A number of different approaches, management techniques and coping methods have 

been applied to engineering, product development and other areas in an attempt to 

improve processes (Haskins 2006, Heylighen 199 1, Gregory 2000, Barclay, Dann 

2000, Marshall 1997, Lees, Branki et al. 1995, Perona, Miragliotta 2004, Shaw, Taxdn 

2003, Vakil, Hansman R. J. 2002, Stcvens 1998, Dunlop, Evans et al. 1997, Gottingcr 

1983). These processes, frameworks, approaches or coping mechanisms aim to 

improve the ability of industry to manage, control, develop, improve, understand, or 

produce complex systems with reduced risk. 

The following sections detail coping methods, or approaches that have been 

undertaken or potentially could be undertaken to deal or cope with complexity issues 

within the changing engineering environment. 

Coping or approach methods to complexity overall attempt to: 

Reduce the complexity of the organisation that develops, operates or supports 

the systems that are developed, with improved modularity in design and better 

sub-system decompositions. 

2. Reduce the intrinsic complexity of a system, by reducing functionality, 

interfaces and their intricacies and elements. 

3. Reduce the induced complexity of the system brought about by engineering 

approaches and system decompositions. 

4. Better handle or process the intrinsic complexity of the system. 

5. Produce improved optimised designs with reduced unnecessary complexity. 

Coping methods for complexity essentially attempt to reduce induced complexity, or 
manage intrinsic complexity. The management methods may focus on personnel, 
resources, time scales, budget, and intricacies of interfaces or system decomposition. 
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If induced complexity is too high and affects the cost or timcscalcs of that 

programme, coping methods are employed to reduce that effect. 

In some cases it may be better not to employ a solution or coping mechanism to a 

complexity issue, as it conflicts with other crucial programme constraints. This has 

been apparent in some case studies (see chapter 4) explored within this research, 

where problem issue solutions were in fact not to implement a solution at all. None 

the less it is important to explore the coping methods or approaches that can be used 

or implemented when systems engineering large integrated designs. 

2.8.1 System Scope 

Reducing the system scope and size may help to reduce the induced complexity of the 

system, and also reduce intrinsic complexity. Keeping interfaces between sub- 

systems simple and well defined, and limiting the overall number of states the system 

can be in at any instance, not the sub-systems. A very simple but effective coping 

mechanism, reducing intrinsic complexity by reducing the system scope, however 

trading off intrinsic complexity against desired functionality is not always an option 

and this limits the viability of such an approach. 

What ideally is required is a coping mechanism, or approach that reduces the induced 

complexity by design, and does not affect the intrinsic complexity of the system and 

its functionality, which is key to product success and acceptance. 

2.8.2 Managing Modularity and N2 

Matching modularity in the design with supply chains and organisational structures is 

an approach to reducing induced complexity of the system. Sub-systems can be more 

easily understood if that sub-system functionality is self contained, and not subject to 

other system areas. In networked systems this is difficult, but producing a modularity 
based design process may encourage it. Marshall of Loughborough University 

(Marshall 1997) has produced a workbook detailing the modularity design 

methodology in engineering, which shows how to approach design in this fashion. 

Some approaches match design modularity with supply chains to sub-system 
decomposition, along with development teams with'sub-system. decomposition. 

Essentially, this involves reducing the complexity of the organisation that develops, 

supports and operates the system by reducing unnecessary interfaces within the 
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development and supply chains. Modularity uses the mutual information (see section 
2.7.13) notion, that changing the decomposition of'systems can reduce complexity or 

create order. Sub-systems with cross functionality split over sub-system boundaries 

are difficult to design and develop concurrently, whilst also making the system more 
dill'icult to integrate with the additional coupling of cross sub-system Functionality. 

Suppliers might be mapped to functionalities rather than specific sub-systems, in this 

case the supplier decomposition is inconsistent with that of the design teams and these 

inconsistencies have the potential to cause problems in the development phases. 

There are tools that allow intelligent decomposition or structuring of system design 

projects using matrices such as N2 (Eppinger, Whitney et al. 1994), or various 

graphical approaches to functional modelling. 

N2 is tool that enables the relationships between requirements, functions and 

architectures to be explored and understood in the systems context. Figure 7 shows 

the inter-relationships between requirements. and the relationships between 

requirements and allocated functions. 

Requirements 
in 0 cl 11 CD 13 

0 13 E 13 13 
13 

0 
L. 

13 
13 

r 

Func, fions 

13 13 
E3 13 

D 13 13 13 

13 13 

13 
11 13 

13 E3 

13 

Figure 7- DSM requirements and function relationship diagrams. 

N2 provides an appreciation of the interdependency between requirements and 

functionality, a process that provides DSM models (Eppinger, Whitney et al. 1994) 

with data to provide detailed interdependency diagrams which can later be optimised. 

The level of requirement interdependency can potentially be an indicator of the 

complexity in the specification of a system, the more interdependency, coupling and 

internal loops, the higher the complexity in the specification. The number of 

functions allocated to a requirement set may be an indication of the complexity of 

those requirements, the more complex the requirement, the more functionality 

allocated to it. 
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Figure 8- N2 functionality and architecture relationship diagrams. 

Figure 8 shows the N2 allocation of function to architecture elements and the 

interactions between architecture elements. Induced complexity can be the result of 

the architecture development process creating unnecessary interdependencies between 

elements. The use of Commercial Off The Shelf (COTS) or Military Off The Shelf 

(MOTS) products that have allocated function inbuilt, restricting the allocation of 
function within the system architecture elements and therefore influencing the 

complexity of the system. 

Interactions and interfaces between architecture elements is partly intrinsic and partly 

a result of design. The architecture implementation will affect the system complexity, 

large interactions and intricacies within the architecture (Evans 1987) may result in 

emergent properties and make the system difficult to understand and service. 

Architecture principles aim to reduce this complexity by providing a framework to 

reduce the level of intricacy within the system elements. 

2.8.3 Design Structure Matrices 

DSM techniques (Eppinger, Whitney et al. 1994, Carrascosa, Eppinger et al. 1998, 

Eppinger 1991) can be used to dissect problems that occur within programmes using a 

matrix of programme elements and identifying the interdependencies and influences 

between them. Figure 9 shows the construction of a DSM and then the optimised 

example showing the dependencies or influences are within a closed loop or circuit. 
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Figure 9- DSM, developed and optimised examples. 

Closed circuits or loops can be identified within the interdependency and influence 

matrices after re-organisation of these matrices. In order to provide a more efficient 
development process, or remove the problem issues by developing a solution, these 

loops or closed circuits must be addressed or removed. The solution may be a change 

of requirement or re-allocation of function within the architecture. Once this solution 

is developed the implementation of this solution can be tested within the DSM model, 

by modifying the matrices to reflect the change. This process will enable a preview of 

the second order problems that will occur as a result of the change to the first 

dependency matrix. 

DSM can be applied to complexity problem issues by breaking these issues into their 

component parts. These component parts can then be dissected in the same manner 

explained above, a solution chosen as a result of the optimisation, and the second 

order effects of such a solution understood before it is implemented. The process can 

then be repeated for second order problems. 

2.8.4 Difference Reduction Design Techniques 

Difference reduction (Heylighen 1991), rather than focusing on the entire system, 

focuses on differences between the current state and the required state, it is a process 

of optimisation in design. If there are a potential 100 different simple actions 

available, which are to be combined into a sequence of 10, this gives a possible 

IOOAIO (10000000000) different potential overall actions that can influence the 

situation. Incorporating a focus on the differences between the current situation A 

and the desired situation B, reduces this number of possibilities. There may be 10 

objects that are different from the initial situation to the ideal situation, and there will 
be an action that can be undertaken to induce the desired change, this gives us 1 oo 
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potential actions for 10 objects, 100 x 10 = 1000, a much lower figure and a reduction 
in the complexity of the problem. 

Further knowledge about the actions, and knowing how the actions affect objects 

which will further reduce this figure; actions will be selected for reducing the 
differences between the two situations A and B for the objects. The actions that 

reduce the differences may only be 2 or 3 for each object, thus 3x 10 = 30, a further 

reduction. 

In opemting in this way, the objects chosen must be as independent as possible so as 

to not influence any other differences between situation A and B, other than those 

desired (Heylighen 1991). 

2.8.5 Iteration Reduction 

Iteration reduction, like difference reduction, is another approach to reducing the 

workload of a development programme in an attempt to avoid over complication and 
difficult traceability (Smith, Eppinger 1995). More design iterations, or slower design 

iterations, slow system development, and it is recommended that a development 

capability should speed up the iterations within the design space or reduce the 

number. 

Faster iterations can he achieved in a number ofways. These could involve the 
introduction ofprocess improvements like thefollowing. - 

e Computer-aided design systems which accelerate some ofthe individual 

design tasks 

Engineering analysis tools such as simulation techniques which reduce the 

needfor time-consumingprototjpeltest cycles. 

Information systems involving database management and networking software 

whichfacilitate rapid exchange oftechnical information among individuals on 

the design team. 

Removing extraneous activitiesfrom the iterative process. 

Fewer iterations could be achieved by, for example: 

9 Improved coordination ofindividuals whose work depends on one another 
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* Co-location offeam members responsiblefor tightly coupled activities, 

allowingJaster and morefrequent information exchanges andfaster 

resolution ofconflicting issues 

* Minimization ofteam size, which allows a core set ofindividuals to work more 

efficiently. 

* Proper specification of interfaces, allowingfor reduced needfor interactions 

between individuals and teams within the development process. 

* Use of engineering models capable ofpredictingperformance along multiple 
dimensions, eliminating the needfor separate analyses. 

(Smith, Eppinger 1995) 

2.8.6 The Systems Engineering Lifecycle Management (LCM) 

The Systems Engineering lifecycle (Haskins 2006) is one of the fundamental tools in 

modem systems engineering design - it forms the basis of all development 

programmes. The systems engineering lifecycle is a management guide that manages 

the development process from beginning to end and attempts to control the process in 

a manner that reduces effort levels by organising more efficiently. In doing so other 

management practices and tools can be employed; concurrent design management 
(Eppinger 1991) is an approach that can be implemented within programmes. Better 

management of concurrent engineering activities is paramount when large complex 

systems must be designed and built in short time frames, MoDAF and DoDAF are 

architectural approaches to systems engineering (UK Ministry of Defence 2005a, 

DoD Architecture Framework Working Group 2003). They are guidelines to build, 

evaluate and integrate system architectures and form part of a toolset for system 
development for the UK and US defence industries. 

UML is an area currently under development for systems engineering (Weilkiens 

2008, Bock 2005). SysML, a UML based language specifically developed for 

systems engineering is a new approach to product development, and architecture 
design that can be implemented within programmes. Combining these UML based 

languages with modelling tools and the MoDAF, DoDAF frameworks can prove to be 

very effective when dealing with product development and the complexities within it. 
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Some adaptation is still required however, as UML is primarily a software 
devclopmcnt tool. 

2.9 Conclusion 

A lot of the complexity literature that exists is not specifically geared towards the 

systems engineering domain. A large volume of literature associated with 

complexity, complexity origins, measures, definitions, concepts and so forth, stem 
from mathematical research into chaos theory, information science and algorithmic or 

computational complexities. The systems engineering concept seems to be missing 
from the majority of the literature within the complexity domain, but duely considered 

within the engineering domain. With those references that are engineering focused, 

the predominance seems to be towards the software domain, in which many of the 

mathematical principles and information theory concepts can be applied more readily. 

There appears to be a great lack in complexity literature specifically for systems 

engineering, Bar-Yam Yaneer (2000) and Martin (2004) appear to be the only two 

specifically targeting engineered systems rather than natural or mathematical systems. 

This is perhaps because in reality engineering approaches do not create what would 

commonly be called or referred to as "complex systems ", or "complex adaptive 

systems". Indeed the systems created are less complex when compared to the scale of 

natural systems, but none the less the "complexity" faced in design is an ever 

increasing problem that must be addressed, and a common language and 

understanding of that engineering complexity must be found. 

The products themselves, that is the hardware and software within the system without 

operators, in fact mostly exhibit Senges (1994) dynamic complexity. However, the 

hardware aspects of the systems - that is, the interfaces or elements within the system 

- are always the same; any adaptation exhibited by the hardware or software system is 

usually a deternumstic process. The human element within operational systems 

provides the system with the ability to truly adapt. 
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Complexity in systems that arc engineered can bc thought of in this way: 

System System System System System System Can System Can System Can 
Boundary Boundary Boundary Boundary Exhibit Exhibit Exhibit 
Includes Includes Includes Includes Hierarchical Non- Adaptive 
Hardware Software Human System Complexity Hierarchical Complexity 

Users Operations Complexity 

X X X 

2 X X X X 

3 X X X X X X 

-i- -X X X X X X X 
Table 4- System complexity properties as a result of the system boundaries. 

As a result, during development of hardware, the complexity characteristics that are in 

fact of concem are those that related to Hierarchical Complexity, or Non-Hicrarchical 

Complexity. When developing systems including the human element Adaptive 

Complexity must also be considered. 

'rbc various definitions within the literature focus on very similar points and appear to 

be variations on very similar themes. The clear identifiable characteristics of 

complexity in engineered systems are: 

o Difficulty in modelling 

interface coupling, connectivity and intricacy 

* System understanding (ignorance, maturity) 

Ilose items that are also potential characteristics in complex systems but not 

necessarily in every case: 

9 Maturity 

Commonality and variety 

o Iffeducibility 

o Scale 

o System sensitivity 

A definition of complexity for engineered systems is required for this thesis, and this 

defitnition must encompass the first set elements above if it is to be complete. No 

single definition uncovered throughout the research spans the breadth outlined above. 

Evans' (1987) definition goes part of the way to defining complexity, Sussman 

(1999) then completes the definition introducing the concept of knowledge, emergent 
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properties, and the ability to predict system behaviour. A complete dcf"inition of 

complexity lies as a combination of the two, and this combination is the dcfinition 

that is used within this thesis. 

System complexity is the result of (despite a good understanding of the elements and 
interfaces within the system) the intricacy and coupling between elements within the 
interfaces. The system behaviour is difficult to model and emergent properties that 

are unpredictable are observed. 

Measurement of complexity is also limited within the systems engineering domain. 

There are a large number of complexity measures that are applicable to other domains 

but not systems engineering or engineering specifically. These measures however 

have concepts that have relevance; however it is not always clear how such measures 

can be implemented. 

What is clear however is that the measurements here, specifically target certain 

complexity types, and no one measure covers the full spectrum of complexity; 

modelling difficulty, interface connectivity / coupling / intricacy, understanding, 

commonality / variety, irreducibility, scale and system sensitivity. 

Martin (2004) attempts to model the complexity of a system simplistically, with 

careful detail paid towards the interfaces and elements. The problem with Martin's 

approach is that the system complexities are almost unrecognisable from the output, 

and it overlooks some quite key elements of complexity in engineering development 

(maturity, level of understanding, system sensitivity). Martin's metrics attempt to 

quantify a complexity value for the system based on purely the functional or physical 

characteristics of that system only. From a development point of view this is only 

part of the story; system complexity in this regard may be high but in reality the 

complexity or difficulty associated with creating this product may be low as the 

majority of the technology may already exist, the product may be an upgrade in which 

case most of the complexity of the system is already dealt with. Calculating the 

complexity value for a system is not enough for development programmes, converting 

a "complexity value" for a system into an estimation of difficulty or effort required is 

difficult without considering other factors such as maturity. The methodology for 

calculating some complexity values for systems are useful, in particular when 
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considering "vocabulary" of links and element functions. These aspects of the 

complexity metrics have been adopted for this thesis. 

The concepts or classifications of complexity are very relevant to systems engineering 

problem issues, and highlight the key differences between simplistic and complicated 

engineering problems. Hierarchical systems are more easily understood and modelled 

as information paths are restricted, whereas those systems with no linear hierarchy 

require a great deal more effort and understanding. 

2.10 Summary 

There is a large amount of literature covering complexity in various different subject 

areas (mathematics, computer science, etc. ). The literature review has been structured 

with categories of complexity attributes; definitions, origins, classifications and so on. 

These gathered characteristics from the literature form the Complexity Component 

and Characteristic Store (CCCS). The CCCS also stores information regarding 

problem issues within engineering systems. These were not covered within the 

literature review as this information was collected later from case study analysis, and 

complemented the literature review. Figure 10 shows the CCCS along with the 

attribute categories that are contained within it. 

Complexity Definitions 

Complexity Concepts/ Complexity Origins 

Classifications 

Complexity Problem 
Complexity Measures 

Issues 

Complexity Coping Mechanisms 
1\ 

/Approaches 

Figure 10- The CCCS and the information it contains. 

The CCCS contents are described as follows: 

Complexity Problem Issues - Problem issues and case studies that are gathered from 

industry are stored within the complexity component model. These complexity issues 
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are driven from those problem issues that have been collected and analysed from the 

case study activity. 

Complexity Definitions -A set of complexity definitions, notiust linked with the 

systems engineering domain are stored within the complexity component model. 
These definitions range from natural world definitions relating to evolutionary 

principles or weather systems, to engineering specific definitions. There is a 

possibility that definitions from the natural world may apply to the engineering 

domain. 

Complexity Origins - Where does complexity come from, how does complexity 

manifest itself? Again the component model is not limited to the engineering domain, 

but is an attempt at an all round view of the origins of complexity within complex 

systems. The following are potential origin areas for complexity within systems and 

development programmes. 

Internal Factors - Complexity found within the system itself and not outside of 

it. These are the intrinsic origins that induce complexity during the 

development process, that are not as a result of human induced design 

complexity within that process. 

External Factors - Complexity factors that are exhibited outside the system, 

within the system environment that are not under system control. These are 

the intrinsic system factors that induce complexity during the development 

process, that are not as a result of human induced design complexity within 

that process. 

Complexity Inducers - Organisational changes, rc-structures, personnel 

changes, operational support organisations etc. may have effects on the system 

in early concept, development, service, support or disposal phases. These will 

be organisationally induced factors which influence the level of complexity 

within the progarnme domain. 

Complexity Concepts / Classifications - Complexity can be classified for a system 

as in terms of detail, dynamic, complex interface adaptive, or in terms of complex 

interface and element adaptive. These classifications are explored in detail above 

(heading 2.6) and are useful when determining the level of complexity that is likely to 

be exhibited by the system under analysis. 
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Systems 
Lowest Simpler 4 ----+ More Complex Highest 

Simple ' Detail Dynamic CAIS ClEAS , Complex 

Figure II- Complexity scale of complexity classifications. 

In general, systems become more complex as they approach complex interface and 

element adaptive. Figure II shows the scale for the complexity classifications that 

are contained within the complexity component model. 

Complexity Measures -A number of complexity measures are contained within the 

complexity component model. These measures range from quantative techniques to 

qualitative approaches, and are stored as potential measures against the problem 
issues encountered within the case studies. 

Complexity Coping / Approach Mechanisms - Potential coping mechanisms, used 

or theoretical are stored so they may be applied theoretically, practically, or their 

impact understood from previous use within business. These mechanisms will be 

linked to problem issues within the complexity domain in systems engineering. 

The CCCS is essentially the product of the literature review and provides the 

attributes of complexity used in later stages of the research. 

The roadmap within Figure 12 shows the links between the literature review findings 

and the development of the CCCS within chapter 5. 
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Figure 12 - The layout of the work and the thesis outputs roadmap. 
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3 Statement of the Complexity Problem with 
regard to the Engineering Lifecycle 

This chapter uses the literature review (chapter 2) to determine what the potential 

complexity issues are within engineering systems. This section evaluates the changes 
in the defence sector andprocurement strategies and outlines the problem to be 

tackled by the research. This is then elaborated by comparison with 'real world' 

problems investigated within chapter 3. 

3.1 Introduction 

The problem explored here is set within the defence industry, with its high diversity 

of programme types ranging through air, land and sea systems. The area focused on 

Specifically are is the problem issues found within engineering development 

programmes; how these problems are dealt with, or not dealt with, and how they 

relate to complexity attributes. There of course is further potential for mapping 
between different engineering domains outside of defence, automotive systems for 

example, as some of these issues may be generic, but for the current stage in research 

the domain will be defence engineering programmes solely. 

3.2 Complexity Manifestation within Systems 

Appreciating how the changing customer demands on the systems procured affects 

the systems engineering and development process, is important when trying to 

understand how complexity might manifest itself 

The systems engineering approach (Haskins 2006, Bock 2005) has been fashioned in 

response to the change in system properties - size, functionality, interoperability, 

functionality and technology. As a discipline systems engineering was created to deal 

with the issues of large scale interoperability, functionality and technology 

integration, while still remaining competitive within a product market. 

Technologies evolve, so that they support ever more integration and interoperability, 

and thus generate ever more complex systems (Modis 2002). Coupled with the scale 

of some programmes and the programme life (sometimes in excess of 40 years), 

customers demand more functionality (in new scenarios not necessarily apparent at 
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the start of the programme), improved reliability and sustainability over the life of the 

product. 

The traditional engineering approach used for product development started from a 

stagnant user requirement definition based on def*incd scenarios for the product drawn 

from requirements established by the customer, which were not subject to any 

evolution over the product lifecycle. Once requirements and scenarios were so 
dcf'ined this was an almost linear process. The product was defined, requirements 

created, test plans for those requirements and acceptance criteria created, initial 

concept designs fashioned, detailed designs and interface specifications created for 

sub-systems, and these were then integrated and tested against the test plan created in 

the early stages of development. 

This fixed requirement approach enabled a number of engineering practices which 

can accelerate the development process with little risk. Concurrent engineering can 

be easily managed with a clear understanding of each sub-system and the interfaces 

between them; as a result it is suitable to the fixed requirement based development 

programme. The lack of the need for a lengthy iterative development process reduces 

the timescales for development. 

Figure 13 shows the development process in the context of the relationship between 

the 'system operational capability'(i. e. the system under development by the 

contractor and operated by the customer) and the 'development capability'(the 

contractor or organisational. structure that facilitates the conceptualisation, design, 

integration and testing of the system), along with the influential factors affecting both. 
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Fixed Scenarios Defined Capability 

Fixed Requirements Low Interoperabillty 
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Delivery Schedule 

Clear Suppliers Clear Sub-Systems 
Split Split 

Use Legacy 
Systems 

Figure 13 - Traditional systems engineering problem. 

The system operation capability as discussed is shown to have a fixed requirement 
base, with low integration and interoperability due to the lack of supporting 

technology with the additional reuse of legacy systems. A great number of 
development programmes do not start from a blank sheet of paper, but are often 

upgrades or enhancements of existing products. 

Modem development programmes do not often have the rigidity in their requirement 

and capability definition that traditional programmes used to, and are subject to 

evolution over the development cycle. The MOD UK has introduced capability based 

procurement strategies or Smart Procurement (UK Ministry of Defence 200 1, James 

2004) which is geared towards this evolutionary requirement concept. The traditional 

engineering approach would not easily cope with requirement evolution - it could be 

argued that our current processes are not much better, either. The change in 

procurement strategy means that the demands placed on systems engineering have 

changed, for both how the process of systems engineering is conducted, and to what 

engineering practices can be adopted to accelerate the development. Modem systems 

require more careful management and control for this very reason. The dynamic 

nature of the requirements definition constitutes a much greater risk in the 

development of modem systems than for traditional systems; thus, understanding 

complexity would help in quantifying and mitigating this risk. Systems are expected 
to have a longer life, probably due to high costs of development, and the products 
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thcmselves, in some cases, are developed as 'immortal systems. These immortal 

systems have a huge life, and do not necessarily remain the same product from start to 

finish; rather, they are subject to upgrades and additions throughout their operational 
life. This means requirements fashioned initially in a programme may not Mate to 

the real requirement at the end of a programme, so there is no longer a fixcd target for 

engineering to aim at - customers are more likely to want to make changes to their 

requirements as the programme progresses to meet their current demands. 

Figure 14 shows the modified relationships within the development process between 

the 'system operational capability'and the 'development capability'for the modem 

systems engineering activity. 

Less defined - Changing scenarios 

Integration Multiple uses 

Interoperability Re-use of 
legacy systems 

More changes 
Bigger teams 

More suDDliers: 
partners, JVs, Shorter timescales (4-5yrs) More re-use 
supply chain II 

Concurrent engineering Modular Design 

Figure 14 - Modern systems engineering problem incorporating system complexity. 

The changing demands have made the overall process much more difficult. Systems 

are larger, subject to evolution; the development capability (the organisation including 

suppliers and business units) that creates them are also larger, needing more skills and 

people to develop the more interoperable and integrated systems with improved 

functionality. In addition, there has been a significant change in the scope of the 

engineering activity including more emphasis on support, safety, reliability and the 

concept of interoperability which have become requirements for new systems (Link 

16, tactical data links). The development capability develops operational support 

mechanisms, detailed safety and reliability assessments and more Vigorous testing 

programmes to test the increased functionality, all of which requires more people, 

more suppliers and a larger overall organisation. 
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In addition the move towards smart procurement (UK Ministry of Defence 2001, 

James 2004) means requirements are becoming more capability based, in other words 

taking the fonnat 'we wish to have an ability to achieve set out goals', rather than, 

'the system shall do x'. This approach requires the contractor to translate these 

capability needs into an agreed system requirement specification from which a 

product can be designed. This means more work, and requires contactor 
interpretation of the capability need, but essentially it is the application of the same 

engineering strategy for traditional systems, but with a more iterative layer built into 

requirement derivation; a capability request is fashioned, the engineering approach 

uses this capability request to fashion a set of rigid requirements (often with no room 

for evolution), and the system is produced from those requirements. 

Industry is struggling with development of systems in this manner; programmes are 

late, over budget, do not satisfy customer requirements, the requirements evolve and 

due to a lack of flexibility within the product or process industry cannot cope; 

examples include defence programmes and commercial airliner programmes (BBC 

News 2004, Airbus 2006). In addition, the customer demands and expectations 

continue to increase, in particular within defence and civil aerospace. Engineering 

needs to be flexible and agile, and adopt a strategy or process that supports 

evolutionary, rather than 'design to requirement' product development. 

Are some of the problems within programmes a result of complexity within the 

product, the development process or the development capability organisational 

structure? It may be a mixture of these factors. Products on the scale of modem 

systems have never been conceived before. Older systems perceived at the time as 

complex are, by modem standards, easier to design and implement. Ile technology 

was older, of limited functionality, and did not require or facilitate the interoperability 

of systems, as is the case today. An example is computer microprocessors, a 

technology that has advanced very rapidly. This continuing advancement in 

microprocessors, (Mollick 2006, Hamilton 1999, IEEE 2006) and computing power 

have enabled the higher levels of interoperability and functionalities, which are 

demanded of modem systems. 

This additional complexity (intricacy, size, information flows, interoperability, 

functionality, etc. ) in modem systems is a major issue for developers; system 

reliability, emergent system behaviours or properties (be they desirable or 
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undesirable), become more and more difficult to control and also more difficult to 

analyse, predict and model. This complexity within systems needs to be understood 

so that appropriate steps can be taken to reduce any detrimental cffccts within 
development programmes. In order to do this industry must be able to understand 

complexity (origins, effects, classifications, potential problems, concepts, etc. ), 

measure it, and intelligently decide upon action to reduce, eliminate, or cope with it 

within the engineering processes. 

Ile kind of complexity that is of special concern is not the intrinsic complexity 
(which is there irrespective of process and a part of the requirement) but the 

unnecessary complexity induced by engineering practices. A clear understanding of 

the difference between intrinsic and induced complexity is vital, and the ability to 

identify, and perhaps measure induced complexity within systems of great benefit 

during development. 

When considering complexity outside the engineering domain (i. e. mathematical, 

natural systems, etc. ), it is apparent that engineered systems are some of the more 

&simpler' systems. Complexity on a totally different scale exists within nature - 

evolution, weather systems, fluid flow dynamics, atomic physics, quantum theory, 

particle flows, chemical reactions in cells, and so on. We have been modelling and 

predicting weather system behaviour for some time, but despite this our models are 

not always accurate; our models, perhaps, are limited by computer processing power, 

or the scope of the systems is so large it is impractical to model them accurately. In 

contrast our understanding of designed electronic, mechanical and software 

components (their functionality, operations, tolerances, and so on) is far more 

accurate and subsequently their behaviour within a system far easier to model and 

predict. With our ability to better model and understand the systems created by 

development and engineering processes, it would seem that it is within our grasp to 

better understand complexity in our systems, and improve our ability and cfficicncy in 

developing them. 

Industry already has some coping mechanisms that attempt to deal with the 

complexities within product design (see section 2.8 above), but there is still room for 

improvement. Industry needs to continually innovate and create new products to 

remain competitive and effective, this means even more complicated and intricate 

systems will be required, while at the same time delivering these systems with high 
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reliability, reduccd cost and increase capability effectiveness. An increased 

understanding of complexity is a beginning at dealing with this situation. 

3.3 What is needed 
Within industry there is no common complexity understanding or language when 
describing complexity in systems that are either operational or in development. This 

understanding or complexity in system frameworks will form the basis from which 
industry assesses, understands, measures, and deals with complexity in system 
development, operation and disposal. The elements of the understanding required are 

as follows: 

"A common understanding of how complexity is defined. 

"A common understanding of how complexity manifests itself within systems, 

the origins of complexity. 

"A common understanding of the classifications or concepts of complexity in 

systems and their implications. 

"A common understanding of sensible measurement approaches that measure 

complexity in a manner that helps the design and development process. 

" An understanding of complexity problems, their causes and how they can be 

avoided. 

A common understanding of intrinsic and induced complexity within systems 

and the implications of both on development programmes. 

The framework itself needs development, and then within each element of the 

framework work conducted to enhance the understanding within that area. 

Within this thesis the complete framework is outlined and created and each element 

defined ready for fiulher exploration. To explore every element within this 

framework in the detail required is beyond the scope of this work and quite possibly 

spans several different research strands into a number of different techniques and 

approaches; nevertheless, this thesis establishes a basis for all of the elements of the 

framework and builds upon one element in a little more detail. 

The measurement of complexity in systems for system development programmes is 

tackled in more detail, as no complexity measurement strategies exist that measure 
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complexity in a manner useful to development programmes (that is providing a 

complexity figure from a measurement technique without considering the context of 
the programme doesn't help improve the development process). 

3.4 Conclusion 

Industry already has the systems engineering lifecycle models which come in 

different forms; the company within the case studies uses its own Lifccycle 

Management (LCM) guide set. Industry in general uses the systems engineering 
development profiles, or what is commonly referred to as the T-diagram'(11askins 

2006), and supports this with various other processes, in some cases house processes, 

such as change management, strategic business strategies, bidding processes and 

phase reviews. These support the development activity in particular, and were 
developed to tackle the complexity within engineering systems. However, the 

demands on systems engineering have changed and will continue to do so, and the 

systems engineering model must cope with these changes, by improving or 
developing additional tools to improve industries ability to develop more complex 

systems. 

Many customers have their own processes when procuring their systems, in particular 

the UK MoD which uses Smart Procurement (UK Ministry of Defence 1999, UK 

MoD 2001, James 2004), and pays particular attention to the Lines of Development 

(of which there are now 8 lines) within this procurement framework. 

Combined, customers and industry have developed processes and tools that help them 

manage the product lifecycle (requirements management tools (Tclelogic Doors), 

system devýlopment and modelling tools (Telelogic Rhapsody), modelling languages 

(Weilkiens 2008, SysML Partners). It is not certain whether these tools or processes 

give industry and the customer a view or understanding of complexity in their 

products, nor how it might affect them in the future. Further development of these 

tools is required to deal with the changing nature of systems engineering. 
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4 Initial ComplexitY Case Studies 
Thefollowing section analyses a set ofcase studies which identified typical industrial 

problems and also how they may be complexity issues, or related to complexity issue. 

It expands on the theoreticalfrom chapter 2 and the problenis identified within 

chapter 3. 

4.1 Introduction 

A set of case studies were used in order to gather information surrounding problems 

within industrial programmes. The case studies covered the problem issues in detail 

and any action that was taken to mitigate or deal with those problems. Each case 

study section details the problems taken from each case study and an evaluation of 

that study with the relevance to complexity characteristics (from the literature review) 

explored. 

These case studies were not specifically selected because they contained complexity 
issues as it was considered too difficult at this point to differentiate between a 

problem resulting from complexity from one that did not. However, a number of the 

problems identified within the case studies had characteristics that implied complexity 

may be a cause. 

Understanding the links between problem issues within development programmes and 

complexity characteristics within a system is vital if a technique is to be developed to 

quantify complexity in a way that can improve the development process within the 

product lifecycle. With clear links between issues in development programmes and 

complexity characteristics (if of course these characteristics are quantifiable) the 

extent and origin of the complexity within the system can be established. 

4.2 Problem Case Studies 

Data was collected from a series of interviews with a defence contractor spanning a 

number of different development projects. The individual interviews focused on a 

single project and attempted to gather an appreciation of the types of issues that 

occurred within that programme which could later be analysed for links to complexity 

origins and also to determine any common issues between the different programmes 
(case studies). The programme case studies are outlined briefly below: 
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Case Study I- An upgrade of a legacy missile system. 

Case Study 2-A technology demonstrator for a ground surveillance system. 

Case Study 3-A technology demonstrator for a large ground anti-aircraft 
system. 

Case Study 4-A new attack submarine programme. 

Case Study 5-A new technology demonstrator for an air stealth system. 

Case Study 6-A integration programme for integrated capability in the battle 

space. 

The data collection exercise, yielded a set of twenty seven issues ranging from simple 

problems with low complexity caused by hardware failures, to problems with high 

complexity caused by large optimisation issues in design or requirements evolution 
during development. 

4.3 Case Study 1- An Upgrade Missile System 

Ile case study data comes from a development programme for an upgrade to a 

previous missile system used by the navy. The upgrade consisted of the development 

and integration of some new functionality while preserving all the previous 
functionality of the legacy system it would replace. Due to the lack of data 

surrounding the old system, a reverse engineering process was required. 

4.3.1 Problem 1- Company Organisation 

There were two specific business units working on the project; these business units 

were part of the same company. Initially, a single business unit was the prime 

contractor for the programme, but portions of the programme were put to tender. 
These programme elements were bid for by both external and internal businesses. 

The internal business unit secured one of these contracts, and a contractual 

arrangement was drawn up between the two internal company business units. A 

second contract was secured by an external business which also had a contractual 

relationship drawn up. 

As the sub-contract is between two internal business units, and the work was initially 

subject to external competition, a formal prime to sub-contractor relationship and 

contract had to be created. For the two internal business units of the same company 
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the formal contractual relationship (necessary for fairness to be maintained as a result 

of the initial competition for work) created unnecessary boundaries. These 

boundaries included communication with other the external contractor, which was all 

done via the prime contractor internal business unit. This was particularly untortunate 

as the internal sub-contractor and external sub-contractor businesses would need to 

exchange a lot of information during the development of this product. 

Company 1 

BU 2 BU 1 
Sub-Contract Prime3tý 

% 
.1 

Contractor . ............. Relationship 
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Company 2 
Sub-Contract 
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Figure 15 - Company contractual organisation. 

Figure 15 shows the company organisational structure, with the contractual 

relationships and boundaries. Eventually the organisational structure was re- 

organised to remove the contractual boundary between the internal business units (see 

Figure 
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Figure 16 - Company contractual organisation, after the change. 
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The contractual relationship between prime and the other internal business was 

removed and replaced with a direct feed. This turned the sub-contract lor the internal 

business unit into a work package for the prime contractor, however the prime 

contractor still carried overall responsibility for the programme. The contractual 

communication channels could now be relaxed allowing easier communication with 

the external sub-contractor, helping enormously with the development of the software. 

4.3.2 Problem 2- Maturity 

The level of change (or lack of maturity in design) in the system design within the 

early stages of the development programme were high. As the programme progressed 

through the development lifecycle, the level of change reduced and the system 

became more and more optimised. 

At a point within the development programme there was a move from the conceptual 

design to a more mature accepted design. This change then restricted any further 

changes to the requirements which are then placed under tighter change management. 

cc 

Shorter Timescales 

Restriction on the change in design 

7\- 7'ý'- -/7 -/X- 7'ý- 7\- 
Time 

------------- 

Programme Under Change Management 

Figure 17 - The change in product maturity over the product lifecycle and the effect of limiting 

the design scope. 

The blue line represents the point at which the decision was made to reduce the level 

of change available to the requirements for the programme (the point at which the 

design reached a required level of maturity). The difficulty came when deciding 

when the decision to restrict design changes is made, and the transition into strict 

change management is carried out. In this case the maturity of the design (or the 

reverse engineering of the legacy design) was reached very slowly and didn't fully 
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settle, as a result deciding when to make the switch to the more tightly controlled set 

of requirements became much more difficult. 

4.3.3 Problem 3- Re-Use Legacy 

The project was essentially an upgrade, with the preservation of legacy system 
functionality with added functionality along with improved performance and 
reliability included as part of the upgrade. Due to a lack of a complete spccification 
of the legacy system, understanding of its functionality and operation was not 

complete. Modifications to the legacy system during the product life may also have 

contributed to this lack of understanding as to how the product worked. In order to 

enable the customer requirements to be met, the functionality of the legacy system 

and all its subsequent upgrading must be maintained; consequently the system had to 
be reverse engineered into a specification of some kind which can then be followed. 

This reverse engineering exercise was primarily focused on the software aspect of the 

product. 

The reverse engineered software did not only contain the implementation of the 

required system functionality which must be preserved, but additional functionality 

linked to the platform the system was initially designed to run on. This complicated 

the process, as differentiation had to be made between the software functionality 

specific to the platform and that specific to the operational functionality of the system 

(required functionality). 

The lack of maturity of the new customer functionality requirements meant that they 

were being worked on in parallel with the reverse engineering exercise of the software 
functionality. The platform specific hardware requirements generated from the 

reverse engineering and the new requirements generated from the customer gave 

requirements incompatibility which needed addressing. 

The initial programme to develop the first product shows a typical systems 

engineering "V" style approach to the design process. Once in service the system is 

modified and altered to improve aspects of the design (or perhaps improve 

compatibility with other potential platforms) that have been found to be inadequate, or 
that might want subtle change to improve effectiveness. As these activities continue 

the knowledge of the system is reduced, so once the upgrade programme has begun 

the understanding of the system is low and there needs to be a re-engineering exercise 
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to collect information about the product in service so that it can be upgraded. 

However, the nature of upgrade or modification programmes means that knowledge 

must be increased in the current product domain before progress can be made on any 

modification or upgrade to that product, meaning any modification will trigger a need 

for a famillarisation process. Obviously in this case the modifications carried out did 

not require familiarisation with the whole system, or significant parts of it, as a result 

knowledge was low when this programme started. 

There is also a distinction between human knowledge and stored information: human 

knowledge or tacit knowledge will reduce over time (natural wastage, etc. (Gordon, 

Smith 1998)) and become forgotten due to the long time scales since it was last 

considered important to any programmes currently being worked on. The knowledge 

contained within stored information is kept within documents, databases, drawings, 

requirements specifications or test results, and will be retained until it is deemed no 

longer useful to any programme or future programmes, or the technology that 

supports it is obsolete. Often of course this information is stored in a legacy and not 

always user friendly fashion. 

In the event of human knowledge being reduced dramatically, which in this case it is, 

we are reliant on the non-human knowledge stored within the organisation to increase 

the tacit knowledge enabling the work to be carried out; in this case unfortunately the 

stored information was not available either. 

4.3.4 Problem 4- Lifecycle Mismatch 

The development programme for the software of the product was done using an 

incremental process (software produced in builds, each build containing more of the 

required functionality, see Figure 18), despite the overall approach being a systems 

engineering approach (Haskins 2006). 

Tkne 

Figure 18 - Software builds and maturity. 
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The overall approach did not work - the requirements used to develop the first 

software builds were not mature enough in the early stages and the hardware the 

software was to run on was not available. Frequently software was implemented on 
the hardware that was available at the time, rather than the intended hardware. 

The maturity level of the requirements used to develop the software was an issue. The 

low maturity of the overall requirement set meant that software developed for the first 

incremental build may need complete alteration for second build. As the 

requirements for the software matured between those incremental stages and became 

available for the next software builds, in some cases they were incompatible with 

previous builds, making each software build an entirely custom piece of work rather 

than an incremental improvement with additional functionality. This large level of re- 

work meant increased costs, time and an increase in the amount of work that needs to 

be scrapped. 

4.3.5 Problem 5- Mindset 

The mindset of the organisation has an influence on the overall programme. In this 

particular case some staff considered this project a support programme, meaning it 

was an upgrade and not a redesign, and subsequently it was believed the engineering 

process could be accelerated. However, in reality due to the nature of the 

requirements, the information available and the systems themselves, this project was 

essentially the creation a new product, and required a development process to suit. 

The implication of the upgrade style approach to the project reduced the agility of the 

organisation to respond to the volatility of the programme, upgrade projects are often 

simpler and easier to understand, but when they encompass the level of work required 

here, which was unexpected the organisation is slow to respond. 

4.3.6 Case Study Evaluation 

The change of the organisation. as a result of the problems that occurred initially, 

indicate the ability of the organisation (not the product) to adapt to meet the demands 

of the environment (in this case the current configuration did not support the 

development and needed changing). From a complexity viewpoint, systems that can 

modify their configuration to meet the changes of their environment are Complex 
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Adaptive Systems. Although the product itself is not affected, it is clear that the 

development organisation. has complex system characteristics. 

The problem is not a complexity problem but a restriction of information flow within 

the organisation itself. One of the characteristics of complexity is the lack of 

understanding despite a good understanding of elements and interfaces within the 

system. In this case there is no lack of understanding at all, the problem is clear and is 

dealt with accordingly. 

The problems associated with the software builds are requirement maturity and 

development process related. There are distinct incompatibilities between the two 

processes, and it is this incompatibility that causes the problem. The complexity 

characteristics one can associate with this problem issue are the effect the lack of 

maturity of the elements in use (the software and hardware immaturity) has on the 

complexity of developing systems, which in this case is extremely detrimental. 

When the knowledge of the legacy system that is to be upgraded is low, a reverse 

engineering exercise must be undertaken to develop the functional requirements for 

the system. This is not a complexity issue in its own right, it is a process issue and a 

result of the IT technology and data store technology available at the time. In the 

modem world requirements would have been kept within a database such as DOORS 

(Telelogic) and modified for each change. Documentation would have been available 

in number formats and electronically, applications would have provided searching 

mechanisms to enable the required information to be extracted quickly as assimilated 

into the new upgrade programme. 

The lack of knowledge is not a complexity issue, as it shows a lack of a full 

understanding of the interfaces and elements within the system (referred to as 

ignorance). The complexity resides within the engineering process, the ambiguity 

regarding the system itself is a result of poor information flow and recording. 

In the initial stages of development programmes requirements are immature, no 

programme begins with a completely known and understood requirements definition. 

The difficulty is increased here with the compressed timescales and the need to 

produce something quickly. The problem is not the immaturity of the requirements 
but the reduced time in which to conduct the engineering exercise. 
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This is not a complexity issue, this is a problem of time scalcs commitment to deliver, 

setting a difficult task initially and having problems due to requirement maturity being 

low while actual development is going ahead concurrently. These factors will make 
the development process more difficult but it is not a complexity issue. 

This programme suffered due to unrealistic demands on the time scales for delivery of 

an initial operating capability. A distinct quote on the visit, when a member of the 

team mentioned that when they joined the team, after it had been running only about 6 

months a status was asked, and it was said they were already 2 years late. This is not 
due to contractor fault, but that the time scales required were unachievable. This is a 

circumstance issue, and cannot be attributed to complexity as a cause. The mindset 
issue too was a cultural problem within the organisation, and is really independent of 

complexity. 

4.4 Case Study 2 

The programme was initially set up as a joint collaboration between two organisations 

(BAe and GEC) to build two technology demonstrator platforms. The intent was that 

the system demonstrators would compete be fed into two larger parent programmes 

(FRES (General Dynamics UK, UK Ministry of Defence) and FCS(Pike 2008)), 

forming part of the their solution. The two companies producing these platform 

demonstrators had their own sub-contracts, however, later these two companies 

merged. The projects were still kept separate to maintain the competition between the 

platforms for a share of the overall solution to the larger programme. 

4.4.1 Problem 1- Organisational 

After the merger between BAe and GEC (which formed BAE Systems), the portion of 

land and naval systems sub-contracted by the Lancer project to develop the control 

systems for the Lancer vehicle became C41SPL Royal Ordinance (RO) Defence also 

had a portion of the contract allocated to them, and since they were on the same site a 

lot of the team members were already known to each other. Essentially these were 

two different business units, but the close proximity of the two and the familiarity 

between them meant a relaxation in the contractual agreement between the two 

(Figure 19 shows the organisational relationships between the business units). 
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Figure 19 - Tracer organisational Structure. 

Problems here included the lack Of similar assumptions, lack of recording information 

accurately. Reduced need for vigorous requirements management and 
documentation, a lot of the work was conducted by word of mouth and personal 

agreement to save time and money. Managing the relationship between the business 

units as a contact was considered a large overhead and this was done partly to save 

money and time. 

4.4.2 Problem 2- Engine Controller 

The Lancer drive system consisted of a diesel engine that provided electrical power 

by means of generators to motors which drive the wheels. The power to the motors 

was controlled using a solid state controller, which provides power using a square 

wave with changing properties. When the wave is at state 1, power is provided, when 

it is at state 0, power is not provided. The power to the motors is varied by changing 

the amount of time the controller allows the wave to remain in state 1, for low power, 

the periodic square wave remains at 0 throughout most it's cycle, and for high power 

delivery the opposite. The nature of the drive system means that to make the vehicle 

move faster one simply provides more power through the controller. 

The Lancer vehicle has a handbrake system, this is applied whenever the system is 

stationary for obvious reasons, however due to the nature of the brake and the 

controller (along with the fact that there is very little in the way of warnings for the 

brake being applied) it is possible to move the vehicle with the brake still applied by 

simply providing more power through the controller. What actually happened on the 

trials was just that: the users moved the vehicle using the controller unaware the 
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handbrake was still applied. As a result a high amount of power was pushed through 

the controller for an abnormally high amount of time. When the controller finally 

Niled, the users exited the vehicle and it was collected by engineers, and they found it 

with the handbrakc applied. It was assumed that the users had applied the handbrake 

to the stationary vehicle, not that it had always been applied. This problem proceeded 

to confuse the engineers throughout the trials programme. 

4.4.3 Problem 3- Map 

Lanccr used a mapping system consisting of a liquid crystal display (LCD) that 

showed the location of the vehicle using a global positioning system (GPS) mapped 

onto a conventional map display. The mapping system however was found to be 

quite inaccurate in defining the location of the Lanccr vehicle. This mapping error 

was eventually linked to the curvature of the earth distorting the conventional maps 

that were flattened and used in the system, which do not take into account earth 

curvature and therefore produced an inaccurate position. Eventually this was 

recogniscd and a standard agreed, the WGS84 standard was employed across the 

board and as a result the mapping problem was fixed. 

4.4.4 Problem 4- Coiling Cable 

The sensor pack on the back of the Lancer vehicle is connected to the internal systems 

via a large cable. The pack is raised and lowered on a periscope style fixing; as it is 

raised and lowered the cable must be coiled within the vehicle and protected. During 

the design stages there was difficulty in getting the cable to coil and lock away, 

however a design solution was implemented that allowed the cable to be stored and 

coiled correctly as the sensor pack was retracted. 

