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ABSTRACT

The percentage of radiodense (bright) tissue in a mammogram has been correlated to an

increased risk of breast cancer. This thesis presents an automated method to quantify the

amount of radiodense tissue found in a digitized mammogram. The algorithm employs a

radial basis function neural network in order to segment the breast tissue region from the

remainder of the X-ray. A spatially varying Neyman-Pearson threshold is used to

calculate the percentage of radiodense tissue and compensate for the effects of tissue

compression that occurs during a mammography procedure. Results demonstrating the

efficacy of the technique are demonstrated by exercising the algorithm on two separate

sets of mammograms - one obtained from Brigham Women's Hospital, Harvard Medical

School and the other set obtained from Fox Chase Cancer Center and digitized at Rowan

University. The results of the algorithm compare favorably with a previously established

manual segmentation technique.
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CHAPTER 1: INTRODUCTION

The second leading cause of mortality among Americans is malignant neoplasms or

cancer. Cancer is second only to heart disease as the leading cause of death among

Americans. Reports indicate an estimated 553,000 deaths in Americans due to cancer in

the year 2000. Cancer accounts for 23% of the total number of deaths; 21.8% among

females and 24.3% among males. The second leading cause of cancer related deaths

among women is breast cancer, exceeded only by lung cancer [1]. Breast cancer

accounts for nearly one of every three cancers diagnosed in American women [2] and it is

estimated that 1 in 8 women in the United States will develop breast cancer in their

lifetime [3]. Early detection of breast cancer and the use of breast cancer risk factors

through application of mammography screening along with improvement in breast cancer

treatments has attributed to the recent decline in breast cancer mortality [4,5].

1.1 Medical Imaging in Mammography

Scientists have come a long way since the initial attempt at the development of a machine

specifically designed for producing mammograms. From what was at first essentially a

tripod supporting a special X-ray camera, the medical industry is now beginning to

incorporate the idea of beaming digital mammograms via satellite to doctors in remote

locations around the world. Mammography is a special type of X-ray imaging used to

create a more detailed image of the breast. Mammography uses low dose X-ray; high

contrast, high-resolution film; and an X-ray system designed specifically for imaging the

breast. It is estimated, that in one year, 48 million mammograms are performed. The US

Food and Drug Administration reports that mammography can find 85 to 90 percent of
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breast cancers in women over 50 and can discover a lump up to two years before it can be

felt [6]. Computer aided diagnostics in mammography can improve these statistics even

further. Other breast imaging modalities include ultrasound, breast magnetic resonance

imaging (MRI), nuclear medicine imaging, and ductography.

Researchers and scientists have placed much emphasis in aiding the fight against

breast cancer by analyzing mammograms using digital image processing techniques. The

main areas of research in the image processing of mammographic X-rays focus on the

detection of malignancies and their pre-cursors. Much of the current work is dedicated to

the detection of microcalcifications, which are tiny specks of calcium in the breast.

Microcalcifications are the most common mammographic sign of ductal carcinoma in

situ, which is an early cancer confined to the breast ducts. Almost 90% of cases of ductal

carcinoma are associated with microcalcifications. Many image processing algorithms

have shown a significant performance in the detection of microcalcifications. Methods

used in the detection of microcalcifications include support vector machine learning [7-

9], wavelet based analysis [9], texture features [10], and Gaussian filtering [11].

Collections of microcalcifications seen in one area are referred to as a cluster and may

indicate a small cancer. Other areas being researched for the detection of malignancies

include the detection of macrocalcifications and masses. Macrocalcifications are coarse

calcium deposits that are often associated with benign fibrocystic change or with

degenerative changes in the breast, such as aging of the breast arteries, old injuries, or

inflammation.

The research work presented in this thesis focuses on risk factor analysis. Risk

factors represent the potential of the patient to develop breast cancer. The American
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Cancer Society characterizes risk factors into three broad categories. These three

categories include 1) risk factors that cannot be changed, 2) lifestyle-related risk factors,

and 3) risk factors with uncertain, controversial, or unproven effect on breast cancer risk.

Risk factors that cannot be changed include gender, aging, genetic risk factors, race, and

family history of breast cancer. Lifestyle-related factors include bearing children, breast-

feeding, alcohol, obesity, and physical inactivity. Factors with unproven effects on breast

cancer risk include antiperspirants, smoking, and breast implants. Table 1.1 describes

some breast cancer risk factors with their associated relative risk [12]. Knowledge of risk

factor statistics is beneficial for the early detection and screening of breast cancer.

TABLE 1.1 - Breast cancer risk factors [12].

Risk Factor High-Risk Group Low-Risk Group Relative risk
Age Old Young > 4.0
Country of birth North America, Asia, Africa > 4.0

Northern Europe
Socioeconomic status High Low 2.0 - 4.0
Marital Status Never married Ever married 1.1 - 1.9
Place of residence Urban Rural 1.1-1.9
Place of residence Northern US Southern US 1.1-1.9
Race > 45 years White Black 1.1-1.9

< 40 years Black White 1.1-1.9
Nulliparity Yes No 1.1-1.9
Age at first full-term pregnancy > 30 years < 20 years 2.0-4.0
Age at menopause Late Early 1.1-1.9
Weight, postmenopausal women Heavy Thin 1.1-1.9
Any first-degree relative with Yes No 2.0-4.0
history of breast cancer
Mother and sister with history of Yes No > 4.0
breast cancer
Mammographic parenchymal Dysplastic Normal 2.0-4.0
patterns

Studies have shown that, in comparison to other more commonly used risk

factors, breast density may be the strongest independent marker for breast cancer risk. It

has been shown that a strong positive correlation exists between breast parenchymal

density on mammograms and breast cancer risk [13,14,15]. The radiographic appearance
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of the female breast can be divided into bright radiodense regions that consist of

parenchymal tissue and darker radiolucent regions that consist primarily of fatty tissue.

An example of the different regions within a mammogram X-ray is evident in Figure 1.1.

The percentage of radiodense tissue in the breast tissue region is known as breast density,

mammographic density or radiodensity. The distribution of radiographically lucent fat

and radiographically dense connective and epithelial tissues creates a mammographic

parenchymal pattern.

(a) Radiolucent
Tissue

(b) Radiodense_
Tissue

- (c) Background
Film Region

(d) Image View

FIGURE 1.1 - Mammogram X-ray with (a) radiolucent and (b) radiodense tissue labeled,
and (c) film (non-tissue) region with (d) corresponding image view.

1.2 Mammography Procedure

Mammography is one of the best breast imaging modalities available for the early

detection of breast cancer in women, when it can be most effectively treated. X-ray

mammography is one of the most common procedures performed by radiologists in the

screening and diagnosis of breast cancer. During this procedure, the breast is exposed to
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a small dose of radiation to produce an image of internal breast tissue. A conventional

mammography process is shown in Figure 1.2 [16]. The image of the breast is produced

as a result of some of the X-rays being absorbed, through attenuation, while others pass

through the breast to expose the film. The differences in absorption of various types of

tissue and the corresponding varying exposure level of the film create the images that

clearly show normal structures such as fat, fibroglandular tissue, breast ducts, and

nipples. The term fibroglandular has been used to describe the structures of both fibrous

and glandular tissue. Abnormalities such as microcalcifications, masses, and cysts are

also visible. Breast masses (including benign and cancerous lesions) appear as white

regions on mammogram film whereas fat appears as black regions on a mammogram

film. Everything else (glands, connective tissue, tumors and other significant

abnormalities such as microcalcifications) appears as levels of white on a mammogram.

The assessment of radiographic pattern of the breast is based on the amount and

distribution of radiodense breast parenchyma (composed of fibrous stroma and epithelial,

glandular elements) in radiolucent fatty tissue. The differences seen among different

women in mammograms are due to differences in the relative amounts of fat, connective

and epithelial tissue, and the different X-ray attenuation characteristics of these tissues

and are referred to as the parenchymal patterns of the breast [17].

A specially qualified r adiologic t echnologist w ill p osition t he female b reast for

proper imaging. The Mammography Quality Standards Act (MQSA), passed by

Congress in 1992 and administered by the Food and Drug Administration, requires

facilities to meet specific standards of quality in order to offer mammography. The

breast i s first p laced on a special c assette and c ompressed with a p addle. T his tissue
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compression is necessary in order to even out the breast thickness so that all of the tissue

can be visualized. Both the size of the breast and the woman's age may contribute to the

apparent variation in thickness due to the tissue compression on the mammograms [18].

A mammogram is an X-ray image of a breast taken from one or more views [19].

Typically, the mammography procedure produces a set of four X-ray films. An example

of this X-ray film set is shown in Figure 1.3. The X-rays are of the craniocaudal (CC)

and mediolateral oblique (MLO) views of both breasts.

X-ray tube

Filters

1X-ray Beam Collimator

I I R - I Grid Film' ' I

|_ .... E~ Automatic Exposure Control

FIGURE 1.2 - Conventional mammography process from [16].
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Right Craniocaudal (RCC) View

FIGURE 1.3 - Typical mammogram X-ray film set.

