331 research outputs found

    Identification of masses in digital mammograms with MLP and RBF Nets

    Get PDF
    Copyright © 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.IEEE-INNS-ENNS International Joint Conference on Neural Networks 2000 (IJCNN 2000), Como, Italy, 24-27 July 2000We study the identification of masses in digital mammograms using texture analysis. A number of texture measures are calculated for bilateral difference images showing regions of interest. The measurements are made on co-occurrence matrices in four different direction giving a total of seventy features. These features include the ones proposed by Haralick et al. (1973) and Chan et al. (1997). We study a total of 144 breast images from the MIAS database. The dimensionality of the dataset is reduced using principal components analysis (PCA), PCA components are classified using both multilayer perceptron networks using backpropagation (MLP) and radial basis functions based on Gaussian kernels (RBF). The two methods are compared on the same data across a ten fold cross-validation. The results are generated on the average recognition rate over these folds on correctly recognising masses and normal regions. Further analysis is based on the receiver operating characteristic (ROC) plots. The best results show recognition rates of 77% correct recognition and an area under the ROC curve value Az of 0.7

    Spatially varying threshold models for the automated segmentation of radiodense tissue in digitized mammograms

    Get PDF
    The percentage of radiodense (bright) tissue in a mammogram has been correlated to an increased risk of breast cancer. This thesis presents an automated method to quantify the amount of radiodense tissue found in a digitized mammogram. The algorithm employs a radial basis function neural network in order to segment the breast tissue region from the remainder of the X-ray. A spatially varying Neyman-Pearson threshold is used to calculate the percentage of radiodense tissue and compensate for the effects of tissue compression that occurs during a mammography procedure. Results demonstrating the efficacy of the technique are demonstrated by exercising the algorithm on two separate sets of mammograms - one obtained from Brigham Women\u27s Hospital, Harvard Medical School and the other set obtained from Fox Chase Cancer Center and digitized at Rowan University. The results of the algorithm compare favorably with a previously established manual segmentation technique

    Comparison of similarity measures for the task of template matching of masses on serial mammograms

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134879/1/mp1892.pd

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas
    corecore