4.4.5 Problem 5- Design Process 

The Lancer design process employed the use of a simulation setup known as ESIL 

(electronic systems integration laboratory), this coupled with a CSIL (computer 

systems integration laboratory) and the real Lancer vehicle provided the basis for the 

integration exercise and testing exercise for the software running on the system 

hardware. 
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ESIL - The ESIL used PCs to simulate different system components, each PC 

mimicked the behaviour of system hardware within the Lancer vehicle. This was then 
used to test various software components and interfaces. 

CSIL - This is the next stage of the integration process, real hardware is integrated 

into the simulation ESIL, to for a CSIL integration lab. This allows real hardware to 
be tested within the simulation environment while connected to PCs that simulate the 

rest of the hardware. 

LANCER - Ile CSIL can be connected to the Lancer vehicle, which is the last stage 

of the integration process, essentially if hardware will work within the CSIL 

simulation it should operate without problem within the vehicle environment, if there 

is a problem the problem will most likely be something to do with the vehicle 

environment and not the software running on the components. 

PCI PC2 HW1 FIC2 

ESIL CSIL 

PC3 PC4 HM PC4 

LANCER 

Figure 20 - Lancer development process model. 

This integration strategy was never employed on the actual Lancer programme, the 

ESIL was essentially bypassed and all the testing was conducted within the CSIL 

environment before it was integrated onto the final vehicle platform. The integration 

process may have been too long for the whole integration exercise to be employed; as 

a result it may have been cut short in an effort to complete the prototype on time. 

4.4.6 Case Study 2 Evaluation 

The problems within this case study are for the most part independent of system or 

product complexity. The only exceptions are the engine controller and the mapping, 
however even these could be simple failures in functional design or operation. 
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The engine controller is a classic case of understanding the functions of the system in 

terms of elements and their interfaces, but despite this understanding and knowledge 

this emergent property is realised. The mapping issues once again arc similar, the 

knowledge was present but the emergent property was realised due to a slight flaw in 

the design. This is perhaps has tenuous link to complexity within the product system, 

one is a fault with the operational guidelines for the vehicle (engine controller) and 

the other is a fault with the initial designs as something was overlooked. 

The coiling cable problem issues when retracting and extending the sensor pack, are 

more a result of engineering design than complexity in the design, it was a challenge 

that had to be overcome not a result of intricacy, scale, coupling or lack of 

understanding or modelability. 

The design process and organisational. change were simply implemented to reduce 

timescales and budget requirements; as a result once again this is independent of 

complexity within the system. 

4.5 Case Study 3 

Tle project started in 1981, and was for an anti-air tank operating at a short range as a 

private venture, which involved the UK government (which provided EI Om funding 

incentive for the project). The Marksman system developed by Royal Ordinance and 

BAE Systems is an anti-aircraft turret, with 2 35mm. barrel machine guns capable of 

70 round s per minute. The system was developed for the Finnish Defence Force, and 

was built and is in service with their army. 

The system consisted of a new radar concept, a set of Oerlickon guns (Swiss) and a 

new predictor system. The prototype was designed and developed very rapidly with 

the first Marksman prototype being designed, and built in about one year. 

When the company attempted to sell the product to the UK military, the MoD had not 

identified a capability gap that Marksman could fill, subsequently the MoD didn't 

purchase any of the systems, and consequently there was a great deal of scepticism 

from other customers. Eventually a sale of 6 systems was confirmed with the Fin 

govemment. 

Craig Read Page 136 1211 V2008 



Complexity Characteristics and Measurement within Engineering Systems 

4.5.1 Problem 1- Drawing Packs 

Ile technical drawings that were used to develop the system were not kept up to date 

with the design changes as they were developed. The changes to the designs were 

actually recorded within change packs which were separate to the main technical 

drawings and the two never reconciled due to cost issues before the vehicle wcnt to 

manufacture. 

The number of items within the change packs were substantial, and in some cases 

there would be several changes to one item within the change pack. As a result 

reconciling these drawings to a consistent set for manufacture was an extremely 
difficult task. 

4.5.2 Problem 2- Manufacture 

Once the system was built it was tested, and completed a set of trials with very good 

results. The system however was still unreliable at the time, but as this was only a 

prototype the reliability issues were considered acceptable. It is important here to 

note that the Marksman product only required the development of the turret and not 

the base platform, this was simply purchased as a military off the shelf (MOTS) 

product. 

'Me low order rate meant very little was spent on the pre-production phases of the 

system, these stages finalise the manufacturing techniques tools and processes 

required for the building of the system. The lack of a pre-production phase meant that 

each system was essentially custom built, and as a result were completely different. 

Tlie lack of commonality and interchangablility of the components of the system 

meant that maintainability of these systems was at a massive cost which made them 

impractical economically. 

4.5.3 Case Study Set 3 Evaluation 

The issues within the Marksman programme, much like those in Lancer, are for the 

most part not complexity issues. The programme suffered from lack of budget due to 

reduced interest by the UK MoD which led to difficulties in reconciling the design 

technical drawings and also a manufacture process that meant each system was in 

effect a bespoke custom system, making the product support costs much higher. 
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There were some complexity issues that can be drawn from this case study, and they 

hinge predominantly around the commonality and variation issues of complexity in 

systems. The lack of pre-production work in the Marksman programme meant the 

systems were all independent builds and lacked commonality, this made the systems 

massively impractical and expensive from a customer perspective. There was a cost 

associated with the lack of commonality and variation within the system due to the 

difficulty it would give customers when it came to maintaining such systems as the 

build complexity of the systems was a factor. 

This is different from the lack of a concise drawing pack (main drawing pack and 
large number of change packs added). 'Ilie decision to not reconcile the drawings was 

taken to cut costs, and contributed to a lack of understanding of the design later, not 

the complexity of the product. The complexity for Marksman, was within the low 

commonality and independent building of systems. 

4.6 Case Study 4 

Initially the Astute programme was contracted to GEC, after the merger between GEC 

and BAe. The contract was for a complete platform, the first contract that actually 

procured the whole system from a single Company. It was initially set out as a 

procurement exercise and was handled by the Procurement Contacts Office (PCO). 

The programme estimated cost was in the order of f3bn and has been running for a 

total of 9 years to date (Naval-Technology). 

'Me submarine is essentially a replacement for the Swiftshore class submarine, and is 

intended to be a stealthy smaller boat. The original requirement was set against the 

cold war threat, which has obviously is no longer valid as a requirement at this point 

in time. 

4.6.1 Problem 1- Requirements Capture 

There were 10,000 requirements generated for the Astute system, these requirements 

were either not complete, inconsistent, ambiguous or design constraining in nature. 
There were requirements generated for design of the submarine, but key elements of 

that design did not become requirements. For example, performance requirements 

were very specific in some areas of the design, but totally omitted other areas which 
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are also key to the design rendering them incomplete. Capability based requirements 

were more appropriate than specific performance requirements in most cases. 

There were system requirements that were actually contradictory to each other, and 

subsequently distorted the view of what the system should be able to do. 

There were a number of very ambiguous requirements within the requirement set for 

the Astute programme, and these requirements can be found in many different 

projects, examples of ambiguous requirements are "Must befitfor purpose", "Must 

perform better than the current system ". 

Although requirements like these needed to be addressed and proven, they were not 

adequate in their current form and were highly ambiguous which would result in 

difficulties getting product acceptance later. 

The requirements were analysed, in an attempt to deal with ambiguity, 
incompleteness and inconsistency within the set and 500 requirements (5% of the 

total) were labelled as erroneous, or invalid. It is important to consider that at this 

time, the original 10,000 requirement set containing all the issues still had to be 

managed and designed against until the analysis was completed which commanded a 

massive overhead on the programme. 

3 years into the programme, a Concept of Operation (CONOPS) was produced along 

with a 100 page document containing 1,000 requirements that provided a good 

grounding for capability procurement. The requirements were not design constraining 

and could be traced to the original 10,000 requirements for compliance purposes but 

omitted some of the erroneous specifics. This meant that the programme had a set of 

requirements that were manageable and sensible to work from. 

The CONOPS gave the 'fitfor purpose" requirement the grounding that was 

necessary to achieve acceptance by the customer. Without this agreement regarding 

the CONOPS there could be no way of satisfying this requirement. Figure 21 shows 

how the CONOPS helped to identify key scenarios from which the system capability 

could be tested to prove it was 'Jitfor purpose ". 
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Figure 21 -The internal relationships for the requirements concepts of Astute. 

"Better than existingplatforms " is also open to interpretation, to be better than the 

existing platforms, all that may be required technically is an improvement in just one 

area, perhaps a speed increase of I knot for example. Subsequently the CONOPS 

encompassed all areas where the platform must improve on previous platform 

performance within its concept. This formed the basis for acceptance against the 

"better than existing playbrins " requirement. 

4.6.2 Problem 2- Organisation 

There were organisational issues within the Astute Programme as well. Below is a 

typical diagram of the layout of the organisational structure (Figure 22) that sits 

behind the Astute programme. The project was treated as a procurement exercise and 

therefore the PCO has control over the programme utilising a set of 200 high level 

systems engineers. 
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Figure 22 - Organisational relationships In the programme. 

These were given the task to assign sub-contracts to procure equipment for the Astute 

submarine. The amount procured eventually turned out to be measure of the progress 

of the programme; the more procured the further along the programme would appear 

to be. This would make perfect sense if the programme was simply a procurement 

exercise managed by the PCO, which in this case and at this time it was perceived to 

be, but in reality this was the design and development of a completely new platform, 

and not a simple case of procurement of equipment, meaning the programme was not 

controlled correctly. 

VSEL (another bidder for the Astute programme) were later purchased by the prime 

contractor so they could manufacture the hull for the Astute submarine. There were 

conflicts between the prime contractor and VSEL as they tried to take a more control 

over the programme, and as manufacture began, more and more of the work has 

moved to the VSEL sites, and they have fallen into working how they used to work 
for other programmes which is not appropriate for the Asute project. 

4.6.3 Problem 3- Service Routing 

There are a large number of services required on a submarine in order for it to 

function correctly, and these services all must be routed throughout the boat to the 

sub-systems that require these services. Routing of services in submarines is more 

complex than in domestic circles, the following are examples of the considerations 

that must be made when routing services (electrical, water, data, gas, fuel, waste, 

power): 
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* Standards - Standards for cable sizes, loads, separation requirements, 

protective coating requirements, proximity requirements to other services or 
heat sources. 

e Space - The space on a submarine is very compact and routing of services 

must be as efficient as possible. 

* Fire - The routing of services could provide easy pathways for fire or fumes 

through the hull, this must be considered when routing is being determined. 

Optimising all the variables here is a problem that is ongoing throughout the 

development of the platform, and there is always the possibility that new services will 

require further routings. 

4.6.4 Case Study 4 Evaluation 

The organisational issues are contractual obligations, and configurations are not a 

result of complexity within the product or the organisation. The organisation simply 

exists in this way and problems associated with it are process orientated. 

The requirement issues are a result of poor definition and a lack of maturity. 

However in a system this large (10,000 requirements) there are obvious complexities 

of scale, and interactions will be high within that requirement set. Deciphering that 

requirement set into a meaningful output and then creating system specifications from 

that set opens the possibilities for concepts of complexity such as logical depth, 

descriptive or interpretive complexities or the number of in equivalent descriptions, 

this is most certainly a complexity task. 

Ile routing of the services throughout the platform is also most definitely a complex 

problem. The routing can be thought of as an optimisation activity, in which there are 

a number of variables, constraints and requirements that must be realised in the most 

efficient manner possible. This is similar to the routing of tracks on a two 

dimensional printed circuit board, but with a three dimensional system with further 

additional constraints besides magnetic field effects. This problem is truly a problem 

attributable to complexity. 
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4.7 Case Study 5 

This was a technical demonstrator programme for the MoD, and was a 50% split 
between industry and the Defence Procurement Agency (DPA). The system to be 

created was a radar system for a future aircraft and a conglomerate of companies 

worked on the project. The contract took I year to get agreed, and a further 5 to 

complete making the project running time 6 years in total. 

4.7.1 Problem I- Organisational 

When the project started the company was about to undergo large organisational 

changes due to a merger between GEC and BAe. Despite this there was little effect to 

the team of individuals working on the programme and it maintained the same 

management and the same key technical staff, benefiting in particular from a single 
lead from beginning to end. 

Maintaining the key staff meant that the tacit knowledge contained within the working 

team could also be maintained and decisions made early in the programme could be 

understood later without the need to revisit the problems again. 

Other aspects of organisational change which are outside the company, but are key 

issues that needed to be taken onboard, was the structure of the DPA. The head of the 

DPA can only stay in post for no more than 2 years before they are replaced. Ibis 

leaves a6 year programme the potential of 4 different DPA heads during its lifecycle. 

A changing customer means a changing customer mindset and understanding of the 

product which could be disastrous to the programme success. Within this programme 

however each new head was invited to come to the site and be educated about the 

project, what it was, how it was being run, and its current stage of development. This 

education kept the DPA informed and gave them the understanding that was required 

to provide the right mindset and relationship between the contractor and customer that 

was beneficial and not destructive to the process. 

4.7.2 Problem 2 -Technology 

The product being produced was a hardware demonstrator. The sub-systems involved 

were a radar, radome, radar control system and mounting. 'niere are of course 

constraints to the design parameters; power, bandwidth of the radars, signatures 
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produced by the radars to reduce detection probabilities and level of functionality 

required. 

Radomes are materials that are transparent to radars but only within a specific 
frequency range, Frequency Selective Surfaces (FSS) are used to reflect radar waves 

or indeed any other wave unless the wave fits within the bandwidth the FSS is 

designed to let pass. This is achieved using tiny metallic cells within the material, 

which are sized appropriate to the frequency they must be transparent to, the 

manufacture of such a radome is difficult, due to the level of the geometric 

constraints, especially if that radome is to be curved, the spacing and geometrics of 
the cells must remain exact for the radome to function correctly. 

This radar system was to be placed on an airborne vehicle, and as a result must be 

resilient to the same environment as the vehicle; resilient to lightening, bird strikes, 

temperature changes, etc, whilst also reducing dmg to enable the aircraft to function 

efficiently. These constraints must all be optimised for the system so that the best 

design solution can be achieved and built. 

Radar System 
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Figure 23 - Design optimisation problem. 

Figure 23 shows the interactions that have to be considered within the design 

optimisation problem for this product. The arrows show where the interactions 

between these different aspects of the optimisation problem may have dependencies. 
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4.7.3 Case Study 5 Evaluation 

The changing organisation was an issue, but not a complexity issue; rather it was 

something that needed to be managed and controlled. Along with this was a need for 

the management of knowledge through loss of personnel which could reduce the 

understanding of the system. 

The majority of the complexity of the system lies within the multi-discipline design 

optimisation problem. There were a number of variables, some of which are no easily 

quantifiable, or comparable with each other. This of course over complicates the 

design optimisation, with inconsistent variables from a number of different 

disciplincs. 

4.8 Case Study 6 

Integrated Capability Programme (ICP) is the integration of all the BAE Systems 

component business products, it is essentially the development of an integrated 

capability that the customer has not yet realised. Network Enabled Capability is the 

realisation. of information transfer between different elements of the battle space; 

unmanned air vehicles, aircraft, soldiers, ground vehicles, ships, submarines. This 

infonnation exchange within the battle space is what ICP is set up to deliver to 

provide additional benefit to the customer and further influence procurement 
decisions to BAE Systems products. 

4.8.1 Problem I- Organisation 

ICP does not really have a direct organisational structure, and does not really develop 

a product as such, but by distributing resources from one business unit to another aims 

to integrate the whole business product line with current and future platforms that 

may be procured by the MoD. ICP distributes budgets within the business units based 

on their product lines and invests in the development of technologies that are 

applicable and to creating capability for information exchange within the battle space 

that the customer is interested in, or may be interested in, in the future. 

4.8.2 Problem 2- Technology Development 

The perception of BAE staff at the time was that ICP produces added value on other 

programmes within BAE by incorporating NEC into products. ICP was intended to 

provide the incorporation of NEC into products and relies heavily on new technology 
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that supports the development of the desired communications to support that network 

enabled capability. These concepts for NEC capability would be created and then 

turned into designs, many of which would require technologies still within their 
infancy. These technologies needed investment to ensure they reach the appropriate 
technology readiness levels (TRLs) to ensure adequate maturity when the concept 

moves into the design and production phases, and the capabilities demonstrated for 

the customers. 

4.8.3 Problem 3- Technology Investment 

Figure 24 shows how the technologies (in this case TI, T2, T3) link to the 

development programmes. There are four levels to this diagram, initially the 

customer intention is outlined as the programmes the customer will commission in the 

future. These programmes, and their anticipated start dates will allow the ICP to 

determine the customer requirements for NEC and align the business investments and 

aspirations so that they match this development profile. ICP manages the 

technologies and their development so that the investment strategy ensures they 

mature at the exact right time. The diagram indicates the point at which they must 

reach the required level. Investment, buy outs etc. will ensure that these technologies 

are available and support the ICP concepts. 

Custorner Programme Intent 

Now Programme 11 Now Programme 3 

F- 
Now Programme 27 

Pr(Vranwnos Currently Within C(xnpany 

Programme III Programme 31 

Programme 2 Programme 4 

-1 

ICP Involv9d Progronvnes 

T3 

T2 

TI 

Figure 24 - Technology flow and investment diagram. 
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The programmes that are currently working within the company also contribute to the 

more immediate customer and business aspirations in terms of NEC. The ICP will 
have an involvement in some of these programmes, contributing to the NEC 

development within those particular product lines. 

4.8.4 Problem 4- Baftle space changes 

Ironically the point of ICP is to reduce complexity within the battle space by 

providing cross communication and a common use of technologies. But changing the 

operation of the battle space with the introduction of extra communication means a 
huge change in how operations are carried out (CONOPS), and how information is 

distributed. Effectively ICP has the potential to change the battle space architecture 
from a conventional hierarchical system, to a non-hierarchical system in terms of 
information flow and availability. As discussed before, non-hierarchical systems are 
inherently more difficult to build, predict and model, this may be the biggest 

complexity challenge ICP will face, modelling and controlling the changes in 

behaviour this new architecture will have on military operations. 

4.8.5 Case Study 6 Evaluation 

This programme suffers from the same difficulties as the other case studies we have 

mentioned here, but there are clear complexity issues within ICP. 

Organisational change and fluctuation is a problem for ICP as it spans all the different 

businesses in an attempt to integrate them. This is a complex issue as the system (as 

an overall concept of all business) is constantly changing and adapting to customer 
demands. We have an adaptive organisation, which adapt their business models and 

practices to meet the demands of the ever changing market, ICP must deliver into this 

nuctuating market despite its instability. 

Technology investment and technology development are a part of the problem of 
integrating between businesses and products and also steering technological demands 

for future customer requirements. 

Ile changes within the battle space are definitely complexity issues that need 

addressing. The changes in communication methods throughout the battle space 

mean a totally new system is produced that is no longer hierarchical in nature and as a 
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result new approaches must be undertaken in order to understand and develop this 

system. 

4.9 OveraH Case Study Summary 

The problem issues were collected from the initial case studies (see chapter 4). The 

complexity problem issues identified within the initial case studies can be split into 

different categories, depending on where they occur in the product lifccycle; 

development stage, manufacture stage, operational support, overall programme. 

4.9.1 Development Stage 

Poorly defined requirements or capability at the early stages is a clear problem issue 

in engineering. Additionally poorly defined scenarios for testing and unrefined 

context of use and operation due to an evolving "threaf' (which generates the 

requirement) during the life of the programme (which could be 20 or more years) 

means systems need to be constantly updated during their development life. Products 

on the outset are often unrecognisable at completion of the programme, the changes in 

terms of the design requirements and operational requirements are enormous. This 

uncertainly makes design and the employment of the systems engineering 
development lifecycle even more difficult. 

Testing and configuration control is a difficult task for large scale systems consisting 

of large numbers of interfaces, sub-systems, variety, low commonality and multiple 

variants. The configuration processes must manage all this information, and tests be 

carried out on all variants, while also testing appropriately for their differences. 

After testing, acceptance is also a problem due to the lack of predictability within the 

system operation (complex systems cannot be easily predicted or modelled, see the 

various definitions within 2.3 Definitions of Complexity), emergent properties could 

cause systems to have a high risk of being unacceptable for the customer. 

4.9.2 Manufacture Stage 

Supply chains are harder to manage for large scale systems, with large numbers of 

suppliers and components. The steady supply of components from suppliers must 

match the need for those components during the manufacture of the products or effect 

the lead time on the product(s) and the delivery schedule. 
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Multi-variant systems require different processes for developing the different variants, 

also a different tool set, skill set and resource load, there will also be differences in the 

times required to build different variants of the same system. 

Finally, changing the manufacture processes to incorporate changes from the evolving 

requirement set for upgrades orjust as a result of the time taken to develop the 

product is very difficult. In some cases changing the manufacture process incurs a 

massive cost to the programme, and changes that seem small from a design point of 

view have a massive effect on the method and order in which parts are assembled or 

created. 

4.9.3 Operational Support 

Increasingly procurement strategies are moving towards supported systems for 

customers. The need for customer support is an additional workload for the 

development team, and in the more engineering complex systems the more difficult 

cause and effect is to ascertain in small time frames. As a result systems require more 

expensive diagnostic equipment and built in test capabilities which need development, 

and of course increase overall system complexity. As systems become increasingly 

complex, it is often easier to replace rather than repair, as repairing increases cost of 

the system maintenance substantially more than simple replacement of units. 

4.9.4 Overall Programme 

There are the obvious problems within programmes, such as late delivery, over 

spending and management problems with large scale organisations. But the main 

problem is the changing nature of engineering in systems. Systems are becoming 

larger, and the scope of those systems is increasing to cover built in testing, 

operational support and other attributes. This combined with the manufacturing 

process and the issues associated with it, makes the product lifecycle process itself a 

complex problem. 
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4.10 Conclusion 

Ile case studies identified a series of different problem areas within industry. A set 

of key problems were carried forward for further detailed analysis. A large majority 

of the problem issues covered within the case studies were centred on design 

optimisation issues, immature requirements, organisational change, pre-production 

work and organisational culture. 

Table 5 shows the list of case studies and their corresponding sections and 

numerations used within the Complexity Problem Table (CPT) which is discussed 

later with section 5.2 and found within Appendix B. 

Case Study Number Reference 

UPOI 43.1 Problem I- Company Organisation 

UP02 4.31 Problem 2- Maturity 

UP03 4-3.3 Problem 3- Re-Use Legacy 

UPO4 4.3.4 Problem 4- Lifecycle Mismatch 

UP05 4.3.5 Problem 5- Mindset 

LAO 1. LA02 4.4.1 Problem I- Organisational 

LA03 4.41 Problem 2- Engine Controller 

LA04 4.4.3 Problem 3- Map 

LA05 4.4.4 Problem 4- Coiling Cable 

LA06 4.4.5 Problem 5- Design Process 

MKOI 4.5.1 Problem I- Drawing Packs 

MK02 4.51 Problem 2- Manufacture 

ATO 1, AT02, AT03 4.6.1 Problem I -Requirements Capture 

ATO4, AT05 4.6.2 Problem 2- Organisation 

AT06 4.6.3 Problem 3- Service Routing 

IPO 1 4.8.1 Problem I -Organisation 

IP02 4.81 Problem 2- Technology Development 

IP03 4.83 Problem 3- Technology Investment 

IP04 4.8.4 Problem 4- Battle space changes 

TBOIJBO2 4.7.1 Problem I- Organisational 

TB03, TBO4 4.7.2 Problem 2- Technology 

Table 5- Case studies and the references within the problem table. 

Each case study is numbered for reference later (LA - Lancer, MK - Marksman, Up 

Upgrade Programme, AT - Astute, IP - ICP, TB - Test Bed), usually comprising of 

letters from the case study name. 
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Not all problem issues identified within the case studies are a direct result of 

complexity. Those issues that were determined to be complexity related are discussed 

within this section and are as follows: 

* Multi-discipline Design Optimisation (MDO(Koch, Simpson et al. 1997)) 

o Requirement Maturity 

o Organisational Change 

e Pre-production Induced 

o Mindset (Organisational Culture) 

Design optimisation issues occurred within system design that incorporated the use 

of a large variety of variables and influential factors that needed a trade off in order to 

produce the best solution to suit the requirement. The majority of design optimisation 

issues within the case studies were cross disciplinary, and the variables were in some 

cases not easily measured numerically for comparison; for example the shape of a 

surface was an influential variable in one particular design problem, but how is this 

measured? And how is this measured so it can be compared within the trade off 

exercise against other variables? 

Design optimisation was not directly linked to the programme scale (in terms of 

budget, personnel working on it, size of product, requirement database size). 

There are different design optimisation issues that exist ranging from complex 

Inathematical optimisations to engineering decision based optimisations (Koch, 

Simpson et al. 1997, Bartholomew 1999, Bennett, Fenyes et al. ), the issues within this 

case study are the latter. 

Requirement maturity, is a problem that has occurred in more than one of the case 

studies. It was caused in some cases by the lack of understanding and knowledge in 

relation to a legacy system which needed to be preserved, and in other cases it was a 

lack of maturity resulting from incomplete or ill defined requirements in the initial 

requirements capture process. The problem issues following immature requirements 

have quite catastrophic effects on the development process, within one case study 

requirements had to be re-defined in order to complete the set. In another case 

requirements had to be reverse engineered from legacy equipment, but the reverse 
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crigincering included aspects of the legacy design that were not required and in fact 

detrimental to the system being developed. 

Organisational change or organisational landscape change is a problem that appears 

to be common among all programmes. In particular those programmes with long 

lifecycles seem to be heavily effected by the changes in the company organisational 

structure as development continues. 

Pre-production work is important when developing systems where the intention is 

mass production, as it irons out the manufacture process and ensures it is generic for 

every system, preserving commonality. This phase would amalgamate design 

drawing packs, and set out clear manufacture processes to build the system. Without 

a pre-production phase, the manufacture process is ad hoc and it is likely each system 

will be different, bringing the importance of system commonality into perspective. 

Systems with low commonality are more difficult to maintain than systems with high 

commonality, parts are interchangeable and maintenance procedures remain the same 

within systems with high commonality. If each system is more or less a custom 

manufacture, it is not possible to support the systems with an overall service plan or 

common parts, increasing the complexity of the support task. More elements, more 

information mean more complexity, and in one programme this actually occurred, 

although the problem cause was deliberate, the system number to be manufactured 

was small and a trade off of pre-production work cost and the cost of supporting the 

small number of manufactured systems with low commonality meant that the pre- 

production phase could not be warranted. In an attempt to mitigate against this cost, 

the service period for these systems was reduced. 

The mindset. or organisational culture plays a key role within the development 

process. There have been two cases analysed where the nature of the programme has 

been miss understood or miss interpreted by the organisation developing it. One case 

focused on the programme as a simple upgrade programme, and the other as a 

procurement programme, neither interpretation was correct in both cases, the actual 

task was aM blown product development process. The upgrade Programme was 

such a significant upgrade that it really warranted the attention of a full product 

development activity, and the procurement programme was really the development of 

a completely new platform. 
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4.10.1 Complexity Problem Types from Case Studies 

The case study findings have been summarised in the two tables below into problem 
types that occur more than once in the initial set of case studies. Table 6 shows the 

nature of the complexity within the problem issue, Table 7 shows the coping methods 

or solution options that were used to deal with the complexity issues defined within 
Table 6. 

Table 6 is divided into complexity related issues (horizontal rows) and problem 

complexity characteristics (vertical columns) which are discussed below: 

Human / Technology - Distinguishes between complexity or problem issues caused 
by the technology being implemented or the people implementing or developing that 

technology. 

induced / Original / Intrinsic - Characterises the origin of the complexity or 

problem issues as either intrinsic to the system and therefore cannot be avoided, 

original to the system and therefore pre-existing within the development programme, 

or induced by the developing organisation. 

Environment / Support / Product, within the Development / Opemtion of the 

system - Associates the area within which the problem issues sits in terms of the 

either an operational or developing system. Further decomposition of the problems is 

carried out are they arising as a result of the support service, the system environment, 

or the product itself? 

Information Fixed / Moving - Classifies the state of the information within the 

problem domain, is the information associated with it evolving (moving) or static 

(fixed). Generally programmes with large amounts of information evolution during 

the development process are more difficult to manage than those with a fixed 

infonnation set. 

Knowledge Distribution / Configuration - Characterises the knowledge distribution 

within the problem domain as either good or bad. Problems with poor knowledge 

configuration or distribution mean poor information flows within the organisation 

which makes the development process more difficult. 

Craig Read Page 153 12/11/2008 



Complexity Characteristics and Measurement within Engineering Systems 

Design Immature Organisational Pro-Production Organisational 
Optimisation Requirements Change Induced Culture 

Human I Tech Human / Tech Human Tech Human 
Technology 

Induced/ Intrinsic Induced Induced Induced Original 
Original I Induced 
Intrinsic 

Development I Development Development Development Development Development 
Operation Product Product Support / Support / Environment 

Environment Environment 
Environment I Product 
Support I 
Product 

Information Fixed Moving Moving Moving Fixed 
Fixed I Moving 

Knowledge Good Bad Bad Bad Bad 
Distribution I 
Configuration 

Table 6- Characterisation of case study problems. 

Table 6 clearly demonstrates that from the sample taken the majority of the problems 

issues (be they complexity issues or not) arc induced within the development 

processes and are not intrinsic or original to the systems. The only example with 

clearly intrinsic complexity is that of design optimisation. 

Tle development process in the cases explored here is always the area within the 

product lifecycle where the complexity or problem issues originate from. In these 

cases here there have been several problem issues that have arisen within the 

operational phases of system development, but have always been caused by 

developmental failures. In every case here, the development activity is deemed the 

root cause of the complexity issues. It is important however to appreciate that this is 

not e definitive set of problems, and this problem category set will expand as the 

researc continues. 

The information flow, for the most part is continuously moving, and when coupled 

with a knowledge distribution or configuration that is 'bad', the overall understanding 

of the system is low. Low understanding of the component parts of the system is 

termed ignorance, and should not be confused with problem exhibiting high 

complexity. 

Does this mean that the knowledge distribution or configuration, coupled with the 

moving information is the direct cause of the complexity within these problems? Is 

this the inducing factor within the development process (all of these problems are as a 

result of a development lifecycle failure) that leads to the problem issues occurring as 

described? 
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Table 7 shows the coping methods or solution options available for the different case 
study problem issues decomposed within Table 6. Like Table 6 the solutions for each 
problem issue are decomposed within a set of criteria, and these criteria arc outlined 
below: 

Evaluation / Visualisation - Classifies the problem solution as sitting within either 
detailed problem evaluation or visualisation processes or tools. 

Numerical Analysis - Ascertains if numerical analysis or numerical approaches are 
likely to provide a useful insight to the problem issue described. 

Process Efficiency - Determines if an improvement in development process 

cfficiency will provide a solution to the problem issue. 

improved Architectures - Ascertains if changing the structure of the product, 

organisation or product support mechanisms will in fact reduce the problem effect. 

Focus On Complex Area - Establishes if an increased focus on the area of complexity 

will enable a solution to be developed. 

Preview Problems - Determines if the preview of the problem before it has occurred 

using tools such as synthetic environments likely to provide insight to the problem 
before it occurs. 

Design Immature Organisational Pre-Production Organisational 
Optimisation Requirements Change Induced Culture 

Evi'Rui-ationt X X X 
Visuallsation 

Nu; Fe--rical X 
Analysis 

Pro'cess X X X X 
Efficiency 

improved X X X 
Architectures 

F6ELss on X 
Complex Area 

Preview X 
problems 

Table 7- Coping methods from case studies. 

Table 7 shows a representation of the solutions that were implemented, or in some 

cases could have been implemented to reduce the complexity of the problem issues. 

Each problem has been allocated a potential solution, or solutions within the 

categories described above. 
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Organisational change and culture both seem to employ similar coping mechanisms, 

there may be a link here, but it is difficult to understand the nature of that link using 
just these tables as the detail is not here. The lack of numerical analysis as a potential 

solution to most problems (apart from that of design optimisation, and even then it 

might not always be appropriate) could suggest that most problems are non-numeric 
in nature. Whatever the problem appears to be, in most cases improving the 

architecture, or process efficiency is the mitigating factor which should reduce the 

problem issues within the development processes. 

These tables, although a useful overview of problem issues within the case studies, do 

not provide a detailed enough basis to understand the exact nature of all problems and 

the effect of the proposed or implemented solutions. Further analysis is required 

giving a detailed look at classifying these problems and solutions more accurately, 

while continuing to collect different case study problems and solutions. Links need to 

be established between problems and their prospective solutions, and in some cases 

links between comparable solutions for problems, for example the link between 

organisational change and culture, as solutions both seem to tackle process efficiency 

and architecture changes. 

4.10.2 Links between the CCCS and the Case Studies 

Figure 25 shows a CCCS (section 2.10) and case study representation, and the links 

between the two based on the information contained within the case studies in terms 

of the problem causes, nature of the organisation and the coping mechanisms. 

Complexity Component and 
Characteristic Store 

Complexity Definition. 

Complaxityconcepts/ Complexity0rigins 

Classifications 

Complexity Problem 
Comple)dtyMessur" 

Issues 

Inio"ion from the CCCS can be used to 
further understand the IsKms within the cm 
studes or lncluitripý Ihe CCCS prWdes 
backWwnd and theonit" bwAkdp that can 
bot und to lmpvA understaWing of can gWy 
probient lspAi6 or actuaMl be used within 
enjon**dngpKWanvneL 

Links between the case 
studies or industry and the 
information within the CCCS 

Case Studies or Industry 

Organisational Structure 
Identify the Problem issues: 

Personnel 
Knowledge 
Ignorance 
Design Difficulty 
SupplyChains 
Manufacture 
Budget 
CompanyPolicy 
Requirements Maturity/ Creep Cofnple)dty Coping Mechanism$ 

/Approaches 

Informathm Orcm the Cast Itudes or induOd 
probienis can be bd bw-k into the = lo 
further erharice the Inkmrodon that I siready 
hold% so that this tnfbnmtkm or theary, can be 
used to irnprove the CCCS bvoWedp bm fir 
future use. 

Are the Problems a Result of Complexity? 

Coping Mechanisms/Approaches Used 

Figure 25 - Component model and case study links. 
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Table 8 shows in more detail how each of the case studies can be related to 

components within the CCCS. 

Complexity Design Immature Requirements Organisational Change Pre-Production 
Characteristics optimisation Induced 
Is the complexity Intrinsic to the Induced by the Induced by the changes Induced by the 
intrinsic of system; in most development process; the within the organisation; development 
induced? cases as variables requirements are never organisational change process-. due to 

are run through a fWly matured, but makes knowledge, and skill reduced funds and 
series of engineering work must management difficult to effort in the 
optimisations to begin early in order to meet track and internal policies manufacture 
achieve the most timescale and budget limit communication. planning stages, 
favourable system targets. resulting in custom 
performance. built systems. 

%kilat complexity Irreducible, Level of understanding; the Lack of understanding; the Indescribable; the 
definitions are intricacy and requirement understanding changeinthe system is not easily 
appropriate? coupling; the is low, and the organisational described (plans, 

system is highly development process is configuration and drawings) and 
intricate, and hindered as a result. communication limitations manufacture is 
coupled in terms of reduce the overall hindered. 
the relationships of understanding of the 
the variables. system. 

Which Non-Hicrarchical; N/A - no classification can Complex Adaptive; the N/A - no 
classifications or the system variable be directly mapped to the development capability is classification can be 

concepts of interactions are requirement maturity issue. constantly changing, and it directly mappcd to 
complexity are often very intricate is difficult to operate robust the prc-production 
appropriate? with high coupling, processes within the induced problem 

but static. organisational flux. issues. 
What complexity System specific System specific measures; System specific measures; System specific, and 
measures are measures; the measuring the level of measuring the deployment randomness 
useful? number of elements maturity, and stability of organisational skill, and mcasurcs; measuring 

and interfaces, and within the requirements resource allocation, along commonality within 
the intricacy of the (requirement change with comprehensive the system as a result 
links. metrics). measures of of the custom 

communication. manufactures, 
assessing the level of 
customisation. 

What are the Intrinsic origins; Induced origins; the Induced origins; the Induced origins; the 
complexity origins? the level of cross internal polices, and organisational structure in mindsct of those 

fertilization of external polices of partners flux causing resource and working on the 
information, the or customers forcing design skill allocation difficulties, project not 
number of due to pressing timescales and information sharing appreciating the 
interfaces, and despite requirement barriers while system manufacturing of the 
components, and immaturity, and development is taking product early within 
the intricacy of evolutionary requirement place. its development 
those interactions. tendencies due to the 

customer wanting 
additional functional ities. 

What are the Engineering Engineering processes and Engineering process; the Tbc product; if the 

cffects of the processes; thc the organisation that creates constant flux in the manufacture stages 
complexity? difficulty of the the system; the need for organisational were not matured the 

optimisation slows quick development early configuration has the subsequent products 
the engineering means immature potential to effect are all essentially 
Process. requirements are used knowledge and the speed custom builds 

within the development of the development along creating; added 
processes and results in; the with timescalcsý and maintenance costs, 
need for re-work, possible budgets. poor reliability, 
non-compliance, and systems that are very 
prolonged development. difficult to support, 

5 plexity coping 7 N2, DSM; to Limiting the project scope None. More detailed pre- 
anisms that understand the removing difficult ufacturc plans. 

Ww could be (or were = intcr-rclationships. requirements to mature. 
r 

used? 
Table 8- Example mappings of complexity characteristics to the typical problems within 

industry. 

Essentially these links provide the basis from which to determine if a problem is a 

complexity problem or not. However for the purpose of the research, all problem 

Craig Read Pagc 157 12/11/2009 



Complexity Characteristics and Measurement within Engineering Systems 

issues are tackled and there is no distinction between complexity and non-complexity 

problem issues. 

4.11 Summaty 

Ile case studies identified some key and common problem issues when developing 

large systems. These common problems fitted into five common categories: Pre- 

Production Induced Issues, Organisational Culture Problems, Organisational Change 

issues, Design Optimisation Difficulties and Immature Requirements. The majority 

of these problems were induced by the development processes within the 

organisation, and not intrinsic to the systems. 

Like the problems, the approaches for dealing with those problems also fitted into 

categories; Evaluation / Visualisation, Numerical, Process Efficiency, Improved 

Architectures, Focus On Complex Area and Preview Problems. These were applied 

within some of the case studies analysed. 

Understanding the common problems, their causes and characteristics, along with 

prospective solutions, links can be made with the information collected and held with 

the CCCS (a store of complexity information from the literature review and case 

study findings). These links to the CCCS, and perhaps between items of the CCCS 

improve the understanding of complexity within systems and can further enhance the 

ability industry has when dealing with it. 

Figure 26 shows the flow of infonnation found within the case studies within this 

chapter enables the creation of the CCCS within chapter 5. 
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Literature Reviev. - 
C01110e)(ity Problem 

Chapter 2 
Issues From Case 
Studies Chapter 4 

Complexity 4 Component and 
Measures Characteristic Store 

Chapter 70 Ch 

Complexity Problem 
Table 

Complexity 

r-I 
Chapter 5 

Framework 
I 

Chapter 6 
Complexity Problem 

Matrix Chapter 5 

Complexity 
MeasurementTool 

Chapter 8 

Complexity 
MeasurementTool 

Refinement 

Figure 26 - The layout of the work and the thesis outputs roadmap. 
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Introduction to Complexity Characteristics and 
Mapping of Characteristics to Complexity Problem 

Issues 
This chapter identifies some ofthe key and common aspects ofcomplexityproblems in 

engineering systems using information gatheredfrom literature within chapter 2 and 

also the initial case studiesfrom chapter 3. This chapter then maps the case studies 

to complexity characteristics which lead to theforming ofthe Complexity Framework 

which is described in chapter 6 

5.1 Introduction 

The following section details the mapping process of complexity characteristics, 
derived from the literature review, the case studies and the problems retrieved from 

those studies, as outlined within chapter 4. These mappings are achieved using the 

relationships between the complexity characteristics and the details of the problem 
issue identified from the case studies; finally, a demonstration is offered of how these 

mappings when organised produced the Complexity Components and Characteristics 

Store (CCCS, see 4.10.2). 

The initial output from the mapping of complexity characteristics to the problems 

within the case studies was produced using the Problem Description Matrix, (PDM, 

described within section 5.2), which analysed the problem issues and enabled the 

Complexity Matrix (CM, see section 5.2) to be produced. This matrix provides the 

detail of the relationships of various complexity characteristics to engineering 

problems. The complete Complexity Matrix output can be seen within 14 Appendix 

A- First Case Study Set Details. 

5.2 Introduction to the Complexity Matrix and the 

problem Description Table 

The complexity matrix (see section 5.2.1) is a view of problem issues in relation to 

the Complexity Components and Characteristics Store, allowing the problems to be 

deconstructed in relation to the complexity elements found within the Store. The 

matrix uses three quantitative measures based on team size, interactions and skill sets 

contained within the situation when the problem has occurred, and then the result after 

Craig Read Page 160 12/1 V2008 



Complexity Characteristics and Measurement within Engineering Systems 

a solution has been implemented. The problems are then examined further 

individually, using a matrix of development stages or activities within which the 

problems reside, which enables a further detailed description in relation to key 

engineering processes or factors, thus furthering our understanding of each issue. 

The Problem Description Matrix (see section 5.2.3) is a further attempt to develop the 

understanding of the industrial problems presented by the case studies from a systems 

engineering lifecycle perspective. The matrices identify links between problems 

within a case study, and different elements within the engineering lifecycle. The 

matrices broaden the understanding of the problem issues, in order to make it easier 
for those problem issues to be related to complexity characteristics or components. 

5.2.1 Complexity Matrix and Analysis 

Ile complexity matrix is a Microsoft Excel based spreadsheet. The columns for the 

Complexity Matrix are taken from the CCCS (see section 4.10.2), in order to map 

cffcctivcly problem issues to complexity components or characteristics. 

The first pages include the details surrounding the case studies and an interpretation 

of the problem issues within each case study. Figure 27 shows a portion of the 

descriptive section to the first table. Within it, there is an extract from a case study 

detailing the different problems identified, (numbered LAO I to LA06) the problem 

description, nature of the complexity within it, the driver that caused it, and where it 

sits in the product lifecycle. The same is repeated for every case study example 

analysed. 
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Figure 27 - Complexity matrix problem description and analysis example. 

Links to the CCCS are identified in the second portion of the table. Figure 28 shows 

Figure 28 - Links between the CCCS and the case studies. 

For each component model heading, the problem is broken down and the most 

appropriate information within that category from the component model is populated 
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for the problem. In some cases a direct map to information within the component 

model is not possible for the category being analysed, so not all aspects of this table 

are completed. This also provides a feedback to the component model to identify any 

obvious gaps within it which need population. 

5.2.2 Basic Complexity Problem Metrics 

Three basic qualitative measures were developed to assess the case studies outlined 

within section 4. These measures were an estimation, produced in order to see how 

measures could be implemented in a meaningful manner, if at all, within the 

complexity matrix. The measures assess the problem, not the system within the 

problem; that is to say, the interdependencies, skill variety and number of people 
involved in the problem, which are not necessarily part of the actual product system. 

These measures were based on estimation of a qualitative nature and assessed 

interdependency, skill sets required and the size of the organisation involved. The 

measures were created in this manner as the data available from the case studies was 

not sufficient to make a detailed assessment of the complexities that were involved, 

and these measures covered aspects of complexity covered within the definition for 

the thesis, namely intricacy and interdependencies, variety or commonality of skills, 

and a scale fact based on the organisation size. The qualitative measures are defined 

as follows: 

interdependencies Between Different Factors (IBDF) - This is a simple 

qualitative scale between I and 10 and is purely estimation, with no specific 

semantics for measurement definitions. The measure estimates, using 
knowledge of element numbers, interface numbers, an understanding of the 

interface intricacies and strengths the potential of the interdependencies within 

the problem under analysis. The higher the interdependencies within the 

problem, the higher value for the measure will be. 

Number of Skills Involved (NSI) - This is a simple qualitative scale between 

I and 10 and is purely estimation, and not based on any defined semantics. 

The measure is based on the number of disciplines electrical, mechanical, 

software, aerodynamic, hydraulic, etc and the assumption would be that the 

number of skills used (the diversity) would be proportional to the complexity 
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of a system. The higher the number of skills, the higher value for the measure 

will be. 

Persons Involved in Analysis (PIA) - This is a simple qualitative scale 
between I and 10 and is purely estimation, and not based on defined 

semantics. The measure assumes that the size of the workforce and the need 
for interaction within the large workforce will be proportional to the 

complexity within the problem. The larger the organisation that is involved in 

the problem the higher the probability for complex issues. 

If these measures were to be used in the future to assess problems within the 

complexity matrix, it will be necessary to set ftirther constraints to the selection of the 

value for each of these measures for any problem or solution situation. Semantics 

will need development for this purpose, for the initial stage of the research the 

estimation approach is sufficient to evaluate the approach. However for the purpose 

of this analysis, the qualitative estimation approach is sufficient given the information 

available regarding these problem issues. 

Scorin g Probi m Iscorl Solution I Coping Soluti n Complexity Affect 
'jýý Appk" APP-d-S IBDF NSI I PIA IBDF ' NSI ' PtA ] Percernage Sokrtlon Affect COMM"em on 1100"no 

Nuunber Change 
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Figure 29 - Matrix scoring mechanism example. 

The scores are then totalled, and the percentage change of the complexity within the 

problem after the solution has been applied is calculated as a rough guide. If the 

solution that was imposed has in fact increased the complexity of the problem then the 

percentage displayed will be over 100%. The solution effect column displays if the 

complexity has gone up or down and the comments column is a comparison between 

the complexity values that were produced, and what was expected as validation. If 
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these values show a small decrease in complexity, and one would expect a large 

decrease, then there may be a inaccuracy with the metric representation. 

It is necessary to correlate the information provided by the metrics, despite only being 

estimations of a qualitative nature. These correlations will confirm if the measures, 

despite their definitions being different, are in fact measuring different aspects of the 

problem. High correlations between two measures would suggest that they are in fact 

measuring the same effect within the problem or solution, and if this is the case both 

measures may not be necessary. 

Correlation Table Problem 
Correlation Correlation Date 
IBDF With NSI 0.478938103 
I BDF With PIA 0173899298 
NSI With PIA 0121271298 
I BDF With SUM 0.851511905 
NSI With SUM 0663921673 
PIA With SUM 

i 
0.7022305241 

Correlation Table Solution 
Correlation Correlation Data 
IBDF With NSI 0.36633016 
IBDF With PIA 0.59807754 
_ NSI With PIA 0171878826 
IBOF With SUM 0,838900042 
NSI With SUM 0.685055661 
_ PIA With SUM 0.8145887041 

Figure 30 - Correlation of metric values for the problem and solution situations. 

Figure 30 shows the correlations between the set of values for each measure in both 

the problem and applied solution situations. Correlations between the measures IBDF 

and NSI for the problem domain seem to be a higher than expected, but this same 

correlation is not so high for the applied solution domain, which would suggest the 

measures are in fact independent. The other correlations for the problem domain 

(ignoring the total correlations) are generally low, suggesting they are in fact highly 

independent. The high IBDF, PIA correlation within the applied solution domain 

suggests there might be a dependency here, but this is not the case with the problem 

domain so both measures are still valid overall. 

The size of the data set (below 30), will limit the accuracy of these correlations, 

however it would be fair to say that for the majority of systems that exhibit high 

complexity within the case studies, most exhibit high values for 2 of the 3 measures, 

for example problem TBO4 has values of IBDF 10 and NSI 8, with a low value of I 

for PIA, and IPOI has high values of 5 and 6 for IBDF and PIA with a low value of 
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just 3 for NSI. This will have an effect on how the correlations interpret the results, 
but for a test purpose these metrics as estimates are suitable, for detailed analysis the 

metrics will need to be re-developed. 