7
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The mediolateral oblique view is taken from an oblique or angled view. This

MLO view is preferred over a lateral 90-degree projection because more of the breast

tissue can be imaged in the upper outer quadrant of the breast and the axilla (armpit).

The pectoral (chest) muscle should be depicted obliquely from above and visible down

the level of the nipple to further down. The shape of the muscle should curve or bulge

outward as a sign that the muscle is relaxed; the medial (middle) portion of the breast

should be prominent in the MLO view. The variation of angle is needed because the

shape of the pectoral muscle is various.

The craniocaudal view images the breast from above. With the CC view, the

entire breast parenchyma should be depicted. As with the MLO view, tissue compression

is applied to spread the breast tissue involving the parenchyma.

Although much of the X-ray capture process is now automated, proper positioning

and tissue compression of the patient's breast by the technologist is essential to capturing

a useful set of mammogram films. Most serious and frequent errors are due to improper

positioning [20]. After the mammogram is taken, a trained radiologist traditionally

performs t he d iagnosis of t he X-rays. The radiologist i s t ypically concerned w ith t he

presence o f i mmediate dangers t o t he p atient, malignancy and other abnormalities. A

highly dense breast is a concern because of the complexity it adds to the diagnostic

process and due to the emergence of breast density as a risk factor for developing breast

cancer.

Studies have been performed to measure the inconsistency of radiologists in

screening mammography [21]. It is stated in this study that the amount of inconsistency

in interpretation among radiologists varies across different types of analysis in screening
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mammography. The degree of disagreement in radiologists' estimations is subjected to

factors including mammographic features specific to the breast, features specific to the

case, and naturally occurring differences among observers.

1.3 Statement of Problem

The quantification of radiographically dense tissue, referred to as breast density, has been

shown to be one of the most robust markers as a risk factor for the development of breast

cancer. Current methods designed to quantify this tissue are prone to both inter- and

intra-observer variability. This variability is present because of the subjective decision

making of the trained radiologist. The development of an objectively designed

automated method to quantify the amount of breast density is necessary to eliminate the

effects of inter- and intra-observer variability.

The design of this automated system will incorporate typical evaluation skills present

in a trained radiologist during the segmentation and quantification of radiodense tissue.

This evaluation includes the differentiation in gray-level values of tissue defined as

radiolucent or radiodense. The radiologist also incorporates the fact that tissue

compression has occurred during the mammography procedure. Tissue compression is

necessary during the mammography procedure for a number of reasons. The breast tissue

must be compressed so that there is a lesser amount of tissue overlap leading to a better

visualization of the internal structure of the female breast and any potential abnormalities.

Other reasons include reducing overlapping normal shadows, allowing the use of a lower

X-ray dosage, and immobilizing the breast to eliminate image blurring cause by motion.

According to the American College of Radiology and the Breast Imaging Reporting and

Data System (BI-RADS), breast tissue is heterogeneously dense within a mammogram
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because the breast is almost entirely flat due to the compression plates [22]. The gray-

level values of the two types of tissue will differ with respect to the amount of tissue

compression that has occurred at any particular location within the digitized

mammogram.

A major effect of tissue compression is the creation of "artificial density." It has been

shown that dense tissue appears relatively bright on a digitized mammogram. At the

chest wall, where tissue compression is the highest, the greatest amount of tissue will be

compressed into a s mailer amount o f s pace. E valuation o fthe digitized m ammogram

must account for the appearance of radiographically dense tissue in regions closer to the

chest wall may actually only be a result of artificial density caused by tissue compression

and must be disregarded as being quantified as radiodense tissue. The research presented

here addresses these issues and advances the state of the art techniques in building an

automated system to segment between radiodense and radiolucent tissue indications.

1.4 Scope and Organization of the Thesis

This thesis introduces a novel algorithm for the automated segmentation and

quantification of radiodense tissue in digitized mammograms. This technique

incorporates methods of quantifying radiodense tissue that are consistent with those

methods used by trained radiologists in the quantification process. Methods used in the

development of this algorithm include:

1. A radial basis function neural network used to extract the breast tissue region

from a digitized mammogram;
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2. A constrained Neyman-Pearson algorithm to generate a global threshold to

distinguish between radiodense and radiolucent tissue indications;

3. Parametric models for tissue location developed to analyze tissue in

accordance with the location within the digitized mammogram;

4. Variation of the threshold using parametric models to minimize artifacts

induced by tissue compression.

The proposed algorithm has been exercised on mammogram images obtained

from the Channing Laboratory of the Brigham and Women's Hospital and Harvard

Medical School. Results presented in this thesis have been validated by independent

assessments from an experienced radiologist using a previously established method for

quantifying radiodense tissue. This research is intended to support an investigation being

conducted at Fox Chase Cancer Center (FCCC), examining the correlation between

dietary patterns and breast density.

This thesis is organized as follows; this introduction is followed by a background

investigation of mammography and an extensive literature survey of previous breast

density estimation techniques in Chapter 2. Chapter 3 presents an analysis of techniques

from random variable theory that is employed towards an automated technique to

segment radiodense tissue. The overall approach proposed for automatically segmenting

radiodense tissue in digitized mammograms is presented in Chapter 4. In Chapter 5, the

results are presented from implementing the algorithm on the digitized mammogram

images. Finally, a summary of the work is provided along with identifying future

research directions in Chapter 6.
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CHAPTER 2: BACKGROUND

Several methodologies have been developed to quantify breast density in mammogram

X-rays. This chapter describes, in detail, many of these methods, ranging from when

breast density was first described as a risk factor for breast cancer, to current automated

techniques to quantify breast density.

2.1 Breast Density

Studies by J.N. Wolfe proposed that a correlation is prominent between mammographic

parenchymal patterns and the risk of developing breast cancer [23,24]. This finding

produced many studies to look further into the association between mammographic

fibroglandular density and the related breast cancer risk. Many of these studies supported

Wolfe with a similar relationship between parenchymal patterns and breast cancer risk

[13,25-35]. Breast density is loosely defined as the amount of connective tissue and

glandular tissue within the breast. One study in particular showed that women with a

breast density of 75% or greater were at a risk of developing breast cancer five times

greater than women with little or no breast density [13]. Boyd et al demonstrated the

heritability of breast density, concluding that finding the genes responsible for this

phenotype may be a significant step in understanding the pathogenesis of breast cancer

[36]. T he i nvestigators oft he h eritability study analyzed n early 1 000 p airs o f female

monozygotic (identical) and d izygotic/frateral (non-identical) t wins i n N orth A merica

and Australia. Readers who were blinded to the identity of the women computed

mammographic densities. The percentage of dense breast tissue was correlated twice as

strongly among monozygotic twin pairs than among dizygotic twin pairs, indicative of a

finding that is consistent with an additive genetic cause. Methods have been developed
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and experimented with to quantify breast density. This chapter presents a description of

these methods.

2.1.1 The Wolfe Classification

The Wolfe classification was proposed in the mid 1970s to identify groups of women at

high risk for breast cancer [23,24]. This is a four-class classification, where classification

is dependent on the relative amounts of fat, epithelial and connective tissue densities and

prominent ducts present in the mammogram. These four classes, called Wolfe patterns,

are defined as:

a. NI: The breast is comprised entirely of fat.
b. PI: The breast has up to 25% nodular densities.
c. P2: The breast has over 25% nodular mammographic densities.
d. DY: The breast contains extensive regions of homogeneous mammographic

densities.

Wolfe proposed these mammographic parenchymal patterns as a marker for the

prediction of breast cancer and associated them with a stepwise increase in breast cancer

risk. NJ is indicative of a breast containing parenchyma that is radiographically lucent

and the risk for developing breast cancer is at a relative minimum. DY is indicative of a

breast containing parenchyma that is radiographically dense and the risk for developing

breast cancer is at a relative maximum. The Wolfe classification was popular for many

years due to the advantages created in that observers have the ability to quickly classify

mammograms, but there are a number of limits to this method. Wolfe's initial

descriptions of the classes were brief and this leads to the classification of mammograms

to a broad analysis introducing a lack of uniformity between different observers. This
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introduces a high amount of variability in the risk estimation [37]. The problem of inter-

observer variability is also evident because the radiologists' subjective assessment is used

to classify a mammogram into a particular Wolfe pattern. Because of these limitations,

other methods of quantifying breast density have been researched.

2.1.2 Breast Imaging Reporting and Data System (BI-RADS)

As recommended by the American College of Radiology, the Breast Imaging Reporting

and Data System (BI-RADS) have incorporated a four-category classification scheme for

mammographic density [22]. These classifications include:

a. The breast is almost entirely fat.
b. There are scattered fibroglandular densities.
c. The breast tissue is heterogeneously dense. This may lower the sensitivity of

mammography.
d. The breast is extremely dense, which could obscure a lesion on

mammography.

