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ABSTRACT
In this paper we study the identification of masses in digital mammograms using texture analysis. A number of texture
measures are calculated for bilateral difference images showing regions of interest. The measurements are made on co-
occurrence matrices in four different direction giving a total of seventy features. These features include the ones
proposed by Haralick et. al., (1973) and (Chan et al., 1997). We study a total of 144 breast images from the MIAS
database. The dimensionality of the dataset is reduced using principal components analysis (PCA). PCA components
are classified using both multilayer perceptron networks using backpropagation (MLP) and radial basis functions
based on Gaussian kernels (RBF). The two methods are compared on the same data across a ten fold cross-validation.
The results are generated on the average recognition rate over these folds on correctly recognising masses and normal
regions. Further analysis is based on the Receiver Operating Characteristic (ROC) plots. The best results show
recognition rates of 77% correct recognition and an area under the ROC curve value Az of 0.74.

1.  INTRODUCTION
X-ray mammography is the most common technique used by radiologists in the screening and diagnosis of breast cancer
in women. Although it is seen as the best examination technique for the early detection of breast cancer reducing
mortality rates by up to 25%, their interpretation requires skill and experience by a trained radiologist. The aim of this
study is to analyse digitised mammograms by applying computer image processing techniques to enhance x-ray images
and then subsequently extract  features from suspicious regions characterising the underlying texture of the breast
regions. These features can then be passed to a classifier for discrimination for different regions of interest to test
whether they are masses or non-masses.

In order to identify suspicious regions, the clinical observation of focal asymmetric densities within the internal structure
of the breast is implemented (Kopans, 1997). Implementing this method requires left and right breast images to be
aligned around a common reference point, then subtracted bilaterally (see Figure 1). On the basis of several past studies,
we follow the fundamental assumption that asymmetries represent a region of interest that could be a mass. Several
previous studies have applied the bilateral subtraction technique to mammographic image pairs. Yin et al. (1993)
investigated mammographic asymmetries for the identification of mass lesions. In their research the authors compared
the performance of a non-linear bilateral subtraction technique with grey level thresholding. For bilateral subtraction,
left and right breast images were aligned, thresholded and following subtraction subsequently thresholded again. For the
comparative method, the authors implemented a method of local grey scale thresholding a single image divided into 100
x 100 pixel blocks. For bilateral subtraction using ROC analysis the performance of the technique, measured by the area
under the ROC curve Az, was found at Az=0.530 and for local grey level thresholding the Az=0.385. Ideally, the area
under the curve Az  should be as close to 1 as possible for an accurate technique. Mendez et al.(1998), investigated a
computerised method to automatically detect malignant masses on digital mammograms based on bilateral subtraction to
identify asymmetries between left and right images.  The nipple was detected to align the images, and alignment of
image pairs achieved by translation using the nipple location and rotation against a correlation coefficient. To reduce
false positives, texture tests were applied to each suspicious region, coarseness and contrast.  Using ROC analysis,  the
value of Az=0.667 was achieved. In their study, Chan et al. (1995), studied the effectiveness of using texture features
derived from Spatial Grey Level Dependency (SGLD) matrices for classification of masses and normal breast tissue on
mammograms. All images were digitised at 4,096 grey levels and a region of interest confirmed by biopsy comprising
256 x 256 pixels. The following texture features were extracted from the SGLD matrices: correlation, entropy, angle of
second moment, inertia, inverse difference moment, sum average, sum entropy, difference entropy. The accuracy was
evaluated using ROC analysis and the  maximum value of the area under the ROC curve obtained was Az = 0.823.

2.  METHODOLOGY
The MiniMIAS database (Suckling et al., 1994) contains left and right breast images for a total of 161 subjects. In this
study we study 72 subjects. All images containing spiculated/circumscribed masses and a selection of normal types are
considered. Supplied ground truth data for each image includes tissue type and regions of interest encompassing the
abnormalities given in terms of a centroid and region radius. All images are digitised at a resolution of 1024 X 1024
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pixels and at 8-bit grey scale level. Forty images contain abnormalities (circumscribed masses  n=21, spiculated masses
n=19) and 104 images are classed as normal.  In the analysis of results within the study, we use the following
definitions:

True Positive (TP): lesions called cancer and prove to be cancer
False Positive (FP): lesions called cancer that prove to be benign
False Nagative (FN): lesions that are called negative or benign and prove to be cancer
True Negative (TN): lesions that are called negative and prove to be negative

On the basis of this terminology, we can evaluate the performance of our technique by calculating True Positive Fraction
(TPF) and False Positive Fraction (FPF). These are defined as:
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The study involved five different phases:

1.  Location of a Common Reference Point
In order to align left and right breast image pairs prior to bilateral subtraction a common reference, the spatial position
of the nipple, is located.