5.2.3 Problem Description Table 

An understanding of the problem issues is assisted by a Problem Description Table. 

The table contains various categories along the top and side which correspond to 

elements and phases of a product lifecycle using the systems engineering lifecycle 

guides (Haskins 2006) as a basis and other aspects which may be important in 

development programmes (as they appeared within the case studies), such as sub- 

contracting, manufacture, and budgets. 

The links are established between the relevant elements for the particular case study 

within the table and justified within a comment and contain the assignment code 

shown within Table 5 above, so they can be easily traced back to their originating 

case study. These links are established for the problem domain (denoted by the 

yellow area, see Figure 3 1) and applied solution domain, if a solution or action was 

implemented (denoted by the green, area see Figure 3 1). An example of a link is as 
follows: 

LAO I: The sub-contracting between the two business units meant that it was not 

strictly controlled due to familiarity and close proximity. As a result links can be 

found in the problem domain: Current Organisational Structure and Timescales, Sub- 

Contracting and Current Organisational. Structure, Parallel Development Strategies 

and Organisational Governance. Since there were no actions taken to attempt to solve 

this issue, no links appear within the solution area of the table. 

(see Table 5, Appendix A- First Case Study Set Details and Appendix B for details) 

Problem domain links show aspects of the problem and how the components of the 

problem link to other aspects of the programme within which the problem is located, 

or how elements of the problem interact with each other. It is important to realise that 

the links found within the problem domain will not necessarily be directly mirrored 

by those within the applied solution domain - they will not be identical. Not every 

solution applied addresses all the problem domain elements; in addition, some 

solutions can create additional links that did not exist in the problem domain after 

they have been implemented. 
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Once established, these links are then used to further understand and dissect the 

problems within the case studies, leading to a better appreciation of real and common 
industrial problems within programmes. This much improved understanding enables 

complexity characteristics to be more easily associated later on. 

6.2.4 Problem Description Table Categories 

The follow sections detail the categories used within the Problem Description Table 

(PDT). They have been grouped into common subject areas consistent with systems 

engineering lifecycle definitions (Haskins 2006) and concepts of project management 

(2007, Hastings 1995, Shcnhar, Dvir et al. 2001). 

5.2.4.1 Programme Characteristics 

programmes have specific characteristics and scopes, the following elements of the 

PDT attempts to address these as categories to be linked. 

Timescales - The timescales with which the programme is running. Problems and 

solutions may increase the timescales required or reduce them. 

Budget - The budget the programme is constrained by, or is allocated. Problems and 

solutions may increase the funding required to conduct the activities on an overall or 

isolated scale, or reduce the funding required. 

Size and Scope - The scope of the programme overall can be increased or decrease as 

a result of complexity problems in the development process. Solutions to these 

increases if they impact cost to highly may reduce size and scope if implemented 

properly. 

5.2.4.2 Organisational 

The organisational structures of all supporting elements to the development 

capability, not just confined to the organisational structure of the prime contracting 

company, but expanded out to customers, suppliers and the governance that surrounds 

them. 

Current Structure - The current structure of an organisation, or element of the 

organisation within the development capability or operational product. 

Structure Change -A change applied to the current structure of an organisation, or 

element of the organisation within the development capability or operational product. 
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Governance -Tbe governance found within an organisation, or element of the 

organisation within the development capability or operational product. 

Sub-Contracts - The sub-contract relationships found within the development 

capability or operational product. 

Customer - The customer organisational structure or an element of it. 

5.2.43 Human 

Some elements of problem issues or solutions involved a change in the human 

behaviour or perception. These elements are covered within this section of the PDT. 

Mindset - The mindset of those within the organisation reflecting the motivation, 

understanding of the programme, interpretation of success within the programmes and 
interpretation of the programme goals or objectives. 

5.2.4.4 System Requirements 

Requirements are a major contributing factor to the problems found within the case 

studies. The problems stem from the derivation of the requirements, and the level of 

maturity within the requirements late on in the programmes. 

Derinition - The level of definition of the requirements within the requirement set 

applicable to the problem. 

Maturity -The level of maturity of the requirement set applicable to the problem. 

5.2.4.5 System Design 

Elements of system design will obviously influence the problem issues that will occur 

within a programme. In particular interfaces related to the product, can contribute to 

the complexity within the programme. 

System Internal Interfaces - The interfaces internal to the system (the product under 
development) boundary. 

System External Interfaces - The interfaces external to the system (the product 

under development) boundary. 

Legacy Equipment - Use or understanding of legacy equipment within the system 

under development. 
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5.2.4.6 System Testing 

System testing is a major aspect of product development within the lifecycle, and will 
be a serious contributing problem issues. 

Planning - Planning for the trails activities that will be used to prove the system is fit 
for purpose and meets its requirements. 

Trials - The trails activity itself. 

Acceptance - Having the system accepted as a result of the trails programme 

completion. 

Certification - Having the system certified as a result of the trails programme 

completion. 

5.2.4.7 Development Process 

Aspects of the development processes within a programme play key roles within the 

problem areas found within the case studies. The type of engineering process and the 
deliverables that must be produced by those processes will be elements of some of the 

problem issues encountered within programmes. 

Concurrent -A concurrent engineering development process implemented within 
the development programme. 

Serial -A serial engineering development process implemented within the 

programme. 

Deliverables - The number of attributes of the deliverables expected from the 

development process by the customer, can include products, documentation and 
training. 

Rework - The rework required additionally to the standard development process 

practices. 

Parallel -A parallel engineering development process implemented within the 
development programme. 

5.2.4.8 Manufacture Process 

Once developed, projects move to the manufacture process aspect of the development 

lifecycle. This process is critical, developing efficient effective manufacturing 
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methods, builds towards commonality and thusly better support and reliability for the 
designed products. 

Drawing - The drawing pack updates for the products. 

Pre-Production - The pre-production work developing the efficient streamlined 

approaches to the manufacturing of the systems. 

5.2.4.9 Support 

The support provided to the customer once the product has completed its 

development, testing, acceptance and manufacture phases. 

Maintainability - The maintaining of the product once the system is in service with 

the customer. 

Reliability - The reliability of the product once the system is in service with the 

customer. 

5.2.5 Problem Description Table Links 

Each case study has its own Problem Description Table. Figure 31 shows the PDT for 

the upgrade programme case study. The yellow area represents the problem links and 

the green area represents the solution links between the categories (see 5.2.4.1 to 

5.2.4.9). Each problem was analysed in terms of the links between different 

categories and their links identified for both the problem domain and applied solution 
domain within each portion of the table. Additional comments were added to justify 

the link for that particular problem or solution for the categories. 
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Figure 31 - Problem Description Table example showing comment field for solution link 

placement. 

It is important at this stage to remind ourselves again that there is not necessarily a 

direct link, or mirroring between the problem and solution domain links. In some 

cases solutions may have only tackled some elements of the problem in order to 

reduce affecting other aspects such as timescales or budget, in some cases no solution 

was implemented at all. 

Overlapping each PDT for each case study enables commonality between the problem 

issues to be explored, and those areas which are less critical. This data produced a 

frequency for the occurrence of the various problem and solution links. A simple 

frequency was not sufficient, as some links are more significant than others and so a 

weighting factor was added to each link depending on the perceived level of 

complexity based on the three basic qualitative measures PIA, IBDF and NSI 

calculated within the Complexity Matrix. 
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In order to produce a more realistic result, which shows the actual level of complexity 

within the links as a sum rather than the occurrence of a link, the complexity metrics 

must be used. 

The sum of the complexity metrics for the problem domain, are spread equally among 

all the problem domain links for that problem issue (of which there are several per 

case study). The same is done for the solution domain using the solution metrics for 

that problem after the solution has been implemented. This gives a spread of the 

complexity within each problem for each case study, however this is still limited as 

some links within the problem or solution may have more criticality than others, this 

is not represented within the link matrix and work should be carried out to include this 

additional feature to get a more accurate representation of the complexity spread. 

For the purpose of evaluating the potential for this as a method of understanding and 

breaking down problems, all the links and complexity values for all case study 

problems were placed within two summary link matrices, the first showing the 

frequency of the links, the second showing the level of complexity within the links. 

5.2.6 How the Complexity Matrix can be used 

The Complexity Matrix contains the problem issues from the initial case studies and 

the relevant complexity characteristics for those problems. The matrix can identify 

common complexity characteristics for problem types, such as common relevant 

measures for certain problem types. These common links can then be used to identify 

problem types (or potential problems) from complexity characteristics. 

Mapping problems to complexity origins, complexity definitions and complexity 

concepts improves the understanding of why, where and how complexity problem 

issues manifest themselves. Understanding the problem and its components enables 

better solutions to the problem, complexity approaches and potential complexity 

measurements to be selected. 
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Figure 32 - Systems engineering complexity understanding. 

Figure 32 shows the mapping of solutions (S I to S4) approaches (A I to A4) and 

measures (M I to M4) to problem issues (P I to P4), in this case PI and P3 despite 

being different problems are measured in the same way and employ the same solution 

and approach. 
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Figure 33 - Problem issues linked to definitions, concepts and origins of complexity to produce 

mappings. 
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Figure 33 shows the relationships between problem issues (PI to P4) origins of 
complexity (0 1 to 04), concepts of complexity (C I to C4) and definitions of 
complexity (D I to 134). 

With the mappings of problem issues to measures, approaches, solutions, definitionsP 

concepts and origins, the commonality between mappings of problem types enables 
theoretical problem issues to be linked to potential measures, solutions and 

approaches. This information means that tools can be developed to not only 
determine the nature of the problem issue, and its relationship with complexity, but 

also to suggest the appropriate mitigation for that problem along with any appropriate 

metrics. 

All the problem mappings, be they theoretical or actual, related to solutions or origins, 

use the information contained within the original complexity characteristics data. The 

mappings are then fed back into the complexity characteristics data as an addition to 

the problem characteristics information. This additional information is then used to 

compare new problems that are linked with already existing data. 

The advantage of developing models, processes or analysis tools in this manner is the 

live nature of the characteristics information which is constantly changing and being 

updated. As new measures, origins, definitions, solutions or approach techniques are 
developed, they can be easily incorporated into these mappings updating the whole 

complexity understanding quickly with any new views. 

The complexity management tools developed used the CCCS contents to deconstruct 

problem issues, develop solutions and construct matrices to model the problem issues 

and their proposed solutions within the case studies relating them back to the CCCS. 

The complexity matrix allows problems to be analysed and understood in a simple 
format, and provides potential for numerical analysis and simple visual representation 

of problem issues and their relationships to complexity characteristics. 

5.3 Conclusion 

The complexity matrix enabled an understanding of complexity in problems and the 

common elements, components or characteristics of complexity that exist within these 

problems. Using the matrix it was possible to characterise the systems looked at 

within the case studies in terms of complexity characteristics that they may contain. 
This method could then be used to predict problems that may occur in the 
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development or operation of that system if the relationships with complexity 

characteristics were similar. The matrix also has the potential to suggest solutions or 

approaches if these approaches or solutions had been used in the past and 

subsequently stored within the CCCS. As the matrix increases in size, the ability of 

the matrix to help in assessing systems increases. 

The complexity matrix provided a basic awareness of complexity in systems, it shows 

the what (which complexity concepts, or definitions), the why (the complexity causes, 

origins), the how much (potential measurements that are applicable) and what can be 

done (solutions that can be implemented). 
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Figure 34 - The layout of the work and the thesis outputs roadmap. 

Craig Read Page 175 12/11/2008 



Complexity Characteristics and Measurement within Engineering Systems 

The CCCS is produced using the case study outputs and also the information 

contained within the literature review. The focus at this point was to understand 

complexity within problems in more detail. This lead to the development of the 
Complexity Framework found in chapter 6. 
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6 The Characteristics of Complexity and their 

Inter-relations: A Complexity Framework 

This chapter examines the relationships between various complexity characteristics. 
These characteristics were determinedfrom the literature search in chapter 2, the 

case studies and the interactions within the case studies ofcomplexily components in 

chapter 4. The output is aframework ofcomplexity which can be used as an aid to 

creating various measurements, coping mechanisms or management approachesfor 

complexity in engineering' 

6.1 Introduction 

The following section takes a look at the various components, or characteristics of 

complexity that have been collected from case studies and from the literature review, 

and combines these with concepts, measures, approach mechanisms and definitions of 

complexity. 

The relationships between these different elements of complexity are important when 
developing an understanding of complexity for engineered systems. The section first 

looks at the different aspects of complexity and then discusses their relationships and 

the implications of these relationships. 

Beyond just the characteristic categories are the actual characteristics themselves 

explored within the literature review (2 State of the Art Review on Complexity, see 

section 2.1), different definitions support different concepts, different measurement 

approaches are consistent with different problems. These relationships are explored 

within this section. 

6.1.1 What are the Inter-relations? 

The first set of inter-relations are the interactions between complexity characteristic 

categories. These form the basis of the inter-relations between the different specific 

characteristics (specific measures, specific origins, etc). The second set of inter- 

relations are those that exist between specific cases within each category, the links 

between different concepts of and origins of complexity, the links between definitions 

and problems relating to complexity. These links improve the understanding of 

complexity within systems and further enhance the understanding. Since the list of 
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specific characteristics is growing, the understanding of complexity is constantly 

enhanced with further links between specific parts. 

6.1.2 Why are the Inter-Relations Important? 

The inter-relations between the different complexity characteristic categories provide 
the basis from which specific characteristics can be linked. Problem issues can be 

linked to complexity origins and definitions, and those in turn linked to measures, 

concepts and coping mechanisms. The understanding of these linkages enables 

approaches or coping mechanisms to be selected for problem issues, and the reasons 
for that selection is traced back through the other complexity characteristics such as 

origins, definitions and measures. 

6.2 Complexity Characteristic Relationships 

The interactions between the different complexity characteristics within the 

Complexity Characteristics and Component Store (CCCS) are defined Within Table 9. 

The relationships between the different information categories, and also between the 

problem issues found within industry help to relate items within the CCCS to their 

relevant problems - definitions can hence be related to problem issues, and then, 

perhaps, definitions to measurements. These measures may then be considered for 

use within the terms of particular problems. 
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6.3 The Complexity Framework 

The following sections outline the details surrounding the relationships between the 

CCCS complexity categories. These relationships form the basis of the Complexity 

Framework, which can be expanded and used to further understand complexity in 

systems. 

6.3.1 Specific Complexity Characteristic Relationships 

There are a number of specific relationships between complexity characteristics and 

the problem issues that were identified within the case studies, the details of these 

linkages can be found within Appendix A- First Case Study Set Details. 

The full set of relationships has not been fully explored, that is every individual 

complexity characteristic related to every other characteristic, either positive, negative 

or a null relationship, the underlying concepts of the relationships can be related. 

Identifying the commonality between different specific complexity characteristics in 

each of the categories will provide common types. These characteristic types can then 

be inter-related more easily than every individual characteristic. 

'Me following sections detail the types that exist within the characteristics; these types 

are sub-set groups within which a significant number of the individual characteristics 

within that category fit. 

Complexity Characteristics and Measurement within Engineering Systems 
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6.3.2 Complexity Definition Types 

The common complexity definition types are as follows: 

Complexity Definition Type Description of Complexity Definition Type 

irreducible The system is irreducible, it stops functioning as a result of elements or 
interactions being removed. 

Difficulty in modelling and predictability A common complexity definition is that of unpredictability, and the difficulty 
associated with modelling the system. There are however obvious links with 
scale and the intricacy and number of interfaces, as these attributes are those 
that make the system difficult to model or predict in the first place. 
The same goes for irreducibility as simplification is not possible when 
modelling the system and expecting accurate predictions. 

-j5-iffiwUlt to describe, lack of understanding The difficulty in describing the system is very similar to the difficulty in 
modelling the system. Without an adequate description the plausibility of 
modelling or predicting the system behaviour is vastly reduced. 

Scale of interfaces and sub-systcms The nature of the interfaces and the sub-systems in terms of the information 
type (data, Boolean, mechanical, hydraulic, pneumatic) being transmitted, and 
the type (data processor, pump, energy generator) of sub-systcm, along with the 
size and number of sub-systems and interfaces, along with the level of diversity. 

level of interactions and intricacies The level of intricacy of the sub-systcms is a frequently used definition which 
describes the level of coupling between elements within the system. The higher 
the coupling level the more complex the system is and perhaps the more likely 
unpredictable behaviour or emergence occurs. 

Table 10 - Complexity definition types and their descriptions. 

As shown in the literature search, a number of complexity definitions fit into one 

specific definition type, where as others are in fact composites of these definition 

types. 

6.3.3 Complexity Cause Types 

When creating complexity cause types (complexity origins), it is important to 

distinguish between those causes that are intrinsic to the system development and 

those that are induced. 

Tbose causes that are intrinsic to the system may require a different approach to those 

that are induced. In effect, the development team must cope with the intrinsic 

complexity and reduce, through approaches and processes, the induced complexity. 

Complexity Characteristics and Measurement within Engineefing Systems 
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Complexity Causes Type Description of Complexity Cause Type 

Design Optimisation The multi-discipline design optimisation, consisting of the need to optimise highly coupied- 
and intricate variables within design. 

Immature Requirements The lack of maturity within requirements, perhaps as a result of immature technologies or 
re-use of legacy equipment. The lack of requirement maturity means the system is not 
clearly defined, and without a clear definition it is difficult to formulate a design that will 
be acceptcd. The ambiguity means there are a lot of potential solutions (a large number of 
in equivalent descriptions) 

organisational Change The changes in the organisational structure in terms of the members of staff, the tacit 
knowledge generated from those staIX also the introduction of mergers between business 
units introducing new working financial constraints. 

pre-production Induced Pm-production decisions or lack of consideration of product manufacture may incur 
additional complexities as the design may be unmanufacturable. Without adequate prcý 
production processes, products may all be unique introducing additional complexities 
when considering the support of products. 

Organisational Culture The change of the mindset of the organisation and culture within it may affect the design 
processes that develop the product and in turn effect the complexities of the product. 

Interface and Sub-Systcrn The level of intricacy within the system, perhaps coupled with the lack of commonality 
intricacy and level of multi-disciplinary skills required make the development of the system very 

difficult 

The size and scale of the system, although not a direct and necessary cause of complexity, 
it is possible that the scale of the product will impact the complexity of that product if not 
in a sub-system and interface perspective perhaps in a scope of operation perspective. 

Table 11 - Complexity cause types and their descriptions. 

6.3.4 Complexity Concepts and Classification Types 

The following are complexity concept or classification types: 

Complexity Concept/ Classification Type Description of Complexity Concept/ Classification Type 

linear or Hierarchical Complexity A system with a linear hierarchical interface relationship structure between sub- 
systems. This makes for easy fault finding and system modelling due to 
reduced numbers of potential paths between sub-systems (spanning trees). 

Non-lAnear Complexity A system with non-linear or hierarchical interfaces between sub-systems 
making fault diagnosis more difficult due to the large number of potential paths 
between sub-systcms (spanning trees). 

daptive Complexity A system within which the interfaces between sub-systems change and adapt as I 
a result of environmental influences. 

Table 12 - Complexity concept / classification types and their descriptions. ' 

The classifications build upon one another, and could be thought of as classifications 

of various levels of complexity within systems. 

Complexity Characteristics and Measurement within Engineering Systems 
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6.3.5 Complexity Measure Types 

The following are complexity measurement types: 

Complexity Measure Type Description or complexity Measure Type 

Requirement Complexity Measures Measures that can be used to measure various complexities within the 
requirement definition (number of descriptions, number of potential 
solutions) for products or capabilities. 

System Decomposition Complexity Measures Measures of complexities within the decomposition of systems, 
identifying commonality within sub-systcm and interface groups and 
components. 

Interface & Sub-system Complexity Measures Measures of complexity within interface and the sub-systcrn components 
of the overall system, both internal complexities of the interfaces and the 
sub-systcms on their own, along with a complete system understanding of 
the complexities of the interfaces and sub-systcms components. 

management Complexity Measures Measures of complexity within the management arena such as cognitive 
complexities or mindsets. 

Table 13 - Complexity measure types and their descriptions. 

The measurement types concentrate on different areas of complexity within systems, 

there are a number of measures that fit within each category but there are no clear 

relationships between the different measurement categories. 

6.3.6 Complexity Coping Mechanism / Approach Types 

The following are complexity coping mechanism / approach types: 

Complexity Coping Mechanism /Approach Type Description of Complexity Coping Mechanism Type 

Evaluation/ v isual'sation Able to use detailed problem evaluation or visualisation 
processes or tools (simulation, testing with prototypes) to 
provide a solution. 

Numerical Analysis Numerical analysis used to cope with the complexity, perhaps 
from simulation or detailed algorithmic methods to optimisc 
multi-discipline design optimisation problems. 

Efficiency Improve the efficiency of various supporting processes to the 
dcvelopmcntý operation or support of products in order to 
reduce complexity or cope with complexity better. 

imp jed Architectures Improve the architectures of products directly, perhaps 
reducing complexity by improving the efficiency of the 
architecture (removing unnecessary interfaces or components, 
combining components, reducing the level of information 
transmitted between components, creating sub-systcms that are 
less coupled with other sub-systems reducing 
interdependencies). 

F on Complex Area Focus on the complexity area within the product (if there is 
one) and increase the level of resource available to deal with 
the problem. 

preview Problems Review the problem before it occurs, perhaps using simulation 
or prediction methods is an approach to complexity in systems, 
unfortunately in some cases complexity problem issues are no 
predictable, and in fact some definitions of complexity state 
that complex systems inherently are unpredictable. 

Table 14 - Complexity coping mechanism types and their descriptions. 

Complexity Characteristics and Measurement within Engineering Systems 
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Ilicsc types arc actions taken in an attempt to minimisc, reduce or eradicate 
detrimental complexity within systems. There is one ftuther coping mechanism that is 

not included within this table, and that is to not initiate any coping mechanism or 

approach to managing the complexity. In some instances complexity within the 

system is in fact beneficial to the system. 

6.3.7 Complexity Problem Types 

The following are complexity problem types: 

-Uo-mplexity Problem Type Description of Complexity Problem Type 

Design Optimisation Design optimisation of a number of different disciplines, components and variables which 
in some cases are not easily quantified (shape) make the development of systems an 
extremely difficult process. 

immature Requirements immature requirements, or in some cases technologies within the system can result in 
additional complexities that must be managed. 

-6; ia-nisational Change Changes in the organisational structure may mean loss of knowledge, or product 
understanding. This effects the efficicncy of the development and the 

prc-production induced Lack of work carried out in the pre-production phase increases the complexity of the 
manufacture phase. Without adequate work being carried out initially, manufacture of the 
systems can be complex, or result in essentially custom builds that lack commonality. 

anisational Culture The culture of the organisation and their understanding or expectations of the product 
development have an impact on the complexity of the product. Timcscalcs, budgets and 
the nature of the product (upgrade, new build) all influence the processes that are used in 
the development of that product and these processes and constraints will influence 
decisions that ultimately effect product complexity. 

Table 15 - Complexity problem types and their descriptions. 

Problem themes within system development which relate to complexity exist. There 

are patterns and commonalities between problems caused by complexity that form the 

categories for the problem types shown here. 

6.3.8 Summary of Types 

The following table provides a summary of all the characteristic categories and the 

types within those categories. The inter-relationships between these types form the 

basis of the understanding of complexity within systems and development 

progmmmes. 

Complexity Characteristics and Measurement within Engineering Systems 
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Definition Types Cause Types Concepts and 
Classification 
Types 

Measurement 
Types 

Coping 
Mechanism / 
Approach Types 

Problcm Types 

1. Irreducible 1. Design 1. Lincar of 1. Requirement 1. Evaluation 1. Design 
Optimisation Hierarchical Complexity Visualisation Optimisation 

2. Difficulty in Complexity Measures 
modelling or 2. Immature 2. Numerical 2. immature 
predictability Requirements 2. Non-Lincar 2. System Analysis Requirements 

3. Difficult to 3. Organisational 
Complexity Decomposition 

Complexity 3. Process 3. Organisational 
describe, lack of Change 3. Adaptive Measures Efficiency Change 

understanding 4. Pre-Production 
Complexity 

3. Interface & 4. Improved 4. Pre-Production 
4. Scale of Induced Sub-system Architectures Induced 
interfaces and sub- 5. Organisational Complexity S. Focus On S. Organisational 
systems Culture Measures Complex Area Culture 
5. The level of Interface and 6 4. Management 6. Preview 
interactions and . Sub-System Complexity Problems 
intricacies Intricacy Measures 

1 7. System Scale 

Table 16 - Complexity characteristic type summary. 

Just looking at the summary of the various complexity characteristic types shown 

here, it is obvious that there are relationships between them, as some describe very 

similar things; for example, definition types 4 and 5, which describe complexity in 

terms of interfaces, sub-systems and their intricacy directly relate to cause type 6 and 

measurement type 3. If a problem then maps to one of these types, and in this case 

design optimisation (complexity problem type 1) may map to the intricacy of the 

interfaces within the system and the number of interfaces and their sub-systems, then 

a relationships has been formed that flow through to useful measures, concepts or 

classifications and coping mechanisms. 

6.4 The Relationships 

This section details the relationships between the various types identified shown 

within Table 17. These relationships are essential when developing the complexity 

understanding. 
Complexity Characteristic Types Reference 

Definition Types DT (then number i. e. DTI, DT2, etc) 

Cause Types CT (then number i. e. CT 1, CT2, etc) 

Concept and Classification Types CCT (then number i. e. CCT 1, CCT2, etc) 

Measurement Types MT (then number i. e. MTI, MT2, etc) 

Coping Mechanism/Approach Types CMT (then number i. e. CNIT I, CMT2, etc) 

Problem Types PT (then number i. e. PT I, PT2, etc) 

Table 17 - Reference table for the various complexity characteristic types. 

Complexity Characteristics and Measurement within Engineering Systems 
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T'he relationships are not direct, that is, problem types are not directly related to 

measurement types; in fact, problem types are related to causes, definitions and 

concepts, which are then related to coPing mechanisms and measurements. 

ProblemTypes(PT) 19 b CopingMechanismTypes(CMT) 

I CauseTypes(CT) I 

Definition Types (DT) 

Concepts and Classification 

Measu rem ent Types (MT) 

Figure 35 - Complexity Framework characteristic type relationships. 

Figure 35 shows the relationships between the different complexity characteristic type 

categories within the Complexity Framework. Not all complexity characteristic 

categories relate with each other, some are directly related, and others relate indirectly 

through other characteristics. 

The relationships outlined are shown within Table 18 below. 

I DT CT CCT MT CNIT PT 

DT X X X X 

Cr X X 

CCT X X 

MT X X 

CNIT X X 

PT 

Table 

X 

18 - Table of re 

X 

lationships bet ween complexit y characteris 

X 

tic type categories. 
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All the relationships are two way relationships, and in total there are 10 definite links 

between complexity characteristic type sets, in notation form. these are: 

DT4-+CT, DT+-+CCT, DT+-+MT, DT4-+CMT, DT+-+PT, CT+-+CCT, CT*-+CMT, 

CT+-. PPT, CCT4-+MT, CMT+-+PT 

The following sections detail these relationships. 

6.4.1 DT*-+CT 

The following tables detail the relationships between definitions of complexity and 

the causes of complexity. 

Definition cause Description of the Relationship 
Type Type 

DTI CT7 Irreducibility has a relationship with system scale, the minimum scale of the system possible. 

DT2 The difficulty associated with modelling or predicting systems may be a result of a complex design 
optimisation process, or the scale of the system and the level of interface coupling. 

CT6, CT7 

DT3 Modelling and prediction of system behaviour relies on the ability of the development team to 
satisfactorily describe the system. As a result the relationships to system scale, coupling. intricacy 

C121 and optimisation arc present in this relationship as well as for predictability and modelling. 
CT3, Understanding may also be the result of organisational change or culture, losing knowledge or poor 
CT4, information transfer within the development team. 

CT6, CT7 Requirement immaturity is also a lack of understanding of the system, or an incomplete 
understanding or appreciation for what the system or capability should and should not do. 

DT4 CT6, CT7 A direct relationship between the level of intricacy and scale of the system, which can in itscIC be a 
cause. 

DT5 -U6- A direct relationship exists between the system intricacies as a definition of complexity and the cause 
associated with that 

Table 19 - Relationships between the derinition types and cause types. 

CT'2 CT3 CT4 CTS CF6 CF7 

DTI x 

D17 x x x 

DT3 x x x X X 

DT4 x x 

DT5 x 

Table 20 - Summary of the interactions between the definition types and cause types. 

6.4.2 DT*-+CCT 

The following tables detail the relationship between the defujitions of complexity and 

the concepts or classifications of complexity. 
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Definition Concept / Description of the Relationship 
Type Classification 

Type 

DTI N/A There is no direct relationship between the classification and concepts of complexity and the 
definition of irreducibility. 

DT2- CCT2, CCT3 Inherently systems with a non-lincar or non-hicrarchical structure of interactions between 
interfaces are more difficult to model and predict. Predictions of systems that am capable of 
adaptation to their environment become even more difficult still. 

DT3 CCM, CCT3 The same relationship exists here as it does for DT2. 

DT4 CCTI, CCT2, All the concepts relate to the interface structure and the intricacies, the concepts and 
CCT3 classifications describe different levels of interaction and complexities in internal structures. 

T5 CCTI. CCT-2, The same relationship exists here as it does for DT4. 
CCT3 

Table 21 - Relationships between the definition types and concept / classification types. 

cm CCT2 CM 

DTI 

DT2 x x 

DT3 x x 

DT4 x x x 

DTS x x x 

11a Table 22 - Summary of the interactions between the definition types and concept / class rc tion 

types. 

6.4.3 DT+->MT 

The following tables detail the relationships between definitions of complexity and 

measures of complexity. 

Definition Measurement Description of the Relationship 

Type Type 

DTI There are not really any direct relationships with measures and the level of reducibility within 
systems. 

DT2 IVIT2, MT3 The modelling and predictability of systems and the difficulty associated is a result of the 
intricacy of the interfaces and the decomposition or splitting of the system elements. 

-UT-3 MTI, MT2, Similarly the difficulty in understanding the system or describing the system is a result of 
MT3, MT4 interface intricacy and system decomposition. However requirements are also a factor as they 

are in fact the description for the system. Difficulty in understanding may 

DT4 MT2, MT3 The system decomposition and interface complexity are directly related to the definition of scale 
within the system interfaces and sub-systems. 

DT5 MT-2 The level of interaction between the sub-systems through interfaces directly relates to this 
definition of intricacy. 

Table 23 - Relationsnips Detween ine ucimition types anu measurement types. 
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MTI MT2 bl'1'3 AM 

DTI 

DT2 x x 

DT3 x x 

DT4 x 

DTS x 

Table 24 - Summary of the interactions between the definition types and measurement types. 

6.4.4 DT4-+PT 

The following tables detail the relationships between definitions of complexity and 

the problem issues associated with complexity. 

Definition Problem Description of the Relationship 

Type Type 

DTI There are no real direct relationships with problem issues and definitions of irreducibility. 

Uff PTI, M The difficulty in modelling or predicting system behaviour could relate to the state of the 
requirements and any design or design optimisation that must occur. 

DT3 M, The understanding of the system is related to design problems through optimisation and also 
PT3 immaturity in requirement sets which make the product ambiguous. Organisational change is 

also related to the definition as it can be the cause of loss of knowledge resulting in lack of 
understanding. 

PT I The scale of the interfaces and sub-systems is a design optimisation issue. 

PTI As for DT4, the interactions between the elements of the system and their intricacies are a design 
optimisation problem. 

Table 25 - Relationships between the definition types and problem types. 

PTI PT2 PT3 PT4 PTS 

DTI 

DT7 x x 

DT3 x x 

DT4 x 

DT5 x 

Table 26 - Summary of the interactions between the definition types and problem types. 

6.4.5 CT+-+CCT 

The following tables detail the relationships between the causes of complexity and the 

concepts or classifications of complexity. 
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Cause Concept / Description of the Relationship 
Type classification 

Type 
CTI CCTI, CCT2, Design optimisation as a cause is related to the concept or classification of the systems; in a sense 

CCT3 the concepts and classifications of the systems govern how complex the design optimisation 
problem will be. The systems with linear properties are easier to understand and model than 
those with non-linear properties. Systems with adaptive natures are even more complex and 
require much more intelligent modelling methods and different design techniques. 

CM Unless the complexity cause can be associated with system interactions and the nature and 
structure of those interactions then there are no direct relationships between these causes and the 

CT3 complexity concepts or classifications, as these are a description of the system structure and its 
t r CT4 na u e. 

CT5 

CT6 CCT 1, CCT2, As for CT I but for interfacing and intricacy. 
CCT3 

CCTI, CCT2, As for CT I but for the system scale. 
CCT3 

Table 27 - Relationships between the cause types and concept / classification types. 

CCTI CCT2 CCT3 

CTI x x x 

CT2 

CT3 

CT4 

CF5 

CF6 x x x 

C" x x x 

Table 28 - Summary of the interactions between the cause types and measurement types. 

6.4.6 CT+4CMT 

The following tables detail the relationships between the causes of complexity and the 

coping mechanisms for complexity in systems. 
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Cause Coping Description of the Relationship 
Type Mechanism 

Type 

CTI CMTI, Depending on the nature of the design optimisation that is the cause of complexity within the 
CMT2, system a variety of different coping mechanisms can be employed; numerical (using algorithms 
CMT4, to optimise systems), improving the system architecture (making optimisation easier), focusing 
CMT5. on the area that requires the highest amount of optimisation or that has the most variables to 
CMT6 optimise. Finally previewing the problem before actually encountering it in models may provide 

tools or options to counter it. 

CT'2 CMT3, Improving the process efficiency may increase the speed at which requirements are matured in 
CMT6 the system dcvcIopmcnL A preview of requirement maturity and its status will enable better 

management of the issue. 

75- CMT3, With a changing organisational structure. better focus on process and the efficiency of those 
CMT6 processes are key when managing organisational transitions. Previews of organisational issues or 

the effect of the change on the programme will also enable better management of the cause of 
potential complexities. 

CT4 CMTI, Improving the evaluation methods, the processes used in developing systems and manufacturing 
CMT3, systems along with improving design architectures means that future complexities resulting in 
CMT4 production problems can be avoided. 

CT5 
-- 

There are no direct relationships between organisational culture and coping mechanisms. 

CT6 ý TM T2, Interfaces and their intricacy can be managed through numerical analysis of the coupling between 
CMT4, them, improving the architecture to reduce unnecessary coupling and heavy focus of resources on 
CMT5 those areas that have the highest levels of connectivity and intricacy. 

CT7 CMT2, The scale of the system is managed in much the same way that interface intricacy is managed. 
CNff4, 
CMT5 

Table 29 - Relationships between the cause types and coping mechanism types. 

CMTI CMT2 CMT3 CMT4 CNITS CNIT6 

CTI x x x x x 

CF2 x x 

CT3 X x 

Cr4 x x x 

cys 

CF6 x x x 

C-0 X X 

Table 30 - Summary of the interactions between the cause types and coping mechanism types. 
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6.4.7 CT+-+PT 

The following tables detail the relationships between the causes of complexity and the 

problem issues associated with complexity. ' 

cause 
Type 

Problem 
Type 

Description of the Relationship 

CTI PTI Direct mapping as the problem cause is the problem issue itself. 

C12 PT2 Direct mapping as the problem cause is the problem issue itsclE 

CT3 Direct mapping as the problem cause is the problem issue itsclE 

75- PT4 Direct mapping as the problem cause is the problem issue itself. 

CT5 PT5 Direct mapping as the problem cause is the problem issue itself. 

CT6 PTI System intricacy and coupling is a design optimisation problem producing a system that mects 
the requirement with the lowest most manageable level of complexity possible, an optimiscd 
complexity against cost and resource levels. 

C-177 PTI System intricacy and coupling is a design optimisation problem, producing a system that meets 
the requirement with the lowest most manageable level of complexity possible, an optimiscd 
complexity against cost and resource levels. 

Table 31 - Relationships between the cause types and problem types. 

PTI PT2 1r3 PT4 PT5 

m x 

Cr2 x 

CO x 

CU x 

C-F5 

Cr6 x 

Cr x 

Table 32 - Summary of the interactions between the cause types and problem types. 

6.4.8 CCT4-+MT 

The following tables detail the relationships between the concepts or classifications of 

complexity and measures of complexity. 

-CýOncepts / -Wi-essurement Description of the Relationship 

Classification Type 
Type 

CCTI MT3 The concepts or classifications of complexity in systems can be associated with any type of 
measure. It depends on the system that is under evaluation. The concepts of complexity can 

CCT2 MT3 apply to human, mechanical, electrical, organisational or even chemical systems; as a result 

MT3 the concepts are applicable to all measurement types. When attempting to discover the level 
of each type of complexity, the only measures appropriate is that which analyses the 
interfaces of that system, whatever they may be. 

Table J-5 - Heiationsuips urtwurn tur, I VM33911%. ULAVIA LjfPV3 UIIU jjjVM? jUFVjjjVjjL JypV5. 
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MTI NIT2 MT3 MT4 

CCTI x 

CCF2 x 

COD x 

Table 34 - Summary of the interactions between the concept / classification types and 

measurement types. 

6.4.9 CMT+-*PT 

The following tables detail the relationships between the coping mechanisms for 

Complexity in systems and problem issues associated with complexity. 

Coping 
mechanism 
Type 

Problem 
Type 

Description of the Relationship 

cmff PT4 Evaluation or visual evaluations may help reduce pre-production issues. 

CM-T-2 PTI Numerical analysis of systems in some cases can help improve the ability of development 
processes in optimising designs. 

CMT3 P117, PT3, Process cfficicncy improves on a vast array of different problem issues and has the potential 
PT4, PT5 to cope with or reduce complexity in design, through coping with organisational changes and 

cultures, along with controlling pre-production. 

CMT4 PT I, PT4 Improving the architectures can improve the design optimisation task and also pre-production 
issues. 

CMT5 PTI, PT2 Focusing on the complexity area is a good method of focusing resources on improving 
requirement maturity and the optimisation process. 

CMT6 V12, PT3, Previewing problems helps when reducing complexity as a result of organisational changes 
PT4, PT5 or cultures, along with more technical reductions of complexity through requirement maturity 

and pre-production induced complexities. Previewing problems means they are realised early 
and the problems can be reduced with actions taken as a result. 

Table 35 - Relationships between the concept / classification types and problem types. 

PTI PT2 PT3 PT4 plr5 

CNIT1 x 

CMT2 x 

CMT3 x x x x 

CMT4 x x 

CMT5 x x 

CNIT6 x x x x 

Table 36 - Summary of the interactions between the concept / classification types and problem 
types. 

6.5 Conclusion 

This section has highlighted the relationships that exist within the CCCS between its 

categories (see 4.10.2). These relationships outlined above are key when developing 
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an understanding of complexity and how various characteristics, components or 

aspects of complexity can influence each other (for example how the definition of 

complexity influences the use of measures). 

In an ironic way, the relationships that exist within the Complexity Framework are 

themselves intricate (complex). But the understanding of or appreciation of these 

relationships is key when attempting to understand complexity with systems, in 

engineering, chemical, physical or biological terms. 

The framework enables problems to be linked intelligently with other characteristics 

of complexity (concepts, definitions, measures, classifications). The framework also 

enables indirect linking of problems with solutions, and also provides the justification 

of those links. 

The relationships between the complexity categories from the basic Complexity 

Framework is the understanding of complexity within engineered systems that 

industry needs, and in itself can be used as an approach mechanism to manage 

complexity in systems and prevent or predict problems. 
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Figure 36 - The layout of the work and the thesis outputs roadmap. 

Figure 39 shows the roadmap, of work within the thesis, within this chapter the 

Complexity Framework was developed. This framework needs to be built upon and 

enhanced in each area (concepts, classifications, measures, etc. ). To cover all areas of 

the Complexity Framework is beyond the scope of this thesis, and the decision was 

taken to enhance the understanding of complexity measurement in engineering 

systems, in particular within the development phase as it was of great interest to the 

industrial sponsor. The objective of developing measures of complexity for 

engineered systems is to develop an approach (and tool) to enable the measuring of 

system complexity within industry. 
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Measurement of Complexity in Engineering 
This chapter narrows the scope ofthe thesis tof0cus on measuring complexity 

characteristics. It contains a summary ofthe complexity measures that werefound on 

the literature search within section 2.7 These are then down selected against what is 

considered usefulfor engineering: the background to complexity problems in 

engineeringfrom chapter 3, the problems and issues within engineering that may 

need addressing in chapter 4 and the understanding oftheir relationships to different 

complexity characteristics in chapter 5; and assessments ofhow easy to apply the 

measures are (available data etc. ). This information thenfilters into creating the 

complexity measurement tool in chapter 8. ' 

7.1 Introduction 

Ile focus of this thesis now turns towards developing a method for measuring 

complexity within systems, in the light of the information collected so far from 

literature and the case studies; this method would then provide further detail for the 

measurement portion of the Complexity Attritbute Framework. This chapter details 

that methodology, and the down selection of appropriate complexity measurements 

for that methodology. 

7.1.1 What makes Complexity Measures useful to Industry? 

If industry had the tools that enabled the accurate measurement of complexity within 

systems, or the overall complexity of programmes, it would be better equipped to 

assess the level of effort and budget required. The key question that industry needs to 

answer is how a complexity measure is of use? It is one thing to have a complexity 

value for a system, but unless that complexity value can be interpreted in a way that 

provides useful information that can be fed back into projects beneficially the measure 

is of no real utility. The following are a set of questions, the answers to which would 

be of benefit to any organisation in the process of developing a system. 

In a technical or hardware sense, which area of a system under development is 

the cause of the complexity within the system? 

A measure that can assess the complexity of a system (or sub-system) in terms of 

software, hardware, its location and the type of complexity that exists would provide 
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industry with the ability to better understand what they are developing or dealing with 

and give them the potential to foresee future problems. 

What are the future problems that this development programme is likely to 

exhibit? 

A complexity measure can assess both the technical and development process 

complexity, and could give an estimation of the number of problems likely to occur. 
However this measure would only provide an overall estimation, it would not offer 

any insight into which part of the system would cause the issues, or which phase of 

the development programme the problems are likely to affect. 

Is the complexity manageable? 

Industry needs to be able to accurately assess the risk associated with developing a 

complex system. If the complexity contained within that system is very large, it has 

the potential to be unmanageable. If the complexity is unmanageable the success of 

the programme is brought into question and this will impact the profit margins for that 

company. 

How does this system compare with other systems in terms of complexity? 

In order to accurately predict the required effort levels involved for future work, 

industry often uses previous programmes that are comparable to help with the 

estimation. Complexity will be a contributing factor in terms of the required resource 

or effort level required to produce the system. A measure of complexity will allow 

this contributing factor to be assessed and influence the decision regarding effort 

levels and feasibility. In some cases these comparisons might be with similar 

programmes; in other cases they may be comparisons with upgrading an existing 

product, or developing an entirely new one. 

What effect would the introduction of another element into the system have in 

terms of the overall complexity? 

Upgrades are often additions in terms of elements within already established systems, 

and industry must assess the feasibility of the upgrade and the impact on the overall 

characteristics the upgrade will have. The upgrade may change the overall 

characteristics of a system in terms of its complexity, and this could change the 

required resource to operate that system satisfactorily, affecting the Support levels and 
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therefore the associated costs. Industry needs to be able to accurately predict these 

changes and a complexity measurement that is comparable to other systems would be 

a factor in this prediction. 

7.1.2 What will be Measured? 

Where are the key areas within a lifecycle where a complexity measure would provide 
benefit that answers those industrial (see section 7.1.1) questions? Where would a 

complexity measure application be most beneficial? What form must a complexity 

measure take in order for it to be useful? The following are a set of questions and 

answers that examine what could be measured, and how it is of benefit to industry 

when developing systems. 

Where are the key areas within a lifecycle where a complexity measure would 

provide benefit? Where would a complexity measures application be most 
beneficial? 

Measuring complexity after a system has been developed leaves no room for 

improvement; testing the complexity of systems before they are fully developed 

leaves room for improvement or changes that could reduce the levels of resource 

required. In this case the primary stages within development lifecycles will be the 

early bid stages, early development stages or design stages, and system upgrading, 

areas where programmes or are setup, their resources allocated, or the system is 

created or modified. Understanding complexity at these stages can enable informed 

decisions to be made and resource allocation optimised, in the hope of pre-empting or 

controlling complexity levels. 

Upgrading or building upon current products finther along in the product lifecycle 

presents its own problems. At which stage does building upon a product that already 

exists and is in service become more complex that simply designing a new product 

that meets all the functional requirements? A complexity measure that could identify 

the complexity of the product and complexity of the product once the upgrade is 

completed would be useful in determining the viability of the upgrade itself 

It can be said the complexity of a developed system is dependent on the environment 

within which that system operates, the environment will determine to some degree the 
behaviour of a system, the combination or interaction between the system and its 
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environment we will call the super system. A developed system does not always 

operate in a single environment at all times, but a multitude of environments defined 

by system operating parameters or requirements. The operating environments that 

can be created from these defined parameters will have an effect on the overall 

complexity of the super system, a more diverse environment parameter set, the higher 

the diversity within the super system. Understanding the nature of complexity of the 

super system (i. e. the developed system and the environment) ailows the operating 

environment envelope to be selected such that the complexity of the super system 

never reaches an unmanageable level. 

What form must a complexity measure take in order for it to be useful? 

In most cases a single point value will not be sufficient - systems operate within an 

environment and this will have an effect on the operation of the system. If the 

complexity measure required is for an operational system, the different environments 

must be taken into account, and appropriate measures produced for each complexity 

environment. 

The measurement must be comparable; it would also be beneficial for the measure to 

be easily visually represented enabling fast comparison and the information it 

represents to be easily conveyed. 

Calculation of the measure must be achieved within a reasonable time - measures that 

require too much resource for calculation are less useful than those that can be 

calculated quickly, providing the accuracy is satisfactory. 

Complexity was defined as the intricacy of the interactions of system elements, so a 

measure or combination of measures must provide a description of this property of a 

system. Complexity components within developed systems can be found within the 

complexity component model and it this information that will require measurement in 

order to assess the associated intricacy. 

7.1.3 What are the Characteristics of a Measure? 

To obtain an understanding of what industry wants and needs from a complexity 

measure, or measurement approach the next stage is to understand the various 

methods of measurement and types of measurement that are possible. 
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The classical scientific concept of measurement requires a distinct device that 

selectively interacts with the system being measured, and an output that has symbolic 
interpretation, usually numbers. That being measured can be real or theoretical, for 

example a physical attribute of an object or management effort metrics. 

Measurements properties include units (the name of the quantity value) and scales, 

tailored for the value quantity being measured. Different quantity value scales allow 

more direct comparison of the same measure from one situation to another. Scales 

exist in different forms: 

* Categorical = Age 18-24; 25-30; 3140; 40+ 

* Ordinal = Female or Male / Yes or No 

e Interval = Strongly Agree, Agree, Disagree, Strongly Disagree 

* Ratio = Calendar time & date / Vulgar fractions / Length 

There are requirements for useful measurements, they must be precise (a function of 

extent, granularity and frequency), resettable (because the measure can be repeated) 

and reproducible (because the measuring device must be isolated from the system 

being measured). 