These classifications are defined so there can be a concise report of the overall breast

composition. Radiologists typically estimate the breast density on mammograms in

clinical practice based upon this BI-RADS classification. This classification method is

affected by the inter-observer variability among different experienced radiologists

performing the analysis.

2.1.3 Six-Category Classification

Particular studies of breast density rely heavily on the categorization of breast densities.

Previous classification schemes for breast density are sometimes too broad for the

research in these studies. One particular study enhanced this categorization of breast
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density into six different categories [38]. These categories rely on the percentage of the

breast volume occupied by ductal prominence or mammographic dysplasia (abnormal

development of tissue) and are estimated through visual inspection by a trained

radiologist. The mammogram was defined as being 0 %, > 0 to < 10 %, 10 to < 25 %, 25

to < 50 %, 50 to 75 %, or 75 to 100 % dense. While this method of classification is more

precise than the previous four category methods, this is still hindered by the inter-

observer variability. Also, the radiologist is approximating the area of the breast to

calculate the percentage of radiodense tissue within the mammogram, which can become

a source of error due to the irregularity of the shape of the breast. There is a need to

develop an automated and quantitative estimation that is not susceptible to the inter-

observer variability.

2.2 Semi-Automated Segmentation Techniques

The Wolfe classification scheme, the ACR-BIRADS method, and the six-category

classification are all entirely dependent upon the expertise of the expert performing the

classification. T he d efinition o f breast d ensity is 1 oosely d efined, t herefore, a method

must be developed to allow a consistency among the expert observers.

2.2.1 Interactive 'Toronto' Method

Yaffe, Boyd et al developed the popularly used interactive software program to identify

regions within a mammogram that appear as radiodense [39,40]. This program imports

any given mammogram onto the computer screen to perform manual segmentation

between radiodense and radiolucent tissue. The digitized mammogram is quantified to
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4096 (212) discrete grayscale levels per pixel. The radiologist using the program then

segments the image into three regions: (1) the film region outside the breast tissue area,

which is information that is not important for the study of breast density, (2) the area

within the breast tissue which appears as radiolucent, and (3) the area within the breast

tissue which appears as radiodense.

The radiologist selects two threshold gray-levels with the aide of a computer

trackball or mouse. The movement of the mouse relates to a positioning of a slider,

which is representative of the 4096 possible gray-levels. As the user moves the mouse,

the gray-level threshold is increased and the effective segmentation is visually depicted

on the computer screen. The first gray-level threshold chosen will distinguish the edge of

the breast tissue region, differentiating between breast tissue and the outside film region.

When the threshold selection is sufficient and the breast tissue region is secured, the next

step is to select an additional gray-level threshold to identify regions within the breast

tissue as either radiodense or radiolucent. This second threshold is chosen in a similar

method as the initial threshold, however this choice is dependent upon the expertise of

the radiologist. This method is referred to as the "Toronto" method.

It is mentioned that the use of gray-level thresholding incorporates a simple

decision rule to maintain a consistency between different radiologists. Also, the

difficulty of visually assessing relative area from an irregularly shaped image is

minimized. However, a completely automated method is still desired to eliminate any

subjective decision regarding the choice of the radiodense regions.
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FIGURE 2.1 - Block diagram of the Toronto interactive computer method for
determination of radiodense tissue percentages. This method uses two grayscale
thresholds to determine tissue/film boundary and radiodense/radiolucent boundary.

2.2.2 Magnetic Resonance Imaging and Breast Density

The quantification of breast density has also been performed incorporating the use of

magnetic resonance imaging (MRI) [41]. To obtain the MRI of the breast, patients were

scanned lying in the prone position containing two figure 8 surface coils, one placed

above the other. Using a rigid imaging device, the breast was scanned for 1 pass of the

breast in the cranial to caudal direction with constant thickness (ranging from 4,5,6 or 7

mm). A program was developed to calculate the mammographic density using the MRI

slices. This program is similar in methodology to that of the Toronto method. However,

it is mentioned that this method cannot be used to predict the glandular percentage of
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patients due to the poor correlation of skewness calculated within the histogram of the

radiodense tissue with the MRI glandular percentage calculated by a trained radiologist.

In addition, there is no single, standardized and generally accepted technique for all

breast MR imaging examinations [42].

2.3 Automated Segmentation Techniques

A common hindrance seen by many of the semi-automated techniques is due to the

interaction of the observer. This interaction creates inter- and intra- observer variability

that is prone to error. Development of a fully automated technique will minimize this

error. Table 2.1 summarizes the automated segmentation techniques to quantify

radiodense tissue.

2.3.1 Adaptive Fuzzy K-means

A technique to automatically quantify the amount of mammographic density in a

digitized mammogram has been developed by Lou and Fan [43]. This process

incorporates an adaptive histogram equalization technique along with an adaptive fuzzy

K-means technique to classify pixels as radiodense. Groupings of pixels are classified

with dependence on the mean of that particular grouping. Among a database of eighty-

one mammogram images, the average error for correct classification of radiodense tissue

was 7.98 %. Also, this technique only requires a process time of eighteen seconds per

image.
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2.3.2 Rule Based Histogram Classifier

Zhou et al. developed a rule based histogram classifier to determine the amount of dense

area within a mammogram [44,45]. Dependent upon characteristics of the histogram of

the mammogram image, it will be classified into one of the four BI-RADS breast density

ratings. After the mammogram is correctly classified, a threshold is developed by use of

a discriminant analysis method or a maximum entropy principle method. Selection of the

method to use for thresholding relies on which of the four categories the mammogram is

classified into. Results showed a maximum difference of 20% between their estimates

against the expertise of two radiologists. However, they conclude that the subjectively

estimated percent dense area between the two radiologists differed by as much as ±20%.

This indicates the need to develop an objective method for the estimation of breast

density.

2.3.3 Classification using Texture Analysis

A method is incorporated with the idea that different image processing algorithms are

more suitably applied to the separate classes of mammograms in terms of their density

similar to the ACR BI-RADS classification [46]. Using texture measures, mammograms

are classified into one of the four different density classes, thereby reducing any

subjectivity introduced from the analysis of the radiologist. Three methods are employed

for determining texture including features obtained from Spatial Grey Level Dependency

(SGLD) matrices, fractal dimension, and statistical gray-level measures.
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TABLE 2.1 - Summary of automated segmentation techniques in breast density
analysis.

The SGLD matrices model the correlation between pixels within the breast

region. The SGLD matrix is the joint probability occurrence of gray-levels i and j for

two pixels with a defined spatial relationship in an image. Calculating some measure of

scatter of the SGLD matrix around the main diagonal will analyze the texture coarseness.

At end, fifteen statistical measures are extracted from this SGLD matrix. The fractal

dimension is calculated for every pixel in the region and the mean value over all pixels is

20

Proponents Approach Advantages Disadvantages
Lou and Fan Adaptive fuzzy 7.98 % error among 81 Effects of tissue

[43] K-means mammogram images. compression are
technique to 18 seconds process time ignored. Small

classify pixels as per image. dataset.
radiodense.

Zou et al. Rule based Maximum difference No object method for
[44,45] histogram 20% from expert validation.

classifier analysis.
Bovis and Classification 91 % correct Relies on knowledge
Singh [46] using texture classification. of the region to be

analysis. segmented.
Classifier is based on
simplistic measures

of texture.
Saha, Udupa, Scale-based fuzzy Estimates correlate Does not

et al. [48] connectedness strongly with analysis by automatically exclude
models radiologist. pectoral muscle.

Byng, Boyd, Fractal Strong correlation Required interaction
et al. [51] dimensions and between these image to segment breast

regional skewness properties and breast tissue region from
density. rest of mammography

film.
Neyhart et al. Constrained Automated technique. Model does not cover

[53] Neyman-Pearson the entire range of
decision function radiodense tissue;

effects of tissue
compression are

ignored



used as the fractal dimension feature. Statistical features used in this study include the

mean, homogeneity, standard deviation and skewness of grayscale values of the breast

tissue region.

The data calculated through the three methods are identified as being 'dense',

'glandular' or 'fatty' by using supervised learning techniques on different types of

classifiers. The best results were obtained using a K-Nearest neighbor classifier,

resulting in a 91% recognition rate. Classifier performance was evaluated on the basis of

cross-validation and the use of receiver operating characteristic (ROC) statistics. Results

will be more precise with further research on the use of prior knowledge of the breast

type at different stages including enhancement, segmentation and feature extraction.

Two basic weaknesses of image-based textural approaches include [47]:

1. Radiologists analyze texture variations in a complex and subtle manner and

classifiers based on simplistic measures of texture do not perform well.

2. The differences in imaging conditions lead to a non-rigid variation in the

mammographic intensity distribution a fact that diminishes the possible use of

texture for mammographic pattern recognition.