2. Alignment and Bilateral Subtraction of Left and Right Breast Images
Once the nipple has been located in each breast image of a matching pair, the observed image is translated such that the
nipple locations of both breast images are aligned. Taking different rotations of the observed image and determining a
correlation measure against the reference image, the left original breast image, the best alignment can be determined.
Initially the observed image is subjected to large degrees of rotation, following which the best range is located and the
process repeated with smaller incremental rotations until the best correlation is found. Using aligned left and right breast
image pairs, two images are generated by bilaterally subtracting one image from the other. One is a positive image and
details differences that occur in the left breast image and not in the right, and a negative image that details differences
that occur in the  right breast image and not in the left.

3. Reduction of False Positives
Each difference image generated from bilateral subtraction, following contrast enhancement using a histogram stretching
technique (Umbaugh, 1998), will contain regions that are true positives, and those that are false positives. Difference
images are segmented using a region splitting technique, the complete set of regions being modelled using a quad-tree
data structure representation (Jain et al., 1995). Once regions have been identified, the aim is to  subsequently remove as
many false positive regions on the basis of region characteristics size, shape (Petrick et al., 1996), difference in
homogeneity (Umbaugh, 1998) and entropy (Gonzalez et al., 1993).
 
4. Feature Extraction
Using the quad-tree region model generated in the previous phase for all remaining suspicious regions within a
difference image,  five co-occurrence matrices are constructed in four different spatial orientations, horizontal, left
diagonal, vertical and right diagonal, (0°, 45°, 90° and 135°, respectively). A fifth matrix is also constructed as the mean
of the first four. Each co-occurrence matrix reflects the joint probability of a pixel pair at a given orientation and
distance. From each of the five normalised co-occurrence matrix, the 14 textures features  are extracted giving a total of
70 texture features per region.  Each region is labelled mass or non-mass using the supplied MIAS ground-truth data.
These 70 features are extracted from the co-occurrence matrices constructed at four pixel distances  (d=1, 3, 6, 9) giving
four separate feature vectors.

5.  Classification
The classification of masses from normal regions requires high quality classification system as most of these differences
can be at times subtle. In this paper, we develop two different types of networks for recognition of masses. The first
network is a three layered multi-layer perceptron (input, hidden and output layers). The second network  is a Gaussian
kernel based Radial Basis Function network.

In order to determine the discriminating effectiveness of texture features extracted from co-occurrence matrices
constructed at different distances (each distance yields a different feature set), classification is initially performed using
each normalised feature set and linear discriminant analysis. The feature set giving the best true positive fraction was
selected for subsequent classification using the two networks described above. Both networks are developed using the
Stuttgart Neural Network Software (SNNS) package. For classification using an ANN, the selected feature set is
normalised and principal component analysis performed to reduce the dimensionality of the data. We find a total of
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seven principal components for our data. Subsequently, samples for classes are interleaved and training/test files can be
generated using a 10-fold cross validation method (Bishop, 1998). In each fold, 90% of data is used for training the
classifier and the remaining 10% is used for testing. The process continues 10 times taking different training and test
partitions, each time with a different training and test set.

In the MLP network, each of the seven principal components is mapped onto an individual input node and linked by a
varying number of hidden nodes to two output nodes (mass, non-mass). For training, a  back-propagation with
momentum learning function is used (learning rate η= 0.01, momentum µ= 0.9). In order to prevent over-generalisation
by controlling the complexity of the ANN, the technique of structural stabilisation (Bishop, 1998) is used. Using this
technique, the TPF for a range of ANNs with differing number of hidden nodes is compared. The ANN model giving the
highest TPF is selected. ROC analysis is finally performed (McNicol,  1972) on the test results from each fold and the
value of Az computed.

Similarly, the RBF network is trained to a maximum of 500 epochs using a learning rate for the centres of .0002. The
same learning rate value was used for the weights and bias for the output. The maximum error allowed for each neuron
was set to 0.8 and the momentum used was equal to 0.8. It should be noted that these values have been optimised
through experimentation.

Two separate trials are conducted. In the first trial the complete data available initially is used. In the second trial, we
eliminate 10% of outliers from each class data. Outliers are selected using a nearest neighbour method that computes the
mean pattern for each class. The Euclidean distance between this mean pattern and all other samples for a given class
are computed and arranged in their order of increasing distance. The highest 10% values are removed from the data.

3.  RESULTS
From the 144 input images, the dataset comprised 820 non-masses and 48 actual masses. Tables 1 and 3 show results on
this data. Tables 2 and 4 show the results after outliers have been removed which leaves 738 non-masses and 43 masses.
The co-occurrence matrices constructed using a distance (d=3) gave the largest TPF value thus being the most sensitive
to detecting true positives. This distance represents a trade-off between the construction of the complete joint probability
histogram for each region, needed to describe its texture, limited by a region's size, coupled with a minimum value of d
required to characterise the underlying texture associated with pixel pairs. For each test set tested on a trained ANN
using 10-fold cross-validation, the associated feature vector (where d=3) is subsequently used for classification.