In order to apply measurement to complexity within the engineering domain, the 

requirements for measurement must be interpreted for the complexity problem and 

subsequently met. Complexity could exist within more than one scale, but the values 

of the different scales will change depending on which questions industry wants 

answering. For example, complexity within the Boolean scale has little value within 

an engineering environment, distinguishing between complex and simple systems in a 

Boolean manner provides very little useful information, where as categorical scales, 

intervals and ratios provide a much more detailed picture of complexity. 

Scale range is also important, complexity can be thought of as a scale, from simple (or 

low complexity) to high (or high complexity) which could be near random behaviour. 

Obviously systems that exhibit different levels of complexity will need different 

scales, similar to the different scales available for measuring temperature, Kelvin, 

Celsius and Fahrenheit. 
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The precision in complexity measurement is more difficult, as the measure is highly 

subjective due to the large number of different approaches that can be taken to 

calculate it and the number of different forms a complexity measure can take. A set 

of defined measurements and measurement methods for complexity as it is in 

industrial systems is necessary to standardise the output and then precision can follow. 

A number of measures for complexity exist in the conceptual form, for example 

system reducibility. In the engineering case there is sometimes scope for reduction of 

systems, if those systems are large and contain large numbers of elements and 
interactions and there is no scope for reduction it would suggest that system has a high 

level of complexity. However this is subjective, systems that are in production today 

could have scope for further reduction that is either undetectable or it is impractical. 

For that proportion that is undetectable the level of reducibility available is inaccurate, 

the system is reducible, but this reduction is overlooked. It would be very difficult 

and time consuming to test for reducibility in modem systems independent of the 

development programme. So in the abstract view reducibility is a good measure of 

complexity, but in reality such a measure is impractical. This is just one view or 
interpretation of this complexity measure - it may apply to the outputs of a system (the 

reducibility of the outputs) or perhaps modelling of systems (accurate modelling of 
behaviour with a set of reduced variables and functionalities). 

Ilere are a number of abstract or concept measured that are not rigidly defined. 

These measures were assessed as to whether these abstractions can be turned into 

measures that can be applied. 

7.2 Complexity Measurement Categories 

There are distinct categories of measures that can be applied to the majority of 

measures found within the literature search (chapter 2), however not every measure 

can be directly applied to these categories. The complexity measures within the 

literature are all different, but essentially they all seem to follow a pattern that can be 

categorised. It is the categories and some of the measures themselves that could form 

the basis for measuring and understanding complexity within systems. 
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These categories or complexity measure common themes found within the literature 

arc as follows: 

e Reducibility Measures - Measures that concentrate on the principle that 

complex systems are not reducible, and measuring the optimised system gives 

an estimation of the inherent complexity of that system. 

* Measurement of Input/Output Complexity - Information theory measuring the 

ease of modelling of the input or output of a system. Usually only applicable 

to those systems that produce string or character outputs. 

* System Specific Measures - Measures relating directly to the system or 
development programme itself, in terms of interfaces, people, resource, 

elements, and so on. 

e Measure of Randomness - Measures that relate to the level of unpredictability 

within a system. 

9 Miscellaneous Measures - Measures that do not confonn to any of the above 
categorisations. 

Using this category list, and relating this list to the measures themselves taken from 

the literature (and created within this thesis), the categories can be related to the 

complexity problems studied. How the problem issues relate to specific complexities 

within the system will govern which categories or themes are most appropriate. If the 

problem issue is related to size and intricacy, the system specific measures may be 

most appropriate. If the system is subject to disorder in inputs or outputs, perhaps 

randomness measures and input output complexity measures are appropriate. 

This is not the only way in which measures can be separated into categories. Based 

on the knowledge of measurement (see section 7.1.3), the characteristics of the 

complexity measures are also important. If data is limited, perhaps qualitative 

measures are more appropriate, perhaps data is abundant in which case quantitative 

measures can be calculated. 
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The following identifies how the characteristics of the measures can change, and it is 

these characteristics that may make the measures more or less viable when attempting 

to understand a systems complexity. 

9 Quantitative / Qualitative. 

9 Apply to; Reducibility, Input/Output, System Specific, Randomness or 
Miscellaneous. 

o Ratio, Ordinal, Interval, or Categorical sales. 

Apply to; System Design (Interfaces, Skill Variation, Decompositions, 

Requirements, System States, Reducibility, Control Loops, Computation), 

Management (Skill Variation, Personnel Variation). 

Table 37 contains the measures found within the literature search and also those 

created for the purpose of this research with their characteristics defined. This 

breakdown will help the selection process of appropriate measures that can be used 

for the Complexity Framework and the categorisation is based on an industrial 

systems engineering domain. 

Measurement 
Qualitative / 
Quantitative 

Category Scale 
Type Potential Applications 

1135F - Interdependencies Qualitative System Specific Ratio System Design (Interfaces) 
Between Different Factors 

NSI- Rumber of Skills Involved Qualitative Miscellaneous Ratio Management (Skill Variation) 

plA - persons Involved in Qualitative Miscellaneous Ratio Management (Personnel 
Analysis Variation) 

Abstract Computational Quantitative 
System Specific 

Ratio System Design 

Complexity (Decomposition) 

gorithmic information Quantitative 
InputtOutput, Ratio System Design 

complexity Reducibility (Requirements) 

Bennctfs 'Logical Depth' Quantitative 
Input/Output, 
Reducibility Ratio System Design 

(Requirements) 

Ordinal 

Cognitive Complexity Qualitative Miscellaneous Interval Management (Skill Variation) 
Categorical 

Connectivity Qualitative System Specific Ratio System Design (Interface) 

cyclornatic Number Quantitative System Specific Ratio System Design (Control 
Loops) 

DescriptiveAntctpretative Quantitative System Specific Ratio 
Interval System Design (Requirement) 

Complexity 

Dimension of Attractor Quantitative Miscellaneous Ratio System Design (System 
States) 

Ease of Decomposition Qualitative System specific Interval/ 
Categorical 

System Design (Interfaces, 

I 
Decomposition) 

Entropy ] -Qu-antitative Randomness Ratio System Design 
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Measurement 
Qualitative / 
Quantitative Category Scale 

Type Potential Applications 

(Requirements) 

External Complexity Quantitative System Specific Ratio System Design (interfaces) 

Goodman's Complexity Qualitative Miscellaneous Categorical System Design (Overall 
Design) 

I Iom complexity Quantitative System Specific Ratio 
Categorical 

System Design 
(Requirements) 

Information Qualitative Randomness Ratio / 
Categorical 

System Design 
(Requirements) 

Information Gain in 
I licrarchically Approximation and 
Scaling 

Quantitative System Specific Ratio System Design 
(Decomposition) 

interface Complexity Quantitative System Specific Ratio System Design (interfaces) 

IntFrTal Complexity Quantitative System Specific Ratio System Design (interfaces) 

Irreducibility Quantitative System Specific Ratio 
Categorical 

System Design 
(Requirements) 

Length of Proof Qualitative Miscellaneous Categorical N/A 

Link Complexity Quantitative System Specific Ratio System Design (interfaces) 

Logical Complexity/Arithmetic 
Hierarchy 

Quantitative System Specific Ratio System Design 
(Decomposition) 

Low Probability Quantitative Miscellaneous Ratio N/A 

Minimum Number of Sub Groups Quantitative System Specific Ratio System Design 
(Decomposition) 

Minimum Size Quantitative Reducibility Ratio System Design 
(Decomposition) 

Mutual Information Quantitative Randomness Ratio System Design 
(Decomposition) 

Network Complexity Quantitative System Specific Ratio System Design (Reducibility) 

Number of Axioms Quantitative System Specific Ratio N/A 

Number of Dimensions Quantitative System Specific Ratio 

System Design, Management 
(Skill Variation, Personnel 
Variation, Interfaces, 
Decomposition, 
Requirements) 

Niýýber of In-equivalent 
Descriptions 

Quantitative System Specific Ratio System Design 
(Requirements) 

Number of Internal R lations Quantitative System Specific Ratio System Design (Interfaces) 

Number of S ing Trees Quantitative System Specific Ratio System Design (Interfaces) 

Number of Variables Quantitative System Specific Ratio 

System Design, Management 
(Skill Variation, Personnel 
Variation, Interfaces, 
Decomposition, 
Requirements) 

Organi isorganised 
Complexity 

Quantitative Randomness Categorical System Design 
(Decomposition) 

Scale Complexity Quantitative System Specific Ratio System Design (Scale, 
Interfaces) 

Shannon information Quantitative Input/Output Ratio System Design 
(Requirements) 

-SI'M-plicity Qualitative Miscellaneous Categorical N/A 

Size Quantitative System Specific Ratio 
System Design, Management 
(Skill Variation, Personnel 
Variation, In erfaces, 
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Measurement 
Qualitative / 
Quantitative Category scale 

Type Potential Applications 

Decomposition) 

socio-Political Complexity Qualitative N/A N/A N/A 

Super System Landscape Quantitative System Specific Ratio System Design (Overall 
Design) 

Variety Quantitative System Specific Ratio System Design (Overall 
Design) 

Kolmogorov Complexity Qualitative Randomness Ratio System Design 
(Requirements) 

Rissancns Minimum Description 
Length (MDL) 

Quantitative Input/Output Ratio System Design 
(Requirements) 

Time and space Computational 
Mcasurcs 

Quantitative 
I 

System Specific 
I 

Ratio 
I 

System Design 
I (Computation) 

Table 37 - Complexity measurement summary and compliance with Industrial uses. 

Reviewing Table 37, there are an abundance of measures applicable to certain aspects 

of the engineering domain, such as system specific measures; however, there are some 

areas that are barely covered at all, for example, reducibility measures. 

The majority of measures are quantitative, and most use a ratio scale, there is a 

substantial use of the categorical scale but still not as significant as the ratio scale. 

There are a small number of qualitative measures, which may be more easily applied 

to the engineering domain under study. 

There are a large number of interfaces, requirements and decomposition applications 

for the measures. Whether they are abstractions or direct applications of those 

measures it has yet to be determined, but this does show that the measures do suit the 

domain and there is sufficient scope to use them in developing a measurement 

structure. 

There are four measures that have no obvious use within the engineering domain 

under study, these are Low Probability (not obvious how this could be applied to 

engineering), Length of Proof (a mathematical measure, systems themselves do have 

proofs), Simplicity (very vague, could potentially be used in a system specific 

manner, but there are other measures that could be applied more easily) and Number 

of Axioms (as simplicity). These do not correspond to any complexity or complexity 

abstraction that could produce useful metrics within the engineering domain. They 

are more relevant to the mathematical domain and their application to industrial 

syste'm is difficult. 
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The measures in the table fit specific categories, however the complexity problem 

within engineering is multi-dimensional and cross category. As Martins (Martin, 

Pierre-Alain J. Y. 2004) measures address the internal, interface, scale, external and 
link complexities (with the exception of his socio-political), these are all complexities 

of the system intricacy and interactions. Martin focuses on the products themselves as 

produced, the internal complexities of those products in terms of scale and 
interactions, and then moving on to interface complexities and socio political 

complexities. However, the focus here is for a system that is already developed, a 

complexity that already exists and that needs quantifying, but what about those 

systems that are not yet produced? And what about those aspects of system 
development that are beyond just the elements and their interfaces? The complexity 

measurement process needs to provide information to business that allow an 

understanding of complexity within the system as the product is under development. 

These multi-dimensional measures must provide information that allows more 

accurate and reasonable estimations of the resource required and the likelihood of 

success and the level of manageability. In order to do that, variety, commonality, and 

understanding of the concepts and classifications within the system need to be 

quantified too. 

Within the measurements that have been explored here, and the questions that have 

been identified, there seems to be a great potential for measurement of system 

complexity using the requirements for that system. As a result of this multi- 
dimensional approach, measures must be selected that cover the questions industry 

wishes to answer. 

Not only does a multi-dimensional approach to complexity provide a basis for 

understanding the nature of the complexity within the system, what causes it and 

where it is within the system, it also provides a tool for the elimination of unnecessary 
induced complexity. It provides various measures that can all be used to get a 

complete picture of the systems' complexity, where it comes from, what triggers it 

and how the approaches to dealing with it will effect it; Do these requirements need to 

be this highly interactive? Are these interactions necessary? Can the interaction be 

reduced without cost to the required functionality? Can more commonality reduce the 

complexity? Is the system hierarchical? Can the system be made more hierarchical? 
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7.3 Measurement Selection 

Before a set of measures can be selected, these measures should answer the questions 
(or at least most of them) that industry needs to answer (see 7.1.1 with justification for 

those questions in 7.1.2). This forms the basis of what these measures will cover in 

order to provide answers for the questions industry needs answering. Taking the 

questions from the previous sections that industry needs answering, the following 

categorisation of measures of complexity was derived. 

9 Requirement Complexity Measures 

e System Decomposition Complexity Measures 

* Interface Complexity Measures 

9 Element Complexity Measures 

* Management Complexity Measures 

The following sections will in turn explore these areas and the relevance and 

appropriateness of complexity measures to industry. 

7.3.1 Requirement Complexity Measures 

There are 13 complexity measures which either have a concept that can be applied in 

an abstract (that is not directly but the idea of the measure can be used to create 

another basic measure for systems) form or directly to engineered systems. Six areas 

were selected as relevant to measuring requirements complexity. 

1. Information Theory Measures; potentially measuring the level of information 

within the requirements set. 

2. Interpretation or In-equivalent Descriptions; potentially measuring the 

variation in the final product from the requirement set description of that 

product. 

3. Irreducibility; potentially measuring how bloated the requirements are. 

4. Logical and Algorithmic Measures; measuring the logic within the 

requirements. 

5. Randomness; potentially measure the level of disorder in the requirement set. 
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6. Number of Variables and Dimensions; potentially measure the different 

aspects covered within the requirements (safety, design, etc. ) 

The following sections investigate the applicability of the measures indentified within 

the literature review (chapter 2) with regard to these areas. When considering 

complexity within requirements the following industry questions were considered: 

9 How small can the requirement set be made without reducing the system? 

o Where arc the critical complexities within the requirements? 

9 How coupled are the requirements? 

4, How large is the potential solution diversity? 

7.3.1.1 Information Theory as a Requirements Complexity Measure 

information theory can show us some of the difficulties which arise when applying 

complexity measures. Shannon (Shannon 1948) and Kolmogorov's (Li 1997) 

measures for information theory (see section 2.7.2) specialise in the complication of 

replication (or compression) of a string output into an algorithm. Within the 

requirements domain there is a tenuous link between this search for structure within 

strings and the search for structure within requirements. However, the application of 

these measures in their pure form is extremely difficult to impossible. There is no 

value in understanding the properties of the strings of characters within a requirement 

set, or how that set can be replicated using an algorithm when trying to understand the 

system. The concept cannot easily be applied in an abstract sense either, and as a 

result these two measures are not going to answer many, if any, of the questions 

outlined above. 

Understanding the potential for reduction, however, is applicable, so measures that 

use a different concept for reduction should be considered ftu-ther. Rissaen's MDL 

(Barron, Rissaen et al. 1998) (see section 2-7.2) is a similar measure, but it places 

emphasis on minimum description length. As an abstract term this fits nicely within 

the requirements domain; it may be sensible to ensure that even when optimised a 

description of the requirements for a system is large, and it has a higher complexity 

than if the optimised description was low. Although the abstraction to the engineering 

world is simple, the application is more difficult - how is it known when the 

requirements are optimised? How much work is required to optimise a large 
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requirement set? One has to question the point of such an exercise - if a requirement 

set has been optimised to reveal the minimum description length in terms of its 

requirements, there is no room for improvement, Rissaen's measure would simply 

measure the complexity, at this point, in requirement document size terms. Size 

already exists as a measure within some companies; as a rough estimation of 

complexity the size of the requirements document (assumed to be optimised 
COSYSMO) is a rough measure of complexity, but a very poor one. Rissaen does 

take this a lot further, as this method would mean coding requirements into a form 

where the system could be optimised, but the effort involved would out way the 

rewards. 

7.3.1.2 Interpretation and In-equivalent Description Measures as 

Requirements Complexity Measures 

Descriptive or interpretive complexity has a strong link with complexity within 

engineering. In requirement terms, the more ways in which a requirement set can be 

interpreted or described in terms of compliant solutions the more complex the process 

to reach the solution due to the level of choice. If this measure is combined with the 

number of in-equivalent descriptions, this becomes a very valid measure of 

complexity within the requirement set, but how can this be applied? The application 

may be easier at a top level within the requirement structure, but the derived 

requirements may actually have a limiting effect on the level of interpretation 

available. A lower level estimation of requirements relating to different system 

elements may be sufficient to get a complexity value. 

7.3-1.3 Irreducibility Measures as Requirements Complexity Measures 

Irreducibility links to Rissaen's MDL measure, and has as very similar output. 

Understanding how reducible the requirements set is requires effort in actually 

reducing it to the minimum description. There is no simple way to theoretically 

calculate the reducibility of a requirement set without actually doing the work, and 

one has to question the need of a reduction prediction if the reduction has to be done 

in order to get the answer anyway. 

Commonality within the requirements, or a high level of commonality allows 

potential reduction in the requirements set. The higher the commonality within the 

requirements set the more reduction is possible. 
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7.3.1.4 Logical and Algorithmic Measures as Requirements Complexity 

Measures 

Logical and algorithmic expressions of complexity have been selected as potential 

measures for complexity within the engineering domain. Again, although the 

principles are good, and there is an application for these principles, the practical 

application to engineering requirements is not obvious. 

Hom complexity is an example of creating a logical model of a system then re- 

ordering or re-writing the logical expressions so they become simpler and expressed 

more effectively (similar to minimisation). It has a direct application to the 

requirements problem, with relevance to all questions above. It may enable an 

understanding of the extent of requirements coupling within design, if there is a heavy 

referral to a system element (sub-system) within the requirement structure, critical 

complexities can be identified, and the effect of requirement changes or additions to 

the system can be understood by the effect the change has on the logical model. 

7.3.1.5 Randomness as a Requirements Complexity Measure 

Entropy is the measure of disorder in a system - the higher the level of disorder and 

randomness in a system, the higher the entropy. The entropy of the number of skill 

sets required and the relationships of these skill sets to the design may have a link to 

the complexity of the system. If these are ordered the entropy will be low, and 

perhaps the complexity of the system lower at least in terms of the design process. 

The order of the inter-relations between different components or variables within a 
design is also a potential entropy measure. The higher the level of disorder within the 

interfaces between elements the higher the complexity of the system, it is however 

important to note that the complexity exhibited may not be within the design, but also 

within the operation of the system, the unordered interactions will take place as the 

system is operating. 

Neither of these applications have a direct bearing on the requirements issue. The 

level of disorder within the requirements is difficult value to calculate, it is also hard 

to define requirements that are ordered and requirements which are not, or sets of 

requirements with no order. The skill set application of entropy is not really a 

measure of order or disorder, but diversity in the requirement structure. This is 
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perhaps where measures of this type should be focused, concentrating on the level of 
diversity and not the level of disorder. 

7.3-1.6 Number of Variables and Dimensions Measures as Requirements 

Complexity Measures 

Number of variables may be a good measure in requirements terms and is similar to 

the number of dimensions within the requirement structure. In relation to 

requirements these may provide some complexity answers, but the question arises 

what are requirement dimensions or variables? 

The variables are perhaps more easily found, contained within the requirements 

themselves as tolerances, the number of variables however may require a large effort 

to ascertain the real value. There are also variables that occur as a result of derived 

requirements, these will need to be accounted for. 

Dimensions are highly subjective, but could be a related to the skill set requirement of 

the system under study or applied to different sub-systems of the complete system. 

There is a large scope for the application of the dimensions to the requirements for 

complexity measurement, which makes this method a morq versatile approach. 

7.3-1.7 Summary of Requirement Complexity Measures 

Although not mentioned as a specific complexity measure in itself, commonality 

should also be included as a measure to provide understanding of the nature of the 

complexity of the requirement set. Table 38 shows the appropriate complexity 

measures selected from the literature review (chapter 2) and their direct applicability 

to the questions outlined. 

Complexity Afea3urement flow small can the Where are the flow coupled are flow large Is the 
requirement set be critical the requirements? potential solution 
made without Complexities within diversity? 
reducing the the requirements? 
system? 

flora Complexity X X 

Number of Variables X 

Nu;; g-r of Dimensions X X 

Number of In-Equivalent X 
Descriptions 

Descriptive/Interpretive X 
Complexity 

commonality 

Table 38 - Requirement complexity measures against requirement question criteria. 
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7.3.2 System Decomposition Complexity Measures 

There are 6 complexity measures which either have a concept that can be applied or 

can be directly applied to engineered systems. Four areas were selected as relevant to 

measuring decomposition complexity. 

1. Number of Dimensions and Variables; measuring the number of different 

dimensions or disciplines covered within the systems. 

2. Element and Interface Complexity Measurement; measuring the intricacy 

between elements, and the elements themselves. 

3. Decomposition Measures; measuring the ease of which the system can be 

decomposed, or broken down. 

4. Commonality Measures; measuring the level of commonality which may or 

may not reduce complexity within the system. 

In terms of complexity within the decomposition of systems, industry has a number of 

different perspectives to consider. The product or system development programme, 

which has many different stages requiring knowledge of how different decomposition 

strategies will affect the complexity of the output. The product system in terms of the 

supply chains that support or create it and the manufacture processes. Different 

decomposition strategies will probably suit different stages of the system lifecycle, it 

is important for industry to keep the complexity caused be the decomposition to a 

minimum for all stages. The questions that need to be answered are: 

* What is the optimum split of a system in terms of sub-systems? 

* What is the optimum split of a system in terms of supply chain? 

What is the optimum split of a system in terms of manufacture? 

e What is the optimum split in terms of the overall development and operation? 

'Mere are several measures that have abstractions that can be applied to the system 

decomposition area; however, some are more applicable than others. The following 

sections examine the various complexity measures and their appropriateness to system 

dccomposition. 
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7.3.2.1 Number of Dimensions and Variables as Decomposition 

Complexity Measures 

The number of dimensions and variables within the decomposition problem provides 

some scope for measurement. The dimension approach could be provided to test the 

number of skill set dimensions required for each sub-system decomposed for example 
(which is essentially the NSI measure), and the variable number could provide a limit 

in terms of what is manageable per sub-system decomposed (this could be expanded 

to include the required resource level which links with the PIA measure). In either 

case the higher the dimension or variable number per sub-system the more likely it is 

that the sub-systems will have a high complexity. The overall average could provide 

a measure of complexity within the entire system. 

7.3.2.2 Element and Interface as Decomposition Complexity Measures 

Martin's measurement set (interface, external, internal, link and socio-political 

complexity) is specific as it tackles the internal complexities within systems in terms 

of their decomposition. Martin created internal, external and interface complexity 

measures that could be applied to the chosen decomposition. Again these provide a 

method of comparing complexities across different system decomposition structures. 

7.3.2.3 Decomposition Measures as Decomposition Complexity Measures 

The ease of decomposition although as the title would suggest directly applicable, is 

not strictly a measure but an aid when developing products. In itself does not help in 

answering the questions that industry wishes to answer relating to system 

decomposition. However linked with scaling this becomes an important factor, 

depending on the scaling or information hierarchy chosen by the developer when 

measuring the complexity of the level of detail of the elements represented in the 

model will change, but the axioms of those components will remain the same. 

7.3.2.4 Commonality as Decomposition Complexity Measures 

Mutual information as a principle has an obvious application to system 

decomposition. It may be that with a specific sub-system split the complexity level is 

high, but changing the decomposition structure rather than the system itself may 

reduce the complexity. This in particular applies to the final question above, industry 

is interested in the mutual information that exists between all the areas of design, and 
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how the decomposition split between sub-systems affects the complexity of the 

manufacture. The complexity measure the mutual information concept offers over the 

whole spectrum is of great interest for industry when developing its systems. This 
implies that complexity should be measured independently for different aspects in 
design. Measures should exist that are domain specific within design, and the mutual 
information between them studied in order to optimise the decomposition early. 

7.3.2.5 Summary of Decomposition Complexity Measures 

Table 39 shows the appropriate complexity measures and their direct applicability to 

the questions outlined. 

complexity What is the optimum What Is the optimum What is the optimum What Is the optimum 
Measurement split or a system in split of a system in split or a system In split In terms of the 

terms of sub-systcms? terms of supply terms of overall development 
chain? manufacture? and operation? 

information X X X 
Gain In 
Ilierarchically 
Approximation 
and Scaling 

Martins X 
Measurement 
set 

Nfutual X X X X 
Information 

Number of X X X X 
Dimensions 

Number of X X X X 
Variables 

Table 39 - Decomposition complexity measures against decomposition question criteria. 

7.3.3 Interface Complexity Measures 

There are 9 complexity measures which either have a concept that can be applied or 

can be directly applied to engineered systems. Four areas were selected as relevant to 

measuring interface complexity. 

Interface Complexity; the complexities regarding the interfaces within the 

system. 

2. Connectivity Measures; the connectivity of the interfaces within the system 

and how it can be measured. 

3. Dimensions; the number of different dimensions to the interfaces (types, 

matter, etc. ) 

4. Size; the size of the system. 
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When developing systems, industry must consider the interactions within the design. 

'Mese form the basis for a large number of definitions of complexity which have been 

explored elsewhere, one of which is quite prudent is the Evans' definition of 

complexity, which centres on the interactions being the cause of the intrinsic 

complexity within systems. 

Industry must be able to control or measure the level of interaction within the systems 

they create in order to maintain control over the design or have confidence in the 

system functionality. 

e What is the number of interactions within the system? 

* Where are the concentrations of those interactions? 

e What is the level of coupling within the system? 

e How will interface changes affect the system? 

9 How complex are the information flows within the system? 

Tle following sections examine the various complexity measures as measures to 

measure interface complexities in systems. 

7.3-3.1 Interface Complexity Measures as an Interface Complexity 

Measure 

Martin's measures are an obvious match for this specific area of complexity within 

systems. The details around the measurement system Martin devised are aimed 

directly at quantifying the complexity within the system itself (link complexity, 

interface complexity, scale complexity, etc. ). The measure as it stands can be directly 

applied to a system to estimate the complexity level, and from a breakdown of the 

measure the questions surrounding interaction number and concentration can be 

answered. 

Although Martin aims to understand complexity from a design point of view, his 

method completely ignores issues that surround information flow within systems. 

Ile number of spanning trees within systems is also a measure of complexity, an 

understanding of the paths information can take and an understanding of the interface 

layout can provide Ruther information. Senge (1994) referred to information paths as 

detail or dynamic complexity for systems with hierarchical only and both lateral and 
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hierarchical interfaces. This can further be expanded upon to include systems where 
the interface structure changes over time; this too is ignored by Martin in his 

measurement scheme. 

7.3.3.2 Connectivity Complexity Measures as an Interface Complexity 

Measure 

Connectivity, internal relations and interdependencies between factors are measuring 

practically the same thing. However, connectivity measures are more quantiriable, as 
they are related to actual interfaces rather than interacting factors which have a degree 

of subjectivity associated with them. The IBDF and internal relations measures are 

subject to interpretation of interacting elements within the system, whatever they may 
be, so semantics would need identifying which define clearly these 'interacting 

factors'. 

There are other methods or measures that are not found within the literature that may 

need addressing for interfaces within design when considering the connectivity or 

perhaps the style of interfacing, be it hierarchical or non-hierarchical. For this 

spanning trees and perhaps a measure that analyses the nature of the system 
interfaces, making a distinction between detail and dynamic complexities within the 

system and quantifying that in some manner. 

7.3-3.3 The Number of Dimensions and Variables as an Interface 
Complexity Measure 

The number of dimensions and variables always have an application to measurement; 

there is always a variable that needs measurement, and a dimension to the problem. 
In this problem there are potentially many different interpretations as to what a 
dimension exactly is in interface terms, dimensions to the interface problem could be 

coupling, connectivity or interface strength to name some examples. Variables within 
interface complexity measurement consist of much of the same, and again are 

applicable to all measurement as you are measuring a variable. The variables within 
interface measurement may be number of interfaces, size of vocabulary (Martin, 

Pierre-Alain J. Y. 2004), interface strength, information pathways, and so on. The 

variables and dimensions can be used to create other measures, but alone they are not 

suitable measurements for interface complexity. 
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7.33.4 Size as an Interface Complexity Measure 

Size related to system interfaces are loosely linked with complexity in the system 
design. Unfortunately there is not a direct correlation with complexity within system 
interfaces and the size of the system. There are examples of systems that are massive 
in size but which, overall, exhibit a very low intrinsic complexity, although they can 

exhibit emergent properties (Kauffman, Game of Life). There may be a point at 

which size within interface design will increase the complexity (where the modelling 

or understanding of a system is hindered by its size) of a system but the link is 

tenuous. 

7.3-3.5 Summary of Interface Complexity Measures 

Additional measures that should be considered also are commonality measures 
between interfaces, and also measures that help define the structure, these measures 

are included as: 

Commonality - The level of commonality within the system interfaces. 

System Interface Nature -A measure that determines the nature of the connectivity, 

be it detail or dynamic complexity (see section 2.6). 

Table 40 shows the appropriate complexity measures and their direct applicability to 

the questions outlined. 

Complexity What Is the Where are the What Is the level flow will flow complex 
Afessurement number of concentrations or orcoupiing Interface arethe 

Interactions those Interactions? within the changes affect Information 

within the system? the system? flows within 
system? the system? 

connectivity X X X 

Martins X X X 

Afeasurement Set 

Numberof X 

internal Relations 

Number of X 

Spanning Trees 

Commonality X X 

System Interface X X 

Nature 

Table 40 - Interface complexity measures against interface question criteria. 
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7.3.4 Element Complexity Measures 

There are 6 complexity measures which either have a concept that can be applied or 
can be directly applied to engineered systems. Three areas were selected as relevant 
to measuring element complexity. 

1. Dimensions and Variables; the variation within the different element types. 

2. Size; the size of the system and how the element number or size may affect the 

system. 

3. Variety; a look at the commonality and variation within the system as a 

complexity measure. 

When developing systems in engineering, both interfacing and the elements within the 

system need to be understood. When considering measures that can be applied to 

elements within systems, the questions industry wish to answer must be understood. 

* What is the level of commonality within the system? 

What are the functions of the elements? 

What is the spread of functionality (which elements do what functions and 

where) within the elements of the system? 

9 How large is the system? 

The following sections examine the various complexity measures as measures to 

measure element complexities in systems. 

7.3.4.1 Dimensions and Variables as Element Complexity Measures 

Dimensions and variables have a very abstract connection to element complexity, 

functionality, size and functionality spread. Although dimensions and variables could 

very vaguely represent different functionalities, it would perhaps be more difficult to 

include these as measures than it would be to create dedicated measures for that 

specific purpose. 

7.3.4.2 Size as an Element Complexity Measure 

Size of the system is obviously of interest to industry and the simple application of a 

size measure would help in determining spreads. Element counts would form a good 

size measure for a system (which will not be further decomposed), and perhaps sub- 
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systems sizes for systems that can and will benefit from further decomposition a sub- 

system size based on the number of elements contained within that sub-system would 

be one method or one dimension to the complexity view. 

7.3.4.3 Variety as an Element Complexity Measure 

I'lie variety within the system is key when considering element functionality and the 

spread of that functionality within the system. Commonality between elements within 

sub-systems, and systems as a whole generally imply that the engineering process is 

simpler, or that other processes that support the system in operation (maintenance, and 

failure analysis as key examples) will become smoother. 

Ile spread of the variety within the system is important, sub-systems with high levels 

of variety (low commonality) will invariably be more complex that those with very 
little. 

73.4.4 Summary of Element Complexity Measures 

The available complexity measures fail to address some of the key questions that 

industry will need to answer. Elements which take in a series of different interface 

types, and so some work or processing and complex actions, are invariably more 

complex than those that do not. Elements such as pumps for example have electrical 
inputs (power and signal) and physical inputs (fluid), but the interfaces are very 

simplistic. Computer systems may have various data inputs, signal outputs, power 
inputs and more, these in invariably more complex elements and the element 

interfaces reflect this. From a system level, at perhaps a higher level of 

decomposition, an aircraft fuel management system may be fluid inputs, values, data 

buses, power, hydraulics, compressed air and more, and the variation and number of 
different interfaces to this element, are a good indicator of the complexity within that 

element. This is not really included in the complexity measures that are outlined 

above, but should be to indicate element complexity in functionality terms, this will 

be called Element Functionality Complexity. 
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Table 42 shows the appropriate complexity measures and their direct applicability to 
the questions outlined. 

Complexity 

hicasurement 

What Is the level of 
commonality within 
the system? 

What are the 
functions of the 
elements? 

What is the spread of 
functionality within the 
elements of the system? 

Dimensions X 

Variables X 

Size X 

Variety X 

Commonality X X 

Element 
Functionality 
Complexity 

X 

Table 41 - Element complexity measures against element question criteria. 

7.3.5 Management Complexity Measures 

There are 7 complexity measures which either have a concept that can be applied or 

can be directly applied to engineered systems. Three areas were selected as relevant 

to measuring management complexity. 

1. Variety - the variety within the skills and work packages. 

2. Organisation and Knowledge - the knowledge and skill complexities. 

Size - the size of the project and organisation. 

As with all development programmes, there are management concerns, and 

management activities can lead to additional complexities within the system designs. 

Within management the key element is to minimise the resource requirement whilst 

ensuring that the complexity level of the system is kept at a manageable level. A 

management complexity measure should aim to answer the following questions: 

ip How can the resource required by the development process be minimised? 

e How can the complexity of the organisation be minimised? 

* How can the complexity of the product be minimised? 

9 Is the organisational capability capable of delivering the system? 

Typically larger organisations are more difficult to manage than smaller ones, not 

only do development organisations contain engineering resources, but supply chain 

resources, support resources, training resources and operational resources. When 
Complexity Characteristics and Measurement within Engineering Systems 

Craig Read Pagc 220 12111/2008 



Complexity Characteristics and Measurement within Engineering Systems 

developing large scale complex systems the complexity can emerge from any one of 

these aspects of the product lifecycle, exist across some or be found within all of 

them. The following sections examine various complexity measures and their 

appropriateness for management complexity measures. 

7.3.5.1 Variety as a Management Complexity Measure 

The variety within the skill base has a potential link to the complexity within the 

system; generally those systems with high diversity in terms of skill requirements arc 

more complex and interactive than those which are not. Interactions between 

engineering disciplines need careful systems engineering, the higher the diversity in 

the disciplines the more interaction between disciplines needs control. The NSI 

measure attempts to quantify this qualitatively, assessing the diversity in the skill set 

required to produce a system. NSI may need extension to include how the skill sets 

change throughout the lifecycle of the product, the initial diversity may be large but, 

there may not be a consistency between life cycle stages. In order to understand the 

complexity within the organisation, engineering discipline interactions need to be 

understood as interfaces within the organisation. 

7.3.5.2 Organisation and Knowledge as a Management Complexity 

Measure 

Cognitive complexity is a very useful measure when understanding the nature of your 

workforce. It does not however provide any useful data in terms of the product 

complexity of the system under development. Tools that provide a detailed 

understanding of the workforce skill set are already in use today, BAE SYSTEMS for 

example use EDY (Engineering Developing You) and PDY (Project management 

Developing You) tools to establish the capability that is available. This area of 

measurement steers towards the concept of organisational competency. 

73-5.3 Size as a Management Complexity Measure 

Size can be a factor when considering complexity within development organisations, 

the size of the developing organisations have increased with larger supplier bases and 

diversity. The PIA measure supplies this information in terms of the detailed design, 

assessing the size of the resource required to conduct this activity. Extending this to 

cover the size of the resource in different areas of product development such as 
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manufacture, design, testing, operation and training provides an insight into the 

difficulty of designing and managing an organisation capability that can deliver this. 

7.3.5.4 Summary of Management Complexity Measures 

Table 42 shows the appropriate complexity measures and their direct applicability to 

the questions outlined. 

Complexity flow can the resource flow can the flow can the Is the organisational 
required by the complexity of the complexity of the capability capable of 

Measurement development process organissition be productbe delivering the 
be minimised minimiscd? minimised? system? 

NSI - Number of X X X X 
SLilis involved 

pIA - Persons X X X X 
involved In Analysis 
(Size) 

cognitive X 
complexity 
(competency) 

Table 42 - Management complexity measures against management question criteria. 
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7.4 Cross Comparison of Complexity Measures 

Table 43 shows the cross comparison of the complexity measures selected 11or 

requirements, decomposition, interfaces and management areas. There is a large 

amount of overlap and a proportion of the measures are redundant and provide little 

benefit. Those measures that are redundant are given a red text and are not pursued 
further within this thesis. 

Requirement Complexity 
Measures 

System 
Decomposition 
Complexity 
Measures 

Interface Complexity 
Measures 

Element 
Complexity 
Measures 

Management 
Complexity Measures 

\1V. oI1IhnII,: 1111"Illmlloll HIM - Interdependencies Dlnlcllýloll, NSI - Number of Skills 
C olliplexit) Diffct-cm Involved 

Bennett', 'I "Vical 0q)III, Information Gain in PIA - Persons Involved 
Hierarchically Connectivity Size in Analysis (Size) 

Commonality Approximation and Ir I, I\ 
Scaling Cognitive Complexity 

Descriptive/interpretative 
complexity M i Martins Measurement Set Commonality (Competency) 

art ns 

I wrol, \ 
Measurement Set Element 

Functionality 
Horn Complexity Mutual Information Number of Internal Complexity 

Number of 
Relations 

Dimensions Number of Spanning 

Number of Variables Trees 

Number of Dimensions 
'llwifle, 

Number of In-cquivalent 
Descriptions 

Commonality 
Number of Variables 

System Interface Nature 
'ýhwmofl IlIfOrl"Llt"'11 

KoImOgOrOv COmPlc\it\ 

Rissanens Minimum 

Des, criplion I ell-'III (\1DI 

Table 43 - Comparison table of complexity measures. 

There is obviously some commonality between the measures that have been selected, 

this commonality needs to be looked at to ensure that the measures are independent 

and they are in fact measuring different complexities within the systems engineering 

exercise. 
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Table 44 is a comparison of the measures in terms of their versatility across the 
overall complexity measurement scope, the X marks are placed where the measure 
has a direct application. 

Complexity Measurement Applicability to Different Measurement Stages 

Requirement System Interface Element Management 
Complexity Decomposition Complexity Complexity Complexity 

Complexity 

Cognitive Complexity X 
(Competency) 

Connectivity X 

Commonality X X X 

Descriptive/Interpretative X 
Complexity 

Horn Complexity X 

Element Functionality 
Complexity 

Information Gain in X 
Ifierarcbically 
Approximation and 
Scaling 

Martins Measurement Set X 

Mutual Information X 

NSI Number of Skills 
Involved 

Number of Dimensions X 

No ber of In-equivalent 
Descriptions 

Number of Internal X 
Relations 

Number of Spinning X 
Trees 

Number of Variables 

pIA - Persons Involved In X 
Analysis (Size) 

System interface Nature 

Table 44 - Complexity measure to application mapping. 

Ile results do show that the majority of the measures have only one main application. 
There are of course some exceptions to this, and these are: 

Commonality - Useftil when considering the level of variety in a system and 
that can exist within requirements, elements and links. 

Martin's Measurement Set - Useful in both decomposition and interface 

complexities as it is a measure of system design complexity. 
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Number of Dimensions - There is a possibility that dimensions could be 

applied to every application, but this has been limited to just requirement and 
decomposition stages due to its easier application. 

* Number of Variables - Like dimensions, potentially variables are applicable to 

all applications (variables are the measured item after all) but in terms of 

complexity measurement again they have been limited to requirement and 
decomposition complexities. 

There are fewer management and interface measures than for decomposition and 

requirement complexities, but this measurement set can be expanded later on to 

include derivations of measures or include new ones. For now the set has the higher 

focus in areas of systems engineering that are perhaps more critical when handling 

complexity in design. 

The refined measures above require allocation and exploration within the systems 

engineering field. Problem case studies of complex system development programmes 

need to be carried out to test the measurement applications that have been suggested 

here. The relationships between the measures, solutions, problems and approaches 

will form the complexity understanding for the thesis. 

There is room for expansion in the detailed applicability of the measures to the 

industrial domain and their feasibility. Without this, understanding what can be 

gained from the measures and from which lifecycle stage they can be applied is 

difficult. 'Mose measures with defined relationships from the industrial examples 

should be expanded to include instructions of application: 

What they measure 

9 How to measure it 

* How to interpret the result 

What the limitations of the measure are 

With this information, industry has a better understanding of how complexity 

measures fit within their problems, development stages and how they can be applied 

effectively with a correct interpretation and understanding of the limitations. 
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7.5 Tuming Selected Measures into Useful Measures 
The measures selected above need to be applied to engineering systems to be of any 

use to industry. Some of the measures selected can not be easily calculated with the 
data available from engineering systems; interface details, element details, system 
functional diagrams, information flow. Consequently the down selected measures 

must be assessed in terms of the practicality of their application. In some cases 

concepts taken from the measures that were down selected may be applied rather than 

attempt a difficult direct application of the measure. 

The following sections detail the assessment of practicality of the measures down 

selected for application within the complexity analysis tool. 

7.5-1 Measures Selected 

The measures down selected must be mapped against data that can be collected from 

the engineering programmes. Table 45 shows the down selected measures from Table 

43, and analyses the difficulties in their application to systems. 

Complexity Ease of Application Comments 
t , %leasuremen Good Bad 

Cognitive DMpleli X It would be difficult to calculate a combined cognitive complexity for 
(Competency) everyone working on a project, due to the project size and the number of 

people working on that projecL 

connectivity X Connectivity of the system could be applied easily, as elements and their 
interfaces are well documented in engineering programmes. 

Co onalitY X Commonality within systems can be easily applied as cornmon components 
or components that have a similar function can be easily identified within the 
system from documentation. 

D riptive/ X Descriptive and interpretative complexity is difficult to calculate, there is no 
Interpretative set method of calculation using data. A qualitative measure at best and 
Complexity application is limited. This requires the measurement of the number of 

requirements and potential solutions to those requirements. 

Ilorn Complexity X Similar to descriptive complexity, it is hard to measure horn complexity 
within systems. Ile only measure that would be appropriate would be the 
number of requirements required to describe the system. Ile application is 
difficult and the benefit from the measure is also limited. 

Element X Easily applied to systems, as a clear understanding of element functionality is 
Functionality known. 

Complexity 

information UA-in -1n X Can be applied to systems, by changing the level of abstraction in the system 
flierarebicallY and analysing the complexity for both levels in the same manncr with a 
Approximation and comparison between the two. 
Scaling 

SlJJrtIO3 X Can be applied to systems and already has been applied. 
Slessurement Set 

Stu I information X Difficult to apply to systems as measuring the level of random behaviour 
within a system. In engineering systems, random behaviour is usually a 
problem, as a result it is minimised. The abstract of the measure may be used 
to understand how different grouping of sub-system components and 
interfaces changes overall system complexity. 
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Complexity Ease of Application Comments 
M asurement e Good Bad 

NSI - Number of X ne number of different skills of the members of a team working on a 
SLills involved programme should be found within the organisational structure charts for that 

programme. 

Number of X The numbcr of dimensions within projects is vague. Dimensions may be 
Dimensions elements, commonality, intcrfaccs, etc. These are calculated by other 

measures within the set and this is thcrefore redundant. 

Number of In- X Similar to descriptive / interpretative and horn complexity, without finding 
equivalent every possible method of describing a system using requirements, this 
Descriptions measure cannot be calculated. In large scale systems consisting of 10,000 or 

more requirements the time taken to calculate the potcnfial outputs from that 
requirements document would be large. 

Number of Internal X The number of internal relationships should be found within the systems 
Relations interface specifications. 

Number of Spanning X Spanning trees can be applied to systems using the interface data and 
Trees functional flow diagrams for the information that passes along those 

interfaces. 

Number of Variables X Easily measured in systems, in particular within design problems such as 
optimisations. 

PIA - Persons X The personnel working on a project is generally known within engineering 
involved In Analysis programmes. This information should be obtainable and the measure should 
(Size) be calculated easily. 

System Interface X The nature of the system interfaces can be found within the system interface 
Nature specifications. 

Table 45 - Analysis of measure application difficulty. 

Table 45 shows the down selected complexity measures and their ease of use against 

potential sources of information within engineering programmes that could be used to 

calculate them. In addition it was also recognised that there may be problems in 

collecting data to provide input for these measures, therefore the first set of case study 

measures were derived using the principles from this measurement set. 

7.5.2 Derivation of Measure Set for Case Study Exploration 

Measures or a measurement set needs development from the measures that are useful 

to industry as they answer questions about complexity in systems or provide some 

quantification of complexity characteristics. T'he measures that are appropriate and 

that are practically applicable to engineering systems were applied, and if not directly 

applicable an abstraction was made. 

Ile measurement sets have been divided up into those measures that are appropriate 

to sub-systems, and those measures that are appropriate to the interf" aces between 

those sub-systems, and are shown within the following two tables. In each case a 

description of the measure is outlined and the applicability or relationships to those 

measures outlined above are shown. 
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Table 46 shows those complexity measures (within the CCCS) that are applicable to 

the overall system and the sub-systems contained within it which have been derived 

from the down selection of measures within the previous section. The first column 

shows the name of the derived measure calculated for the case studies, the second 

column shows the description of that measure. The final column shows the measures 

within the CCCS currently, that have been used as a concept to derive the measure 

within column one. 
Calculated Description The Sleasure or Measure Concept Used 
hitik3ures 

Connectivity Ile number of elements that are connected Connectivity, Information Gain in Hierarchically 
Multi regardless of the direction of travel of the 

information, matter or energy. That is if A and 
Approximation and Scaling, Martins Measurement Set 

B arc connected and A passes information to Number of Internal Relations, Number of Spanning Trees, 
13, a connection exists in the model between A System Interface Nature 
and B, and is counted as a connection for both 
elements. 

Connectivity The number of connections between elements 
Single but taken from a directional view, i. e. there is 

a connection in which information from A is 
passed to B, this will be a single connection 
from A to B and only counted within A. 

Connectivity The percentage of the total possible 
Single % connections between elements. 

LinkNumber The total number of links within the sub- 
system or system being analysed 

Link The total number of links within the sub- 
Complexity system or system multiplied by the link 

complexity factor allocated. 

Number of Link Ile number of different link types within the Commonality, System Interface Nature 
Types system or sub-system. 

ement 

r 

The number of elements within the system or Commonality, Element Functionality Complexity, Information 
Number sub-system. Gain in Hierarchically Approximation and Scaling, Martins 

Element I he number of elements within the system or Measurement Set 
Complexity sub-systcm multiplied by the complexity type 

for those elemcnM 

Number Of The number of different element types within 
Element Types a system or sub-systcm. 

Skill Number The number of different skills within the Commonality, NSI - Number of Skills Involved 
organisational body developing the system. 

supplier Total The number of suppliers within the Commonality 
organisational body developing the system. 

persoi-ncl Total The number of personnel in total working on Commonality, PIA - Persons Involved in Analysis (Size) 
the system within that company. 

Commonality The number of link duplication within the Connectivity, Commonality, Information Gain in 
Links system. Hierarchically Approximation and Scaling, Martins 

Commonality The number of link type duplication within the Measurement Set, Number of Internal Relations, Number of 
tAnkTypes system. Spanning Trees, System Interface Nature 

Commonality ' mm ' The number of element duplication within the Commonality, Element Functionality Complexity, Information 
Elements "e system. Gain in Hierarchically Approximation and SeWing, Martins 

Measurement Set 
Commonality I The number of element type duplication 
Element Types at T within the system. 
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Calculated Description The Measure or hicasure Concept Used 
Measures 

Commonality The number of skill duplication within the Commonality. NSI - Number of Skills Involved 
Skills development organisation for the system. 