2.3.4 Scale-Based Fuzzy Connectedness

An automated method has been developed by researchers at the University of

Pennsylvania using the notion that breast density can be quantified through the principles

of fuzzy connectedness [48]. This method relies on the idea that artifacts such as noise,

blurring, and background variation along with material heterogeneity cause object

regions within an image to exhibit a gradation of intensity values in the image. Human
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observers usually do not have difficulty in analyzing the object regions as an integrated

whole. Image elements in these object regions seem to hang together to form the object

region independent of their gradation of values. To address the issues of hanging

togetherness and graded composition, these researchers have developed their algorithm

based on fuzzy relations. They define a fuzzy affinity, which is intended as a local

relation among neighboring pixels. The higher the strength of this relationship, the more

these pixels correlate with each other.

A "fuzzy connectivity scene" is first generated using their algorithm. This scene

is representative of the likelihood that a particular region is to be associated with a

designated reference region. Knowledge of the estimation of the parameters of the region

that is to be segmented is required. The algorithm is exercised on the localized breast

tissue region. The reference region is assigned to the highest 32% of intensities within

the histogram of the localized breast tissue region. A fuzzy connectivity scene is created

for the dense region of the breast tissue and segmented using an automatic threshold

selection method.

This method works automatically except for the exclusion of the pectoral muscle

when trying to localize the breast tissue region. Estimations of the amount of breast

density within a mammogram produced by this research correlates strongly with the

estimations seen by a trained radiologist.

2.3.5 Regional Skewness and Fractal Dimension

Fractal geometry was originally presented by Mandelbrot [49]. This theory allowed for

the description of complex shapes where normal Euclidian geometry fell short. Using
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fractal geometry, the dimension (similar to spatial dimension) of an object can be

calculated. This dimension is a measure of the complexity of an object. When analyzing

images, fractal dimension can be used to estimate the smoothness of an image when the

image intensities are mapped like a terrain. Reported results show a strong negative

correlation between breast density and fractal dimension. Thus indicating that

mammograms of high radiodense tissue are smoother (i.e. more similar) and those of

lower radiodense tissue are more rough (i.e. more dissimilar) [50].

Regional skewness is a measure based on third moment histogram analysis. The

histogram of an image is a graph of the quantity of pixels in an image that are of the same

value or range of values [50]. The histogram information is irrespective of pixel position

and can provide a great deal of information about an image. Information on the skewness

of an image is given by the third moment of the image histogram. The method presented

used a normalized third moment. It was hypothesized that if a region contains mostly

fatty tissue, which is inherently lower in gray-level intensity, then it will exhibit a

positive skewness. Conversely, those regions that are of a more radiodense nature, which

are inherently higher in gray-level intensity, will indicate a negative skewness. To

provide better resolution, analysis was done using non-overlapping groups of pixels and

averaged to provide a single skewness measure. Analysis of this value revealed a strong

correlation between skewness and breast density [51].

Although promising results were obtained using both of these means, no

quantitative measures of breast density using these techniques were presented.

Furthermore, no system for the automatic calculation of the values was presented. The

skewness measure required significant user interaction.
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2.4 Symmetry of Views

The typical mammography procedure produces a film set of four different views of the

breast. This film set includes views of the CC and MLO for both the left and right breast.

The pectoral muscle is included in the MLO view. The inclusion of the pectoral muscle

presents a difficult challenge for automatic segmentation. A study has shown that the

separate a nalysis o f t he M LO a nd C C v iews r esult i n s imilar q uantifications o f b reast

density [52]. This finding allows for the study to be sufficient of only one single view

per breast, eliminating the additional work and cost of digitization, storage and analysis

of the mediolateral oblique views. To ensure the efficiency of an automatic segmentation

process, analysis can now be performed only on the CC views of both the left and right

breast per X-ray set.

In this chapter, an overview of previous research work in the area of

quantification of breast density has been presented. This has shown the progression of

the methods over the years. Currently, the most popular method in practice has been the

"Toronto" method for the segmentation of radiodense tissue and will be used as a

baseline for the comparison of results produced through the methods developed in this

thesis.
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CHAPTER 3: M ODELING A ND S EGMENTATION O F G AUSSIAN RANDOM
IMAGES

3.1 Introduction

An automated technique to segment breast density in a digitized mammogram has been

previously developed at Rowan University and i s described in detail in [ 53-57]. T his

technique was developed using the fundamentals of image modeling. The foundations of

image modeling and this automated segmentation technique are discussed in this chapter.

3.2 Image Modeling

The application of this automated segmentation technique requires that the image can be

modeled mathematically. Recasting the image as a random field is the first step in this

approach. A two-dimensional image can be modeled as a Gaussian random field by the

equation

f(x,y) = m+ + rfw(x,y) (3.1)

wheref(x,y) is the gray-level value in the image at location (x,y), mf and af are the local

mean and standard deviation of f(x,y), respectively, and w(x,y) is a zero-mean, unit

variance, Gaussian random field. This prediction holds true if two criteria are met:

(a) The image, f(x,y) is stationary, and

(b) The local region being modeled is relatively small.

When both of these criteria are met, any image can be modeled as the collection

of zero mean, unit variance Gaussian random fields that have been scaled and translated

along the real number line using local means and variances.

The image being modeled for this research is a digitized mammogram image.

The original digitized mammogram, of size 926 x 676 pixels, is subdivided into blocks of
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size 8 x 8 pixels; the local mean and standard deviation for the gray-levels are estimated

for each of these blocks. This modeling is illustrated in Figure 3.1.

(a) (b)

FIGURE 3.1 - (a) Original digitized mammogram image and (b) its Gaussian random
model. Included are the 8 x 8 subdivided blocks used in the modeling process.

This theory shows that an image, if it is Gaussian in nature, can be automatically

and dynamically segmented about the mean of its probability density function (PDF) to

divide the image into 'dark' and 'bright' regions. The mammogram images have been

successfully modeled as a Gaussian random field using its gray-level statistics. The

radiodense tissue segmentation can now be recast as a problem in hypothesis testing. In a

detection problem, an observation of a random variable is used to make decisions about a

finite number of outcomes [2]. In this case, the pixel gray-level under consideration,

f(x,y), is the random variable, and the two possible outcomes for that gray-level include

radiodense or radiolucent tissue. This two-class situation is also known as binary

hypothesis testing. To test the hypothesis, the value of the random variable (pixel gray-

level) is compared with a threshold (the mean of the PDF). This threshold is dynamically
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generated, taking into account the variation in gray-level statistics from image to image

and the local statistics within each image.

3.3 Random Variables

The Gaussian random variable is chosen as a good candidate for the modeling of the

different portions of tissue that are present in the mammogram, including radiodense and

radiolucent tissue. The cumulative distribution function (CDF) of the Gaussian random

variable is given as

1
Fx (x)= (xm)2 (3.2)

l+e 2_2

where the mean, m, is any real number and the variance, o- 2, is any positive real number.

Figure 3.2 (a) shows the plots of the Gaussian CDF over a range of inputs, x. The CDF is

capable of mapping a possibly infinitely large range of values onto a set range, [0 1], for

instance, as shown in the figure. Differentiating the CDF produces the probability

density function (PDF) of the Gaussian random variable and is given as

(x-m)2
1

f(x)= _ e 2a
2 =N(m, 2 ) (3.3)

which is often written as N(m,a2) to denote a density function of the normal variety. The

plot of the PDF is given in Figure 3.2 (b). The PDF shows the probability for the

outcome of a random experiment. The mean value of the PDF function, m, is the point of

highest probability of the function. For the discrete case, this mean value is defined as

= Exif (xj) (3.4)
J
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The variance parameter, a2, dictates the spread of the function. For the discrete

case, the variance is defined as

o2 = ( -/U) 2 f(x). (3.5)
J

Using the information that can be extracted from a modeled version of an image,

mathematically significant decisions can be made about an image. These decisions can

be made automatically and dynamically for any image.

3.4 Image Segmentation by Modeling the Threshold as a Random Variable

A threshold must be determined to differentiate pixels that are either to be considered as

radiodense or to be considered as radiolucent. If the mammograms were a zero-mean

Gaussian random image then threshold would be the exact midpoint of the gray-levels

present in the image. However, since these are real images, the threshold must be

dynamically determined. The segmentation threshold is varied across the entire grayscale

range. At each gray-level segmentation, the image is converted to a binary matrix with

all pixels above the threshold being assigned the value 1 (white) and all pixels below the

threshold assigned to the value 0 (black). The effect of varying the segmentation

threshold on the percentage of black pixels in a gray-level mammogram image is shown

in Figure 3.2 (a). This plot is consistent with the cumulative distribution function (CDF)

of a Gaussian random variable. The probability function (PDF) can be calculated by

differentiating the CDF a shown in Figure 3.2 (b). The threshold is chosen as the peak

value of the PDF.
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FIGURE 3.2 - (a) Effect of varying segmentation threshold on the percentage of black
pixels in a gray-level mammogram image and (b) Probability density function of the
threshold random variable.