In Table 1, we show the results of classification performance based on the RBF network. The recognition rates vary over
the ten trials; on average we get a value of 65%. The TPF and FPF values listed for the network performance shows that
this configuration of an RBF network run on original data (without any outlier removal) gives an unacceptably high FPF
and a poor TPF related to the overall lower figure of Az. The value of Az (area under the ROC curve) is found to be
0.70. As mentioned earlier, an ideal system should have a value close to 1.0. When the outliers are removed from
training data, test performances improve as shown in Table 2. A recognition rate of 78% is obtained with better TPF and
FPF scores. Also the value of Az improves to 0.73. In both experiments, 5 hidden nodes give the optimal results.
Increasing them leads to over-generalisation such that all masses are classified as non-masses.

The same analysis is performed using a multi-layer perceptron with backpropagation learning. In this, the number of
optimised hidden nodes used in different trials are different. The recognition rate obtained equals 72% and the average
Az equals 0.72. The TPF and FPF values listed for the network performance shows that this type of ANN gives a lower
FPF and an improved sensitivity in detecting masses. Finally Table 4 shows the results of classifying outlier removed
data with backpropagation net. This shows the best performance on recognition rate (77% correct), highest TPF (.73),
lowest FPF (.25) and highest Az value (.74).

Finally we plot the ROC curves for the best performance of outlier removed data classified using backpropagation
network. These are shown in the Appendix. The curves plot TPF vs. FPF. Ideally, the curves should be as close to the y-
axis and the upper edge of the graph as possible. As seen from the graphs in the appendix, most graphs have this trend.

4.  CONCLUSIONS
A key aim of this study was the implementation of a technique that could automatically detect suspicious regions. The
bilateral subtraction technique of left and right breast image pairs is seen as an effective method of identifying such
suspicious regions based on focal asymmetric densities. The reduction of false-positive regions based on size, shape and
uniformity measures ensured that the ultimate FPF could be kept low without affecting the overall sensitivity. The use of
statistical measures of texture as  features, their subsequent extraction and classification, can be seen from the results in
Tables 1-4 to be highly discriminant in differentiating between masses and non-masses with a very high TPF with a low
TPF.  In comparison with previous studies the overall performance of the technique as indicated by the value of
Az=0.74, which improves on similar previous studies where the detection masses has been the objective. Future work



will attempt to improve on these results and include different texture and shape measures applied to other
mammography databases.
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Fold No. Hidden
Nodes

Recog.
Rate %

TPF FPF Az

1 5 74 0.40 0.24 0.837
2 5 62 0.60 0.38 0.739
3 5 62 0.60 0.38 0.600
4 5 67 1.00 0.35 0.829
5 5 77 0.80 0.23 0.734
6 5 65 0.80 0.35 0.723
7 5 52 0.60 0.49 0.609
8 5 57 0.40 0.41 0.474
9 5 76 0.80 0.24 0.790

10 5 61 0.40 0.39 0.711
Mean - 65 0.64 0.35 0.70
Table1 Results of classification using an RBF net T
(1

Table3 Results of classification using an MLP net T
(1
Fold No. Hidden
Nodes

Recog.
Rate %

TPF FPF Az

1 5 74 0.60 0.24 0.683
2 5 66 0.80 0.35 0.722
3 5 67 0.60 0.32 0.672
4 5 73 0.60 0.26 0.660
5 5 80 0.80 0.20 0.898
6 5 85 0.40 0.12 0.650
7 5 84 0.20 0.49 0.664
8 5 68 0.40 0.12 0.656
9 5 83 1.00 0.30 0.983

10 5 100 - - -
Mean - 78 0.60 0.27 0.73
able2 Results of Classification using an RBF net
0% outliers have been removed)
Fold No. Hidden
Nodes

Recog.
Rate %

TPF FPF Az

1 3 74 0.80 0.27 0.717
2 1 62 0.80 0.39 0.700
3 4 74 0.20 0.23 0.486
4 1 77 0.80 0.23 0.781
5 4 78 0.80 0.22 0.776
6 1 64 0.80 0.37 0.721
7 3 57 0.80 0.44 0.589
8 4 70 0.60 0.29 0.704
9 5 89 0.80 0.11 0.832

10 4 76 1.00 0.24 0.896
Mean - 72 0.74 0.28 0.72
Fold No. Hidden
Nodes

Recog.
Rate %

TPF FPF Az

1 1 70 0.80 0.31 0.743
2 5 78 0.40 0.19 0.617
3 1 70 0.60 0.30 0.601
4 3 77 0.80 0.23 0.789
5 1 75 1.00 0.27 0.836
6 2 68 0.60 0.31 0.674
7 4 67 0.80 0.34 0.736
8 4 82 0.60 0.16 0.737
9 5 83 1.00 0.18 0.898

10 5 100 - - -
Mean - 77 0.73 0.25 0.74
able 4 Results of Classification using an MLP net
0% outliers have been removed)



Appendix: ROC plots for folds 1 to 9
(there are no samples of masses in the final fold so we do not plot the ROC curve for the last fold)
ROC curve for fold_1

     (Fold 1)

ROC curve for fold_4

ROC curve for fold_7
ROC curve for fold_2

ROC curve for fold_5

ROC curve for fold_8
ROC curve for fold_3
ROC curve for fold_6
ROC curve for fold_9