Commonality The number of mutual suppliers within the Commonality 
Suppliers development organisation for the system. 

Commonality The number of personnel that are shared Commonality, PIA - Persons Involved in Analysis (Sim) 
Personocl between sub-systcms. I 

Table 46 - Model calculated measures for complexity model sub-systems/systems. 

Table 47 shows those measures that were derived for the system interfaces. 

Calculated Description The Measure or Measure Concept Used 
Measures 

Connectivity The connectivity between the two sub-systcms Connectivity, Information Gain in I licrarchically 
as a function of what is passed between them 
and the number of nodes within each sub- 

Approximation and Scaling, Martins Measurement Set 

system. Direction of travel of the interface is Number of Internal Relations, Number of Spanning Trees, 
ignored. System Interface Nature 

Conn "tj ty % The connectivity between the two sub-systems 
as a function of what is passed between them 
and the number of nodes within each sub- 
system as a percentage of the maximum 
number of connections that could exist 
Direction of travel is ignored. 

Connectivity % The connectivity between the two sub-systems 
Directions] as a function of what is passed between them 

and the number of nodes within each sub- 
system as a percentage of the maximum 
number of connections that could exist. 
Direction of the interface is taken into account. 

1jokNumber Ibc number of links between the sub-systcms. 

lJok The number of links multiplied by the link 
complexity factor for those links between the sub-systems. 

Number of Link We- number of link types between the sub- Commonality, System Interface Nature 
Types systems. 

Commonality The number of mutual link types between the Eo-nncctivity, Commonality, Information Gain in 
jjnk Types sub-systems. Hierarchically Approximation and Scaling, Martins 

Commonality The number of mutual links between the sub- Measurement Sct, Number of Internal Relations, Number of 
11joks systems. Spanning Trees, System Interface Nature 

fable 47 - Mooel calcuiatea measures ior compiexity moclel interlaces. 

T'hese measures will be applied to a system within the complexity analysis tool and 

used to determine the nature of the complexity of a system in terms of complexity 

characteristics and their quantities. 
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Table 48 and Table 49 show the links each complexity measurement derived has with 
aspects of the CAR The CAF shows that measures may link to concepts or 
classifications and to definitions of complexity. 

Calculated Description Links within the Complexity Framework 
Measures 

Connectivity The number of elements that are connected Definitions; Intrinsic Complexity, Intricacy, Coupling. 
Multi regardless of the direction of travel of the Difficult to Predict or Model, Size (the higher the level of information, matter or energy. That is if A and connectivity, the more coupling is likely between elements, 13 arc connected and A passes information to and depending on the intrinsic complexities of the interfaces, 

B, a connection exists in the model between A the harder it is to produce an accurate model) 
and B, and is counted as a connection for both 
elements. Classifications: I licrarchical, Non-I licrarchical (those systems 

that have very high levels of connectivity will more than 
Connectivity The number of connections between elements , likely exhibit non-hicrarchical structures, these arc generally 
Single but taken from a directional view, i. e. there is more complex than hierarchical structures). 

a connection in which information from A is 
passed to B, this will be a single connection 
from A to B and only counted within A. 

connectivity The percentage of the total possible 
Single % connections between elements. 

UnkNumber The total number of links within the sub- 
system or system being analysed 

Link The total number of links within the sub- 
Complexity system or system multiplied by the link 

complexity factor allocated. 

Number of Link The number of different link types within the 
Types system or sub-systcm. 

Element The number of elements within the system or 5efinitions; Intrinsic Complexity, Variety, Difficult to Predict 
Number sub-system. or Model, Size (the higher the number of elements and the 

- variety within those elements l ith hi h i i i 
Element The number of elements within the system or ,a ong w g er ntr ns c 

complexities, the more difficult the system is to model and complexity sub-system multiplied by the complexity type predict) for those elements. 
- Classifications- Hierarchical Non-Ilicrarchical (i f ti 

Number Of 'Me number of different element types within , , n orma on 
flows from and to elements depend on the capabilities of that 

Element Types a system or sub-system. element and so have an effect on the overall system structure) 

Skill Number The number of different skills within the Definitions; Variety (the variety within skills people and 
organisational body developing the system. suppliers has an effect on overall system complexity. The 

more variet the more difficult th d d 
Supplýier-Totzl The number of suppliers within the y, e system to un erstan ). 

organisational body developing the system. Classifications: No link. 

Personnel Total The number of personnel in total working on 
the system within that company. 

Commonality The number of link duplication within the 
Links system. 

commonality The number of link type duplication within the 
Unk Types system. 

Commonality The number of element duplication within the 
Elements system. 

Commonality The number of element type duplication 
Element Types within the system. 

Commonality The number of skill duplication within the 
SLills development Organisation for the system. 

Commonality ers within the The number of mutual suppliers 
Suppliers development organisation for the system. 

commonality The number of personnel that are shared 
Personnel between sub-systems. 

Table 48 - Calculated measures for overall system and sub-systems and their links to the 
Complexity Framework. 
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Calculated Description Links within the Compitilty Franitwork 
Measures 

Connectivity The connectivity between the two sub-systcms Definitions; Intrinsic Complexity, Intricacy, Coupling, 
as a function of what is passed between them Difficult to Predict or Model. Size (the higher the level of 
and the number of nodes within each sub- connectivity, the more coupling is likely between elements, 
system. Direction of travel of the interface is and depending on the intrinsic complexities of the interfaces, 
ignored. the harder it is to produce an accurate modcl) 

Connectivity % The connectivity between the two sub-systems Classifications: I licrarchical, Non-I licrarchical (those systems 
as a function of what is passed between them that have very high levels of connectivity, will more than 
and the number of nodes within each sub- likely exhibit non-hierarchical structures, these are gcncrally 
system as a percentage of the maximum more complex than hierarchical structures). 
number of connections that could exist. 
Direction of travel is ignored. 

Connectivity % The connectivity between the two sub-systems 
Directional as a ftinction of what is passed between them 

and the number of nodes within each sub- 
system as a percentage of the maximum 
number of connections that could exist. 
Direction of the interface is taken into account. 

Link Number The number of links between the sub-systcms. 

Link The number of links multiplied by the link 
complexity factor for those links between the sub-systems. 

Number of Link Ile number of link types between the sub- 
Types systems. 

commonality The number of mutual link types between the Definitions; Variety (the variety within skills people and 
Link Types sub-systcms. suppliers has an effect on overall system complexity. The 

more variety the more difficult the system to undcrstand) 
commonality The number of mutual I inks between the sub- , . 
Links systems. Classifications: No link. 

Table 49 - Calculated measures for system interfaces and their links to the Complexity 

Framework. 

The tables above show how the measures relate back to the links to the CCCS 

attributes, using the links between those attributes within the CAF. 

7.6 Conclusion 

After an extensive look at complexity measures, their attributes and relevance to 

complexity characteristics (that when quantified help understand complexity within 
developing or developed systems) it is clear that some measures are more appropriate 

than others. It is also clear than no one measure of complexity is good enough, and a 

combination of measures is required in order to provide a comprehensive 

understanding of the complexity that exists within the system. 

Complexity cannot be measured in a manner that is meaningful if the measures are 

composites, in the same way that a rectangle's area cannot tell you its height and 

width; however, in order to understand how that rectangle fits within two dimensional 

space those two values are vital. Complexity is similar - connectivity alone is not 

enough to understand the system without knowing the complexity of the links, 

complexity of elements within the system is subject to commonality and maturity. As 
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a result a series of measures that span different aspects of the product, such as the 

connectivity, the commonality, the number people on the programme, the diversity as 

a whole help to understand the complexity characteristics of that system. But the real 

knowledge of the system is not just from the measures, but from the understanding of 

their links and relationships. 
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Figure 37 - The layout of the work and the thesis outputs roadmap. 

As the roadmap within Figure 39 shows, measures have been identified that could be 

of use within engineering systems, and appropriate measures derived from these that 

can more easily take advantage of the data that is available within industry 

development programmes. These measures are able to provide a comprehensive view 

of the systems complexity characteristics. These measures when added to an analysis 
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tool provide industry with the ability to understand their system in terms of 

complexity characteristics and also with the links within the complexity matrix 

understand the potential problems that may arise within their system. 
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8 Industrial Case Study Data and the Complexity 

Measurement Tool 

This chapter takes the information regarding complexity issues and their mappings to 

complexity characteristics in chapters 4 and 5, and then using the measures that are 

usefulfrom chapter 7 creates an analysis toolfor analysing complexity in systems 

(including the sub-systems and interfaces)' 

8.1 Introduction 

This chapter tests the derived measures (chapter 7) within a measurement tool using 

three new case studies. New case studies were necessary as the data required to 

populate the measurement tool was not easily obtained from those used to further 

understand problems in industry. These new case studies are outlined (see section 

8.2) and the data collected from them also outlined along with collection techniques. 

The data collected was then entered within an analysis tool. The details of the 

analysis tool regarding the inputs, how the tool is constructed, what the tool measures, 

how it is measured, and the tool outputs are found within section 8.3. 

8.2 Industrial Case Studies Introduction 

Three systems were analysed and data extracted from them to populate the analysis 

tool. 

e Naval Command System Trainer -A training system consisting of a 

configurable number of terminals that interact with real navy command 

systems to improve realism. 

* Naval Command System -A command system for navy ships, consisting of 

configurable workstations. 

* Aircraft Fuel System Test Rig -A fuel pumping test rig consisting of pumps, 

sensors, pipe work, tanks and electronic interfaces with a computer controller. 

The background details for the case studies in turn can be found below. 
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8.2.1 Naval Command System Trainer (NCST) 

A training system for naval systems consisting of a number of training workstations 
(of which the number is configurable, I to 6 were used in this exercise) which in turn 

connect to a central interface connecting them to the main vessel command systems. 
This connection enables accurate simulations and the crew to train using the real 

equipment in the real environment rather than substitutions. 

8.2.2 Naval Command System (NCS) 

A naval command system essentially comprising of the three workstations and a 

network between them with an interface to the onboard systems of the vessel within 

which it resides. The three workstations within the system are identical but can be 

programmed to perform different tasks. Each workstation can be configured to own 

specific tasks and other workstations may access the information associated with this 

task in order to carry out their own, owned tasks. 

8.2.3 Aircraft Fuel System Test Rig 

A small system used to test problem diagnosis and health monitoring tools consisting 

of a power unit, water tanks, pumps, valves and sensors which can be controlled 

remotely using a computer or manually from a panel. There is a software platform 

built within Labview (National Instruments) that drives the rig and processes the 

output data, unfortunately for now the software models are not entirely accurate and 

could not be used in the analysis. 

8.3 Complexity Tool Introduction and Description 

The complexity analysis tool is an Excel based workbook consisting of a number of 

spreadsheets; input sheets, input tables, processing sheets, output summary sheets. 

Each analysis workbook for each case study is identical apart from the data used 

within it. The model calculates various measures (see chapter 7) of complexity based 

on the data inputted and displays the results in a summary sheet, the measures 

contained within the tool are detailed within section 8.3.2. The analysis tool 

description is detailed within g sections 8.3.1 to 8.3.5. 
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The tool calculates complexity measures for the system as a whole, and also for the 

sub-systems and interfaces between sub-systems separately to improve the 

understanding of complexity within the system. 

8.3.1 Mechanisms to Represent Different Interfaces, Elements 

and Skills 

The provision of more detailed information of the composition or nature of the 

elements, skills of the personnel, and interfaces within the engineered systems under 

consideration or required to produce it provide a better understanding of that system. 

Interfaces may be pipes for fluid, data buses or electrical power, elements may be 

pumps, power converters, sensors or processing units, and the skills required to 

develop the system may be computer programming, aerodynamic modelling or 

electronic design. In order to incorporate this knowledge into the model a naming 

system was created for system elements, interfaces and the skills required to produce 

the system. These names would form an input to the analysis tool and enable 

commonalities to be established (most of the system consisting of the same interface 

types, etc. ). 

8.3.1.1 Element Types 

Names were created for various different elements within the case study systems 

under analysis. The names of each element reflect their 'type' and function, and are 

divided into two components (TYPE, FUNCTION); the first component indicates the 

element 'type' as follows: 

MAT indicates the element deals with matter. 

o ENGY indicates the element deals with energy. 

4, DATA OUT, DATA IN indicates the element deals with data, either exporting 

that data out, or importing data in. 

e DATA PROCESSING indicates the element deals with data and processes it. 

SWITCH indicates the element is a basic switch style (no second component 

required as it simply activates on or off). 
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The second component of the name indicates the element function as follows: 

9 DIST indicates a distribution of. 

* CONV indicates a conversion of. 

* CONS indicates a consumption of. 

e TRANS indicates the element is a conduit for transporting. 

e GEN indicates a generation of. 

BOOLEAN, VALUE, BUS, ARRAY indicate the nature of the data within the 

element. 

An example of an element type may be MAT DIST, which means a Matter Distributor 

(perhaps a pump), another example is a DATA OUT VALUE, indicates the element 

outputs a data value (perhaps a sensor with a numerical data out indicating a 

temperature). Table 50 shows the complete list of element names consisting of the 

, types' and their ftinctions contained within the analysis tool. 

Function Element Name 

Elements Dealing with Matter MAT DIST 

MATCONV 

MATTRANS 

MATCONS 

Elements Dealing with Energy ENGY DIST 

ENGYCONV 

ENGY GEN 

Elements Dealing with Data and 
Data Processing 

DATA IN BOOLEAN 

DATA IN VALUE 

DATA IN BUS 

DATA IN ARRAY 

DATA OUT BOOLEAN 

DATA OUT VALUE 

DATA OUT BUS 

DATA OUT ARRAY 

DATA PROCESSING BOOLEAN 

DATA PROCESSING VALUE 

DATA PROCESSING BUS 

- - SW I TCH 

Table 50 - Element names. 
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83.1.2 Interface Types 

Names were created for various different interfaces within the case study systems 
under analysis. The names of each interface reflect their 'type' and the data nature 
(only applies to data interfaces), and are divided into two components (TYPE, DATA 

NATURE); the first component indicates the interface 'type' as follows: 

MATTEP, an interface transmitting matter, perhaps a fluid, or solid fuel, or hydraulic 

system. 

ENERGY, a transfer of electrical energy. 

DATA, a transmission of data. 

The second component of the name indicates the interface data nature as follows: 

BOOLEAN, a simple on off interface, like a switch. 

VALUE, a data interface of a data value. 

BUS, a data bus interface. 

ARRAY, an interface consisting of an array of values. 

83-13 Interface and Element Example 

An example of an interface may be DATA BOOLEAN, which means a data interface 

consisting of data of a Boolean on/off nature. The interface may be an electrical 

signal from a pump telling a computer it is either running of shut down. Table 51 

shows the complete list of interface names consisting of the 'types' and the data 

nature for data interfaces contained within the analysis tool. 

Interface Type Interface Names 

Interfaces Transmitting Matter MATTER 

Interfaces Transmitting Energy ENERGY 

interfaces Transmitting Data DATA BOOLEAN 

DATA VALUE- 

DATA BUS 

DATA ARRAY 

Table 51 - Interface names. 

When entering information into the analysis tool it is recognised that in most cases an 

element or interface cannot be labelled with just one of the names found within Table 

50 or Table 5 1. In fact multiple interface types/data natures and element 
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types/functions can exist for any one system element or interface. An example might 
be a pump that internally has a sensor which detects pressure, speed of the pump, and 
transmits these on a data port. The pump also obviously pumps fluid at a demanded 

speed sent through a separate connection. The interfaces and elements could be 

described as: 

'Me following two tables (Table 52 and Table 53) show the interfaces and elements 

within the pump example written in the naming formats outlined above. 
Interface Name IN/OUT Description 

DATA ARRAY OUT The data port transmitting the pump pressure and speed. 

DATA VALUE IN Demanded speed signal sent to the pump. 

MATTER OUT The fluid leaving the pump. 

MATTER IN The fluid entering the pump. 

ENERGY IN Power supply for the pump. 

Table 52 - Pump example for interfaces. 

Element Name Comment 

MAT TRANS Moves the fluid through the pump, transmitting the fluid. 

DATA IN VALUE Takes in data values, in this case the speed demand. 

DATA OUT ARRAY Outputs a data array, in this case the speed and pressure data. 

Table 53 - Pump example for elements. 

Multiple interface and element types, functions or data natures may be entered for one 
interface or one element. In some cases multiple element and interface descriptions 

are required in order to assure the complete functionality of that element or interface 

is captured, the example above demonstrates this. 

8.3.1.4 Skill Types 

Skill requirements are also categorised within the analysis tool. These skills are those 

required to develop an element of a system, it is assumed the interfaces form part of 

the element development and therefore are included in the skill set to develop the 

element. 

The skill types used are as follows: Mechanical, Electrical, Computing, Management, 

Systems Engineering, Aerodynamic, Control, Materials, Fluid Dynamics, 

Thermodynamics, and Software Engineering. 

These skills were used as they represent the breadth of the disciplines required to 

develop engineered systems. 
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8.3.2 Analysis Tool Calculated Measures used within the Tool 

The following section contains the measure details used within the analysis tool. and 

their method of calculation. Table 54 shows the measures used and their method of' 

calculation for the system as a whole and the sub-systems contained within it. These 

measures were the result of a down selection process detailed within section 7 (from 

Table 43 and Table 44). The factors used within these measures can be found within 

section 8.3.3 

e Table 54 describes the complexity measures used within the whole system and 

the sub-systems used to determine their complexity characteristics. 

* Table 55 describes the complexity measures that are used in determining the 

complexity characteristics of the system and sub-system interfaces. 

Further analysis for each sub-system is also conducted independently of the overall 

system. This is done so the overall complexity of the system can be understood, and 

the origin of that complexity and the cause (within sub-systems) of that complexity 

also characterised. 

, alculated Measures Description 

Connectivity Multi The number of connections between elements is recorded. Multipic links may occur between 
two elements in one direction, if more than one interface exists between those elements. For 
example if A were a pump and B were controller if A sent speed, temperature and pressure to B 
and B sent a demand to A, 3 links would be recorded from A to B and I for 13 to A. 

Example: 

F 

C 

In this case A to B would contain 3 links, B to A would have I link, B to C would have no links 
and C to B would have 2 links. 

Connectivity Single If a connection or connections exist between two elements in a single direction this is recorded 
as one link. Multiple links in a single direction are considered as one link between those 
elements in that direction. 

Using the same example as above, A to B would contain I link, B to A would have I link. B to 
C would have no links and C to B would have I link. 

Connectivity Single % The percentage of the total possible directional connections between elements in the system. 

IA _-_ aIC 

Total number of elements is 3, the maximum number of directional connections is 6 (1 - AB, 2- 
BA, 3- AC, 4- CA, 5- BC, 6- CB), the number of connections in this system is 3 (1 - AB, 2- 
BA, 3- CB), therefore the connectivity single % is 3/6=0.5 or 50%. 

Lin - Number The total number of links within the sub-system or system being analysed- 

Link Complexity The total number of links within the sub-system or system multiplied by the link complexity 
factor allocated. 
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Calculated Measures Description 

Number of Link Types The number of different link types within the system or sub-systcm. 

Element Number The number of elements within the system or sub-systcm. 

Element Complexity The number of elements within the system or sub-system multiplied by the complexity type for 
those elements. 

Number Of Element Types The number of different clement types within a system or sub-systcm. 

Skill Number The number of different skills within the organisational body developing the system. 

Supplier Total The number of suppliers within the organisational body developing the systcm. 

Personnel Total The number of personnel in total working on the system within that company. 

Commonality Links The number of link duplication within the system. 

Commonality Link Types The number of link type duplication within the system. 

Commonality Elements The number of clement duplication within the system. 

Commonality Element 
Types 

The number of clement type duplication within the system. 

Commonality Skills The number of skill duplication within the development organisation for the system. 

Commonality Suppliers The number of mutual suppliers within the development organisation for the system. 

Commonality Personnel The number of personnel that are shared between sub-systems. 

Table 54 - Model calculated measures for complexity model sub-systems/systems. 

Table 55 shows those measures used when determining the complexity of interfaces 

between elements. The factors used within these measures can be found within 

section 8.3-3. 

As for the elements above the analysis of interfaces is conducted at a system and also 

sub-system level to provide an understanding of the complexity characteristics and 

origins of complexity within the system. 

calculated Measures Description 

ectivity % The connectivity between the two sub-systems as a function of what is passed between them and 
the number of nodes within each sub-system as a percentage of the maximum number of 
connections that could exisL Direction of travel is ignored. 

Link Number The number of links between the sub-systcms. 

Link Complexity The number of links multiplied by the link factor for those links between the sub-systcms. 

Number of Link Types The number of link types between the sub-systcms. 

Conn ivity % Directional The connectivity between the two sub-systems as a function of what is passed between them and. 
the number of nodes within each sub-systcrn as a percentage of the maximum number of 
connections that could exist. Direction of the interface is taken into account. 

Cornmonality Link Types The number of mutual link types between the sub-systems. 

ality Links The number of mutual links between the sub-systcms. 

Table 55 - Model calculated measures for complexity model interfaces. 

These measures are calculated using various excel spread sheet logic, and displayed 

within a summary sheet (see section 8.3.5). 
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8.3.3 Analysis Tool Factors used in Measure Calculations 

Some of the complexity measures calculated within the analysis tool employ the use 

of factors in their calculation. Within the analysis tool set for the case studies a 

common set of factors was produced for: 

* Interfaces (see Table 56); as in section 8.3.1.2. 

o, Elements (see Table 57); as in section 8.3.1.1. 

o Skills (see Table 58) 

The interface factors relate to the intrinsic complexity of the interface type. A fluid 

flow in most cases is less complex than a data bus link, or an array link. The factors 

are self generated based on the perceived complexity of the interfaces and given a 

score between I and 5,5 being high intrinsic complexity. Table 56 shows the values 
for the factors for each interface type within the analysis tool. 

Interface 
Type 

MATTER ENERGY DATA 
VA 

DATA BUS DATA I 
BOOLEAN 

DATA 
ARRAY 

Factor 1 2 31 5 2 14 

Table 56 - Interface type factors. 

Table 57 shows the factors set for the element types, data handling elements generally 

contain some electronics and were seen as more complex than matter or energy 

elements. Those elements handling data and data processing are intrinsically more 

complex than those that handle simple Boolcan. or single values. As for the interfaces, 

the elements too are sclf generated based on the intrinsic complexity considered 

applicable to the element, they are then scored between I and 4,4 being the higher 

level of complexity. The table shows the complete factor list for the element types 

used in the analysis tool for calculation of complexity measures. 

Element Type Factor 

MAT DIST 

MATCONV 

MATTRANS 

MATCONS 

ENGY DIST 

ENGYCONV 

ENGY GEN 

DATA IN (BOOLEAN) 2 

DATAIN(VALUE) 2 
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Element Type Factor 

DATAIN(BUS) 3 

DATA OUT (BOOLEAN) 2 

DATA OUT (VALUE) 2 

DATA OUT (BUS) 3 

DATA PROCESSING 
(BOOLEAN) 4 

DATA PROCESSING (VALUE) 3 

DATA PROCESSING (BUS) 4 

SWITCH 2 

Table 57 - Element type factors. 

Table 58 shows the skill type factors within the analysis tool. There was no clear 

method of identifying which skill was more complex than the other as a result 

although the factors are required by the analysis tool to calculate the values of 

measures, they were all set to I to ensure they did not affect the result. 

Skill Type Factor 

Mechanical I 

Electrical I 

Computing I 

Management I 

Systems I 

Aerodynamic I 

Control I 

Materials I 

Fluid Dynamics I 

Thermodynamics I 

Software I 

Table 58 - Skill type factors. 

The factors were used in the calculation of various measures within the tool, they 

were consistent through all case studies, and are easily modified if required. 

8.3.4 Analysis Tool Data for Calculations and Sources 

This section details the required data the tool needs in order to calculate the various 

complexity measures contained within it. The model data that is required to complete 

the tool is shown within Table 59. 
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Input Data Description 

interface Data Interface data comprising of 

The number of interfaces between two components (systcm/sub-system elements). 

The nature of the interfaces between the two components (systcm/sub-systcm 
elements); data Boolean, data value, data bus, ctc. 

The nature of the direction of the various data flows between components 
(systcm/sub-systcm elements). 

The number of exact interface duplicates. 

Element Data Element data comprising of. 

The number of elements within the systcm/sub-systcrn. 

The nature of the element within the systcm/sub-systcm, data processor. matter 
transfer, energy transfer, ctc. 

The number of exact element duplicates. 

personnel Data Personnel data comprising of 

The number of personnel required to develop an element. 

The number of personnel performing multi roles within that development. 

(this information so far has been difficult to collect and detail has been omitted until this 
information is mature) 

Skill Data Personnel skill data comprising of. 

The number of skills required to develop each sub-systcm element. 

The amount of skill duplication. 

Supplier Data Supplier data comprising of. 

The number of suppliers required to produce a systcm/sub-systcm/clcmcnL 

The number of suppliers that are duplicated within the system/sub-system/elcmcnL 

(this information so far has been difficult to collect, and detail has been omitted until this 
information is mature) 

rable 59 - Data required to complete the modelS. 

The sources must provide the relevant information for the model to use in order to 

produce the output including: 

9 Interfaces, the nature of those interfaces and commonality between them. 

e Elements, the nature of those elements and commonality between them. 

'Me system structure. 

Supplier Information 

Organisation Infonnation 
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Table 60 shows how these sources can be used to collect data from the case studies to 

populate the analysis tool. 

Data Source Potential Use 

System Functional Diagrams Provide information regarding the functions of elements within the system so their types 
can be determined, along with their interactions. I lowever functional diagrams are not 
necessarily the same as the structure of the actual system so care Is required. Functional 
diagrams also enable the identification of common functions and parts. See Interface 
and Element Data in Table 59. 

System Specifications System specifications enable the actual construction (notjust from a functional 
perspective) of the system to be understood and further details of elements to be 
understood. See Interface and Element Data in Table 59. 

interface Specifications System interface specifications enable the interfaces between the elements to be 
understood and their types identified. See Interface and Element Data in Table 59. 

System Diagrams Enable the actual construction of the system to be understood in terms of elements and 
interfaces. See Interface and Element Data in Table 59. 

Supplier Lists Lists of suppliers provide information regarding how many suppliers there arc, what 
they supply for the system and which of those suppliers are common. See Supplier Data 
in Table 59. 

organisafional Charts Enable and understanding of the skill sets and the distribution of people within the 
organisation so any personnel working on more than one portion of the system can be 
identified. See Personnel and Skill Data in Table 59. 

org; 7isa-tional Lists Organisational lists show who works on which portion of the programme. See 
Personnel and Skill in Table 59. 

i-ame ou - vata sources ior tne anmysis tooi. 

This data would be collected from the relevant business units and then used to build 

the data inputs to the analysis tool. Using this data and the inputted factors (see 

section 8.3.3) the tool is able to calculate the complexity measures for the overall 

system and the system sub-systems. 

8.3.5 Analysis Tool Output 

The tool generates outputs for the system as a whole and the sub-systems individually. 

The interfaces between the sub-systems are also analysed by the tool in more detail. 

The output from the tool can be divided into three key shown within Table 61 

output Description 

Ov I ystem Complexity Details the complexity characteristics of the system as a whole, considering the system 
Characteristics sub-systems as elements with their respective properties (considered as black boxes with 

inputs and outputs, the internal complexities of the sub-systcms are ignored) and 
interfaces between them with their respective properties. 

SU6: s--Ystcm complexity Details the complexity characteristics of each sub-systcm, the elements within it and 
Characteristics their respective properties, and the interfaces between them and their respective 

characteristics. 

Sub-Sys Complexity Details the complexity characteristics of the interfaces between the sub-systems. 
Characteristics 

I UUIC Ul - IVIUUIUI %JULPUL3 IVA ILURIAPAIGAIty 111VUVI. 

The system overall output considers each sub-system as a black box element with a 

function with inputs and outputs. 
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8.4 Conclusion 

The complexity analysis tool aims to provide answers to the questions industry wishes 
to answer which are outlined within section 7.1.1 and repeated below. 

In a technical or hardware sense, which area of a system under development is 

the cause of the complexity within the system? 

'Me tool will enable an understanding of the complexity within the system and the 

characteristics of that system its sub-systems and interfaces. These characteristics and 
their respective quantities calculated by the tool enable the user to understand the 

cause or causes of complexity within that system. 

What are the future problems that this development programme is likely to 

exhibit? 

The causes of the complexity coupled with the problem table and complexity matrix 

within sections 5.2.3 and 5.2.1 enable a translation between complexity characteristics 

and their prevalence, identified within the analysis tool output and potential problem 
issues. 

Is the complexity manageable? 

A difficult question to answer, even when the tool is coupled with the problem table 

and complexity matrix. The linking of different attributes with the complexity matrix 

and the problem table may provide clues, and the levels shown of the complexity 

characteristics provide an indication of how difficult or manageable the complexity 

within the system is. 

How does this system compare with other systems in terms of complexity? 

Comparison between complexity characteristics and their levels in systems is possible 

with a large enough sample. Once levels are established for different systems, or 

types of system then future systems can be assessed against these to estimate if the 

complexity is too high, or has the characteristics and quantities one would expect. 

What effect would the introduction of another element into the system have in 

terms of the overall complexity? 
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This can be easily determined by the model-, additional sub-systems can be added, or 

additional elements for sub-systems can be added, along with intertlaces. The 

complexity characteristics can then be re-analysed and the differences quantified. 

The tool created to analyse complexity within the case studies is a comprehensive tool 

covering most of the aspects of complexity discussed in previous chapters. The tool is 

highly expandable and can accommodate more measures if required. Not only is the 

tool expandable. the factors used can be reconfigured easily and the new results 

produced instantly reflect those changes. 
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Complexity 
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Figure 38 - The layout of the work and the thesis outputs roadmap. 

Figure 38 shows the thesis roadmap and how this section fits into the overall structure, 

the tool uses the concepts within the Complexity Framework of chapter 6, the 
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knowledge collected from the problem issues using the Problem Matrix within chapter 
5 and the measures down selected in chapter 7. 

The sources and methodology for capturing the data are outlined and will provide the 
information and data to populate the analysis tool. Additionally the methodology has 

been outlined for the evaluation of the tool, and this will enable enhancements to be 

added to the tool or changes to be made that improve the output. 

The output of the tool is comprehensive and creates a data set that enables an 

understanding of the complexity characteristics of that system. Also the tool enables 

those complexity characteristics to be quantified and also compared from system to 

system. 

The aim of the tool is to provide a comprehensive understanding of complexity within 

systems and an appreciation of the quantities of the complexity characteristics. These 

can then be used along with the problem table and complexity matrix to improve 

awareness of potential complexity issues during development. 
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Results Analysis 
This chapter details the results that were generatedfrom the second set ofcase 

studies outlined within section 8.2 using the complexity analysis tool outlined within 

section8.3. Once the results are collected and shown the are then compared and y 

conclusions made regarding the tool and data. 

9.1 Introduction 

The complexity analysis tool detailed within section 8.3 was applied to three separate 

case studies which are detailed within section 8.2: 

* Naval Command System (NCS) -A command system for navy ships, 

consisting of configurable workstations. 

* Aircmft Fuel System Test Rig (Fuel Rig) -A fuel pumping test rig consisting 

of pumps, sensors, pipe work, tanks and electronic interfaces with a computer 

controller. 

e Naval Command System Trainer (NCST) -A training system consisting of a 

configurable number of terminals that interact with real navy command 

systems to improve realism. Since the system is configurable, and 

workstations can be added or removed, 6 variations are made for a trainer with 

1 to 6 workstations: 

o NCSTI - One workstation in operation. 

o NCST2 - Two workstations in operation. 

o NCST3 - Three workstations in operation. 

o NCST4 - Four workstations in operation. 

o NCST5 - Five workstations in operation. 

o NCST6 - Six workstations in operation. 

The outputs of the tool, the findings and analysis of these results are detailed within 

this section. The results indicated that there were deficiencies within the 

measurement sets, and aspects of these deficiencies were addressed in a revision of 

the analysis tool. The results analysis is divided into two sections for the three case 
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studies. The first details the overall system complexity as a whole, and the second 
details the complexities of the system interfaces and sub-systems. 

In practice collecting information regarding suppliers and personnel was difficult. 
Although the data is available the time taken to collect that data and process it would 
have been too long for it to have been included in the analysis tool. As a result this 
data was omitted from the results. 

9.2 Overall System Results 

The initial results collected from the analysis tool, were those that related to the 

system as a whole. The overall system is treated in the same way as the sub-systems, 
subject to those measures outlined within Table 54 within section 8.3.2. 

Table 62 shows the results for the complexities of the overall systems for each case 
study. 

Measures NCS FUEL 
RIG 

NCSTI NCST2 NCST3 NCST4 NCST5 NCST6 

connectivity Multi 6 37.33 5.333 8 9.6 10.667 11.429 12 

Connectivity single 1.714 6.889 1333 2 2.4 2.667 2.857 3 

connectivity single 57.14 86.11 66.667 66.667 60 53.333 47.619 42.857 

Link Number 42 168 16 32 48 64 80 96 

Link Complexity 186 346 64 128 192 256 320 384 

Number of Link 
Types 

2 4 1 1 1 

Element Number 7 9 3 4 5 6 7 8 

Element 
Complexity 

175 50 67 94 121 148 175 202 

Number Of 
Element Types 

9 9 

Skill Number 3 4 3 3 3 3 3 3 

Commonality 
Links 

I I I I I I I I 

commonality Link 
Types 

I 

commonality 
Elements 

0.857 0 0 0.5 0.6 0.667 0.714 0.75 

commonality 
Element Types 

1 0.91 0.923 0.972 0.978 0.982 0.984 0.987 

commonality 
Skills 

Table 62 - Overall system data for all systems analysed. 

The analysis of the results within the table has been divided into three sections: 
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* Connectivity and Link Complexities (see section 9.2.1) 

* Element Complexities (see section 9.2.2) 

* System Commonality (see section 9.2.3) 

Each section will show the relevant results, conduct a cross comparison and analysis 

of the output. 

9.2.1 Connectivity and Link Complexities 

This section will analyse the connectivity and link complexity results within the 

analysis tool output. Table 63 is an extract from Table 62 taking only the connectivity 

and link complexity information. 

Measures NCS FUEL 
RIG 

NCST I NCST 2 NCST 3 NCST 4 NCST 5 1 NCST 6 

Connectivity Multi 6 37.33 5.333 8 9.6 10.667 11.429 12 

Connectivity Single 1.714 6.889 1.333 2 2.4 2.667 2.857 3 

Connectivity Single 
% 

57.14 
I 

86.11 66.667 66.667 60 
I 

53.333 47.619 42.857 

LinkNumber 42 168 16 32 48 64 80 96 

Link Complexity 186 346 64 128 192 256 320 3M 

Number of Link 
Types 

2 4 
I 

1 1 1 1 1 1 

Table 63 - Connectivity and Link complexities for all systems. 

Connectivity is measured in three different ways and there are subtle differences 

between each measurement method (see Table 54). Each different method provides 
different information regarding the complexity of the system in terms of connectivity. 

Higher levels of connectivity indicate a higher chance of dynamic complexity (Senge 

1994) in the system. In systems with just detail complexity (Senge 1994) there cannot 
be any interfaces that are bi-directional in nature, otherwise there would be potential 
loops for information energy or matter within the system structure. If this is the case 

the number of interfaces within the system for hierarchical structures (systems with no 
loops) can range from: 

Interfaces = Elements -I 

TO 

Interfaces = Elements x (Elements - 1) 
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Ibis means there is in fact a lower and upper bound to the possibility of a hierarchical 

system structures. The first equation means a hierarchical structure is only possible, 

and beyond the second equation a non-hierarchical structure is only possible. 

Table 64 (lower bound) and Table 65 (upper bound) translate these bounds into values 
for Connectivity Single % which can then be applied to the results to determine how 

likely, or to what extent the systems tested exhibit non-hierarchical structure 

characteristics. 

Tab 

Elements Singlemax Number for Hierarchical Structures (elements- 1) connectivity Single % 

1 0 0 N/A 

2 2 1 50.00116 

3 6f 2 33.33% 

4 12 3 25.005/6 

5 20 4 20.00% 

6 30 5 16.67% 

7 42 6 14.29% 

8 56 7 12.50% 

9 72 8 11.11% 

10 90 9 10.000/0 

11 110 10 9.090/0 

[-1-2 132 11 8.33% 

lp 64 - Element number relationshfiDs to the minimum number of interfaces reouired I 

hierarchical system structure with the corresponding connectivity single % values. 

ror a 

Elements Single Max Number for Hierarchical Structures (elements elements - 1) connectivity single % 

1 0 0 N/A 

2 2 1 50.00010 

3 6 6 50.00010 

4 12 12 50.00010 

5 2-0 20 50.00% 

6 30 30 50.000/0 

7 42 42 50.00010 

8 56 56 50.000/0 

9 72 72 50.00% 

10 90 90 50.00010 

110 110 50.00% 

12 132 132 50.00% 

Table 65 - Element number relationships to the maximum number of interfaces to support a 
hierarchical system structure with the corresponding connectivity single % values. 
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'Me bounds are quite clear, the upper bound of Connectivity Single % is always 50%, 

and the lower depends on the number of elements within the system. The more 

elements within the system the lower the Connectivity Single % value needs to be. 

Table 66 shows the results for the systems tested. Clearly all the systems show the 

potential for non-hierarchical structures. Some are close to the upper bound of 
hierarchical structures and as a result it is likely parts of the systems have loops. 

Interestingly no system tested exhibits a purely hierarchical structure. 

Systems connectivity Single % Connectivity Single DET / DVN Connectivity Single % 
Lower Bound for % System Value Connectivity Single % Over Hierarchical 
Non-Ilicrarchical Over / Under Structure 
Structures 

-KZK-- 14.29% 57.14% 42.85% 
35.71%DET/DYN 

7.14% DYN 

IFUEL -RIG 11.11% 86.11% 38.89% DET / DYN 75% 

28.88% DYN 

NCST 1 33.33% 66.667% 16.67% DET / DYN 33.33% 

16.67% DYN 

NCST 2 25.00% 66.667% 25% DET / DYN 41.67% 

16.67% DYN 

NCST 3 20.00% 601/6 301/6 DET / DYN 401/6 

10.00% DYN 

NCST 4 16.67% 53.333% 33.33% DET / DYN 36.663% 

3.333% DYN 

KaTT -5 14.29% 47.619% 33.33% DET / DYN 33.329% 

-KC-ST6 12.501/6 42.857% 30.36%DET/DYN 30.357% 

Table 66 - System element numbers and their respective connectivity single % values for detail 

complexity structures. 

Table 66 provides an indication as to the nature of the system interface structure. The 

majority of the systems (NCS, Fuel Rig, NCST I to 4) tested indicate a definite non- 

hierarchical nature with definite interface loops. Since NCST I to 4 have definite 

non-hierarchical structures, it is very likely NCST 5 and 6 do also. 

The NCST systems with one and two workstations exhibit the highest proportion non- 

hierarchical (dynamic) interface structure of all the systems tested. NCS and the Fuel 

Rig have the highest levels of potential non-hierarchical structures. 

These numbers by themselves are not sufficient when attempting to understand the 

complexity characteristics within these systems. Systems may exhibit structures that 

are very non-hierarchical in nature (in proportion to the system size), but those 
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structures may be small, or consist of interfaces with lower complexities (link 

complexity). In order to appreciate how complex these system structures really arc, 
the various connectivity values must be considered along with the number of 

elements, interfaces, their associated complexities and the degree of commonality 

within the system. With all this information an accurate picture of the system 

complexity characteristics can be established. 

Measures NCS FUEL 
RIG 

NCSTI NCST2 NCST3 NCST4 NCSTS NcS, r6 

LinkNumber 42 168 16 32 48 64 80 96 

Link Complexity 186 346 64 128 192 256 320 384 

Unk Complexity 
Average 4.43 2.05 4.00 4.00 4.00 4.00 4.00 4.00 

Number of Link 
Types 

2 2 1 1 1 1 1 1 

Table 67 - Number of links In the systems and their complexities. 

Table 67 shows the number of links, number of link types, the link complexity and the 

average link complexity within the systems as a whole. This coupled with the level of 

non-hierarchical interface structure provides a good appreciation of interface 

complexities within the systems. 

is clear from Table 67 that the Fuel Rig has the lowest average link complexity, but 

a very high number of links. This is because a vast majority of the links within the 

Fuel Rig system are in fact matter movements, of the fluid throughout the rig, and 

even though there are more interfaces within this system than all the others, the other 

systems consist of links which contain various forms of data. 

Variance overall is low in tenns of link types, in fact NCST and NCS appear to have I 

or 2 link types. In reality this is certainly not correct for NCST, as there will be power 

supplies required to transport energy to power the various system components, as well 

as the electrical interfaces between components. Unfortunately the data required was 

not available when these systems were analysed. 

Although the fuel rig is very non-hierarchical, the intrinsic complexity within the 

interfaces is lower. This is a factor when considering the overall complexity of the 

system. The average link complexity of NCS is the highest coupled with a very high 

of connectivity within which a high proportion demonstrates potential for non- 

hierarchical structures and loops. 
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Although the NCST systems become less non-hiemrchical as the systcms increase in 

size (workstations are added), the number of links and their overall complexity 
increases. NCST 6 demonstrates the highest overall link complexity of all the 

systems. 

9.2.2 Element Complexities 

This section will analyse the element and element complexity results within the 

analysis tool output. Table 68 is an extract from Table 62 taking only the element and 

c1cment complcxity. 

lessures NCS FUEL NCSTI NCST2 NCST3 NCST4 NCSTS NCST6 
RIG 

Element Number 7 9 3 4 5 6 7 8 

Element 175 50 67 94 121 148 175 202 
complexity I I I 
Average Element 25 5.55 22.33 23.5 24.2 24.667 25 25.25 
Complexity 

I 

Number Of 9 9 11 11 11 11 11 11 
Element Types 

Table 68 - Element complexities for all systems. 

Clearly NCST 6, NCST 5 and NCS have the highest levels of element complexity 

within the systems tested. The average element complexity is high for all systems 

with the exception of the Fuel Rig. This system consists predominately of basic 

sensors, pumps and tanks; as a result the overall element complexity is lower than 

NCS or the NCST systems which consist of electronic processing hardware. 

All systems have a large number of element types, with the NCST systems having I 

different types present. This means the systems have a lot of diversity within their 

element components and this diversity constitutes a higher complexity. 

The NCST systems predictably (since they consist of additional workstations which 

are identical) increase in a linear fashion in terms of element complexity and element 

number. There is little difference between the complexity of NCST I and the 

complexity of NCST 2 in terms of the average complexity for each element. It is only 

the overall element complexity which changes. Also predictably, since NCST I 

contains all the components used to create NCST 2 to 6, they add no additional 

element types. 

Like the links the individual complexity metrics for the elements are of little use, they 

must be used together in order to better understand the system. 
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Clearly NCST 6 is the most complex it terms of elements, however it is not the 

system with the most elements, but due to the system size and the nature of the 

elements within it, and it is the most complex. 

9.2.3 System Commonality 

This section will analyse the connectivity and link complexity results within the, 

analysis tool output. Table 69 is an extract from Table 62 taking only the connectivity 

and link complexity information. 

Alessurts NCS FUEL NCSTI NCST2 NCST3 NCST4 NCSTS NC'S'1176 
RIG 

Skill Number 3 5 3 3 3 3 3 3 

commonality I I I I I I I I 
Links I I I 
Commonality Link I I I I I I I I 
Types 

I 

commonality 0.857 0 0 0.5 0.6 0.667 0.714 0.75 
Elements 

commonality 1 0.91 0.923 0.972 0.978 0.982 0.994 0.987 
Element Types 

commonality 
Skills 

Table 69 - Commonality and skill complexities for all systems. 

Clearly some of the measures calculated here are of very little use. The commonality 

between links and link types shows 100% commonality throughout the systems. So 

no interface within the systems tested is bespoke. 

The useful metrics taken are the commonality metrics for the element data for each 

system (common elements and element types). At a system level no commonality is 

observed between elements within the Fuel Rig of NCST 1. This is because no fuel 

rig sub-systems are the same, tanks are different and pump configurations are 

different. Similarly NCST I consists of three very different sub-systems, a central 

interface, a network and a workstation. NCS shows a high level of commonality 

within the system element types - this is more than likely because the system itself 

consists of 3 workstations which are identical. 

The commonality of elements increases as would be expected as another workstation 

is added, but not linearly as the network sub-system also increases in size with 

additional common components. 
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The link type commonality shows a very high proportion of commonality for all 

systems, all are about 80%, with the majority about 90%. This is consistent with the 

makeup of the systems. NCS consists of 2 common components, with additional 

software components. The identical hardware components will contain the same 

clement types and the software consists of a large number of data handling elements 

and so exhibits a high level of commonality (in this case 100% for element types). 

There is a similar case for the Fuel Rig and the NCST systems, each consisting of 

very similar components that will exhibit the same element type properties. 

Skill commonality and skill number tell very little in terms of adding to the 

complexity understanding of the system. The element information for elements and 

their types would provide any skill information required and this makes any skill 

commonality redundant. 

The Fuel Rig in this case has the lowest level of commonality, closely followed by 

NCST 1. The systems with the higher levels of commonality are understandably 

NCST 6, as it consists of 6 identical workstations and NCS as it consists of 3 pairs of 

identical workstation components. 

9.3 System Sub-Systems and Interfaces 

The following section details the results for the sub-systems within each system and 

the interfaces between each sub-system. 'Mese results are taken in turn and in the 

following order: 

Naval Command System (NCS), see 9.3.1. 

o Fuel Rig, see 9.3.2. 

e Naval Command System Trainer with I to 6 Workstations (NCST I to 6), see 

9.3.3. 

For each of the systems tested, firstly the individual sub-systems are analysed 

followed by the interfaces between them. The interfaces and their metrics are 

expanded in the following order: 

Interface Connectivity Single % 

o Interface Link Number 
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* Interface Link Complexity 

s Interface Connectivity Multi 

* Number of Common Link Types 

Number of Common Links 

71iis is repeated for all the systems tested. 

9.3.1 NCS 

'Me following sections detail the results for the Naval Command System (NCS); they 

are split into two sections. The first contains the sub-system results and the second 

contains the interface results for the system. 

93.1.1 NCS Sub-System Complexities 

Table 70 shows the overall system view for the NCS system that was tested. 

Measures IPUI DPUI I IPU2 DPU2 IPU3 DPU3 Sortware 

Connectivity Multi 3 2.416 3 2.416 3 2.416 31.1 

Connectivity Single 2.842 2.083 2.842 2.083 2.842 2.083 3.7 

Connectivity Single 31-579 37.87 31.579 37.87 31.579 37.87 25.517 

Link Number 57 29 57 29 57 29 933 

Link Complexity 258 129 258 129 258 129 3732 

Number of Link 
Types 

2 2 2 2 2 2 1 

Element Number 19 12 19 12 19 12 30 

Element 
Complexity 

285 171 287 1,71 287 171 603 

Number Of 
Element Types 

9 9 
I 

9 9 9 9 9 

Skill Number 2 2 2 2 2 2 2 

commonality 
Unks 

0.596 0.828 0.596 0.828 0.596 0.828 1 

Commonality Link 
Types 

I I I I I I I 

commonality 
Elements 

0 0 0 0 0 0 1 

commonality 
Element Types 

Commonality 
SLIA13 

rabie -iu - f4týb sut)-system compienties. 

As for the overall systems, the NCS sub-system complexities have been divided into 

sections. 
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e Connectivity and Link Complexities (see section 9.3.1.1.1) 

e Element Complexities (see section 9.3.1.1.2) 

e System Commonality (see section 9.3.1.1.3) 

Each section will show the relevant results, conduct a cross comparison and analysis 

of the output. 