This resulting threshold chosen from the characteristics of the PDF, Tglobal, is

applied to the original mammogram image. Pixels with a gray-level value above Tgloba

are radiodense tissue and pixels with a gray-level value below Tglobwa are radiolucent

tissue. Upon application of this threshold, two distributions are presented that are

Gaussian in nature. Pixels below the threshold correspond to the distribution of

radiodense tissue pixels and pixels above the threshold correspond to the distribution of

radiolucent tissue pixels. Initial assessment of the amount of radiodense tissue produced

from Tglobal in comparison to the Toronto method yields poor results [53]. To overcome

this issue, a constrained algorithm is enforced that biases Tglobal based upon the local

variance of the image and the means of the Gaussian distributions that model the

radiodense and radiolucent tissue. The segmentation threshold is now given by the

equation

TCP +2 + a 2 1 (3.6)2
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where TCNP is the constrained Neyman-Pearson threshold, a is a scaling parameter, o2 is

the local variance of the image and p, and #2 are the means of the radiolucent and

radiodense distributions respectively. Choice of the scaling parameter, a, will allow the

threshold chosen to extend between the pure Bayesian classification (midpoint of the two

means) and the mean of the radiodense distribution, 2. This is a global threshold that is

applied consistently to the entire mammogram image to distinguish between radiolucent

and radiodense indications. An example of how the threshold is visually depicted is

shown in Figure 3.3.

Radiolucent Tissue Radiodense Tissue
E

Gray-level Intensity

FIGURE 3.3 - Illustration of the constrained Neyman-Pearson classification, indicating
the allowance of variation in threshold dependent upon the scaling factor.

This chapter described a method to automatically generate a gray-level threshold

to segment between radiodense and radiolucent tissue within a digitized mammogram.

This is a global threshold and is applied consistently throughout the entire mammogram.

This method of developing a global threshold is referred to as the constrained Neyman-

Pearson algorithm (CNPA). However, the effects of tissue compression are not
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addressed in the development of this threshold. A method has been developed that can

automatically modify TCNP dependent on the physical location of the pixel being analyzed

in the mammogram. Allowing TCNP to be modified dependent on location addresses the

effects set forth by the tissue compression procedure. This method is discussed in the

following chapter.
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CHAPTER 4: APPROACH

4.1 Introduction

The overall research approach is shown in Figure 4.1. The approach taken addresses two

important issues. The first is the actual segmentation of the arbitrarily shaped breast

tissue region from within the rectangular shaped X-ray film. This is an edge detection

problem that is accomplished using a radial basis function neural network. After the

breast tissue is segmented, radiodense tissue indication within the breast region can be

identified and quantified. The challenge here is that gray-level intensities vary from X-

ray to X-ray and locally across the same X-ray. This is a threshold estimation problem.

The estimation of the threshold will vary spatially due to the artifacts presented by the

application of tissue compression during the mammography procedure. Techniques have

been developed for dynamically determining a threshold that is capable of segmenting the

radiodense tissue.

FIGURE 4.1 - Overall approach for the automated estimation of breast density.
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This section provides a detailed explanation of the steps developed to implement this

research.

4.2 Digitization and Image Pre-processing

The data used for analysis in this research are from two datasets - one obtained from

Brigham and Women's Hospital, Harvard Medical School, that was used for algorithm

development and the other from the Family Risk Analysis Program (FRAP) at Fox Chase

Cancer Center (FCCC), that was used for algorithm validation. The FRAP data includes

mammograms of the daughters, mothers and grandmothers of a population of Chinese

American women. Each mammogram set contains the four typical X-ray films; cranio-

caudal (CC) and mediolateral oblique (MLO) views of the left and right breasts. The CC

view is projected down and the breast is compressed horizontally while the MLO view is

projected across the breast that is compressed parallel to the pectoral muscle. In the study

and application of mammographic density quantification, representative information is

provided in a single view, allowing analysis to occur only on the CC views and not on the

MLO views. This eliminates the task of excluding the pectoral muscle in the MLO

views. All X-ray films are digitized at 500 dots per inch (dpi) using an Agfa medical-

grade film scanner. This resolution is chosen to be consistent with existing digital

mammography databases. The digitized image was encoded using 8-bit resolution,

allowing 256 different gray-levels. An online database was created for managing

(storage and retrieval) digitized mammogram images at Rowan University. This

database, maintained at Rowan University, uses Macromedia ColdFusion 5.0 and allows

for secure password-protected access for project team members. The digitized
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mammograms are indexed using FCCC patient ID, age and date of when the

mammogram was performed. A priori information such as patient name and patient age

are not included.

One of the preliminary steps in the analysis of these images is to map the 8-bit

intensity value from the scanner to associated gray-level intensities. Every picture

element (pixel) o fthe d ata w as assigned one o f 2 56 gray-level v alues ranging from 0

(black) to 1 (white). Orientation of the image to aid this automated analysis requires the

breast region to be aligned on the left side of the digitized mammogram.

4.3 Mask Generation

There are two major regions of interest for this research within a digitized mammogram:

the breast tissue region and the outside film region. The breast tissue region includes

relatively important information while the outside film region contains information

disregarded as noise. The information disregarded as noise includes features such as the

directly exposed area, patient identification information, and lead markers. To properly

quantify the amount and percentage ofradiodense tissue present in the breast, there needs

to be a technique for separating the tissue region of the X-ray from the film region.

A segmentation algorithm will distinguish the difference between the tissue

region and the film region in the digitized mammogram. This is accomplished by

generating a segmentation mask to be used to separate the tissue region from the film

region. The segmentation mask template is a binary matrix of size equal to that of the

original image. The segmentation algorithm described below determines which pixels of

the image are representative of the breast tissue region, and assigns the value 1 (white) to
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the corresponding regions of the matrix. The rest of the matrix, representing the non-

tissue region, is set to 0 (black). This will essentially retain the entire breast tissue region

while suppressing the outside film region. This process allows subsequent identification

of radiodense regions in the image by concentrating on the tissue region only. Figure 4.2

(a) shows a typical image and 4.2 (b) shows the associated automatically generated

segmentation mask. A previous attempt at the segmentation mask generation using a

wavelet-based method did not provide sufficiently smooth contours [54].

(a) (b)

FIGURE 4.2 - (a) Typical image and (b) automatically generated segmentation mask.

4.3.1 Generation of the Segmentation Mask

All original digitized mammogram images are 926 x 676 pixels in size. The shape and

location of the breast is different on all images due to the interpatient variability in shape

and size of the breast along with variability from the mammography procedure, including

image contrast, positioning of the breast and amount of tissue compression. The

generated segmentation mask must account for all of these differences within the

digitized mammograms. Even within the same digitized mammogram, the selection of a

global gray-level value to differentiate between pixels representing the tissue regions and
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pixels representing the film region will provide poor results. The segmentation algorithm

must adaptively and automatically take into account local variations between the tissue

region and film region.

The first step of the segmentation algorithm is to perform an adaptive threshold

technique. In many cases of digitized mammograms, the background gray-level is not

constant, and the contrast of objects varies within the image. In such cases, a threshold

that is well suited to one area of the image might work poorly in other areas. In these

cases, it is convenient to use a threshold gray-level that is a slowly varying function of

position in the image. The image is first divided into sectors of 50 by 50 pixels. The

histograms of each sector are analyzed to determine a threshold. All pixels in the sectors

producing unimodal histograms were assigned to a value of 0. The histogram would be

unimodal either when the sector is solely in the tissue region or solely in the background

region. For sectors containing both the tissue and the background region, the histogram

will be bimodal and this is representative of the edge of the breast. An example of the

histograms indicated in the adaptive threshold technique is shown in Figure 4.3.

The histogram being bimodal is indicative of two distributions being present in

the sector being analyzed. This is now a classification problem to distinguish between

pixels i n that s ector b eing representative o fe ither t he t issue region o r t he b ackground

region. Bayes' decision criterion states that given two distributions that are Gaussian in

nature, with equal variance but different means, classification of data can be performed

using the following minimum distance function:

TB= + 2 (4.1)
2
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where TB is the segmentation threshold, ,. and /L2 are the means of the distributions for

the two classes.

Histogram of tissue sub-block

(b)

Histogram of film sub-block

(c)

^ A n "

(a) Histogram ot tissue and tilm sub-block

(d)

FIGURE 4.3 - (a) Original image showing sectors with (b) the histogram of the tissue
region, (c) the histogram of background region, and (c) the histogram of the edge of
breast tissue.

For binary classification, the two classes are '0' and '1'. Class '0' represents the

members associated with the distribution of mean /t. The class '1' representing the

pixels associated with the distribution of mean u2 . Each pixel gray-level value, f(x, y) ,

is compared with the Bayesian threshold, TB. If f(x, y) is greater than TB, the pixel is

determined to be of class '1' otherwise it is said to be of class '0.' Figure 4.4 illustrates

the decision boundary of the Bayesian classifier. Class '1' represents the tissue region

while class '0' represents the background region. This methodology will essentially
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predict the likelihood that a given sector lies within the breast tissue, within the film, or is

the boundary between breast tissue and film.

Q

0-1

Z4

Gray-level intensity

FIGURE 4.4 - Illustration of two distributions with Bayesian classifier segmentation
threshold, TB, labeled. Note the minimization of classification error for both distributions.

(a) (b)

FIGURE 4.5 - (a) Typical image and (b) segmentation mask created after adaptive
threshold technique is performed.

However, the segmentation mask generated after the adaptive threshold procedure

is a poor representation of the breast tissue region as seen in Figure 4.5. This

segmentation mask generates a rough contour as the approximation of the edge of the

breast tissue. A smoothing operation will generate a more effective approximation of the

breast edge. A radial basis function (RBF) neural network performs well in

approximating this rough contour function [58]. There are 926 coarse boundary points in
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this current segmentation mask. These boundary points are then sub-sampled and used as

the input layer for the RBF neural network. The output of the neural network is an

optimal prediction of the breast tissue edge, which is used to generate the final binary

segmentation mask. A Gaussian is used as the activation function within the RBF neural

network. The RBF neural network essentially applies the activation Gaussian function at

all of the input coarse boundary points and sums the entire set of Gaussian functions.

This will smooth the coarse function that was generated after the adaptive threshold

technique producing a segmentation mask that is representative of the breast tissue

region. The RBF neural network is shown in Figure 4.6 along with a typical function

approximation using the Gaussian activation function shown in Figure 4.7. Figure 4.8

shows a typical process in the generation of a binary segmentation mask.

out
A"I£U 'AU ' Nonlinear Layer

Transformation Layer

FIGURE 4.6 - Radial basis function (RBF) neural network architecture.
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FIGURE 4.7 - Example of function approximation using an RBF neural network [58].

FIGURE 4.8 - (a) Typical image, (b) segmentation mask after adaptive threshold
technique, (c) approximation of the edge of the breast tissue using an RBF neural
network and (d) automatically generated segmentation mask.

4.4 Tissue Segmentation

The mask generated using the algorithm described above is a binary matrix equal to the

size of the original image. Using the above technique the mask matrix is set to a value of

1 (white) in all tissue regions and 0 (black) in all non-tissue regions. The corresponding

elements in each array are then multiplied using

Ri = Oij * Sy; i=l... mj = 1... n (4.2)

where 0 is the original image and S is the segmentation mask, yielding the matrix R, and

m is the number of columns in the image and n is the number of rows in the image. The

resulting matrix R is of equal size to 0 and P and contains the original gray-level of 0 in

all regions designated by S as being of a tissue region and contains a gray-level value of 0
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(black) in all regions designated by S as being a non-tissue region. Results for a typical

test image are shown in Figure 4.9.

(a) (3) (c) (d)

FIGURE 4.9 - Tissue segmentation results for a typical image - (a) original X-ray (b)
edge detection (c) mask generation (d) tissue segmented image.

4.5 Threshold Determination

Upon localization of the breast tissue region using the segmentation mask, the subsequent

step is to generate a threshold to differentiate between radiodense and radiolucent tissue.

Determination of this estimated threshold relies on assumptions made about the images

under t est. T he following assumptions are m ade in d eveloping the d ensity e stimation

algorithms:

a) Pixel gray-level is considered as a deciding factor in segmenting radiodense

tissue from radiolucent tissue.

b) The shapes of the segmented tissue in the mammograms are ignored.

c) A priori information such as age and other patient history are ignored.

Identification of the radiodense tissue regions in a segmented gray-level image occurs by

converting the 256 gray-level image to a binary (black-and-white) format. A value of 1

(white) will be assigned to radiodense tissue and all other pixels will be assigned a value

of 0 (black). Generating a threshold to differentiate between radiodense and radiolucent
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indications is a non-trivial task. The threshold cannot be a global threshold, but must

respond to variations, such as those induced by tissue compression, from image to image

and locally within the same image.

Techniques for generating this dynamic threshold for detecting radiodense

indications have been developed. A three-step process is employed:

Step 1: Generate mathematical models of the mammogram image by studying

the statistics of the gray-level variations.

Step 2: Apply hypotheses testing (detection theory) techniques to determine a

single global threshold per image.

Step 3: Modify the threshold dependent upon the physical location of the

tissue within the mammogram.

Details of steps 1 and 2 are provided in Chapter 3. Details of step 3 are provided

below.

4.6 Parametric Model for Tissue Location using Polar Coordinates

A model has been systematically developed to represent the contour map of the pressure

distribution from the tissue compression applied during a mammography procedure. At

this stage of the algorithm, there are three major variables known, including the function

representing the chest wall, the function representing the edge of the breast, and the

CNPA threshold, TCNP. An illustration of the two boundary functions, as extracted from

the segmentation mask, is shown in Figure 4.10.
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FIGURE 4.10 - Illustrations of the chest wall and the edge of the breast.

In order to represent tissue location within the mammogram, a family of curves is

desired between the chest wall and the edge of the breast tissue. Within each of the

family of curves, the threshold can be modified dependent upon how close the curve is to

the chest wall (or away from the edge of the breast). This modification of the threshold

can account for artifacts introduced by tissue compression by increasing the threshold in

locations with a greater amount of tissue compression and decreasing the threshold in

locations with a lesser amount of tissue compression.

When developing this parametric model for tissue location, the idea is to have the

family of curves be indicative of how the pressure is distributed during tissue

compression from the chest wall to the edge of the breast tissue. The homotopy

continuation algorithm is employed as a tool for interpolating between any two arbitrary

functions. Converting the rectangular coordinate information of the two functions into
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the polar domain is the first method as a parametric model for tissue location. The

following equation are used to convert from rectangular coordinates to polar coordinates

rchest = 0 (4.3)

redge = 2 + fedge2 (4.4)

= tan-'fdge (4.5)tanI l )x

where rchest is the polar coordinate equivalent of fhest, redge is the polar coordinate

equivalent offedge and 0 represents the angles associated to rchest and redge- rchest will

always be associated to a vector of zeroes because of the inherent shape when represented

in the rectangular coordinates. There is no need to illustrate rches because it is implicit in

nature. However a better understanding of redge is acquired when interpreting the

illustrations as seen in Figure 4.11.

The family of curves is now generated by performing mathematical operations in

the polar coordinate system. The homotopy continuation algorithm is proven to be a

valid source when interpolating between any two arbitrary functions. In this case, the

two arbitrary functions are the chest wall, rches, and the edge of the breast, redge.

Mathematically, the homotopy continuation algorithm is represented as the following in

the polar coordinate system

t
r t = rce t + - (redge - rches ) (4.6)

N

where rf represents the family of curves generated in the polar coordinate system, rches

represents the chest wall, redge represents the edge of the breast tissue, N is the number of

curves desired, and t is a scalar that ranges from 0 to N. At t = 0, r0 = rch,, = 0 and at t =

N, rN = rdge. As t increases from 0 to N, rt is represented as a incremental fraction of
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redge. Application of Equation 4.6 develops a family of curves and an example is shown

in Figure 4.12 as represented in the polar coordinate system.

27n

0

(a) (b)
9u 500

180 ----;----:

210

240

0

270

(c) (d)

FIGURE 4.11 - (a)fdge of Image 11051702 with (b) redge of Image 11051702 and

(c)fedge of Image 11599502 with (d) redge of Image 11599502.

After the family of curves is generated, the next step in this process is to convert all

information back to into the rectangular coordinate system so the information can be

applied on digitized mammograms. The equations to convert back to rectangular

coordinates are as follows

x = r cos(O) (4.7)

y = r sin()' (4.8)
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FIGURE 4.12 - Family of curves generated between the chest wall and the edge of the
breast tissue as represented in the polar coordinate system.

Applying Equations 4.7 and 4.8 will yield the family of curves generated by the

parametric model for tissue location using Polar coordinates and is illustrated in Figure

4.13. This model does not represent the physics of the compression.
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FIGURE 4.13 - Family of curves between chest wall and the edge of the breast.
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4.7 Parametric Model for Tissue Location using Rectangular Coordinates

The previous method to develop a parametric model for tissue location using polar

coordinates generates the family of curves based on radial differences. An alternate

method is developed that will rely on linear differences of the two arbitrary functions

when applying the homotopy continuation algorithm. As before, at this stage of the

development of an automatically generated threshold, there are three major variables that

are known. These variables include the global threshold, TCNP, generated from the

constrained Neyman-Pearson algorithm (CNPA), and the functions that model the chest

wall boundary and the edge of the breast tissue, generated from the segmentation mask.

An illustration of the two boundary functions, as extracted from the segmentation mask,

is shown in Figure 4.14.
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FIGURE 4.14 - Illustrations of the chest wall and the edge of the breast.
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The homotopy continuation algorithm is employed as a tool for interpolating

between any two arbitrary functions. In this case, the two arbitrary functions are the

chest wall, fchest, and the edge of the breast, fedge. Mathematically, the homotopy

continuation algorithm can be described as

Yt = fches + (f ~ fedge - fches ) (4.9)

where Yt represents the family of curves,fchest represents the chest wall,fedge represents the

edge of the breast tissue region, N is the quantity of curves desired between the chest wall

and the edge of the breast, and t is an interpolation parameter that ranges from I to N.