9.3.1-1.1 NCS Connectivity and Link Complexities 

Table 71 shows the results for the connectivity and link complexities within the sub- 

systems of the NCS system. 

Alessures IPUI DPU1 IPU2 DPU2 IPU3 DPU3 Software 

connectivity Muld 3 2.416 3 2A 16 3 2.416 31.1 

connectivity single 2.842 2.273 2.842 2.273 2.842 2.273 3.7 

connectivity Single 31.579 45.455 31.579 45.455 31.579 45.455 25.517 

LinkNumber 57 29 57 29 57 29 933 

Link Complexity 258 129 258 129 258 258 3732 

Link Complexity 
Average 

4.5 4.4 4.5 4.4 4.5 4.4 4 

r-Numbcr 
of Link 

T Tý; PýT c 

:: 

Types 
2 2 

I 

2 

I 

2 I 2 2 1 

Table 71 -Connectivity and link complexities for NCS. 

The sub-system output shows very clearly that the software system has the highest 

complexity in terms of interfaces and connectivity within the NCS system. The Link 

Complexity value and Link Number is much higher for the software sub-system 

within NCS. The average link complexity is lowest for the software sub-system, but 

not significantly lower than the other sub-systems (IPU's and DPU's). 

Ile connectivity of the software system is very high, when compared with to the 

other sub-systems. With multiple connections the software system has a connectivity 

of 31 which is over 10 fold that of any other sub-system within the NCS system. 

Link types vary very little within each sub-system, and the software system only 

consists of a single link types The other two sub-systems, the IPU I to 3 and DPU I 

to 3 are identical and therefore the results within the sub-systems data is the same. 

Clearly, without any detail analysis the software sub-system has the likelihood of 

being the most complex component of the NCS system. 
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Analysis of the structures for each sub-system is required to further improve the 

understanding of the complexity. Table 72 shows the nature of the sub-systcrn 
interface structures. 

Sub 
System 

Element 
Number 

Connectivity Single % 
Lower Bound for Non- 
Hierarchical Structures 

Connectivity 
Single % System 
Value 

DET/DVN 
Connectivity Single 
% Over / Under 

Connectivity Single 
% over 
Ilierarchical 
Structure 

1pul 19 5% 31.50% 26.501/6 DET / DYN 2 6. Me 

DPUI 11 11% 45.40% 33.40% DET / DYN 33.401/9 

IPU2 19 5% 31.50% 26.50% DET / DYN 2 6.5 M/9 

DPU2 I1 11% 45.40% 33.401/o DET / DYN 33.40% 

IPU3 19 5% 31.50% 26.50% DET / DYN 26.501/6 

--FPU3 I1 11% 45.40% 33.401/9 DET / DYN 33.401/9 

30 1.4% 25.50% 22.101/6 DET / DYN 22.10*/* 

Table 72 - NCS system element numbers and their respective connectivity single % values for 

detail complexity structures. 

Proportionally to their size, the IPU and DPU components exhibit the highest 

potential for non-hierarchical interface structures, where as the software system the 

least. This is due to the software system having such a large number of components 

with few links between them. 

9.3. LL2 NCS Element Complexities 

This section details the results for the element complexities for the sub-systems within 

the NCS system. 

Measures IPUI DPUI IPU2 DPU2 IPU3 DPU3 Software 

Element Number 19 12 19 12 19 12 30 

Element 
Complexity 

285 171 287 171 287 171 603 

Average Element 
Complexity 

15 14.25 15 14.25 15 14.25 20.1 

Number Of 
Element Types 

9 9 9 9 

I 

9 9 9 

Table 73 - Element complexities for NCS. 

Again like the links the software has the highest number of elements with a very large 

element complexity, and significant element complexity average. The average-foL'. 

other components, the IPUs and DPUs are very similar, but these sub-systems are in 
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fact very similar in construction, as a result they contain very similar hardware and the 

results for average complexity for their elements is therefore very much the same. 

The software consists of data processing and handing modules, these are very 
different to the hardware elements within the DPUs and IPUs and there arc a lot more 

of them. Due to an increase in the number of software processing components with a 
high intrinsic complexity factor within the analysis tool, the software system has a 

much larger overall element complexity and element complexity average. 

The spread in terms of element types, however, is consistent throughout the sub- 

systems, although the software contains different element types when compared with 

the IPUs and DPUS. 

It is clear that in terms of element complexity, the software is the most complex sub- 

system within the NCS. 

9.3.1.1.3 NCSS tem Commonality YS 

Ile commonality of the NCS sub-systems is shown below within Table 74. 

Measures IPUI DPU1 IPU2 DPU2 IPUJI DPU3 Software 

Skill Number 2 2 2 2 2 2 2 

Commonality 
Links 

0.596 0.828 0.596 0.828 0.596 0.829 1 

Commonality Link 
Types 

I I 

I 

I, I I I I 

Common Elements 0 0 0 0 0 0 1 

Commonality 
Element Types 

I I 

Commonality 
Skills 

I I 

I 

Table 74 - Commonality and skill complexities for NCS. 

There is a good proportion of commonality within element types, skills, and link 

types. There is a very obvious lack of duplication with no common elements within 

the IPU or DPU. The software however consists of predominantly common elements 

and common links. 

The JPU sub-system differs from the DPU sub-systems in that it contains a much 

lower level of commonality between its elements. 

93.1.2 NCS Interface Complexities 

Table 75 shows the system interfaces that exist within the NCS system. 
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IFUI Dpul Dpul IPU2 IN DPU2 IPU3 DPU3 Sortwore 

if x 

Dpul x 

IPU2 x x 

DPU2 

IPU3 x x 

DPU3 

sortwore x 

Table 75 - NCS Interface table. 

The interface structure shown provides enables loops to be identified, and the system 

structure is such that every interface is a bi-directional interface and therefore there 

are a number of potential loops, meaning a non-hierarchical structure. This was 

reflected in Table 66, which clearly identified the NCS system containing a non. 

hierarchical or dynamic complexity structure. 

IPUI Dpul IPU2 DPU2 IPU3 DPU3 Software 

IPUI 4 

DPUI 3 

IPU2 4 

DPU2 3 

IPU3 7 3 4 

DPU3 3 

re 

sortwarce 
±4 

4 

1 
4 

i'abie 76 - INU5 interiace iink number. 

The number of links between sub-systems is shown within Table 78. There are 

relatively few connections between sub-systems, with the software containing the 

most connections overall. The nature of the connections would suggest that the DPU 

and IPU units seem to function as pairs and the software is the integrating component , 
of the system, as it links all the DPU units together. 

'Pu, DPUI IPU2 DPU2 IPU3 DPLI3 Sortwort 

IPUI 
K4 

DPUI 

IP -M. U2 
16.4 

DPU2 

IPU3 
16.4 

DPU3 
13. 

Software 
16.4 16.4 

Table 77 - 1NUb Interface link complexity. 
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Table 77 shows the Link Complexity for the interfaces between components along 
with the average Link Complexity (Link Complexity, average Link Complexity). 
overall the complexities of the links are comparable, with a link complexity of 15 of 
IPU, DPU interfaces and an overall complexity of 16 for IPU, Software interfaces. 

The average complexity of the links is high within all the sub-system links, for the 

software the links show a complexity of 4 and for the links between the IPU and DPU 

units a complexity of 5 is shown. These links are data transfers through arrays or 

values and subsequently show high levels of complexity. 

IPUI DPUI IPU2 DPU2 IPU3 DPU3 Software 

IF 
-gp-ul 

IPU2 

DPU2 

IPU3 

DPU3 

7 
Software 1 Table 78 - NCS interface number of link types. 

Table 78 shows the variation in the link types within the sub-systems. The links are 

all of one type for each component. This is because the software and hardware 

systems are separated, the data connections exist within the software system, and the 

electrical connections and components that support the software systems are within 

the IPU and DPU units. As result of there being only one link type per interface, the 

link type commonality is obviously 100% for all links and therefore is not shown as it 

provides no benefit to understanding the complexity within the system. 

IM DPUI IPU2 DPU2 IPU3 DPU3 Software 

IM 0.082 

Dpul 

11 u2 PU2 

DFU2 

IPV3 

rsoftware 1 0.092 0.092 

Table 79 - NCS interface connectivity multi. 

Table 79 shows the multiple connectivity between the sub-system components of the 

NCS. This shows the level of connectivity when all interfaces are included between 

two sub-systems, and this level of connectivity is around 0.1 for all sub-systems with 
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little variation. The software sub-system component appears to have the lowest level 

of connectivity when individual interfaces with other sub-systems are considered, but 

overall the software connects to the most components within the system as the sub- 
system integrator. 

'Mere was no commonality of the links themselves within the system, and 
subsequently this table was not included. The links themselves are not common as 
they carry very different information from different elements within the sub-systems. 
The commonality of the links in terms of absolute duplication exists between the 

common sub-system interfaces. All interfaces between the IPU and DPU arc 

repeated, along with Software interfaces with the IPU are also repeated. Ibis is 

shown at a system level, but the commonality at sub-system level is 0. 

9.3.2 Fuel Rig 

The following data shows the overall system view for the fuel rig system. 

Measures PC Rig ADF Engine Usk Flow Fuel Collector Alain Wing 
Harness Power Tank Sim Recon Trans Tank Tank Tank 

connectivity 25.8 2344 0.667 2 1.167 1.909 1.605 1.714 1.769 
Aluld 

connectivity 1 1.625 0.667 2 1.167 1.818 1.605 1.714 1.769 
Single I I 
connectivity 25 5.242 16.667 100 46.667 17.316 8.677 8.362 9.312 
Single % 

tAnk Number 129 75 6 6 7 42 61 72 69 

jAnk complexity 292 150 11 6 9 44 71 94 87 

Number of I. Ink 2 2 2 2 2 2 3 3 3 
Types 

Element Number 5 32 9 3 6 22 38 42 39 

Element 516 42 15 4 8 28 52 55 51 
Complexity I I 

Number Of 4 4 3 2 3 4 4 4 4 
Element Types 

I 

I 
Skill Number 2 2 3 2 3 3 4 4 3 

ommonality 1 0.96 0.833 0.667 1 1 1 1 1 
I. Inks 

commonality 1 1 0.833 0.667 1 
Unk Types I 

Commonality 0.6 0.625 0.222 0 0 0.773 0.789 0.810 0.872 
Elements 

commonality 0.969 1 0.667 0.833 0.955 1 1 1 
Element Types 

I 
commonality 0.970 1 1 0.909 1 0.986 0.988 1 
Sulls 

Table 80 - Fuel Rig sub-system complexities. 
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As for the overall systems, the Fuel Rig sub-system complexities have been divided 

into sections. 

9 Connectivity and Link Complexities (see section 9.3.2.1.1) 

9 Element Complexities (see section 9.3.2.1.2) 

* System Commonality (see section 9.3.2.1.3) 

Each section will show the relevant results, conduct a cross comparison and analysis 

of the output. 

9.3-ZLI Fuel Rig Connectivity and Link Complexities 

Table 81 shows the results for the connectivity and link complexities within the sub- 

systems of the Fuel Rig system. 

lessures PC Rig ADF Engine lAsk Flow Fuel Collector Alain WIng 
Harness Power Tank Sim Recon Trans Tank Tank Tank 

Connectivity 25.8 4.688 0.667 2 1.167 1.909 1.605 1.714 1.769 

Connectivity 1 1.625 0.667 2 1.167 1.818 1.605 1.714 1.769 
Single 

Connecdvity 50 10.484 16.667 100 i6.667 17.316 8.677 8.362 9.312 
Single % 

jjnkNumbcr 129 75 6 6 7 42 61 72 69 

Unk 292 150 11 6 9 44 71 94 87 
Complexity I I 

Unk - - 216 2 1.83 1.00 119 1.05 1.16 1-31 1.26 
Complexity 
Average 

Nam er of Unk -2 2 2 2 2 2 3 3 3 
Types 

I I , I I 
Table 81 - Connectivity and link complexities for Fuel Rig. 

Since in most cases the connectivity multi and single are in fact the same, it would 

indicate that the interfaces within those sub-systems usually just consist of a 

maximum of one bi-directional connection. This would suggest that the sub-system 

interface structures for these sub-systems are, in fact, predominantly hierarchical in 

nature, and have few if any loops within information, matter or energy transfers. 

The PC Harness sub-system stands out as being one of the most complex systems in 

terms of interfacing. Although other sub-systems have higher numbers of interfaces, 

or connectivity, the other data for those sub-system components shows that the 

interfaces themselves are low in complexity, or there is in fact a very low number of 
interfaces. 
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Ile link complexities and their averages show clearly that the majority of the sub- 

systems have very low complexity links. The PC harness has the highest level of 

complexity within the links. 

The link diversity is low for the majority of the sub-system components. Most sub- 

systems consist ofjust 2 link types, with the Collector, Main and Wing tanks 

consisting of 3 types. The main reason for this is that the Main, Wing and Collector 

tanks consist of tanks and pipes like the other components, but also sensors that 

transmit data back through the PC Harness. 

The PC harness, although having fewer link types, consists of Boolcan and Value data 

links, as it connects the various sensors within the Fuel Rig to the PC platform. 

Sub Element Connectivity Single % Connectivity DET/DYN Connectivity Single 
System Number Lower Bound for Non- Single % System Connectivity Single % Over 

Hierarchical Structures Value % Over / Under Hierarchical 
Structure 

PC Rig 5 20.00% 50010 30.00/9 DET / DYN 30.0% 
Harness 

ADF 3.13% 10.484% 7.4% DET / DYN 7.4% 
power 
Engine 16.667% 5.6% DET / DYN 5.6% 
Tank 

- Leak Sim 7- 33.33% 100% 16.67% DET / DYN 66.7% 

50% DYN 

Flow 16.67% 46.667% 30.0*/* DET / DYN 30.0*/* 
Recon 

Foci -22 4.55% 17.316% 12.8% DET / DYN 12.8% 
Trans 

Collector 8 8 2.63% 8.677% 6.0% DET / DYN 6.0% 
Tank 

---ý Main --i2- 2-38% 8.362% 6.01/6 DET / DYN 6.01/6 
Took 

Wing - . 39 2.561/6 9.312% 6.7% DET / DYN 6.7% 
Tank 

1 

1- 1 1 
Table 82 - Fuel Rig system element numbers and their respective connectivity single % values 

for detail complexity structures. 

The majority of the system consists of components that have an interface structure 

close to hierarchical in nature. The levels of connectivity within the sub-system 

components are low, often below 15% with three exceptions, the Link Simulator, 

Flow Reconfiguration and PC Harness sub-systems. 

Complexity Characteristics and Measurement within Engineering Systems 

Craig Read Page 266 12/11/2008 



Complexity Characteristics and Measurement within Engineering Systems 

The Link Simulator system is an exception, as it has very few components (only two) 

and links, but due to the low number the system is shown to have a completely non- 
hierarchical structure. In this situation however, the interfaces are small in number, 
low in complexity and subsequently this will mean the sub-system is not difficult to 

design. 

9.3. ZI. 2 Fuel Rig Element Complexities 

Table 83 shows the element complexities for the Fuel Rig system. 

Itasures PC Rig ADF Engine IA*k Flow Fuel Collector Alain WIng 
Harness Power Tank Sim Recon Trans Tank Tank Tank 

Element Number 5 32 9 3 6 22 38 42 39 

Element 516 42 15 4 8 28 52 55 51 
Complexity 

Average Element 103.2 13 1.67 133 1.33 1.27 1.37 1.31 1.31 
Complexity 

Number Of 4 4 3 2 3 4 4 4 4 
EltmtntTypes 

Table 83 - Element complexities for Fuel Rig 

Like the link complexities for the Fuel Rig sub-systems the high levels of complexity 

are found within the PC Harness, with a element complexity of 5 16 and a huge 

average element complexity of 103. These figures would suggest that the components 

of the PC Harness are very complex when compared to the other components. In 

reality the PC Harness is made up of input and output cards which take data and turn 

this into information that can be processed by a PC platform. In comparison none of 

the other sub-systems have element complexities anywhere near this level, as they are 

simple pipe, sensor, pump and tank configurations. 

Overall the diversity of sub-system components is high, with most sub-systems 

containing 4 different element types. 
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9.3. ZI. 3 Fuel Rig Commonality 

The commonality of the Fuel Rig sub-systems is shown below within Table 84. 

Aleasures PC Rig ADF Engine Leak Flow Fuel Collector Main WIng 
Harness Power Tank Sim Recon Trans Tank Tank Tank 

Skill Number 2 2 3 2 3 3 4 3 

commonality 1 0.96 0.833 0.667 1 1 1 
Links I I 
Commonality 1 1 0.833 0.667 t I I 
tlnkTypes 

Commonality 0.6 0.625 0.222 0 0 0.773 0.789 0.810 0.872 
Elements 

commonality 1 0.969 1 0.667 0.833 0.955 1 1 1 
Element Types 

I I 
commonality 1 0.970 1 1 0.909 1 0.986 0.988 1 
Skills 

1 

- 

L 71 

Table 84 - Commonality and skill complexities for Fuel Rig 

The commonality within the Fuel Rig sub-systems differs quite substantially from 

sub-system to sub-system. Generally most sub-systems have common components, 

some with identical elements. In order to better understand the commonality within 
Fuel Rig, the link commonalities must be considered against the number of link types 

and the number of links, and likewise for the elements. 

plealsures is res PC Rig ADF Engine Leak Flow Fuel Collector Stain Wing 
Harness Power Tank Sim Recon Trans Tank Tank Tank 

UnkNumber 129 150 6 6 7 42 61 72 69 

r of Number of Unk 2 2 2 2 2 2 3 3 3 
Types 

mmonality 1 0.96 0.833 0.667 1 1 1 1 1 
Unks 

Commonality 1 1 0.833 0.667 1 
tjnkTypts 

Table 85 - Fuel Rig system link commonalities. 

Table 85 shows the commonalities associated with the sub-system links. The low 

levels of commonality are found within sub-system components with few internal 

links. As a result the lack of commonality is potentially less serious. Those systems 

with very high levels of commonality if not 100%, are predominately the larger sub- 

systems which contain a high number of links. Commonality within these large 

systems makes design easier and if a lack of commonality were observed, the 

variation may make design more difficult. 
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Measures PC Rig ADF Engine Leak Flow Fuel Collector Main Wing 
Harness Power Tank Sim Rtcon Trans Tank Tank Tank 

Element Number 5 32 9 3 6 22 38 42 39 

Number Of 4 4 3 2 3 4 4 4 4 
Element Types 

commonality 0.6 0.625 0122 0 0 0.773 0.789 0.910 0.872 
Elements 

I 

commonality 1 0.969 1 0.667 0.833 0.955 1 1 1 
Element Types 

I I 

1 

I I I 
Table 86 - Fuel Rig system element commonalities. 

Table 86 shows the commonality within the sub-system elements. Exact duplication 

of elements is in some cases high, even with a large number of elements within that 

sub-system (main tank, wing tank, collector tank). This commonality will make 
design easier. The same systems showing a high level of exact element duplication 

also show 100% for element type duplication. This is unsurprising since a vast 

majority of the elements are identical and therefore share the same common element 

types. 

Ile sub-systems showing the least common elements, in either type or exact 

duplication are relatively small in size. It may be that this size is in fact the cause of 

the lack of commonality. It would not be unusual for a sub-system containing perhaps 

2 or 3 components (elements) to exhibit no common components. Many small sub- 

systems will not have common components. 

Overall commonality within the Fuel Rig is high, exact element duplication is at quite 

high levels for the larger sub-systems (over 60%) and it is these sub-systems that will 

impact design and development more than the others. 
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9.3.2.2 Fuel Rig Interface Complexities 

Table 87 shows the system interfaces that exist within the Fuel Rig system. 
P Ril C 11 
Harness 

ADF 
Power 

Engine 
Tank 

Leak 
Sim 

Flow 
Recon 

Fuel 
Trans 

Collector 
Tank 

Main 
Tank 

Wing 
Took 

PC Rig 
Harness 

x x x x x x x x 

ADF Power y x x x x x x 

Engine Took x X x x x x x x 

LcakSim x x x x 

flow Recon x x x x 

Fuel Trans xI x x x x x x x 

Collector 
Tank 

- 

x x x x x x x 

- blain Tank x x x x x x 

wlog Tank x x x X X x x 

ilý 

Irable 87 - Fuel Rig interface table. 

Ilie interfaces show the system has a non-hierarchical structure, as there are a large 

number of potential interface loops. This is reflected within Table 66, within which 

the Fuel Rig is shown to have a structure with over 50% connectivity, indicating a 
definite non-hierarchical (dynamic) structure. 

Table 88 shows the number of links that exist between the sub-system components. 
The high levels of linking between sub-systems appear to be between the PC Harness 

and the other system components. This is understandable, as the PC Harness is the 

main interface with the PC platform taking data from the Fuel Rig. As a result all the 

sensor information passes through the PC Harness, and the high numbers of 

connections consist of the links required for various sensors, and control signals. 

PC Rig 
Harness 

ADF 
Power 

Engine 
Tank 

Leak 
Sim 

F1 
Re con ow Fuel - 

Trans 
OWICCtOr 
ink 

[TI, Main 
Tank 

Wing 
Tank 

PC Rig 
f1sroess 

0 5 5 5 12 11 

ADF Power 2 2 2 2 

1 Fa-gi-neTank 712- 7 2 0 0 1 0 0 

-GkSim 4 0 2 

Flow Recon 1 0 

1 1 
0 

1 Fuel Trans 13 0 1 0 

Collector 
Tank 

-17- 0 1 1 0 

hlain Tank 20 0 0 1 

k [-24 0 0 

Table 88 - Fuel Rig interface link number. 
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Table 89 shows the total link complexity for all the links between the various sub- 

systems of the Fuel Rig along with their averages (Link Complexity, Link Complexity 

Average). As expected the PC Harness interfaces contain the highest levels of link 

complexity within the sub-system interfaces. This will be, the result of the data 

transmissions through the PC Harness, as these have an intrinsically higher 

complexity than simple fluid flows within the Rig. The average complexities of the 

links between sub-systems are also reflective of the higher complexity associated with 

links between the PC Harness and other system components. Ibc majority of the 

links between the sub-systems are in fact basic fluid flows, and the link complexity 

totals, and averages reflect this with a value of 1. 

PC Rig 
Harness 

ADF 
Power 

Engine 
Took 

Leak 
Sim 

flow 
Recon 

Fuel 
Trans 

Collector 
Took 

NISIN 
Took 

Wing 
Tank 

PC Rig 
Ilarness 

0,0 11,2.2 3,3 0,0 12,2.4 13.2.6 26. 
2.167 

24, 
2.182 

ADF 
Povver 

2,2 4,2 

I 

4,2 

I 

4,2 4,2 4,2 4.2 4,2 

Engine 
Took 

26,2.167 0,0 2,1 11.0 0.0 111 0.0 0,0 

-ý Ltak Sim -TO-, 23 0,0 0,0 11,0 2.1 

Flow R"on 2,2 0,0 111 I'l 0,0 1.1 

Foci Trans 29.131 0,0 111 0,0 111 1.1 1.1 

CollectGr 
Tank 

41,2.41 0,0 1.1 1.1 0,0 111 111 

-Ttain Tank W, -2.2 0,0 1.1 0,0 0,0 1.1 0,0 1.1 

ý%jjng Too-k-1 5-2,721-6 0,0 111 0,0 1.1 11 

Table 89 - Fuel Rig interlace link complexity. 

Table 90 shows the number of different link types, and the variation occurs 

predominately within the interfaces between sub-systems and the PC Hamess. These 

consist of primarily data transmission of values or Boolean commands. The rest of 

the sub-systems are mainly matter flows of the fluid around the Fuel Rig, with the 

exception of the ADF Power, which is a power supply sub-system with energy 

interfaces between the other sub-systems. 
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PC Rig 
Harness 

ADF 
Power 

Engine 
Tack 

Lesk 
Sim 

Flow 
Recon 

Fuel 
Trans 

Collector 
Tank 

Main 
Tank 

Wing 
Tank 

PC Rig 
Harness 

0 2 1 0 2 2 2 

ADF 
Pow*r 

I I I 

I 

I I I I I 

Engine 
Tank 

2 0 1 0 0 1 0 0 

Leak Sim 2 0 0 0 1 

Flow Recon 1 0 1 1 0 1 

Fuel Trans 2 0 1 0 1 1 1 

Collector 
Tank 

2 0 1 1 0 1 

Main Tank 2 0 1 1 0 

Wing Tank 2 0 1 0 

Table 90 - Fuel Rig Interface number of link types. 

Table 91 shows the level of connectivity between the sub-systems. The highest levels 

of connectivity again are between the PC Harness and the other sub-systems. Again, 

this is because the PC Harness is the main interface between all the components. 
PC Rig 
Harness 

ADF 
Power 

Engine 
Tank 

Leak 
Sim 

Flow 
Recon 

Fuel. 
Tran 

Collector 
Tank 

Alain 
Tank 

Wing 
Tank 

Pq 
If 

0 2.747 1.786 0 0.712 0177 0.555 OMI 

jCD F 
Pmer 

0.075 0.122 0.168 0.142 0.070 0.041 0.037 0.040 

Engine 
Tank 

6.593 

- 

0 1.515 

-1 

0 0.046 0 0 

--ý Leak Sim -T 143 

- 

0 0 0 0.333 

--ý Flow Rft011 --d 
. 910 . 910 0 OA76 L389 0.053 

f:, V-ci Trans 1.852 0 0.108 0 0.028 0.025 0.027 

- Collector 
Tank 

0.941 0 0.046 0.053 0 0.016 0.017 

-WI-11i a Ts ak 0.925 0 0.039 0.025 0 0.015 
rW 

I see T -&a k, 1.268 0 0.044 0 0.017 0.015 

Table 91 - Fuel Rig interface connectivity multi. 

Table 92 shoes the commonality within the link types, this shows that the all of the 

links between sub-systems either have 100% commonality or 0%. The 0% 

commonality is in fact due to there only being a single interface in most cases - as a 

result commonality is not possible. 
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PC Rig 
Harness 

ADF 
Power Power 

Engine 
Tank 

Lesk Lesk 
Sl m Sim 

Flow 
Recon 

Fuel 
Trans 

Collector 
Tank 

Main 
Tank 

Wing 
Tank 

PC Ril 
11sroci 

0 

L 

0 0 0 0 1 1 1 1 

ADF Power 0 

Engine Task 1 0 0 0 0 0 0 

Leak Sim 1 0 0 

Flow Recon 0 0 0 0 0 

Fuel Trans 1 0 0 0 0 0 0 0 

Collector 
Took 

1 0 0 0 0 0 0 

Main Tank 0 0 0 

%log Tank 0 0 0 a 0 

Table 92 - Fuel Rig Interface common link types. 

Tle number of exactly duplicated links was zero, and as a result the table offered no 

additional information as to the interface complexities and was not included. 

Ile interface data from the sub-systems clearly shows the complexity of the sub- 

systems is predominantly found within the interfaces between the PC Harness and the 

other components, however it also shows that despite the high number of interfaces, 

and connectivity, the interfaces themselves are not of a very high complexity as they 

are data types Boolean or value in nature. 

Ile other interfaces within the system are very simple in nature as they are fluid flows 

or simple power distribution (the ADF). The overall complexity of the system 
interfaces as a result is generally low and manageable when it is compared to the other 

systems tested. 

9.3.3 NCST 

The following a number of data sets that have been produced for the NST system with 

various different configurations. Ibcse configurations are for a system with a single 

workstation to a system with six in single workstation increments. 

Many of the components of the overall system are common despite the number of 

workstations. The CTS Interface remains the same, the workstations remain the same 
but the Ethernet LAN interfaces function differently. Subsequently the different LAN 

configurations are shown within the sub-system analysis but the analysis of the 

Workstations and CTS Interface only occur once. 
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Table 93 shows the overall system view for the NCST systems (I workstation 
configuration to 6 workstation configurations) that were tested. The LAN is the only 
component that changes depending on the number of workstations and subsequently is 

the only component that is repeated for each of the potential configurations. 
Measures CTS 

Interface 
WS LAN (I 

WS) 
LAN (2 
WS) 

LAN (3 
WS) 

LAN (4 
WS) 

LAN (5 
WS) 

LAN (6 
ws) 

connectivity Multi 4.077 4.167 1333 1.5 1.6 1.667 1.714 1.75 

connectivity Single 4.077 4.167 1.333 1.5 1.6 1.667 1.714 1.75 

connectivity Single % 16.308 24.51 66.667 50 40 33.33 28.531 25 - 

UnkNumbcr 106 75 4 6 8 10 12 14 

Link Complexity 421 308 16 24 32 40 48 56 

Number of Link Types 2 3 
11 

1 1 1 1 1 

Element Numinr 26 18 3 4 5 6 7 8 

Element Complexity 458 182 42 56 70 84 39 112 

Number Of Element 
Types 

10 10 6 6 6 6 6 6 

Skill Numbcr 3 3 0 0 1 0 0 1 

Commonality Links I I I I I I I I 

Commonality Link 
Types 

I I I I I I I I 

Commonality 
Elements 

0 0.111 0.667 0.75 0.8 0.667 0.571 0.875 

Commonality Element 
Types 

0.989 0.986 1 1 1 1 1 1 

Co; monality Skills I I I I 

Table 93 - NCST 1 to 6 workstation sub-system complexities. 

As for the overall systems, the NCST sub-system complexities have been divided into 

sections. 

* Connectivity and Link Complexities (see section 9.3.3.1.1) 

,D Element Complexities (see section 9.3.3.1.2) 

9 System Commonality (see section 9.3.3.1.3) 

Each section will show the relevant results, conduct a cross comparison and analysis 

of the output. 
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9.3.3. Ll NCST Connectivity and Link Complexities 

Table 94 shows the results for the connectivity and link complexities within the sub- 
systems of the NCST systems. 

Measures CTS 
Interface 

WS LAN (I 
WS) 

LAN (2 
WS) 

LAN (3 
WS) 

LAN (4 
WS) 

LAN (5 
WS) 

LAN (6 
WS) 

connectivity Multi 4.077 4.167 1.333 1.5 1.6 1.667 1.714 1.75 

connectivity Single 4.077 4.167 1.333 1.5 1.6 1.667 1.714 1.75 

Connectivity Single 16.308 24.51 66.667 50 40 33.33 28.531 25 

Unk Number 106 75 8 12 16 20 24 28 

Link Complexity 421 308 16 24 32 40 48 56 

Unk Complexity 
Average 

3.97169811 4.1066667 2 2 2 2 2 2 

Number of Unk 
Types 

2 3 1 1 1 1 I 1 1 

Table 94 - Connectivity and link complexities for NCST. 

The sub-system components with the high levels of connectivity appear to be the 

Workstation and CTS Interface. With levels of connectivity at over 4, however the 

connectivity single % is much higher for the LAN sub-system components, because 

the LAN sub-systems have far fewer components and as a result a much lower 

maximum number of theoretical connections. 

The number of links is significantly higher within the workstations and the CTS 

Interface than within the LAN sub-systems. This is understandable since the 

workstations and CTS contain far more components than the LAN sub-systems, and 

also have a much higher diversity in nk types. 

Table 95 shows the nature of the interface structure within the systems. The CTS 

Interface and Workstation values do not change from one system configuration to 

another, however the LAN changes as more workstations are added. 
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Sob System Element 
Number 

Connectivity Single % 
Lower Bound for Non- 
Hierarchical Structures 

Connectivity 
Single % 
System Value 

DET/DYN 
Connectivity Single 
% Over / Under 

Connectivity 
Single % Over 
Hierarchical 
Structure 

Interface 
26 3.85% 16.31% 16.31%DET/DYN 12.46% 

'A'S 18 5.56% 24.51% 24.51%DET/DYN 18.95% 

3 33.33% 66.67% 16.67% DET / DYN 

16.67% DYN 

33.33% 

LAN (2 WS) 4 25.00% 50.0001* 50.001/9 DET / DYN 25.00% 

LAN-(3 WS) 5 20.00% 40.00% 40.00% DET / DYN 20.00% 

LAN (4 WS) 6 16.67% 33.33% 33.33% DET / DYN 16.66% 

LAN (S WS) 7 14.29% 28.53% 28.53% DET / DYN 1 4.25% 

LAN (6 WS) 81 12.50% 25.00% 25.001/6 DET / DYN 12.501/6 

Table 95 - NCST system element numbers and their respective connectivity single % values for 

detail complexity structures. 

Generally the system exhibits characteristics of a hierarchical structure. The LAN for 

the single workstation configuration shows a high level of non-hierarchical 

interfacing, indicating a high potential for interface loops. Although this is the case 

from the results, the main reason this figure is so high for the LAN sub-system with a 

single workstation is due to the low number of elements within this LAN sub-system. 

As the LAN system increases in size to cope with the greater number of Workstations, 

the level of connectivity reduces, the non-hierarchical nature of the sub-system 

component also reduces. 

9.3.3.1.2 NCSTElement Complexities 

Table 96 shows the element complexities for the NCST systems. 

, %jessures CTS 
Interface 

WS LAN (I 
WS) 

LAN (2 
WS) 

LAN (3 
WS) 

LAN (4 
WS) 

LAN (5 
ws) 

LAN (6 
ws) 

Ele catNumber 26 18 3 4 5 6 7 9 

Element ComPlexitY 459 182 42 56 70 84 38 112 

Average Element 
Complexity 

17.6 10.1 14 14 14 14 14 14 

Number Of Element 
Types 

10 10 6 6 6 6 6 6 

rable 96 - Element complexities for NCST. 
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The average element complexity is quite high across all the sub-systems. The systcm 
in general consists of a number of data handling units. These units intrinsically arc 

more complex than simple energy or fluid transfers and as a result generate a high 

average element complexity. 

There are much higher numbers of elements within the CTS Interface and 
Workstations than within the LAN. This is to be expected as the CTS Interface is 

responsible for transferring information to and from the ship systems. The 

components of the CTS handle and change this data accordingly. 

A much higher level of variety within the element types exist within the Workstations 

and CTS Interface than within the LAN. This is understandable as the LAN 

essentially consists of communication cards which are all identical no matter how 

large the LAN sub-system. These all have the same element characteristics and 

subsequently the element type number never changes from one LAN to another. 

9.3.3. L3 NCST Commonality 

Ile commonality of the NCST sub-systems is shown below within Table 97. 

CTS 
Interface 

WS LAN (I 
WS) 

LAN (2 
WS) 

LAN (3 
M'S) 

LAN (4 
M'S) 

LAN (5 
WS) 

LAN (6 
WS) 

SMII Number 3 3 1 1 1 1 1 1 

co;; [nonality Links I I I I I I I I 

Commonality Link 
Types 

I I I I I I I I, 

Commonality 
Elements 

0 0.111 

I 

0 0.5 0.6 0.667 0.714 0.875 

CO monality Element 
Types 

0.989 0.986 1 1 

- 

1 1 1 1 

Co;; -m-onality Skills I T 
Table 97 - Commonality and skill complexities for NCST. 

The commonality within the systems overall is very high. Element types are over 

98% common, skills 100% common for all sub-systems, links and link types are also 

100% common. The number of duplicated elements however differs substantially 

from sub-system to sub-system. The LAN common elements increases as the number 

of workstations increase, this will be due to the increased number of identical 

interface cards required to accommodate the extra workstations. 
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9.3.3.2 NCST Interface ComPlexities 

Ile following sections detail the interface complexities of the system under test for 

each of the different NCST configurations. In some cases the interface data is the 

same for all configurations of the system, if this is the case this is stated and the 

results shown. 

9.3.3. Zl NCSTInterface Structures. 

Ile following tables show the interface structures within the NCST systems starting 

with the single workstation and then incrementing the workstation number up until the 

six workstation configuration. 
I C17S Interface Ethernet LAN I Workstation I 

CTS Inttrfm x 

Ethernet LAN 

Workstation IIxx 

Table 98 - NCST 1 workstation Interface table. 

I CFS Interface I Ethernet LAN I WS1 WS2 

CIS Intel xx 

Ethernet LAN 

ws I xx 

ws 2 xx 

Table 99 - NCST 1 to 2 workstation Interface table. 

M Interface I 4- Ethernet ULAN M'S I WS 2 WS 3 

M Interfaci x x x 

Ethernet LAN 

% 

x x 

ws I x x 

WS 2 x x 

WS 3 x x 

% 

Table 100 - NCST I to 3 workstation Interface table. 

I CIS Interface Ethernet LAN I WSI WS2 WS3 I WS 4 

CTS Interface x x x 

Ethernet LAN x x x 

ws I x x 

WS 2 x x 

WS 3 x x 

WS 4 x x 

Table 101 - NCST 1 to 4 workstation Interface table. 
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IM Interface Ethernet LAN WS I WSZ WS3 I WS4 WSS- 
CI'S Interface x x x x x 

Ethernet LAN x x x x 

ws I x x 

WS 2 x x 

WS3 x x 

WS 4 x x 

ws 5 x x 

Table 102 - NCST I to 5 workstation Interface table. 

M Interface Ethtrutt LAN WS I WS 2 NVS 3 WS 4 WS 5 WS 6 

MIMI x x x x x x 

Ethtract LAN x x x x x 

"Isi x x 

M's 2 x x 

WS3 x x 

WS4 x x 

ws 5 x x 

WS 6 x x 

Table 103 - NCST I to 6 workstation Interface table. 

The pattern of interfacing between the sub-system components is repeated for all 

ConfIgurations. All workstations interface with the CTS Interface and LAN sub- 

system components. The LAN interfaces the data transmission between workstations 

on a single bus, and the CTS interface carries information from the workstations to the 

vessel. 

The structure progressively becomes less and less non-hierarchical in nature as the 

system increases in size. This is reflected within the overall system results as the 

NCST systems become less and less non-hierarchical in nature as they increase in size 
(see section 9.2.1). 

Table 104 shows the link numbers between the various sub-systems of the NCST 

system configurations. Since all the workstation link numbers were the same, only 

one entry has been included and this is the same for all system configurations. The 

main links exist between the LAN sub-system and the Workstations. This is due to 

the way the workstations communicate with each other through a LAN connection. 

Additionally to these main interfaces information is transmitted through to the CTS 

system, however the CTS system requires no additional hardware components to deal 

with 6 workstations than it does for I and. 
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CIS Intuface Ethernct ILAN I Workstation I to 6 

CIS lottrfav I 

Ethernd LAN 7 

Workstation I to 617 

Table 104 - NCST I to 6 workstation Interrace link number. 

Table 105 shows the link complexities of the links outlined. The complexities again 

wcrc all common throughout all the NCST configurations (I to 6 workstations) as a 

resultjust one entry is included in the table. Since there arc many more links between 

the workstations and the LAN the link complexity for this interface is much higher. 

However all share the same average complexity of 4, indicating they are all 

substantial data links (data arraY links see Table 56) 

I CTSInterface EthernetLAN Workstatioulto6 

M Intcrfac, 4,4 

Ethernet LAN 

28, Workstation 1 to 614,4 4 

Table 105 - NCST 1 to 6 workstation Int e link complexity. 

Table 106 shows the number of link types, since there is only one link type for every 

interface, it would appear all interfaces are DATA ARRAY links, which is consistent 

with the information and nature of the components and the system under test. 
I CTS Interface Ethernet LAN Workstation I 

M Interfi 

Ethernet LAN 

Workstation II 

Table 106 - NCST I to 6 workstation interface number of link types. 

Table 107 shows the detail of the connectivity between the sub-system components 

for each configuration of the NCST systems. 
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M Interface Ethernet LAN I Workstation I to 6 

ClrS Interface NCST I to 6-0.023 

Ethernet IAN NCST I-0.333 

NCST2-0318 

NCST 3-0.304 

NCST 4-0.292 

NCST 5-0.28 

NCST 6-0.269 

Workstatioulto6 NCSTito6-0.023 NCST I-0.333 

NCST2.0.318 

NCST 3-0.304 

NCST 4-0.292 

NCST 5 . 0.29 

NCST6.0.269 

Table 107 - NCST I to 6 workstation Interface connectivity multi. 

The connectivity between the workstations and the CTS interface remains constant for 

all the system configurations; however the connectivity between the Workstations and 

the LAN sub-systems reduce as the systems increase in size. This is consistent with 

the way the sub-systems are linked together. 

Table 108 shows commonality between the links within the LAN and Workstation 

interface in terms of link types. There could be no commonality between the CTS 

interface and Workstation interface as there is only one link. There were no common 

links for any of the sub-system interfaces, as a result this table has been omitted. 
I CTS Interface Etbernet LAN I Workstation I to 6 

CTS Interfac 0 

Etbcruttl, A 

Workstation I to 6101 

Table 108 - NCST 1 to 6 workstation Interface common link types. 

The interface data shows that there are a low number of links, but the links are fairly 

common, share the same link type and follow a pattern. The complexity lies within 

the links themselves and not so much within the intricacy or number of links. 

9.3.4 Cross Comparison of Sub-System and Interface Results 

This section details a quick cross comparison of the sub-system and interface results 

collected for the NCS, Fuel Rig and NCST systems. A cross comparison of the 
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results for the sub-systems and the interfaces will enable the complexity of the 

systems to be compared. 

93.4.1 System and Sub-System Complexity Assessment 

Overall it is clear that multiple measures are required in order to get an accurate 

appreciation of the complexity in the systems. It is also clear that complexity at an 

overall system level is not necessarily a definitive measure of the true extent of the 

complexity at a sub-system level, a very good example of this is the NCS system. 
Ile overall assessment of the NCS system indicates it has a high complexity but is in 

fact lower in complexity that other systems in terms of connectivity, link complexity, 

clement complexity. In reality the NCS system contains the most complex sub- 

system analysed, and that is the software component. For the NCS software 

component complexities can be seen that far exceed even overall system complexities 

of the Fuel Rig and the NCST configurations. This component is by far the most 

complex sub-system within this analysis, and subsequently makes the NCS the most 

complex system within the analysis. 

This is a good example of information change through hierarchical scaling; at system 

level the NCS metrics mask the true extent of the software component complexity, but 

at a sub-system level the level of information vastly increases to reveal the true nature 

of NCS. 

If this were an investigation into the development of the NCS system, it would be 

worth conducting an assessment on the Software system alone to determine the 

complexity distribution within the software sub-system. 

Ile element complexity of the Fuel Rig PC Harness needs addressing. It has a very 

high element complexity, with an average element complexity of 103 and a total of 

516. This is very inflated number; essentially the PC Harness is a conduit for 

information to pass to a PC platform. The complexity is made up of high numbers of 

Boolean and value data inputs and outputs. The complexity of the links within the PC 

Harness are much lower than those within the software despite it having higher 

element complexities due to the volume of Boolean and value data in and outs. It is 

this intricacy (Evans 1987) that makes the software of the NCS system more 

complex. 
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The complexities of the NCST systems increase as the system configurations get 
larger. Overall the NCST system element complexity averages and link complexity 

averages exceed those for the Fuel Rig. This makes NCST the second most complex 

system. 

93.4.2 System Interface Complexity Assessment 

The system interface complexities vary from system to system; the Fuel Rig has a 

relatively low interface complexity when compared to the other systems. Most of the 

Fuel Rig interfaces are fluid transfers between tanks. The interfaces within NCS and 

the NCST configurations consist mainly of data transfer interfaces, and this increases 

the average link complexity for those systems. 

The high levels complexity within the system interfaces can be found within the NCS 

system once again, with average link complexities of 4 and 5 indicating data buses 

existing between the NCS sub-systems. The NCST system too has high levels of link 

complexity again consisting of interfaces of data arrays. 

Although there a number of interfaces between the PC Harness of the Fuel Rig and 

other sub-system components, those interfaces are of much lower complexity value, 

and subsequently do not contribute to the level of intricacy of the system as much as 

the data transfers within the NCSTs and NCS. 

Generally all systems have quite high levels of commonality within their interface 

types. The diversity for all system interfaces is also quite low - this may change if the 

systems under test had a much larger scope. These systems have been very much 

workstation orientated apart from the Fuel Rig which is a test bed for fluid flow. 

9.3.4.3 Overall Assessment 

It appears that although at an overall level the NCS system does not appear to be the 

most complex system. The software component within the NCS system has a level of 

complexity far higher than any other system element in NCS, the Fuel Rig or the 

NCST configurations. 

Overall the lowest interface complexity is found within the Fuel Rig, despite the high 

levels of complexity within the PC Harness, the low levels of complexity within the 

links and the link complexity reduce the intricacy of the system quite heavily. 
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9.4 Evaluation of the Measures 

The questions that need to be asked are essentially: 

A) How easy/difficult is the system to design and integrate? 

B) How easy/difficult is the system to develop and manufacture? 

How easy/diff icult is it to predict the system behaviour? 

Not all of the measures will answer all of these questions, as discussed before 

different measures are required to give an overall perspective view of the complexities 

within the system. 

9.4.1 Evaluation of Complexity Measures 

Table 46 shows the evaluation and comments regarding the interface, system and sub- 

system measures. 

Calculated Description A B C Comments and Evaluation 
Measures 

Conewdivity The number of elements that are X X Connectivity has a coupling with both integration and 
Itfuld connected regardless of the direction behavioural prediction. Ile higher the coupling and 

of travel of the informadon, matter or connectivity between system elements the more likely 
energy. Ilat is if A and B are emergent properties are to exist as modelling becomes 
connected and A passes information more difficuIL Integration of systems with higher levels 
to B, a connection exists in the model of coupling and unpredictable behaviour is more 
between A and B, and is counted as a difficult than systems with low levels of coupling and 
connection for both elements. highly predictive behaviour. As a result the higher the 

level of connectivity the more effort and potentially 
connectivity The number of connections between X X , 

cost is associated with the development and integration 
Single elements but taken from a directional activity. 

view, i. e. there is a connection in 
which information from A is passed 
to B, this will be a single connection 
from A to B and only counted within 
A. 

Conowdi-wity The percentage of the total possible X X 
single % connections between elements. 

Unk Number ne total number of links within the X X Unk numbers, link complexity and link types like the 
sub-systern or system being analysed connectivity affects the case of integration, but only the 

link number has an clIect on the bchavioural prediction 
Unk The total number of links within die X . The more I inks the higher the chances of emergent 
complexity sub-system or system multiplied by properties within the system. But those links do not 

the link complexity factor allocated. necessarily have to be complex links, emergent 
i 

Number Of The number of different link types X propert es are in a strange was both indcpcndcnt of link 

U@kTypcs within the system or sub-systcm. complexity in some cases and a direct result of it in 
others. The link types is a component of the link 
complexity and is an appreciation of diversity within the 
system being viewed, this offers a more informed view 
of the integration activity from a variety of interface 
type perspective. Although the interface type number is 
useful, die spread of the types is perhaps more useful, 
there may be wide variation but if the overall system is 
for the most part one type that does reduce the 
integration work, load. 

Element The number of elements within the X X Element number, diversity and complexity are factors in 
Nomber system or sub-system. 

I 
both integration and the likelihood of emergence. Ile 
number of elements within the system is ke to 

Element I'lic number of elements within the X y 
emergence, with the more elements the higher the 

system or sub-system multiplied by 
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Calculattd Description A B C Comments and Evaluation 
Measures 

complexity the complexity type for those chances of emergent properties and the more difficult it 
elements. is to predict system behaviour. The number of elements, 

their diversit in t e and their com lexit is an 
Number Of The number of different element 

y yp p y 
indication of the integration Issues. Although if these 

Element Types types within a system or sub-systcm. are COTS products the integration issues are restricted 
to interfaces only and the complexity of elements is 
somewhat unseen. 