Once applied, the equation produces the family of curves, illustrated in Figure 4.15 with

N = 25 and using the fches, and fedge as shown in Figure 4.14. This is assumed as a

representation of the equi-pressure contours caused by tissue compression.

Y

x
FIGURE 4.15 - Family of curves generated between the chest wall and the edge of the
breast.
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4.8 Parametric Model for Tissue Compression

The global threshold, TCNP, as determined using the CNPA, is used as the baseline for the

threshold to distinguish between radiolucent and radiodense tissue indications. Two

methods are described above to account for the physical location of any pixel intensity,

f(x,y). The assumption made for the effect of tissue compression is that pixels closer to

the chest are affected more by tissue compression because this is the region where tissue

compression is the greatest. This is illustrated in Figure 4.16 and Figure 4.17.

FIGURE 4.16 - Placement of the breast for a CC view in between compression plates
before tissue compression is applied.

I Yedgeafter

FIGURE 4.17 - Placement of the breast for a CC view in between compression plates
after tissue compression is applied.
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There is a greater amount of breast tissue at the chest wall and Ychestbefore is always

greater than Yedgebefore. Therefore, upon tissue compression, the difference between

Ychestbefore and Ychestafter is always going to be greater than Yedgebefore and Yedgeafier. This

implies that the threshold must be relatively higher at the chest wall due to the higher

amount of tissue compression.

The global CNPA threshold, TCNP, can be modified dependent on which curve the

pixel being analyzed lies on or between. The amount of modification must hold true to

the assumption that the threshold will be higher at the chest wall and the threshold will

decrease towards the edge of the breast tissue region. A function must be applied through

the m idpoint o f t he family o fc urves t o i ndicate a p articular v alue o fh ow m uch TCNP

should be modified. This function is dependent on the amount of tissue compression that

has been enforced in the mammography procedure. The threshold shall be higher

towards the chest wall where tissue compression is the highest and lower at the edge of

the breast where tissue compression is at a minimum.

Any function can be represented as a sum of Gaussians; therefore, the function

incorporated is the Gaussian. This decision is based on the assumption that the pressure

distribution will be modeled by a sum of Gaussians. The Gaussian function also follows

the assumptions set forth due to the effect of tissue compression in that it starts off at a

higher amount and decreases outward. The parametric model for tissue compression that

will modify the threshold is represented as the following function,

X2

T,(x)=kTNpe 2"2, (4.10)

where x is the distance from the chest wall to the pixel being analyzed (measured in

pixels), Tv is the threshold at position x, k is the scaling factor for the Gaussian, TCNP is
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the constrained Neyman-Pearson global threshold, and o2 is the variance of the Gaussian.

This value decays with dependence on the variance as x approaches the edge of the

breast, Xe. At the chest wall, where x = 0, the threshold being applied is

T (0) = A = kTCP . (4.11)

At the edge of the breast tissue, where x = Xe, the threshold being applied is

Xe

T,(xe)= B = kTcNpe 22. (4.12)

Choice o f t he two p arameters, A and B, w ill d etermine the n ecessary variance for t he

Gaussian being applied. This is shown below and proves that the selection of the A and B

values will allow for an automatic calculation of the trend of the Gaussian function.

2
^2 Xe (4.13)

2 log(-)
A

An automated method is introduced in the following chapter to automatically

generate the A and B values with a dependence on the size of the breast as indicated by Xe.

The natural idea is that as the size of the breast increases, more tissue compression is

needed during the mammography procedure. Greater amounts of tissue compression will

induce more artificial density and therefore the value of A (the threshold generated at the

chest wall where tissue compression is greatest) will be higher in larger breasts rather

than in smaller breasts, where tissue compression is less.

After the selection of the A and B values and the calculation of the variance, the

appropriate Gaussian function is determined. An example of a Gaussian with Xe = 508

(pixels), TCNP = 0.563, A = 1.6 (TCNP) and B = 0.9 (TCNP) is illustrated in Figure 4.17. The
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family of curves generated for this particular image was developed with N = 25, stating

that there will be 25 curves between the chest wall and the edge of the breast tissue. The

Gaussian, as seen in Figure 4.18, now acts as a look-up table. There are 25 points

captured from the Gaussian. Each point, as denoted in Figure 4.18 with an asterisk,

represents the threshold applied to each of the respective 25 curves shown on the x-axis

labeled as the curve indices. For example, the first and second curves, those closest to

the chest wall, are assigned the highest two gray-level threshold values, being

approximately 0.9 and 0.89, respectively, while the last curve (at N = 25), is assigned the

lowest of the gray-level threshold values, being approximately 0.5. These values of the

Gaussian, once applied to the entire family of curves generated using the spatially

varying threshold model, appear as in Figure 4.19. Per visualization restraints, only a

sub-sample of 5 of the N = 25 curves are shown.

0

0

0

0

To

0

0

0

0

Curve index

FIGURE 4.18 - Threshold modeled as a Gaussian function.
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However, in between the curves, the gray-level threshold is not being assigned

and is therefore set to a value of 0. This threshold model must be interpolated in between

each of the curves to generate a non-zero gray-level threshold in between the curves.

One option would be to allow for an infinite amount of curves to be generated between

the chest wall and the edge of the breast tissue, but the computation time would be

unacceptable. The fluctuation between curves, from the gray-level threshold value

assigned by the Gaussian to the zero value can be seen as high-frequency noise. A

common method to reduce high-frequency noise is with local averaging. This is

implemented by convolving the signal with the rectangular pulse. This is called a

moving-average filter. The gray-level at each pixel is replaced with the average of the

gray-levels in a square or rectangular neighborhood. Applying a moving average filter to

the image in Figure 4.19 will interpolate between curves and the output is shown in

Figure 4.20. Investigation of Figure 4.20 indicates that the pixels locations in between

curves have been adequately modified to follow the Gaussian function distribution.
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FIGURE 4.19 - Threshold profile after assigning values of the Gaussian function to the
parametric model for tissue location using Cartesian coordinates.
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FIGURE 4.20 - An example of a spatially varying threshold model.

4.9 Density Estimation and Image Post-processing

The image shown in Figure 4.19 represents the spatially varying threshold model that will

be applied to that particular digitized mammogram. The gray-level value of the pixel at

any location (x,y) is compared with the gray-level value in the final spatially varying

threshold model at the exact same location, (x,y). If the gray-level value in the digitized

mammogram image, f(x,y), is greater in intensity than the gray-level value in the

threshold model, TV(x,y), then that pixel is assigned a value of 1 (white) and is considered

to be radiodense tissue. However, if the intensity of the gray-level is less than in the

threshold model, that pixel is assigned a value of 0 (black) and is considered to be

radiolucent. This essentially creates a binary matrix with pixels at a value of 1

representing radiodense tissue and pixels at a value of 0 representing radiolucent tissue.

The percentage of radiodense tissue can be determined using
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%RadiodenseTissue = Pwite (100%) (4.14)
total - film

where Pwhite is the total number of white pixels representing radiodense tissue in the

matrix, P,o,,, is the total number of pixels in the matrix and Pfim, is the total number of

pixels in the film-only region, as determined using the segmentation mask.

The methods proposed in this chapter were exercised on two separate data sets

from Harvard and Fox Chase that were described earlier. Radiodensity results from the

proposed technique were compared to the established "Toronto" method. Chapter 5

presents a collection of the results achieved by applying the algorithms proposed in this

thesis on the two sets of images.
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CHAPTER 5: RESULTS

5.1 Introduction

Dr. Celia Byrne of the Channing Laboratory, Brigham and Women's Hospital, Harvard

School of Medicine provided a set of data consisting of ten images drawn from hospitals

across the country. These images are digitized mammogram x-rays and have been used

for developing the algorithm proposed in this thesis. It is assumed that the images are

uncompressed and have not been enhanced or adjusted in any manner after acquisition

from the film scanner. Each of the raw images is of a different patient and contains

different image characteristics. These ten mammogram images are shown in Figure 5.1.

11051702 11599502 14480101 15839502 19131709

7hI744uu4I I Y7X6 117 '7X6h177Il

FIGURE 5.1 - Validation set often mammogram images provided by the Channing
Laboratory, Brigham and Women's Hospital, Harvard School of Medicine with
associated identification numbers.

Dr. Byrne analyzed the ten mammograms for radiodensity using the Toronto

method. Considerable interaction and expertise is required to perform analysis using this
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method. A Ithough t he p ercentage o fr adiodense t issue for e ach i mage w as p rovided,

however, no gray-level thresholds or pixel classifications were included. The

radiodensity percentages supplied by Dr. Celia Byrne are used as the baseline of

comparison for the radiodense tissue segmentation algorithm described in this thesis.