Skill Number The number of different skills within X Skill diversity within systems is a reflection of the 
the organisational body developing diversity of the engineering required to develop the 
the system. system. This is a reflection of the complexity of that 

system, this variety and diversity makes the integration 
of a system more difficult. 

SapplicrTotal The number of suppliers within the The supplier diversity within the system would be useful 
organisational body developing the when considering manufacturing. The more suppliers 
system. the more complex the management activity to support 

and co-ordinate the manufacturing and spares supply 
chains. This is not really a measure of complexity as 
such thoug% more a manufacture metric. 

Perso'nuel The number of personnel in total There is no clear mapping of the personnel properties 
Total working on the system within that with complexities in terms of development. 

l 

company. manufacture, or behaviour prediction. 

commonality 11 lali The number of I ink duplication X X Mutual links and link types does not necessarily effect 
IJ. 

r 
mks within the system. the difficulty of behaviour prediction. Systems with 

only one interface style have been known to exhibit 
Commonality The number of link type duplication X X complex emergent behaviour, such as the game of life. 
Unk Types within the system. or flocks. The repetition of links and link types does 

make integration easier and manufacture simpler too. 

commonality The number of element duplication X X Element repetition may reduce complexity within 
Elements within the system. systems in terms of manufacture and integration, there is 

however no real concrete connection between element 
Comm-onality The number of element tyW X duplication and complexity reduction. 
Ejemcnt Types duplication within the system. 

Commonality The number of skill duplication X Ile less diversity within the skill set required to produce 
skills within the development organisation the system one would expect the system to be less in 

for the system. terms of its complexity. Although this is not strictly 
true. as high levels of complexity can exist in a single 
domain, in particular software. 

commonality The number of mutual suppliers Ile mom duplication in the supply chain. the supply 
Syppliers within the development organisation chain may be less robust, but the complexity involved in 

for the system. manufacture is certainly reduced. 

commonality The number of personnel that are There is no clear mapping of the personnel properties 
personnel shared between sub-systems. with complexities in terms of development, 

manufacture, or behaviour prediction. 

Table 109 - Evaluation of calculated measures for complexity model sub-systems/systems. 

The connectivity measures are all proportional and there is little difference in the 

complexity characteristics of the system each shows. Although without an 

understanding of the link complexity, connectivity on its own offers very little in 

terms of understanding. Looking at the results collected here in the sub-system and 

system analysis the majority of results for connectivity are around the same area. 

Larger systems with more links and elements could well have the same connectivity 

as a small system with fewer links and elements. Tberefore there needs to be an 

additional factor that must influence the picture of the coupling and also give an 

appreciation for the scale. Highly coupled large systems will be more complex than 
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small systems with low coupling. Link complexity and connectivity must exist 

together in order to get this appreciation. Understanding the likelihood of bchavioural 

emergency is only possible with a full understanding of connectivity, the links and the 

link complexity. 

Commonality complexity measures provide support for understanding the 

manufacture complexities and the other complexity measures. With these measures 

commonality can be appreciated within the system, and this has an effect on the 

element and link complexity interpretations. If the commonality is high within a 

system, then 

A better measure here may be to tell distributions of elements that are identical and 

the distribution of element types as well as links and link types. These distributions 

may be more appropriate and informative than the mutual information measures 

shown in the systems here. 

9.5 Conclusion 

The complexity measures were successfully applied to the systems tested. The data 

showed clear distinctions between the systems in terms of their complexity make up. 

It showed that despite having a high values in one type of complexity (e. g. 

connectivity), the other complexities did not necessarily follow suit, demonstrating 

that a multi-dimensional approach is necessary to fully understand complexity within 

systems. 

it is clear that some of the measures are not required, several of the connectivity 

measures do not yield interesting results and the only two that are useful are those 

measures dealing with connectivity within single links, and the percentage of single 

links that exist within the system compared to the maximum number possible, and 

even this requires modification. 

There is a gap within the results when considering the skill set included within the 

system or sub-systems. Like links and element data, a spread is required to fully 

appreciate the affect that skill distributions or variation of skill requirements within 

systems or sub-systems may have on the complexity of the system. Relating to the 

concept of variety and its inherent links to complexity (the more variance within the 

system the more likely the system is to exhibit complex behaviour or characteristics). 
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With the lack of personnel data it is unclear how useful a skill spread would be, 

without knowing the numbers of personnel involved. For this reason it has been 

omitted. 

A further gap within the results, personnel data and records could not easily be found 

for the projects tested. It may be possible for new projects to obtain better records and 

account for personnel within the results. Without the addition of the personnel data 

within the results it is unclear as to how this may affect the complexity of the system. 

In terms of content, several of the measures do not hold true to their design and they 

need to be modified to reflect the design. Some of the measures can be removed from 

the model as they do not yield valid results, or if they do they are directly proportional 

to another measure already within the set. 

Maturity within the elements and interfaces is an issue that is not addressed within 

this data. The information used to calculate various complexities does not take into 

account that although the interface itself may have a high complexity in some areas, 

the maturity of that interface means that it is very easy to implement. 

Overall the output from the tool enables an appreciation of the complexity within the 

systems, however this tool needed improvement and reduction in the areas outlined 

within this section. 
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10 Changes to the Tool 

7his chapter details the changes that were made to the complexity measurement tool 

as a result ofthefirst set ofresults and the analysis within chapter 9. The conclusions 
formedfrom those results lead to the introduction ofsome other metrics, the removal 

ofsome metrics. The new resultsfrom the new metrics have been included here, and 

these metrics are; maturity, increased statistics and spreadsfor interface t)pes and 

commonality. 

10.1 Introduction 

This section details the changes that have been made to the complexity analysis tool. 

Ilese changes help the model produce results that can be better related to complexity 

within the system and enhance the outputs correlation with cffort and cost prcdictions 
by introducing new metrics that broaden the complexity understanding of the systems. 

10.1.1 Commonality 

Tle commonality measures have been edited to include spreads of commonality 

within the systems. Systems would have commonality results of 100%, meaning that 

every element type within the system was duplicated at some point. But without 

spread information the type duplication is almost always 100%, and provides a 

meaningless figure to the user. Much better to understand and appreciate the 

commonality in the form of % spread of the various element and link types, at both a 

system and sub-system level. 

For example, in the current model, a system could have 2 of type one, 50 of type 2, 

and the result for the commonality would be 100%. Another system could have 2 of 

type one, 3 of type two and 2 of type three, this would yield the exact same 100% 

result. Nothing is learned about the system, even when coupled with the element 

number, information is lost that is contained within the models. This information is 

required to get a better perspective on commonality. 

10.1.2 Connectivity 

The connectivity measures have been reduced to just two of the original set, -the 

connectivity single and connectivity single %. Connectivity multi offers no additional 

understanding of the system. 
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10.1.3 Maturity 

Maturity measures have been added to the tool outputs. Measuring maturity within 

engineering systems has been done using technology readiness levels (TRL). These 

lcvcls arc a mctric mcasurc of maturity and vary from Jcvcj 1, dccmcd the lowcst 

maturity level to 9 the highest (Mankins 1995). 

Tecbnology Readiness Level (TRL) Description 

9. Actual Technology System qualified Application of the technology in its final form and under mission conditions, such as 
through reliability and maintainability those encountered in operational test and evaluation and reliability trials. Examples 
demonstration in service. include using the system under operational mission conditions. 

8. Actual technology system completed Technology has been proven to work in its final form and under expected conditions. 
and qualified through test and In almost all cases, this TRL represents the end of Demonstration. Examples include 
demonstration. test and evaluation of the system in its intended weapon system to determine if it 

mects design specifications, including those relating to supportability. 

Technology system Prototype Prototype near or at planned operational system. Represents a msjor step up from 
demonstration in an operational TRL 6, requiring the demonstration of an actual system prototype in an operational 
environment. environment, such as in an aircraft or vehicle. Information to allow supportability 

assessments is obtained. Examples include testing the prototype in a test bed aircrafL 

6. Technology systcm/subsystcrn model Representative model or prototype system, which is well beyond the representation 
or prototype demonstration in a relevant tested for TRL 5, is tested in a relevant environment. Represents a major step up in a 
cnviromncnL technology's demonstrated readiness. Examples include testing a prototype in a high 

fidelity laboratory environment or in simulated operational environment. 

Technology component and/or basic Fidelity of sub-systcrn representation increases significantly. Ile basic technological 

sub-systcm validation in relevant components are integrated with realistic supporting elements so that the technology 

environment. can be tested in a simulated environment. Examples include "high fidclity" 
laboratory integration of components. 

4. Toc W109Y component and/or basic Basic technology components are integrated. This is relatively "low fidelity" 

technology sub-systcm validation in compared to the eventual system. Examples include integration of 'ad hoc" hardware 
laboratory enviromnenL in a laboratory. 

3. Analytical and experimental critical Analytical studies and laboratory studies to physically validate analytical predictions 
function and/or characteristic proof-of- of separate elements of the technology are undcrtakert. Examples include 

conccpL components that are not yet integrated or representative. 

2- Technology concept and/or - Invention begins. Once basic principles are observed, practical applications can be 

application formulated. postulated. The application is speculative and them is no proof or dctailed analysis to 
support the assumptions. Examples are still limited to paper studies. 

1. Basic principles observed and Lowest level of technology readiness. Scientific research begins to be evaluated for 

reported- military applications. Examples might include paper studies of a technology's basic 
properties. 

Table 110 - MoD TRL derinitions. 

What is the effect of maturity on system complexity? It could be argued that highly 

mature technologies do not contribute to increased complexities within systems. As 

discussed before, maturity will have a profound impact on the complexity of the 

system, and in particular the induced complexities within a development programme. 

Induced complexity may well be due to inappropriate selection of immature 

technologies or the lack of appropriate management of the steady development of the 

maturity levels as the programme goes ahead. 

Maturity within the elements and interfaces is an issue that was not initially addressed 

within the data. The information used to calculate various complexities did not take 
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into account that although the interface itself may have a high complexity in some 

areas, the maturity of that interface means that it is very easy to implement. Ethernet 

is a good example of this, although there is a high level of connectivity within the 
Ethernet sub-system of NCST and also some attributes of the NCS system exhibiting 
high levels of complexity for the Ethernet components, in reality this interface is vcry 

simple to incorporate, as it is standard and widely used with great success. 

A system of applying maturity levels and factors has been included within the 

interfaces and component data. The levels have been estimated based on how the 

development required for the component or the interface between the components to 

see how complexity of the system is affected. 

10.1.4 Summary of the New Measures 

Table III shows the additional measures created for the sub-systcm and overall 

system complexity metrics analysis. These measures have been calculated using the 

same data available for the calculation of the results within section 9. 

Measures 
TjWi ýty Livel The maturity level of the elements within the sub-systems or system components. This lcvc 

from I to 9 and the selection is made in accordance with Table I 10 - MoD TRL definition&. 

x Spread Provide detail regarding the composition of the interfaces within a system or sub-systcm. 

mplexity Spread Provide detail regarding the spread of complexity within the interfaces within a system or si 
system 

YjWS--prcad Provide detail regarding the composition of the elements within a system or sub-systcm. 

complexity Spread Provide detail regarding the spread of complexity within the elements within a system or su 
system. 

Table IIi- measures auucu tu tuc cunipiviLity annipts tuoi ior tne system anu suo-systems. 

Table 112 shows the additional interface measures that have been calculated using the 

same raw data as the results calculated within section 9. 

Additional Calculated Dtscliption 
Measures 

jnGTa-m Maturity Level The maturity level of the interfaces between the sub-systems. This level is from I to 9 and the 
selection is made in accordance with Table I 10 - MoD TRL definitions. 

Link Type Numbers Provide detail regarding the composition of the interfaces within a system or sub-system. 

Link plcxity Spread Provide detail regarding the spread of complexity within the interfaces within a system or sub- 
system. 

Table I iz - wieasures auucu to uIc cullipiciLity ainuipts tow iur ine system interiaces. 

T'hese measures and their results can be found within the summary of results section. 
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10.1.5 Results from Added New Measures 

Tle following section is a summary of the results generated from the new measures 

and is laid out similarly to the results section within chapter 9. Section 10.2 includes 

the new link and element distribution measures along with element maturity. 

Ile Interface Maturity measures for the systems are found within the interface 

sections of each system in turn (see 10.3). The distribution of the links, elements, the 

link complexity averages and interface and element maturities arc found within each 

system section within section 10.3. 

The results are discussed as they are shown and an evaluation conducted for the new 

measurement approaches. 

10.2 Overall System Results 

The following sections detail the results for the complete systems in terms of the link 

and clement distributions of numbers and complexities, along with interface and 

element maturity levels. 

10.2.1 Link Spreads 

Table 113 shows the spread of the link types within the systems overall. 
Matter Energy Data (Value) Data (Bus) Dats(Boolean) Data (Arrays) 

NCS 42.86% 57.14% 

FUEL RIG 7.72% 5.03% 22.15% 65.1% 

NCST 1 1000/0 

NCST 2 1 OM/0 

NCST 3 1000/0 

NCST 4 1000/0 

NCST 5 100% 

NCST 6 1 OV/0 

Table 113 - Spread of link types for overall systems. 

The spread of the link types within the systems is shown within Table 113. The 

NCST systems only have a single link type, the DATA ARRAY link type. Whereas 

the Fuel Rig and NCS have a combination. The Fuel Rig is the most diverse of all the 

systems, but the spread is dominated by the DATA BOOLEAN interfaces and DATA 

VALUE interfaces. Additionally there are some Power and Matter links within the 

system. 
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Matter Energy Data (Value) Data (Bus) Dats(Boolean) Data (Arrays) 

NCS 48.39% 51.61% 

FUEL RIG 3.6% 4.690/9 30.99% 60.72% 

NCST 1 1000/0 

NCST 2 1 OM19 

NCST 3 

NCST 4 1 OMIG 

NCST 5 10 W/0 

NCST 6 1 ! /J. 

Table 114 - Spread of link complexity for overall systems. 

The spread of the complexity within Table 114 over the different types di Mrs only 

slightly from the spread of the numbers of links. There are some changes, the spread 

of complexity within the DATA VALUE of the Fuel Rig is significantly higher than 

its number share and the complexity spread between the DATA BUS and DATA 

ARRAY shows differences, as most of the complexity is contained within the fewer 

DATA BUS links. 

10.2.2 Element Spreads 

Table 115 shows the distribution of element types within the systems. 

NCS FUELRIG NCSTI NCST2 NCST3 NCST4 NCSTS NCST6 

18.000/0 
SIAT DIST 

st 
- 1.800/0 

MAT TRANS 

MAT CO'iS 
2.801/o 

ENGY DIST 
1.60*/* 

ENGVCONV 

ENGY GEN 
14.55% 22.401/e 1434% 14.291/9 14.29% 14.29% 14.291/9 14.291/6 

DATA EN (BOOLEAN 
14.68% 10.200/9 1311% 12.54% 12.14% 11.87% 11.671/6 11.521/6 

DATAIN(VALUE) 
8.31% 1.20% 7.920/a 7.871/6 7.860/9 7.85% 7.84% 7.83% 

BUSI DATA IN 
_ 14.55% 21.00% 15.47% 16.03% 16.43% 16.700/9 16.90% 17.05% 

DATA OUT JBOOLEAN) 
15.190/0 16.20% 14.34% 14.29% 14.29*/* 14.29% 14.290/6 14.29*/* 

DATA OUT (VALUE) 
9.35% 1100/0 9.06% 9.62% 10.001/9 1016% 10.45% 10.6VIs 

DATA OUT BUS) 

DATA PROCESSING (BOOLEA! q 
7.92% 1200/0 12.08% 1137% 10.95% 10.66% 

1 10.45% 10.291/s 

DATA PROCESSING (VALUE) 
7.92% 1.201/o 12.08% 1137% 10.95% 

- 

10.66% 10.45% 10.29% 

D4TA PROCESSING (BUS) 
7.53% 1.200/9 1.51% 2.04% 2.38% 2.6 r1o 2.791/o 2.92% 

0.58% 0.71% 0.8(yve 0.871/9 0.921/9 Is. 
"'ITC11 

Table 115 - Spread of element types for overall systems. 
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The results show the Fuel Rig has the largest variety. The system contains almost all 

the possible element types within the analysis tool (apart from MAT CONV, ENGY 

GEN). The main reasons for this are that the NCST and NCS systems arc 

predominantly software / electronic systems where as the Fuel Rig actually distributes 

fluids through a series of tanks, valves and pipes. 

The NCS has an even spread of element types. This is predominantly because the 

elements within the NCS system perform very similar processing functions and 

require the same element types to perform these functions. 

NCS I FUELRIG NCSTI NCST2 NCST3 NCST4 NCSTS NUir 6 

933% 
MAT DIST 

MAT CONV 
6.671/o 

MAT NS I I 

MAT CONS 
1.33% 1.49% 1.06% 0.83% 0.68% 0.571/6 0.500/0 

ENGY DIST 
1.33% 

ENGY COW 

ENGY GEN 
9.000/0 5.33% 9.960/a 8.51% 8161/9 8.11% 9.000/0 7.92% 

DATA IN (BOOLEAN) 
8.001/0 8.001/0 8.961/o 8.51% 8.261/o 8.11% 8.000/0 7.92% 

DATAINI(VALUE) 
12.00% 4.00% 13.43% 12.771/s 12.401/o 12.16% 12.00% 11.88% 

DATA IN (BUIS) !n 
- 8.000/0 18.67% 8.96% 8.51% 8.26% 8.11% 8.000/0 7.92Yo 

DATA OUT (BOOLEAN) 
8.000/0 26.67% 8.96% 8.51% 8.261/6 8.11% 8.000/0 7.92% 

DATA OUT (VAUTE) 
12.00% 4.00% 13.43% 12.77% 11401/o 12.16% 12.00% 11.88% 

DATA OUT (BUS) 
16.001/o 533% 11.94% 12.77% 13.22% 13.51% 13.71% 13.86% 

DATA PROCESSING (BOOLEAN) 
12.00*/o 4.00% 8.96% 9.571/o 9.92% 10.14% 10.291/o 10.401/6 

DATA PROCESSING (VALUE) 
16.0 Mo 533% 11.94% 12.77% 13.22% 13.51% 13.71% 13.861/6 

DATA PROCESSING (BUS) 
9.33% 

Table 116- Spread of element complexity for overall systems. 

Table 116 shows the spread of complexity within the system elements. The spread of 

complexity differs from the spread of element types as some element types are 

considered by the model to be more intrinsically complex than others. As a result the 

PROCESSING element types and DATA element types, in particular those BUS 

types have a much higher proportional share of the element complexity. Despite there 

the spread of complexity within the elements is varied across all the systems with 

some lower complexities existing for power distribution and fluid distribution (Fuel 

Rig) within the systems. 
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10.2.3 System Maturity 

The maturity information is an average maturity of the system elements and links. 

This information is shown for the overall systems within Table 117. 

NCS FUELRIG NCSTI NCST 2 NCST 3 NCSIA Ncs, r 5 NLST 6 

8.61 8.931 9.575 8.584 8.59 8.593 8.596 9.599 
Element Maturity 

8.43 8.679 8.875 8.875 8.873 8.875 8.875 8.875 
Unk Maturity 

Table 117 - Overall system maturities. 

Overall the maturity of the system elements and their links arc very high. This is 

primarily because the systems are actually operating currently and at the end of their 

development cycles. The technologies within the systems are mostly matured 

technologies, the elements of reduced maturity are usually those that were under 

development such as new hardware, or software elements. 

10.3 System Sub-Systems and Interfaces 

The following sections detail the spreads for system interface and element, types and 

complexities for the systems tested. These results are taken in turn and in the 

following order: 

9 Naval Command System (NCS), see 10.3.1. 

9 Fuel Rig, see 10.3.2. 

* Naval Command System Trainer with I to 6 Workstations (NCST I to 6), see 

10.3.3. 

For each of the systems tested, firstly the individual sub-systems are analysed 

followed by the interfaces between them. 

10.3.1 NCS 

The following sections detail the NCS results in terms of the spreads of link types and 

complexities and the element types and complexities. 

103-1.1 Link Spreads 

Table 118 shows the spread of link types within the NCS system. The type numbers 

are close to evenly spread between the DATA BUS and ARRAY interfaces within the 

Complexity Characteristics and Measurement within Engineering Systems 

Craig Read Page 294 12/1112008 



Complcxity Charactcristics and Mcasurcmcnt within Engincering Systcrns 

IPU and DPU system elements. The software consists only of DATA ARRAY 

transfcrs, indicating a high level of commonality within the system. 
Matter Energy Data (Value) Data (Bus) Dats(Hoolean) Data (Arrays) 

IPUI 52.63% 47.37% 

DPUI 44.83% 55.17% 

IPU2 52.63% 47.37% 

DPU2 44.83% 55.17% 

IPU3 52.63% 4 7.3 71/6 

DPU3 44.83% 55.17% 

Software 1000/0 

Table 118 - Spread of link types for NCS. 

Table 119 shows the spread of link complexity within the interfaces, due to the lower 

level of intrinsic complexity associated with DATA ARRAY interfaces, the 

complexities for these links is lower than that of the DATA BUS links despite the 

highcr numbcrs. 
Matter Energy Data (Value) Data (Bus) Data(Boolcon) Data (Arrays) 

IPUI 58.14% 41.86% 

DPUI 50.39*/* 49.61% 

IPU2 58.14% 41.86% 

DPU2 50.39*/o 49.61% 

IPU3 58.14% 41.86% 

DPU3 50.39% 49.61% 

Software 1000/0 

Table 119 - Spread of link complexity for NCS. 

The software information provides little additional information, since there is only a 

single interface type, all the complexity of those interfaces is contained there. 
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103.1.2 Element Spreads 

The spread of the element complexities and types for the NCS system are shown 

within the following tables. 

IPUI DPtjI IPU 2 DPtl 2 lPtl 3 DPIT 3 Software 

SIAT DIST 

SIAT CONV 

NIAT TRANS 

NIAT CONS 

ENGY DIST 

ENGY CONV 

ENGYGEN 

DATAIN(BOOLEAN) 15.04% 17.14% 15.04% 16.67% 15.04% 16.67% 11.31% 

DATA 1*4 (VALUE) 15.04% 17.14% 15.04% 16.67% 1519% 16.67% 11.76% 

DATA IN (BUS) 7.96% 5.71% 7.96% 6.06% 7.96% 6.06*/* 11.31% 

DATA OUT (BOOLEAN) 15.93% 17.14% 14.16% 16.67% 14.16% 16.67% 11.76% 

DATA OUT (VALUE) 15.93% 17.14% 15.93% 16.67% 15.93% 16.67*/o 12.22% 

DATA OUT (BUS) 0 8.85%yc 0 5.71% 10.62% 6.06*/* 10.62% 6.060/9 11.76% 

DATA P tOCESSING (BOOLEAN) 7.08% 7.14% 7.08% 7.58% 7.08% 7.58% 9.95% 

DATA PROCESSING (VALUE) 7.0 8 %Yc 7.14% 7.08% 7.58% 7.08% 7.58% 9.95% 

n iirA punr M-SING (BUS) 7.08% 5.71% 
- 

7.08% 6.06% 7.08% 6.06% 9.95% 

SWITCH 
F I 

Table 120 - Spread of element types for NCS. 

Table 120 shows the spread of element types within the NCS sub-systems. Within all 

the sub-system components there are a number of different element types present. 

The spread within the software sub-system is relatively even throughout, however the 

JPU and DPU sub-systems seem to have areas of density and areas of reduced density 

in element types. DATA PROCESSING element types are lower in number, along 

with DATA BUS IN and OUT elements. There is a much higher concentration of 

BOOLEAN and VALUE data element types within these system components. 
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IPUI Drul IPU 2 DPU 2 IPU3 DPU 3 Sorlware 

MAT DIST 

141AT CONV 

MAT TRANS 

MAT CONS 

ENGY DIST 

ENGY CONV 

ENGY GEN 

DATA IN (BOOLEAN) 11.93% 14.04% 11.85% 14.04% 11.85% 14.04% 8.291/9 

DATAIN(VALUE) 11.93% 14.04% 11.85% 14.04% 11.85% 14.04% 8.62% 

DATA IN (BUS) 9.475/o 7.021/o 9.41% 7.021/9 - 9.41% 7.0 rle 12.44% 

DATA OUT (BOOLEAN) 12.63% 14.04% 11.15% 14.04% 11.15% 14.04% 8.62% 

DATA OUT (VALUE) 12.63% 14.04% 12.54% 14.04% 12.54% 14.04% 8.96% 

DATA OUT (BUS) 10.53% 7.02% 12.54% 7.02% 12.54% 7.02% 12.94% 

IFATA PROCESSING (BOOL" 11.23% 11.7fto 11.151ye 11.70% 11.15% 11.70% 14.59% 

DA PROCESSING (VALUE) 8.42% 8.775/6 8.36% 8.77% 8-36% 8.7 Me 10.95% 

DA , PROCESSING (BUS) 11.23% 9.36% 11.15% 9.361/9 11.15% 9.3 V19 14.591/6 

SWITCH 

Table 121 - Spread of element complexity for NCS. 

Table 121 shows the spread of complexity within the NCS sub-systems. Again, as 

with the overall systems, the distribution of the complexities of the various elements 

are different to the numbers. When considering the intrinsic complexities of the 

system elements and their natures, the distribution of complexity within the elements 

of tfie sub-systems evens overall, with most intrinsic complexities of the element 

types ranging between 6% and 15%, and most around 11% or 12%. This shows that 

despite a difference in the number of elements within each element type, overall the 

complexity is relatively even. 

103.1.3 Sub-System and Link Maturity 

The following tables show the maturity of the sub-systems and the interfaces between 

them for the NCS systern. 

IPUI DPUI IPU 2 DPU 2 IPU 3 DPU 3 Software 

8.68 8.75 8.68 8.75 8.68 8.75 8 
Element Nlaturitj 

8.56 8.72 8.56 8.72 8.56 8.72 8 
Unk Maturity 

Table 122 - NCS sub-system maturity. 

Table 122 shows the element and link maturity of the sub-systems within the NCS 

system. The maturities are very high throughout the system, as this system is 
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currently in use and has been for some time. Tbe majority of the technology used 
vvithin the sub-systems were COTS products, and subsequently had high levels of 
maturity before they were made part of the system. The link maturity is also high as 
most of the links are clearly defined links that were mature before the system was 
dcvcloped. 

IPUI DPUI IPU2 DPU2 IPU3 DPU3 Software 

lp & 

DPUI 9 

IPU2 9 

DPU2 9 

IPU3 9 8 

DPU3 

S. rtw re o are 8 8 

Table 123 - NCS sub-system Interface maturity. 

Table 123 shows the maturity of the links within the system. The links overall arc 
less mature between the software and the other units, due to the software being a new 

component and developed purely for the NCS system this will affect the maturity of 

the links. 

10.3.1.4 Interface Link Spreads 

The following tables show the spreads of various complexities within the links 

between the sub-systems. Only two link types exist between the sub-systems within 

the NCS system, and these are the DATA BUS link and the DATA ARRAY link. As 

a result these are the only two links that are shown within this section. The link 

complexities are displayed in an interface table in the following format for each 

system; N=ber of Links, % of Total Links, % of Total Link Complexity. 

1put Dpul 1 PU-2- DPU2 IPU3 DPU3 Software 

[PUI 3, . 11/@ý 

-DIPUI 3, 
8.1 

IPU2 7.1 *V6. 

. 1% 

DPU2 

IPV3 
8.1% 

DPU3 3.7.1 I/e, 

79oftware 

Table 124 - NCS DATA BUS link number. 
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Table 124 shows the spread of the complexity within the DATA BUS links bctwccn 

the sub-systems. The spread is even and when considered in conjunction with the 

DATA ARRAY data within Table 125 the distribution of intrinsic interface 

complexity is even between the two types, however the DATA ARRAY links have a 
highcr lcvcl of complexity. 

irul DPVI IPU2 DPU2 IPU3 DPU3 Software 

IF 4.9.51/% 
8.6% 

DPUI 

IPU2 4.9.5 V6, 
9.6% 

-FP-U2 

IPU3 4,9.51/e. 
9.6% 

DPU3 

software 4,9.51/9, 
8.6% 

4.9.5%, 8.6% 1 4.9.51A 
9.61/* 

Table 125 - NCS DATA ARRAY link number. 

It is clear from both tables that the different interface types handle different parts of 

the system. The DATA ARRAY interfaces are contained within the software system 

and its links with the IPU sub, -systems, where as the DATA BUS architccturcs are 

between the IPU and DPU sub-systems. 

10.3.2 Fuel Rig 

Ile following sections detail the Fuel Rig results in tenns of the spreads of link types 

and complexities and the element types and complexities. 

103.2.1 Link Spreads 

The following two tables detail the spread of the link types within the Fuel Rig sub- 

systems and also the spread of intrinsic complexity of those links. Table 126 shows 

the spread of the number of different link types within the system. 
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Matter Energy Data (Value) DMIA(BUS) 
-Dats(Roolesn) 

Deist (Arrays) 
Rig PC Harness Sub-System 26.36% 73.64% 

ADIF Power Sub-Systcm 96.00% 4.00*/e 

Engine Tank Sub-System 16.67% 83.33% 

Usk Simulator Sub-System 50.00010 50.00010 

flow Reconfiguration Sub-System 71.43% 28.57% 

Fuel Transfer Sub-System 95.24% 4.76% 

Collector Tank Sub-System 90.16% 318% 6.5 6*/* 

Main Tank Sub-System 76.39"/0- 16.01, /9 1 0.94% 1 

wing Tank Sub-System 76.81% 20.29% 1 2.90% 1 

Irable 126 - Spread of link types for Fuel Rig. 

The system consists mainly of MATTER and ENERGY links, these are the power 

systems and fluid transfer pipes within the sub-systems. Other components relay 

information in the form of DATA VALUE or DATA BOOLEAN links. 

Matter Energy Data (Value) Data (Bus) Dats(Boolean) Data (Arrays) 

Rig pc iiarness Sub-System 34.93% 65.07% 

ADF Power Sub-System 96.00*/* 4.001/9 

Engine Tank Sub-System 9.090/0 90.91% 

i7sk ýsjmulator Sub-System 33.33% 66.67% 

flow Reconfiguration Su"ystem 55.56% 44.44% 

jFucl Transfer Sub-System 90.91% 9.090/0 

-Cllector Tank Sub-Systen, 77.461/6 5.63% 16.90% 

Main Tank Sub-Systcm 58.51% 25.53% 15.96% 

%, Jng Tank Sub-System 60.92% 32.18% 6.90*/o 

Table 127 - Spread of link complexity for Fuel Rig. 

Table 127 shows the spread of the intrinsic complexities of the links within each sub- 

system. The DATA VALUE link type despite its low number of links in comparison 

to MATTER and ENERGY takes quite a significant proportion of the link complexity 

within the sub-system interface for the Collector, Main and Wing Tank Sub-Systems. 

Also it is apparent that the ENERGY links are more complex than the MATTER links 

and the distribution shows this. 

10.3.2.2 Element SPreads 

The spread of the element complexities and types for the Fuel Rig system are shown 

,. vithin the following tables. 
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Rig PC 
Harness 

AD 
Power 

Engine 
Tank 

Leak 
Simulator Flow 

Fuel 
Transfer 

ColFc-ctor 
Tank 

Main 
Tank 

Wing 
Tank 

Sub- Sub- Sub- Sub- Reconfiguration Sub. Sub- Sub- Sub- 
system system system System Sub-System -system system system System 

MAT DIST 33.33% 66.67% 50. W*10 63.64% 50.00% 60.98% 64.10% 
MAT CONV I 
MAT TRANS 16.67% 9.090/0 5.56% 4.98% 5.13% 
MAT CONS 

ENGY DIST 43.75% 

ENGVCONV 25.00% 

ENGY GEN 
DATAIN 
(BOOLEAN) 41.09% 1 
DATAIN 1 
(VALUE)__ 17.05% 3.13% 
DATAIN 
(BI1S)- 
DATA OUT 
(BOOLEAN) 32.56% 22.22% 4.55% 11-11% 9.76% 10.26% 
DATA OUT 

ALUE) 9.30% 28.13% 44.44% 1 33.33% 33.33% 22.73% 33.33% 24.39% 20.51% 
DATA OUT 

ýBUS) DATA 
PROCESSING 
(BOOLEAN) 
ýATA 
PROCESSING 
(VALUE)_ 
DATA 
PROCESSING 

JR0 - - - 
s-%vrrOf 

--I -i I - 

Table 128 - Spread of element types for the Fuel Rig. 

The distribution of element types within the sub-systems is shown within Table 128. 

The distribution shows clearly that there are no PROCESSING elements, and those 

that handle data are all DATA VALUE/BOOLEAN IN and OUT elements. It is also 

clear which sub-systems handle power and which form part of the fuel system moving 
fluid around the rig, with each tank system mostly consisting of MAT DIST and MAT 

TRANS elements. 
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Rig PC AD Engine Leak Fuel Collector Main Wing 
Harness Power Tank Simulator Flow Transfer Tank Tank Tank 
Sub- Sub- Sub- Sub- Reconfigurstion Sub- Sub- Sub- Sub- 
system system vstem System Sub-Svstem System system System 

20.00% 50.00% 37.50% 5 0.00% 34.62% - 45.45% 49 02% 
SIAT DIST . 

_ 
SIAT CONV 

- 

12.501/6 7.14% 3.85% 3.64% 3.92% 
SIAT TRANS 

_ 
MAT CONS 

- 

_ 33.33% 
ENGY DIST 

_ 19.05% 
ENGY CONV 

_ 
ENGYGEN 
DATA IN 4 1. W19 
(BOOLEAN)_ I I 
DATA IN 17.05% 4.76% 

LUE) 
DATA IN 

JBUS) 
DATA OUT 32.56% 26.67% 7.14% 15.38% 14.55% 15.6979 
BOOLEAN) 

, 
I 

DATA OUT 930010 42.86% 53.33% 50.000/0 5 0.0 Wo 35.71% 46.15% 36.36% 31.37% 
(VALUE) 
DATA OUT 

ABUS) 
DATA 
PROCESSING 
(BOOLEAN) 
DATA 
PROCESSING 

LUE) 
DATA 
PROCESSING 
(RITC. 1 

[SWITCH 

Table 129 - Spread or element complexity for the Fuel Rig. 

The distribution of the element complexity within Table 129 shows that the high 

levels of intrmsic complexity within the elements are found within the DATA 

handling elements, inputting and outputting Boolean or value information. 

103.23 Sub-System and Link Maturity 

The following tables show the maturity of the sub-systems and the interfaces between 

them for the Fuel Rig system. Table 130 shows the maturity of the elements and links 

within the sub-systems of the Fuel Rig. 

Rig PC ADF Engine Leak Fuel Collector Stain Wing 
Harness Power Tank Simulator Flow Transfer Tank Tank Tank 
Sub- Sub- Sub- Sub- Reconfiguration Sub- Sub- Sub- Sub- 
S! Vstcm system System System Sub-Systcm System Svstcm Svstem 

8.563 9 9 9 9 - 9 9 9 
Unk Nf aturi U 

_ _ Elemcot7 9 8.28 9 9 9 9 9 9 9 
1 *f2til f Nf2turity I 

Table 130 - Fuel Rig sub-system maturity. 
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Overall the maturity is very high with most of the components and subsequent links 

within them being COTS products which were mature before the system was 
developed. 

Table 131 shows the maturity within the interfaces between the sub-systems. There is 

a divide between the maturity of the interfaces between elements of the system that 

are new (ADF Power and PC Rig Harness) and those that are well known. The links 

between the various tanks and flow controlling sub-systems are mainly fluid links and 
these have been deemed thoroughly understood and therefore carry the high levels of 

maturity shown. 
ADF 
Power 

Engine 
Tank 

LeskSim Flow 
Recon 

Fuel 
Trans 

Collector 
Tank 

Main 
Tank 

Wing 
Tank 

PC Rug 
Ilarroess 8 8 8 8 8 8 

A ArIC DF 
Power 

18 18 
8 8 8 8 

Engine 
Tank 8 9 9 

Leak Sim 8 9 

Flow Recon 8 9 9 9 

Fuel Trans 8 9 9 9 

Collector 
Tank 8 

9 
9 9 

&in 
Tank IkI 8 9 9 9 

Wing Tank F 8 9 

Table 131 - Fuel PJg sub-system interface maturity. 

The links between the ADF Power and PC Harness although very mature, as the 

systems consist of COTS products have a lower maturity as they are new in the 

design; however the nature of the interface is not new. 

103.2.4 Interface Link Spreads 

The following tables show the spreads of various Complcxitics within the links 

between the sub-systems. Only four link types exist between the sub-systems within 

the Fuel Rig system; MATTER, ENERGY, DATA VALUE and DATA BOOLEAN. 

As a result these are the only links that are shown within this section. The link 

complexities are displayed in an interface table in the following format for each 

system; Number of Links, % of Total Links, % of Total Link Complexity. 
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PC Rig ADF Engine Leak Sim Flow Fuel Collector Main Wing 
Harness Power Tank Recon Trans Tank Tank Took 

PC Rig 
Harness 

ADF 
Nwer 

Engine 2,0.67'Yo, 1,0.3%, 
Tank 0.3% 0.15% 

Ltsk SIM 2,0.67'Yo, 
0.3% 

Flow 1,0.31/o, 1.0.3%, 1.0.31/6, 
Recon 0.15% 0.15% 0.15% 

Fuel Trans 1,0.31/6, 1.03%. 1,0.31/9, 1,0.3%, 1,0.3%, 
0.15% 0.15% 0.15% 0.15% 0.13% 

collector 1,0.30/e. 1,0.31/e, 1.0.30/e, 1.0.31/0, 
Tank 0.15% 0.15% 0.15% 0.15% 

mails 1.0.31/o, 1,0.3%, D. 31/6. 
Tank 0.15% 0.15% 0.15% 

Wing, 1,0.3 1.0.3%. 0.31/6, 
rank 0.15% 0.15% 0.15% 

Table 132 - Fuel Rig MATTER link number. 

Table 132 shows the distribution of the MATTER links between the sub-systems, 

which shows a very even spread throughout the interfaces. 

PC Rig ADF Engine Usk Flow Fuel Collector Mal 
Harness Power Tank Sim Recon Trans Tank Tan 

I PC Rig M 

I 6 

I I 

Harness 

- 1 ' 1 29 1 2, 

ADF 1,0.3*/% 2.0.671/6, 0.671/9, 0.671/o, 0.67%, 2,0.670/e. 0.67*/% o. 671/e, 

Power 0.3% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 0.63% 

Engine 
Tank 

--Gs- k Si in 

Flow 
Recon 

Fuel 
Trans 

Collector 
Task 

JýJsln 
Tank 

Wing 
Tank 

Table IM - Fuel Rig LINEKUY lInK numDer. 

Table 133 shows that the ENERGY links are all provided by the ADF Power sub. 

system of the Fuel Rig. This component supplies the power for all the other 

components on the Fuel Rig so the configuration is predictable. 
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PC Rig ADF Engine IA&k Flow Fuel Collector Main Wing 
3 Harness Power Tank Sim Recon Trans Tank Tank Took 

PC Rig ý 2. 2, 2, 
ar s Ilarness 1,031/0, 1,0.3%, 0.67%, 3,1019, 0.670/a, 0.671/6, 

0.46% 0.460/9 1% 1.4% % % 

ADF 
Power 

Engine 2.0.671/6, 
Took I% 

Lesk Sim 2,0.67*/N 
1% 

Flow 
Recon 

Fuel Trans 3.11/6, 
1.4% 

Collector 7,2.35/6, 
Tank 3.3% 

-Ttain Tank 4,13%, 
1.90/0 

Wing 4,135/6, 
Tank 1.9% 

Table 134 - Fuel Rig DATA VALUE link number. 

Table 134 shows the DATA VALUE links between the sub-systems, the PC Rig 

Harness is the primary interface with the PC software and workstation (not included 

within this study due to data limitations). The Collector Tank appears to be the one 

sub-system that transmits and receives the most information from the PC Harriess 

with 7 links to the PC Harness, 3 from it, and a total of 4.5% of the overall link 

complexity is within this interface. 

PC Rig A! F Engine Leak Flow Fuel Collector Main Took Wing 
Harness Power Tank 

- 
Sim ReMn Trans Tank Tank 

PC Rig 4,13 ý/o 
, 3,1 */% 2,0.67'Yo, 10.3.40/6, 9.3 'Yo, 

111 rues larness 1 0.9% 0.63% 32% 2.8% 

ADF Power 

-fnýgjoe Engine - 10,3.40/o, 
Took 3.2% 

-i;; k -Sim Z 0.67*/*, 
0.63% 

Flow Recon 1,0.31/6, 
0.3% 

Fuel Trans --10,3 40/6, 
3.2% 

Collector 10,3.40/6, 
Tank 3.2% 

Main -Tank 16,5 4*/o, 
5% 

Wing Tat 0,6.75/9, 
6.3% 

1 

Table 135 - Fuel Rig DATA BOOLEAN link number. 
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Table 135 shows the transmission of DATA BOOLEAN data to the PC Hamess. 

Iliere is a significantly higher proportion of links of this nature within the system than 

any other type, and as a result the combined intrinsic complexity of these links is 

higher. The Wing Tank alone has 29 different DATA BOOLEAN links with the PC 

Harness, and the Main Tank has 26. It would appear the majority of the complexity 

within the interfaces is within the DATA BOOLEAN links, however, their structure is 

very hierarchical in nature, perhaps reducing the overall complexity of the links. 

10.3.3 NCST 

The following sections detail the NCST results in terms of the spreads of link types 

and complexities and the element types and complexities. 

1033.1 Link Spreads 

The following two tables detail the spread of the link types within the NCST sub- 

systems and also the spread of intrinsic complexity of those links. Table 136 shows 

the spread of the number of different link types within the system. 

Matter Energy Data (Value) Data (Bus) Datsk(Boolcon) Data (Arrays) 

L-I, S lattrface 2.83% 97.17% 
Etbernet LAN (I to 6 WS) 100.000/0 

Wor station Ito 61 8.000/0 1 18.67% 1 73.33% 

Table 136 - Spread of link types for NCST configurations. 

The link type distribution within the system shows that the system handles data, and 

mainly handles data within arrays (DATA ARRAY). The data passing within the 

Ethernet system consists completely of the DATA ARRAY type. 

Matter Ene Data (Value) Data (Bus) Data(Boolean) Data (Arrays) 

CIIS I nterface 2.14% 97.86% 

Elbe net LAN (I to 6 WS) 100.000/0 

Workstation I to 6 
1 1 

5.84% 22.73% 71.43% 

Table 137 - Spread of link complexity for NCS'r configurations. 

Table 137 shows the distribution of the intrinsic complexities associated with the links 

within the sub-systems. There is very little difference between the intrinsic 

complexity of the links within sub-system components of the NCST sub-systems and 

the number distribution of those links. 

All the NCST sub-systems contained the same distribution of links for the Ethernet 

sub-system, this is the only sub-system that changes between configurations and 
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subsequently was only included once within the tables. All the workstations were 
identical and so one entry within the table was required for all the NCST 

configurations (I workstation to 6 workstations). 

1033.2 Element Spreads 

The number of elements within the Ethernet sub-systems within the NCST 

configurations depends on the number of workstations within the configuration. The 

Ethernet LAN component therefore is shown for each workstation configuration; 
however the Workstations and CTS Interfaces for each conf i guration remain the 

same. 
CTS Interface LAN I IAN 2 LAN 3 LAN 4 LAN 5 LAN 6 WS 

MAT DIST 

r*IAT CONV 

MAT TRANS 

IAT CONS 

ENGY DIST 0.56% 

-ENGY CONV 

'Gy GEN 

DATA IN (BOOLEAN) 14.04% 16.67% 16.67% 16.67% 16.67% 16.67% 16.67% 14.08% 

DATAIN(VALUE) 14.04% 16.67% 16.67% 16.67% 16.67% 16.67% 16.67% 9.86% 

DA ý IN (BUS) 7.30% 16.67% 16.67% 16.67% 16.67% 16.67% 16.67% 7.04% 

DATA OUT (BOOLEAN) 14.04% 16.67% 16.67% 16.67% 16.67% 16.67% 16.67% 18.31% 

ýOUT(VALUE) 14.04% 16.67% 16.67% 16.67% 16.67% 16.67% 16.67% 14.08% 

DATA OUT (BUS) 7.301/o 16.67% 16.67% 16.67% 16.67% 16.67% 16.67% 11.2TQ/-o 

DATA PROCESSING (BOOLEAN) 14.04% 9.86*/* 

DATA PKML-*1511'4t' V""'J 14.04% 9.86% 

AN A-'"]'P' R"O'E"CESSING ý(BUS) 0.561/o 4.23% 

SWITC11 IAl% 

Table 138 - Spread of element types for NCST conrigurations. 

Table 138 shows that despite the change in composition of the Ethernet LAN sub- 

system within the NCST between configurations that the sub-system element type 

distributions remain the same. 
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CTS Interface LAN I LAN 2 LAN 3 LAN 4 LAN 5 LAN 6 WS 

MAT DIST 

MAT CONV 

SIAT TRANS 

hIAT CONS 

ENGY DIST 0.22% 

ENGY CONV 

NGYGEN 

DATAIN(BOOLEAN) 10.92% 14.29% 14.29% 14.291/6 14.29% 14.291/o 14.29% 10.99% 

DATA IN (VALUE) 10.92% 14.29% 14.291/o 14.29% 14.291/6 14.29*/o 14.291/o 7.69% 

TA IN (BUS) 8.52% 21.43% 21.43% 21.43% 21.43% 21.43% 21.43% 8.24% 

DATA OUT (BOOLEAN) 10.92% 14.29*/o 14.291/o 14.29% 14.29% 14.29% 14.29% 14.291/o 

DATA OUT (VALUE) 10.92% 14.29% 14.29% 14.29% 14.29'/o 14.29% 14.29% 10.991/0 

DATA OUT (BUS) 8.5XYo 21.43% 21.43% 21.43% 21.43% 21.43% 21.43% 13.191% 

DATA PROCESSING (BOOLEAN) 21.83% 15.38% 

ATA PROCESSING (VALUE) 16.38% 11.54% 

DA L PROCESSING (BUS) 0.8 r/o 6.59% 

SWITCH 1.100/0 

Table 139 - Spread of element complexity for iws"u comigurations. 

Table 139 shows the distribution of the intrinsic complexity within the elements for 

each sub-system. The spread within the Ethernet LAN sub-system in complexity 

terms is not even, despite the number of element types being equal. Those elements 

with DATA BUS characteristics exhibit a much higher intrinsic complexity than those 

withjust DATA BOOLEAN or VALUE elements. Those PROCESSING elements 

also contain a high proportion of the intrinsic complexities. 

10.3.3.3 Sub-System and Link Maturity 

The following tables show the maturity of the sub-systems and the interfaces between 

them for the NCST systems. The maturity within the different configurations was 

consistent for all the configurations, and subsequently the information displayed has 

been reduced. 

Table 140 shows the maturity within the links and elements for each sub-system of 

the NCST configurations. Most of the NCST components consist of mature COTS 

technology, and subsequently the overall maturity is high. 
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CTS Interface Ethernet LAN Workstation I to 6 
Link Maturity 8.115 9 8.611 

Element Maturity 8.019 9 8.611 

Table 140 - NCST sub-system maturity. 

The Ethernet LAN component of the configurations is a fully matured and tested 
technology and as a result shows the highest level. 

CrS Interface et LAN WS I WS 2 WS 3 WS 4 WS 5 WS 6 

CTS Interf 8 8 8 9 8 8 

Etbernet LAN 9 9 9 9 9 

ws 1 8 

WS 2 8 9 

WS3 8 9 

WS 4 81 9 

ws 5 8 9 

WS 6 81 9 

Table 141 - NCST sub-system interface maturity. 

Table 141 shows the maturity within the interfaces between the sub-systems. Overall 

the links with the Ethernet LAN component and Workstation components are at the 

maximum, as the technology is fully matured and the interface protocol fully matured 

and understood. The interfaces between the Workstations and CTS Interface, 

although mainly COTS interfaces, are shown as less mature since these portions of the 

system were developed and designed rather than purely purchased as COTS products. 

10.3.3.4 Interface Link Spreads 

The following tables show the spreads of various complexities within the links 

between the sub-systems. Only one link type exists within this system, and that is the 

DATA ARRAY link. Tle link complexities are displayed in an interface table in the 

following format for each system; Number of Links, % of Total Links, % of Total 

Link Complexity- 
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CTS Etberuct ws I WS2 WS3 WS4 Wss WS 6 
Interface IAN 

L 

1,1.040/6, 1,1.04%, 1.1.04%, 1.1.04%, 1.1.04%, 1.1.04%, I 
1.04% 1.04% 1.04% 1.04% 1.04% 1.04% 

Ethernet 7,7.3%, 7,7.3%, 7.7.3%, 7,7.3%. 7.7.3%. 7,7.3%, 
LAIN 7.3% 7.3% 7.3% 7.3% 7.3% 7.3% 

Wsl 1,1.04%. 7,7.3 
1.04% 7.: 

WS2 1,1.04%, 7,7.3%, 
1.04% 7.3% 

WS 3 1,1.04%, 7,7.3%, 
1.04% 7.3% 

US 4 1,1.04%, 7.7.3%, 
1.04% 7.3% 

WS's 1,1.04%, 7.7.3%. 
1.04% 7.3% 

WS 6 1,1.04%, 7,7.3% ; 1.04% 7.3 ý 

Table 142 - NCST 6 workstation DATA ARRAY table. 

Table 142 shows the distributions for the interfaces within the NCST systems. The 

interface distributions were repeated for each configuration, subsequently only the 6 

workstation configuration is shown. The interface structure and distributions show 
that the Ethernet LAN sub-system of the system has the most complex interfaces and 
the highest proportion of the intrinsic complexity within the system. This will be 

because the Ethernet LAN component acts as a central point for information which 

can then be sent to the CTS Interface by the Workstations. The interface with the 

CTS interface is much less complex, perhaps due to most of the processing being 

carried out within the workstations, and only small packets of basic information being 

transmitted to the ship systems through it. 

10.4 Evaluation of the Measures 

The questions that need to be asked are essentially: 

A) How easy/difficult is the system to design and integrate? 

B) How easy/difficult is the system to develop and manufacture? 

How easy/difficult is it to predict the system behaviour? 

Not all of the measures will answer all of these questions, as discussed before 

different measures are required to give an overall perspective view of the complexities 

within the systern. 
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10.5 Evaluation of Complexity Measures 

Table 143 shows the evaluation and comments regarding the new system and sub- 

system measures added to the complexity analysis tool. 

Calculated Description A B C Comments and Evaluation 
&! [Murcs 

Element Maturity The maturity level of the elements X X X Ile maturity within the design enables an appreciation 
Level within die sub-systems or system for which parts of the system are new and the level of 

components. This level is from I to 9 understanding the developers have of those 
and the selection is made in components. This helps from a design, development 
accordance with Table 110 - MoD and manufacture perspective and also the link between 
TRL definitions. maturity and understanding may help in gauging the 

accuracy of behaviour predictions 
Interface Provide detail regarding the X X X . 
Maturity Level composition of the interfaces within a 

system or sub-systcm. 

Link Type Provide detail regarding the spread of X X The spread of the I ink types and the spread of the 
Spread complexity within the interfaces complexity help the developer understand where the 

within a system or sub-systcm. complexities are within the system interfaces. Ile 
spreads show how the intrinsic complexity within the 

Unk Complexity Provide detail regarding the X X system is distributed. This intrinsic complexity may 
Spread composition of the elements within a also help during manufacture phases, as those links 

system or sub-system. that are more complex may be more difficult to 
manufacture. 

Element Type , jovide de... regarding the spread of X X The spread of the element types and the spread of the 
spread complexity within the elements within complexity help the developer understand where the 

a system or sub-system. complexities are within the system elements. The 
spreads show how the intrinsic complexity within the 

Element The maturity level of the interfaces X X system is distributed. This intrinsic complexity may 
Complexity within the sub-systems or system also help during manufacture phases, as those links 
Spread components. This level is from I to 9 that are more complex may be more difficult to 

and the selection is made in manufacture. 
accordance with Table I 10 -MOD 
TRL definitions. 

; Fa-ble143 - Evaluation of added calculated measures for complexity model sub-systems/systems. 

The spread of link and element types and complexities within the systems is very 

useful from a developmental perspective. The tables show clearly which parts of the 

system and sub-systems contain the higher levels of intrinsic complexity. If these 

elements or links were added due to ease of implementation over a more pure 

solution, they also show the complexities that are induced by this. The spreads 

provide the additional information about the systems that enhance the understanding 

sufficiently to see how complexity is distributed, and provides a basis from which to 

focus resources. 

The maturity measures may be used to gauge the level of understanding of 

components and interfaces. If the technologies within those elements or links are new 

and not understood, this will be shown with low maturity levels. With the spread of 

maturity shown for all the sub-systems, this enables the developer to see which parts 

of the system are exposed to higher risk of complexity that is not understood. 
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10.6 Conclusion 

There are a number of measures that were taken forward to the improved analysis 
tool, changes of the commonality information measures to indicate the spread of types 

and identical elements. The connectivity measures were reduced to just 2 measures, 
indicating connectivity of directional links and also the percentage of the total links, 

thus giving an appreciation of connectivity and coupling. Element numbers, types 

and complexity enable further understanding of the system, but require understanding 

of the commonality and coupling. In short, there is in effect a coupling of complexity 

measures, they interact with each other to give the real picture, and without all the 

components system complexity can be distorted. 

The model changes were only applied to a single system due to time constraints. NCS 

was chosen because system had high levels of commonality and yet a degree of 
diversity in its makeup, subsequently the effectiveness of the complexity spread, 

maturity and commanlity information could be seen. 

Issues generated by the revised tool hinge around the level of work required to 

generate a value from the model, and ensure that value is meaningful. A tool within 
industry should show a lot from a small amount of information. 

The complexity measures contained within the first pass of the complexity 

measurement tool did not provide a detailed enough picture of the complexity 

characteristics and their associated quantities within the systems. The added metrics 

showing the distribution of numbers of link and element types along with their 

factored intrinsic complexity provides the developer with a more detailed appreciation 

of the complexity within the system. 
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Figure 39 - The layout of the work and the thesis outputs. 

Figure 39 shows the roadmap through the thesis, this chapter concludes the refinement 

of the too] as a result of the initial results and conclusions, and shows the development 

structure. 
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11 Discussion 
Discussion -Thefollowing chapter reviews all the work, the initial development of 

potential complexityproblemsfrom case studies (chapter 4), the mapping of1hose 

case studies onto complexity characteristics and the creation ofthe Complexity 

Framework (chapter 5), the understanding ofthe relationships between different 

complexity characteristics (chapter 6), the understanding ofineasurement of 

complexity and how it relates to complexity characteristics (chapter 7), the 

development ofa complexity measurement tool and strategy (chapter 8), the analysis 

ofthe resultsfrom that measurement strategy (chapter 9) and the improvements made 

to the tool as a result ofevaluation (chapter 10). Finally, a reflection back on the 

work; what could be improved, what work is required, and an assessment ofhow well 

the work met the set out objectives. 

11.1 Introduction 

This chapter discusses the problem, method, results and findings of those results. It is 

a criticism of the methods, results and subsequent analysis of the validity of the 

output. The discussion analyses the methods, then the data and data collection 

methods. 

11.2 Discussion 

The research carried out within the thesis has produced a number of different outputs. 

9 The Complexity Characteristics and Components Store -A collection of 

complexity information, characteristics and components that can be related to 

real world issues or scenarios. 

4, The Complexity Framework -A way of looking at complexity within 

engineering and the factors that both effect and are affected by it. 

* The mapping of complexity attributes to engineering situations -A 

method that allows complexity characteristics found within the framework to 

be mapped to real engineering problems or situations. 
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e The Complexity Measurement Tool -A method of measuring and 

quantifying complexity within systems in a way that can be related to the 
fi-amework. 

* The complexity analysis tool results -The results generated from the 

analysis tool for the different systems tested. 

The following sections will discuss each of these outputs in turn. 

11.2.1 The Complexity Characteristics and Component Store 

Ile CCCS forms the basis for the derivation of a 'complexity understanding' with 

which industry can better deal with complexity within its engineered products. It is a 

product of the case studies useful output; it contains a collection of information that 

can then be related to real problem issues with use of the Complexity Framework. 

The CCCS itself is just complexity information, without the Complexity Framework 

surrounding that information it is simply a literature review or collection of data. 

With the framework however, it becomes a much more powerful tool, industry can 

understand the nature of the complexities they are dealing with, and with tools created 

using the framework as a basis, be able to select appropriate courses of action; choose 

appropriate coping mechanisms, measures, or descriptions of the complexity within 

the system. This combined with the live nature of the CCCS, means it can be 

constantly updated with new information and new appropriate categories to further 

enhance industrial understanding of complexity in systems. This enhanced 

understanding is a start in improving the ability of industry to manage the 

development of large complex systems. 

11.2.2 The Complexity Framework 

The CAF allows an understanding of complexity in terms of the characteristics of 

complexity that exist within systems. It is an enhancement of the CCCS knowledge 

by adding relationships to each component of the CCCS to further enhance 

understanding (i. e. definitions to classifications etc). The elements from the CCCS 

and their relationships can then be used to focus efforts on the development of tools, 

processes, measurement techniques, and coping mechanisms or approaches. 

Complexity Characteristics and Measurement within Engineering Systems 

Craig Read Page 315 12/11/2008 



Complexity Characteristics and Measurement within Engineering Systems 

The framework identifies various different themes within the different complexity 

components of the CCCS, for example hierarchical system structures, non- 
hierarchical system structures within classifications of systems. The framework 

identifies relationships between these themes, such as definitions of complexity 

relating to irreducibility, and measurement techniques that attempt to measure the 

reducibility of systems, or those definitions that describe intricacy and coupling, 

which can be related to different classifications of complexity. These interactions 

between complexity components or characteristics form another very important part 

of the complexity understanding in systems engineering that this thesis has attempted 

to develop. It is this understanding that lead to the development of a complexity 

analysis tool that attempts to identify complexity characteristic components within 

systems. 

it would not be realistic to suggest that the framework on its own addresses most of 

the issues regarding complexity within engineering systems, but is a beginning. 

Without this understanding or knowledge of the key complexity components and their 

interactions, complexity in systems is difficult to deal with. The framework fills a gap 

within industry when engineering systems. Currently industry struggles with 

complexity in systems and there is no common understanding or approach to its 

understanding. The framework provides this link between engineering issues and 

complexity characteristics found within literature and theory. The framework 

provides a method of managing that information, and linking it back to real tangible 

problems forming a basis from which approaches can be developed. 

However, the framework is not static; it can always be expanded to incorporate more 

complexity characteristics or components. This live nature of the framework makes it 

even more effective in engineering as it is not limited to the 'current' understanding, 

but can be expanded to include new industrial experience, academic theory, or other 

information. 

The understanding gleamed from using the framework to understand the complexity 

attributes within the CCCS provides a way of managing the development of various 

tools, applications or management techniques that can help the engineering process. 

Within this thesis the fi-amework identifies links between measures and definitions or 
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concepts, and problems issues and definitions or concepts. These links can then be 

used to found the basis for the measurement tool which has been created. 

Other projects will fit within an element or within a relationship of the framework, 

and the framework can again provide an understanding to support that work. For 

example links between problem issues and coping or approach mechanisms. And 

subsequent to this research there is a new item within the CCCS, and that is the tool 

developed within this thesis, which essentially is a tool which aids industry in coping 

with or approaching complexity within design. 

11.2.3 The Mapping of Complexity Characteristics to 

Engineering Issues 

The detailed look at various industrial problems and their relationships to complexity 

further improved the understanding of complexity within engineering. This is an 

enhancement of the complexity problem issue component within the framework and 

CCCS. The mapping provides a bridge between components of the Complexity 

Framework; problem issues, coping mechanisms, defmitions, origins and measures of 

complexity, all based on real industrial issues. 

Ibis mapping identified that most of the problems that are found within industry, are 

in fact induced within the programmes by industry itself, and also a significant 

proportion of the complexity within developed systems is induced by the development 

process. Although in some cases this induced complexity is actually beneficial to 

development, as it introduces mature technologies that can be easily integrated; in 

some cases it is in fact detrimental and also goes undetected as there is no current 

method of quantifying or monitoring it. 

The mapping of complexity components to known problem issues provides a basis 

from which analysis can take place. The key complexity components that often are at 

the centre of industrial problems repeat themselves regularly within the case studies. 

The framework then provides the additional relationships that these key complexity 

components have with the other components of complexity. Using these common 

relationships between complexity characteristics, and methods of quantifying them, 

problems can be predicted within new development programmes by comparing them 

against old programmes with known problems. 
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11.2.4 The Complexity Analysis Tool and Evaluation 

Although the data gathering and entering process is a long laborious one, the output of 

the tool is useful. The complexity analysis tool successfully analyses some of the 

complexity characteristics within a system and quantifies them. The tool clearly 
identifies the characteristics that are dominant, it also quantifies those characteristics 
for comparison with other systems, and it can also locate key cause or problem areas 

within the system where complexity may be arising from. 

The tool can also help to make the distinction between intrinsic complexities and 

those that are induced, with additional maturity analysis. The measurement of 

maturity enables the distinction between induced complexity that is beneficial to the 

system and that which is not. Incorporating additional complexity within the system 

but improving the maturity level overall is beneficial in most cases in development 

and the method of analysis can show these trends. 

The complexity analysis tool data was difficult to acquire and convert into a useful 

format for use within the tool. In most cases the data within the tool had to be 

gathered and interpreted from of specifications, functional diagrams, lists of 

equipment. The data collected had to be interpreted consistently, or the output would 

not allow a good comparison between sub-systems or systems as a whole. Data 

regarding personnel and suppliers was contained elsewhere, and the time taken to 

retrieve it made it impossible to incorporate into the tool this time. 

The systems that were tested were mature systems that had completed their 

development lifecycle and were in service. This affected the measurement output and 

made the maturity aspect of the tool redundant. The technologies within the systems 

were designed and already mature in most cases, but since the systems were built and 

operating most of the maturity within the system was at a very high level. 

Additionally, since the systems that were tested were completed systems that were in 

service, so the complexities within those systems could be compared with the 

experiences within the company. For the most part, the complex parts identified by 

the tool were consistent with those identified by the staff working on the project, 

although this was not recorded. 

With a larger sample set, and measuring systems at the earlier stages of the lifecycle 

in particular the conceptual design phases, the analysis of the tools effectiveness could 
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be better ascertained. However despite this the tool does provide useful information 

and it is clear how it applies to the systems it is analysing. 

The changes of the information and the fidelity of the information that is available 
throughout the lifecycle of a product will affect the measures that are available and 

also the accuracy of those complexity predictions. Figure 40 shows the relationship 
between the complexity of the system and the stage within the lifecycle and the level 

of intrinsic and induced complexity within the design. The arrows on each lifecycle 

phase provide an indication of the error that could be expected within each stage for 

the output of the complexity analysis tool. At those stages of the lifecycle where 
information is limited, the error is large. 

Error In rnessumment 
ofcornpiw* 

T 
Induced CompleAty in the System 

Intnnsic Complexty In the System 

capaulity System Conceptual Detailed integration System Tint system 
Requirements Requirements Design Design and Test Support 

Lffecycle Phases 

Figure 40 - Maturity and complexity relationships. 

The chart consists of two main areas, the first is the intrinsic complexity that exists 

within the system regardless of the development strategy, and the system has an 
inherent complexity value for the measurement suite. Ile induced complexity sits on 

top of the intrinsic complexity as a result of engineering practices and processes. As 

development progresses the intrinsic complexity within the system remains the same, 

but the induced complexity above that begins to be incurred during the conceptual 

design phases, it is this point that is most crucial in system complexity terms, and it is 

at this point that the tool is most effective. 

The data within the tool is an aspect that has the potential to cause problems in its 

application. Some data for the tool is readily available at different stages of the 

lifecycle (shown within Table 144), and subsequently the Outputs from the tool can be 

limited in accuracy. 
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Point In Development Comments on Data Availability and the Complexity Analysis Tool Use 
tMecycle 

capability Requirements The data available at this point in the lifecycle that can be used by the complexity analysis tool will 
be very incomplete; element data would not be known, interfaces not known. system structure 
unknown. As a result it would be difficult to apply the analysis process at this point within the 
lifecyclc. 

--ýýystcrri Requirements Often system requirements am produced with some thought given to the design of the system 
overall. At this point in the lifecycle information regarding the system structure and the role of 
elements within that system would be available. Ile accuracy of the tool output will be limited to 
die level of information available from the requirements phase. 

System % Sub-System The conceptual design phase is a good point at which to apply the complexity measurement 
Conceptual Design approach to a new system under development. The data available becomes much more extensive in 

terms of interface details, element details, and the maturities of the interface and element 
technologies. The output the tool provides is also very useful at this stage, as it highlights the 
potential problems later on in the development phases that complexity could cause. 

Sub-Systcm Deta *I Design The tool could be applied more easily during the detailed design phases of development. The 
interfaces and elements along with the system structures would be thoroughly understood at this 
point, and it would be a case of refining the data within the tool to give more accurate results. The 
tool during this phase could be used to ensure that any changes made at a conceptual level in the 
lifecycle to reduce complexity were in fact doing so, and also keeping track of potential additional 
induced complexity being added to the system unnecessarily. 

Sub-Systcm integration and The tool at this point is only useful as monitoring, and at this late stage within the lifccycle provides 
Test little additional help as most of the useful information will have been collected and shown in the 

conceptual phases. 
system Test 

System operation and Potentially the tool could be used to see how the addition of more functionality in the form of 
Support upgrades to a system affects the complexity of that system. 

Table 144 - Data availability from the development lifecycle for the complexity analysis tool and 
its application. 

The ideal would be a tool that adapts to the development lifecycle changes, and 

selects appropriate complexity measures. Incorporation into system development 

tools would also be appropriate, to negate the problems associated with calculating the 

measures, making sure they were done consistently, and correctly. 

UML based tools have been developed for systems development; SysML, Rhapsody. 

These tools (SysML, System Architect, and Rhapsody) should be considered for 

development as they often form part of the system development process. The use of 

the tool will incorporate conceptual design phases through to the testing and in service 

phases. The complexity measurement approach could be built into tools like these 

and calculation made automatic based on the information entered into them. 

Another issue to address with regard to the tool output is the nature of the tool input 

data. The tool input data must be of the same level of abstraction and consistent if 

systems are to be compared with each other. In this case, the data available for the 

fuel right system far exceeded that information available for the other systems. This 

had an influence on the overall results, and perhaps yielded to an over estimate of the 
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complexity of the fuel rig system in comparison to the other systems. If this toot were 
to be used regularly within the engineering domain, detailed guides for the data 

collected must be created so that the level of detail or abstraction is consistent 
throughout the tool's application. 

17here are a number of improvements to the tool inputs and outputs that are required, 
in their current state they are large and unwieldy, and require reduction in order to 

make them more manageable. For ease of use a better separation of the tool and the 
data is required so changes to the model can be made quickly and easily. 

11.3 The Complexity Analysis Toot Results 

Without further analysis of more systems it is not possible to gather any absolutely 

conclusive evidence that this method of approach will always yield valid results. 
Using these systems as examples, the evidence does seem to suggest that the NCS 

system is the most complex as the result of a large software component, which would 

seem to be accurate based on the scope of the projects. 

The tool provides results from both a sub-system and system level. This is 

expandable, and can be tailored to calculate several levels of decomposition within a 

system which makes the tool very useful for small and large scale projects. Currently, 

only 2 levels of decomposition are calculated, a top overall system level, and an 

underlying sub-system level with their complexities calculated. 

The discussion of the results has been split into various sections, and these are as 
follows: 

* Connectivity Results 

Element Complexities 

Interface Complexities 

9 Commonality 

Maturity 

The results will be discussed in this order and this discussion will account for the old 

and improved tool versions created. 
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11.3.1 Connectivity Results 

The measures within the tool for connectivity within the systems were: 

9 Connectivity Multi - The number of elements that are connected regardless of 
the direction of travel of the information, matter or energy. That is if A and B 

are connected and A passes information to B, a connection exists in the model 
between A and B, and is counted as a connection for both elements. 

Connectivity Single - The number of connections between elements but taken 

from a directional view, i. e. there is a connection in which information from A 

is passed to B, this will be a single connection from A to B and only counted 

within A. 

e Connectivity Single %- The percentage of the total possible connections 
between elements. 

Connectivity Multi did not provide any additional information that was of benefit to 

understanding the systems complexity characteristics. Subsequently, with any further 

revisions of the tool there would be no benefit in including it. Connectivity Single, 

and Single as a percentage cover the concept of intricacy within the systems well 

enough to provide a reasonable picture, and using the connectivity measures it was 

possible to deduce the nature of the system structure; hierarchical/non-hierarchical or 

detail/dynamic. 

The connectivity measures successfully showed the level of connectivity within the 

system and thus an indication of the intricacy within that system. However, the 

connectivity measures themselves are not enough to determine the level of intricacy in 

the system on their own. Intricacy is also due to the information being passed and the 

level of coupling between two components. Although the connectivity is represented, 

without this other information intricacy cannot truly be estimated or understood. 

Additionally, calculations to show the level of hierarchical or non-hierarchical 

complexity within the system are not totally accurate, but are an estimation of how 

hierarchical or non-hierarchical a system may or may not be. Despite this, these 

figures are useful, as they can clearly indicate when a system definitely exhibits non- 

hierarchical structures. 
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11.3.2 Element Complexities 

The measures within the tool for element complexity within the systems were: 

" Element Number - The number of elements within the system or sub-system. 

" Element Complexity - The number of elements within the system or sub- 
system multiplied by the complexity type for those elements. 

" Element Complexity Spread - The maturity level of the interfaces within the 

sub-systems or system components. This level is from I to 9 and the selection 
is made in accordance with Table 110 - MoD TRL definitions. 

e Number Of Element Types -The number of different element types within a 

system or sub-system. 

4o Element Type Spread - Provide detail regarding the spread of complexity 

within the elements within a system or sub-system. 

717he element number information relates well to definitions regarding the size of the 

system, however if there are not clear common methods for collecting data from 

systems, these figures are difficult to compare. The level of abstraction associated 

with this measure means that if systems are to be directly compared they must have 

their data collected according to the same guidelines. In this case it has been difficult 

to do this, due to the availability of data on some Programmes. Subsequently direct 

comparisons between systems are tenuous, however despite this it is an obvious 

measure of system size. 

The element complexity within the system provides an overall assessment of the 

intrinsic complexity of the elements (components) within that system. Although it 

provides the intrinsic complexity of those components, the result does not necessarily 

represent the true intrinsic complexity of the system. Some of these elements may 

actually be contributing to induced complexity, which may be desirable, or it may not. 

The tool is unable to make this distinction, maturity was introduced in an attempt to 

make a distinction between new and old technologies within systems, but even this 

does not provide the complete answer. To improve the output of the tool, induced and 
intrinsic complexities must be identified, perhaps modelling or representing the 

system at an architectural and concept level (to indicate the intrinsic complexity of the 

system) and measuring the complexity of this concept system and then comparing 
Complexity Characteristics and Measurement within Engineering Systems 

Craig Read Page 323 12/11/2008 



Complexity Characteristics and Measurement within Engineering Systems 

those complexity values with the complexity values from the actual solution or 
current design, an appreciation for the induced complexity added by the development 

process may be possible. 

The element complexity spread provides a view of a system which enables focus or 
emphasis to be placed in areas with high levels of complexity, be it intrinsic or 
induced. As mentioned earlier, this focus may be misleading as currently it is difficult 

to separate intrinsic and induced complexities using this measurement approach. 

Element types and the spread of those types within the system provide a view of the 

commonality within the systems and the sub-systems. Variety is a definition of 

complexity, the higher the diversity within the system the highly the likelihood that 

system is intrinsically complex. This approach enables not only the system spread to 

be seen, but that of the sub-systems as well. 

The measures here focus on system size, a definition of complexity, element 

complexity which is linked to concepts of intrinsic complexity, the number of element 

types and the spread of those elements, indicating a level of commonality or variety 

within the system along with the spread of complexity to provide a focus on areas 

with high intrinsic complexity. These characteristics of complexity all relate to the 

components or characteristics within the CCCS and subsequently items within the 

framework. It is these relationships that enhance the understanding of the systems 

under development. 

11.3.3 Interface Complexities 

The measures within the tool for interface complexity within the systems were: 

e Link Number - The total number of links within the sub-system or system 
being analysed 

4o Link Complexity - The total number of links within the sub-system or system 

multiplied by the link complexity factor allocated. 

Link Complexity Spread - Provide detail regarding the composition of the 

elements within a system or sub-system. 

Number of Link Types - The number of different link types within the system 

or sub-system. 
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* Link Type Spread - Provide detail regarding the spread of complexity within 
the interfaces within a system or sub-system. 

As with the elements within the system, the number of interfaces gives an 

appreciation of the size of the system, and also the level of interaction and coupling 
(intricacy) within that system or sub-systems. 

The complexity and its spread as with the elements enabled an appreciation of 
intrinsic complexities of the interfaces within the systems and sub-systems. However, 

like the elements more information is required to clearly distinguish between intrinsic 

and induced complexities within the system interfaces. The interfaces are heavily 

subject to the elements within the system, if they are induced, the interfaces between 

them are also induced by the development process. A clear distinction of intrinsic or 
induced elements should provide a distinction between interfaces too. 

Key information that is missing within the data is the frequency of use of those 

interfaces, and how they may change the state of the elements which they connect. 
Interfaces may exist, but may not necessarily contribute to coupling and intricacy, if 

thosd interfaces are rarely invoked or if they have little to no effect on the element 

they connect to or from. If state changes as a result of interfaces could be modelled 

along with frequencies of use for these interfaces per element, this may provide a 
better assessment of the coupling between elements. 

11.3.4 Organisational 

ilhc measures within the tool for organisational complexity within the systems were: 

Skill Number - The number of different skills within the organisational body 

developing the system. 

* Supplier Total - The number of suppliers within the organisational body 

developing the system. 

e Personnel Total - The number of personnel in total working on the system 

within that company. 

Difficulties with data gathering made supplier and personnel information difficult to 

c-ollect, and subsequently they were not included. However, if a tool of this nature 

were to be used internally within business collecting this data would be much easier. 
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The complexity of the skills however is somewhat subjective; there are also political 
implications when stating one skill is more difficult than another. Subsequently, this 
information was not considered vastly useful overall. 

11.3.5 Commonality 

The measures within the tool for commonality complexity within the systems were: 

* Commonality Links - The number of link duplication within the system. 

9 Commonality Link Types - The number of link type duplication within the 

system. 

* Commonality Elements - The number of element duplication within the 

system. 

9 Commonality Element Types - The number of element type duplication within 
the system. 

* Commonality Skills - The number of skill duplication within the development 

organisation for the system. 

* Commonality Suppliers - The number of mutual suppliers within the 
development organisation for the system. 

Commonality Personnel - The number of personnel that are shared between 

sub-systems. 

Commonality or the diversity within the systems and sub-systems is a factor in the 

complexity of the system. High levels of commonality between components and 
interface means less variety. The reduction in variety of different interface or element 

types reduces the skill base required and possibly the level of effort required to 

develop or manufacture the system. Although collecting information regarding the 

components and interfaces was simple, collecting information regarding the 

commonality of suppliers and personnel was very difficult and subsequently this 

information was not included within the results. 

The measure output was not very useful, due to the method by which commonality 

was calculated the output figures we always very high. The spread information for 

the different interface and element types shows the level commonality between types 
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within the system and sub-systems, and subsequently the results are redundant for the 
commonality of types. 

The more useful measurement is the commonality between actual components or 
interfaces in terms of duplication. This reduces the difficulty in design and 

manufacture, but it is questionable as to whether or not high commonality or 
duplication actually reduces the system complexity, emergent properties can be seen 

within systems of high commonality such as the game of life (Kauffman 1993). 

Commonality as a measure enables an appreciation of the diversity within the system 

under test, but not necessarily with a direct relationship to system or sub-system 

complexity. 

11.3.6 Maturity 

The measures within the tool for maturity complexity within the systems were: 

Element Maturity Level - The maturity level of the elements within the sub- 

systems or system components. This level is from I to 9 and the selection is 

made in accordance with Table I 10 - MoD TRL definitions. 

Interface Maturity Level - Provide detail regarding the composition of the 
interfaces within a system or sub-system. 

in order to improve the output of the models, maturity of elements and interfaces was 

considered. Is the interface or element new? Has the interface or element been used 
before? Is the element or interface standard? Incorporation of some maturity 
(perhaps factorisation) of the technology was important when differentiating between 

systems with high levels of COTS/MOTS and those with low levels. It could be 

argued that systems that rely on mainly COTS/MOTS products lose a lot of the 

system complexity as a result of this re-use and high maturity. The NCST is a prime 

example of this; in effect NCST has very little in the way of hardware development. 

The majority of the new design (and perhaps the complexity within the programme) is 

contained within the software, which due to the method of measurement here is 

almost indistinguishable from the hardware system. De-rating hardware complexities 

as a factor of maturity and on a COTS/MOTS basis would most likely provide a more 

meaningful result. 
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NCS goes some way to addressing the issue of hardware and software separation 

within the results, as the hardware and software have been kept separate within the 
design documentation since the software is clearly the bulk of the project. Software 

resides outside of the hardware that it runs on, and therefore factoring the hardware by 

means of maturity would be easier if the two were separate. This enables the 

distinction of complexity within hardware and that within software. 

This of course begs the question, what about software re-use and maturity? In the 

development of operating systems many developers re-use certain aspects of their 

software, and this too should be factored into the tool output. 

if measures of maturity are to be used from a concept phase, then this becomes even 

more important. Often the COTS or MOTS products that will be used within a 

project are not known, or at least not confirmed within the early stages. The 

architecture however is, so a list of elements is available with an understanding of 

their specific roles and attributes, along with the descriptions and numbers of 

interfaces between then. How is maturity factored in here? Since the hardware and 

software are not chosen but the architecture is known, measures that analyse the 

coupling and cohesion of the architecture can be used, but the information required in 

terms of maturity in order to measure its effect is not known and is omitted. 

In all the systems analysed the hardware has been developed along with the software 

implementation that runs on it. The software is, in most cases, the heart and bulk of 

the development, and this must be reflected within the measurement scheme. 

However maturity is only understood after the pure concept starts to employ potential 

platform realisations, without these realisations these maturity decisions cannot be 

made. 

In this case the measurement strategy needs to be split up to cope with the different 

stages of design, from the concept development, design and integration to the 

manufacture and design realisation. Initial measures concentrate on those measures 

that can be applied to the concept architecture of the system, and gradually as 

hardware and software realisation decisions are made the shift moves towards 

maturity and commonality complexity measures can be made, thus giving a balanced 

approach. 
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It is interesting that the TRL model also demonstrates that despite components having 
high levels of maturity, the overall system may still be immature and have a lower 
IM than its components. This is paralleled with the nature of complexity within 
systems, and the emergent properties within systems, a system although comprised of 
non-complex simple components can exhibit unexpected behaviour, and maturity can 
be viewed in the same way. 

With this close parallel between the nature of complexity and maturity and the 
influence maturity has on complexity within systems, maturity should be included in 

the measurement set as a factor affecting the complexity of components and links. 

The more maturity, or the higher the TRL within that technology, the lower the 

complexity of its implementation into the design. 

in the case of this system, it is difficult to consider maturity along with the rest of the 

system at this point, as the maturity of all the components of the system will already 
be sufficient for production. If maturity TRLs were to be assigned to the system 

components and interfaces which were consistent with TRLs at the beginning of a 

programme, then the component structure would not be present, as this has evolved 
during the development lifecycle and has changed since that point. 

From these results it is difficult to gauge the usefulness of the maturity measures with 

these system examples. The systems tested by the tool were mainly COTS, MOTS 

products within which technologies were deployed which were mature before the 

project began. This meant the maturities were all very high, usually above level 8 and 

some aspects were level 9. However, theoretically the maturity measures are very 

beneficial, as they provide a basis for change within that technology and also an 

appreciation of the level of understanding, fitting in neatly with definitions of 

complexity regarding modelling and understanding system elements (see section 2.3). 

11.3.7 How can the Tool be used? 

The tool would most likely be predominantly used as a method for tracking and 

managing complexity within systems as they progress through the product lifecycle. 

The process begins with the gathering of requirements, then creation of the conceptual 

design, and progresses through to the detailed design, integration and testing. 
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The conceptual design or concept of the system being developed is devoid of 
hardware and software specifics, but contains elements, how those elements 

communicate, what information is passed between them and the function of that 
element. This conceptual design or concept system design can be analysed by the too] 

and complexity metrics be produced. It could be argued that the complexity of the 

conceptual design of the system is the intrinsic complexity of that system, the 

complexity attributable only to the function and interfaces of the system and not 

connected to its implementation. 

Element A: 
Data AtoC: 

Element C 
Function 11 

(Power) 
Function I 

Data BtoC: 
Element B: Value 1 (Pressure) 
Function 1 Value 2 (Speed) 
Function 2 

Figure 41 - Conceptual design for a simple system. 

Figure 41 shows a conceptual design of a system, the system has 3 elements. those 

elements have functions that are a result of the requirements for that system, and these 

elements have information that must pass between them. This conceptual design does 

not include the hardware or software solution for this system, but just the conceptual 

design, the conceptual system and the intrinsic complexities can be derived from this 

representation. 

Once the system solution has been implemented (within hardware or software), or part 

of that system has been created, the complexities of for those components are 

changed. Figure 42 shows the same system within Figure 41 with a solution 

developed for element C. 
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A: Data AWC: 

,I 
Voltage and Amps (Continuous) 

2 

HNVI - Functionedity: 
- Converter (ADC) 

Data BtoC: 
t B: DataBus carrying 
n1 Value 1 and Value 2 
n2 
n3 

Data Hwtoýuw2 
Data Value 

HAW - Functionality: 
- Process Algorithm 

HNV3 - Functionality 
-Process input 
against Time 
- Display Input to User 

Date Value 

Figure 42 - Conceptual design and actual system design solutions mixed. 

The complexities within element C will have changed. Originally there were 2 

functions that had to be carried out by element C; these functions are the result of the 

requirements for the system. In order to achieve these two functions, the actual 
design of that element C needs 3 components with specific functions and interfaces 

between them. This design for element C will have different complexities to the 

concept design, in this case the complexity of the concept element C will be lower 

than that for the actual design for element C, the difference between these two 

complexities is the induced complexity resulting from the system design. 

The complexity of the concept design (assuming it does not change once design 

begins) will always be the same or lower than the actual solution implementation as 

the conceptual design is a pure representation of the systems decomposition, 

interfaces and functionality, at best the implementation will match this. 

Understanding the complexities within the system elements and interfaces, and the 

differences between the complexity of the conceptual solution and the designed 

solution can enable management to track induced complexities, intrinsic complexities 

and also monitor these through the product development lifecycle: 

How intrinsically complex is the system? 

Determine the complexities within the conceptual design, determine those areas 

within the conceptual design (interfaces, elements) that have high complexity levels, 

are these complexity levels acceptable, or does the concept design need further 

analysis to reduce them? 
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How high is the induced complexity? 

As elements and interfaces are turned from concepts to actual implementations, 

determine the differences between the conceptual design complexities (intrinsic to the 

system) and the implementations made (actual system complexity) to determine the 
induced complexity. Is there a large difference, and if so what has caused it? Could 

the design be improved to reduce the induced complexity? Is the induced complexity 

what is expected? 

Manage the complexity of the system 

Manage the complexity of the system by tracking the intrinsic and induced system 

element and interface complexities as the system and system solutions are developed. 

11.4 Conclusion 

it is clear that the measurement tool can show complexity within systems and that the 

complexities shown can be related to elements of the fi-amework. 

es Dcrinition Types ti Cause Types Concepts and 
Classification 
Types 

Measurement 
Types 

Coping 
Mechanism 
Approach Types 

Problem Types 

1. educible 1. Design 1. Linear of 1. Requirement 1. Evaluation 1. Design 
Optimisation. Hierarchical Complexity Visualisation Optimisation 

2. Difficulty in Complexity Measures 
rnodelling or 2. Immature 2. Numerical 2. Immature 

predictability Requirements 2. Non-Linear 2. System Analysis Requirements 
Complexity Decomposition 

3. Difficult to 3. Organisational Complexity 3. Process 3. Organisational 
describe. lack of Change 3. Adaptive Measures Efficiency Change 

understanding 4. Pre-Production 
Complexity 

3. Interface & 4. Improved 4. Pre-Production 
4. Scale of induced Sub-system Architectures Induced 
interfaces and sub- 5. Organisational Complexity 5. Focus on 5. Organisational 
systems Culture Measures Complex Area Culture 

5. Thc level Of Interface and 6 4. Management 6. Preview 
interactions and . Sub-System Complexity Problems 
intricacies Intricacy Measures 

1 7* System Scale 

rable 145 - Complexity characteristic type summary. 

The tool itself does not relate to every single aspect of each element within the 

framework (shown in Table 145), however it does provide an insight to a number of 

these aspects: 

Definition Types - Measures within the tool can clearly show the level of 
intricacy and the scale of the system. With the additional commonality and 

maturity measurements included within the measurement tool, the 

understanding of the system and its component parts can be assessed. 
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Cause Types - The tool measures a series of complexities that can be related 

to various causes or origins of complexity within systems. The main focus is 

the intricacy between systems, along with maturity and the scale of the system. 

Concepts and Classification Types - The measurement tool is able to offer 
data that can enable the user to determine the level or likelihood of non- 
hierarchical or hierarchical structures within the system. Currently the tool is 

unable to assess a system for adaptive behaviour. 

Measurement Types - Obviously the measurement tool is a measurement 

approach in itself. Due to the nature the data used it does not map to 

requirements or management complexity measures. This tool does not deal 

with requirements and the management complexities assessed were difficult to 

obtain due to the problems collecting the required data. However 

decomposition of the system can be tested and complexity found within 

individual sub-systems or the system as a whole, and the links and element 

complexities form a basis for system intricacy measurement. 

Coping Mechanism / Approach Types - In itself the complexity 

measurement tool is an approach to understanding the complexity within a 

system, and in doing so can enable the user to focus on the complexity area or 

areas within a system during development, it can enhance the user ability in 

improving a system architecture, perhaps reducing intricacy or the dynamic 

nature of the system, and it itself is a numerical analysis. 

Problem Types - The measurement approach does not specifically link to 

problem types within the framework, but with linkages to complexity origins, 

and the links between problem types and origins, the tool can go some way to 

enhancing the ability of an organisation in predicting problem issues that may 

arise. 

The enhancement of the tool from the first pass incorporating maturity, modified 

Corninanlity and spread data improved the output and enabled the complexity within 

the system to be located with much more accuracy. 

A potential use of the of the tool is highlighted, where it may be used to monitor 

complexity levels within systems and determine how much complexity grows as the 

elements and interfaces are designed and how it changes as the design mat 
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differences between the complexities of the conceptual design of the system and the 

actual implementation could give an indication to the level of induced complexity 

which has arisen as a result of the design process within the system; however this 

needs exploration in further work to determine its usefulness. 

The tool could still be ftu-ther improved, with integration into other systems 
development tools to reduce the laborious data inputting required. As a standalone 

tool, the level of effort required to produce the results is high, with the integration into 

other design or development tools this approach could be automated and not required 

the current level of data entry. 
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12 Conclusion 

Thefollowing chapter details the conclusions of this thesis. The conclusions refer 
back to the discussion within chapter 11 against the aims set out within section 1.3. 

12.1 Introduction 

The following section details the conclusions of the research, and refers back to the 

original aims of the research in order to determine the level of success of the work. 

IZ2 What were the Original Aims and Objectives of 
this Thesis? 

The Aims of this thesis are: 

To produce a framework for further research in complexity within 
engineering. 

2. To provide valuable input to the complexity theme within the SEIC. 

The objectives of this thesis are: 

1. To develop an analysis technique that can be used to create a common 

understanding, appreciation and concept Of complexity within systems 

engineering in an industrial context. 

2. To determine complexity characteristics within real life systems using 

metrics and analysis techniques. 

To provide a system wide view of complexity within the interfaces and 

sub-systems independently as well as a system whole. 

4. To validate the tool using real systems and conceptual systems. 

-fbe following section details whether or not these objectives were met by the research 

carried out for this thesis. 

12.3 Have the Alms been Met? 

To produce a framework for further research in complexity within engineering. 

The framework developed within this research provides industry with the ability to 

structure research into complexity within engineering. Research activities can be 
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focused on different aspects of the Complexity Framework, and the relationships 

within the framework to other complexity components will provide a basis to 

establish how that research will influence and be influenced by other research 

activities. The Complexity Framework is a good way of structuring, managing and 

understanding how different research activities will fit, what is required and also 

which areas are weak and need development. 

Overall the objectives have for the most part been met, the lack of validation is a 

weakness within the research, and also the fact the model has only been applied to 

completed systems is not the optimum point within the engineering lifecycle that the 

analysis tool should be applied. Due to practicality the analysis tool had to be applied 

to completed systems, as the timescales associated with projects were too long (10 or 

more years in some cases), ideally the tool should be tested by analysing complexity 

at the different phases of the lifecycle and any predictions or findings made with the 

tool stored and compared with the system as it developed. However, despite this the 

tool does measure complexity characteristics within systems effectively, and provides 

a basis for finther work and incorporation into the conceptual phases of development 

where it may be of better use. 

To provide valuable input to the complexity theme within the SEIC. 

The research carried out within the research fits neatly into the complexity theme 

within the SEIC at Loughborough University, and provides the theme with a structure 

it can use for ftirther research activities. 

12.4 Have the Objectives been Met? 

The following section will take each of the thesis objectives in turn and assess the 

level to which the research met the objective: 

To develop an analysis technique that can be used to create a common 

understanding, appreciation and concept of complexity within systems 

engineering in an industrial context. 

An analysis technique was produced using the Complexity Framework, mappings and 

also the development of the analysis tool. This analysis technique and the framework 

tool specifically address complexity within engineering systems. These components 
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all enable an informed and better understanding of complexity in terms of its origins, 
definitions, coping mechanisms, measures and classifications. 

To determine complexity characteristics within real life systems using metrics 

and analysis techniques. 

The complexity analysis tool determines which complexity characteristics are present 

within systems and also quantifies those characteristics using metrics. The tool takes 

into account a broad spectrum of complexity measurement techniques and combines 

those using the Complexity Framework as a basis to provide a multi-dimensional 

view of complexity with a system. This view not only covers the breadth of 

complexity characteristics key to industrial problems, but identifies key components 

within the systems themselves that are areas of high complexity, along with 

demonstrating why this is the case. 

To provide a system wide view of complexity within the interfaces and sub- 

systems independently as well as a system whole. 

The complexity analysis tool does not only analyse the complexity of overall systems, 

but also identifies the complexity characteristics within the system interfaces and the 

sub-systems. 

To validate the tool using real systems and conceptual systems. 

The systems tested were not conceptual systems, the systems tested were in fact 

proven and accepted systems that are currently in active service with the customer as 

a consequence, the tool produced was not validated but evaluated. Although the tool 

does produce what appear to be valid results, an extensive validation exercise is 

required and the application of the analysis tool to conceptual systems should be 

considered to further determine the usefulness of the tool in monitoring complexity 

levels within systems and determining induced complexity (complexity which exists 

within a system over and above what exists in the system concept). 

12.5 Further Work 

This thesis examines a measurement approach to complexity in order to enhance 

understanding within industry. The SEIC at Loughborough University will be 

continuing the complexity theme, this work will become the foundation of the future 

work at the SEIC and the Complexity Framework outlined here the basis of that work, 
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in the sense that there are other aspects of the complexity understanding that need 

exploration in order to give industry the tools to deal with modem systems 

engineering problems. 

There are two key strands of work that should be carried out to further validate the 

approach and also improve the ability to utilise it. Firstly, the measurement approach 

can be expanded with more measurements and used on systems of a much larger scale 

with more levels of decomposition. Establishing this measurement approach on a 

system from the initial concept phase of development out to manufacture, producing 

valuable data throughout the lifecycle would be a rigorous test of the tool's 

effectiveness. Secondly, in its current state the tool is very laborious and difficult to 

use, however with tools such as System Architect and SysML providing methods of 

rnodelling systems in terms of use cases, system decompositions and structures, an 

approach like the one developed here could be incorporated into those tools and 

automated. 
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14 Appendix A- First Case Study Set Details 
Each table shows a different portion of a larger table which for the purpose of this 

thesis has been re-created in 3 sections. The following table describes those table 

sections: 

Table 146 - 

Data Type 

Programme Case Study 

Brief 

Problem Number 

Problem 

Table 147 Table 148 Table 149 

Nature of Complexity 

Driver For Problem 

Lifecycle 

Comments 

Organisational Characteristics 

Organisational Configurational 
Inducers 

Internal Factors 

External Factors 

Origins of Complexity 

Problem Issues 

Complexity Definitions 

Approach to Problem 

Coping Measures Employed 

Concepts / Classifications 

Complexity Measures 

Descriotion of table contents for the tables deta ilint! the fir st case studv 

and cross referencing with complexity characteristics. 

The tables are labelled as follows: 

set findings 

e Table 147 - Table of the first case study set, detailing the problems, the point 
in the lifecycle the problem occurred, the drivers of the problems and the 

nature of the complexity in that problem with comments. 

e Table 148 - Table of the first case study set, showing the relevant origins of 
the complexity for each case 

* Table 149 - Shows the various different complexity characteristics within 

each problem. 
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16 Appendix C- The Complexity Measurement 
Tool 

This appendix consists of the various complexity measurement tools used to collcct 
the data above. Within this appendix find those tools used for the Fuel Rig, NCS, and 
NST. All the tools are found within this parent directory: 

\\Submission DVD\Analysis Tools 

This directory is then split into three subsections and each of these subsections 

contains the measurement tools with the data included: 

\\Submission DVD\Analysis ToolsTuel. Rig Results\ 

Analysis Tool Fuel 260806. xls 

\\Submission DVD\Analysis Tools\NCS Results\ 

Analysis Tool NCS 160807. xls 

\\Submission DVD\Analysis Tools\NST Results\ 

Analysis Tool NST 160807 Option I WS. xls 

Analysis Tool NST 160807 Option 2WS. xls 

Analysis Tool NST 160807 Option 3WS. xls 

Analysis Tool NST 160807 Option 4WS. xls 

Analysis Tool NST 160807 Option SWS. xls 

Analysis Tool NST 160807 Option 6WS. xls 
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17 Appendix D- The Complexity Component and 
Characteristics Store 

This appendix is the Complexity Component and Characteristic Store (CCCS), it is 

contained within the accompanying DVD in the following location. 

\\Submission DVD\ Complexity Component and Characteristic Store (CCCS)\ 

Complexity Component and Characteristic Store. xls 
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