Table 5.1 contains the percentages of radiodensity for all ten images as calculated by Dr.

Byre.

TABLE 5.1 - Expert percentages of radiodensity for the Harvard data set often
mammogram images using the 'Toronto' method for quantify radiodense tissue.

Image Identification Radiodensity
Number Percentage using

'Toronto' Method

11051702 21.4

11599502 12.9

14480101 40.8

15839502 13.3

19131709 1.5

20110811 2.5

26253102 22.5

26799401 55.3

27786202 50.1

28657701 33.6

5.2 Mask Generation and Tissue Segmentation Technique

Typical results for the segmentation between the breast tissue region and the outside film

region are shown in Figure 5.2. These results were obtained by implementing the radial

basis function neural network tissue segmentation technique described in chapter four.

57



(a) (b) (c) (d)

FIGURE 5.2 - Segmentation mask results from Harvard data set including the (a)
original mammogram image, (b) approximation of the edge of the breast tissue region, (c)
the binary segmentation mask and (d) the original image after applying the segmentation
mask.
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These results show that the use of RBF neural networks in the segmentation process

provide desirable results in that the final segmentation mask strongly represents the breast

tissue region. Segmentation masks using the RBF neural network were generated for the

Harvard data set of ten images along with manually generated masks. A comparison of

the segmentations masks using the RBF neural network with the manually generated

mask allow for a quantitative analysis of the ability to correctly identify the breast tissue

region. The percentage differences and mean squared error (MSE) are calculated using

%Diff= (MRB-M man) *100 (5.1)
M

and

MSE = N Z(Mman-MRBF) 2 (5.2)

where MRBF and Mman are the amount of pixels with an intensity value of 1 (white) in the

RBF neural network based segmentation mask and the manually generated mask,

respectively, and N is the amount of pixels in the original image.

Table 5.2 describes the percentage difference along with the mean squared errors

for the Harvard data set of ten images. It is assumed that the manually generated

segmentation mask is a true representation of the breast tissue region. This will allow the

results of the RBF neural network based segmentation masks to be compared with respect

to a standard. It must be noted that the true performance of the algorithm is best

measured through visual assessment of the resulting image that predicts the breast tissue

region. This is because the number of white pixels in the RBF segmentation mask may

be equivalent to the number of white pixels in the manually generated segmentation

mask, yet are not in the same locations. In this case, the percentage difference will be
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zero, but the segmentation mask will not be predicting the correct location of the breast

tissue region. Also, the mean squared error value is relative only to the ten images being

analyzed. The values generated in Table 5.2 should be interpreted with these

characteristics being known.

TABLE 5.2 - Percentage difference and mean squared error between the RBF neural
network segmentation masks and the manually generated segmentation masks for the
Harvard data set of ten mammogram images.

Patient ID Mman, Manual MRBF, Dynamic % diff MSE (x10 2)
Mask (pixels) Mask (pixels)

19131709 175518 194535 10.83 5.7773
20110811 207517 205347 1.05 0.0752
11599502 131485 131365 0.09 0.0002
15839502 185481 211931 14.26 11.176
11051702 286757 296618 3.44 1.5534
26253102 205350 202537 1.37 0.1264
28657701 140506 157041 11.78 4.3677
14480101 130239 139395 7.03 1.3392
27786202 111699 124065 11.07 2.4429
26799401 159044 165971 4.36 0.7665

The segmentation mask algorithm was also evaluated on the dataset of the FCCC

mammograms to test the efficiency of the algorithm across two different data sets.

Figure 5.3 consists of typical results from the segmentation algorithm when testing on

four mammogram images from the FCCC data set. Manual segmentation masks were

also generated for these four images and served as a baseline when performing the error

calculations. It is assumed that the manually generated segmentation mask is a true

representation of the breast tissue region. Table 5.3 represents the percentage difference

and MSE for the mammograms from the FCCC database using Equations 5.1 and 5.2.
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FIGURE 5.3 - Segmentation mask results from FCCC data set including the (a) original
mammogram image, (b) approximation of the edge of the breast tissue region, (c) the
binary segmentation mask and (d) the original image after applying the segmentation
mask.
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TABLE 5.3 - Percentage difference and mean squared error between the RBF neural
network segmentation masks and the manually generated segmentation masks for the
FCCC data set often mammogram images.

Patient ID Mman, Manual MRBF, Dynamic % diff MSE (x10 2)
Mask (pixels) Mask (pixels)

1 221500 183447 17.18 19.06
2 410352 379518 7.51 8.64
3 151740 144163 4.99 0.98
4 208200 190043 8.72 5.60

5.3 Constrained Neyman-Pearson Algorithm

As mentioned in Chapter 3, the constrained Neyman-Pearson algorithm was previously

developed at Rowan University as an automated technique to quantify radiodense tissue.

Information that was generated from the CNPA is included in Table 5.4. This

information consists of the global threshold generated, TCNP. The CNPA allows for the

dynamic determination of a threshold value between the pure Bayesian classifier and the

mean of the radiodense tissue distribution, given in Equation 3.6 and illustrated in Figure

3.3. The scaling parameter in the equation, a, determines where the global threshold lies

between the Bayesian classification and the mean of the radiodense tissue. This value of

a is fixed for all images and is set based on image statistics and is determined in [53] as a

= 0.0025.
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TABLE 5.4 - Constrained Neyman-Pearson threshold, TCNP, for the Harvard data set of
ten mammogram images.

Image Identification TCNP
Number

11051702 0.563

11599502 0.564

14480101 0.4597

15839502 0.619

19131709 0.6387

20110811 0.565

26253102 0.584

26799401 0.619

27786202 0.572

28657701 0.683

In [53], r adiodensity e stimates w ere quantified using only the global threshold,

TCNP. The results of these estimates are shown in Figure 5.4. These are the radiodensity

estimates of the ten original images shown in Figure 5.1. Pixels with an intensity value

of '1' (white) in the breast tissue region represent radiodense tissue and pixels with an

intensity value of '0' (black) in the breast tissue region represent radiolucent tissue.

Table 5.5 contains the numerical information of the radiodensity estimates along with

comparison of the CNPA results with results of the validated 'Toronto' method. Figure

5.5 is a bar graph that compares the results from the CNPA with the validation results

from Dr. Celia Byrne analyzing the images with the 'Toronto' method.
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14480101 15839502

28657701

FIGURE 5.4 - Images segmented using the constrained Neyman-Pearson threshold from
[53].

TABLE 5.5 - Percentage radiodense of the Harvard data set of ten mammogram images
using the constrained Neyman-Pearson algorithm from [53].

Image TCNP(a), Percentage Percentage Squared
Number threshold radiodense of radiodense Error

from [53] validation data using CNPA

11051702 0.6481 21.4 21.0694 0.1092
11599502 0.7224 12.9 14.9553 4.2243
14480101 0.4495 40.8 71.0 912.0400
15839502 0.7120 13.3 8.8332 19.9523
19131709 0.8359 1.5 0.3441 1.3361
20110811 0.7404 2.5 1.7608 0.5464
26253102 0.6712 22.5 23.6981 1.4354
26799401 0.5913 55.3 48.4 47.6100
27786202 0.5633 50.1 59.5 88.3600
28657701 0.7856 33.6 39.9421 40.2222
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FIGURE 5.5 - Percentage of radiodense tissue for the Harvard data set using both the
'Toronto' method as validation and the constrained Neyman-Pearson algorithm.

The overall mean squared error for percentage radiodense tissue using the CNPA in

comparison with the validated results is 111.58. This was calculated using

M S E = E (TOR RDCNPA ) (

where RDTOR is the percentage radiodense tissue found using the 'Toronto' method for

each of the images, RDCNPA is the percentage radiodense tissue found using the CNPA for

each of the images, and N is the total number of mammograms being analyzed. Reasons

for this error are found in the quantification of radiodense against the chest wall, where

the gray level intensity is higher due to compression and not because those regions are

radiodense indications; this is not addressed in the CNPA.
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5.4 Generating Parametric Models for Tissue Location

The functions that model the chest wall boundary and the edge of the breast tissue have

been extracted from the segmentation masks of all ten images of the Harvard data set.

The homotopy continuation algorithm has been employed for each of these ten situations

to generated a family of N = 25 curves. The parametric model for tissue location was

determined in the Cartesian coordinate system in concurrence with section 4.5.1. The

resulting family of curves between the chest wall boundary and the edge of the breast

tissue boundary for each of the ten images is illustrated in Figure 5.6.

It can be noted that these parametric models for tissue location were created for

mammogram images of arbitrarily different shapes and sizes. Using only the two known

boundaries, the chest wall and the edge of the breast tissue, the homotopy continuation

algorithm was able to effectively generate a family of curves for all of the ten images.

5.5 Generating Parametric Models for Tissue Compression

After the parametric model for tissue location has been correctly developed, the

parametric model for tissue compression can be incorporated using the Gaussian function

given in Equation 4.10. This will represent the modifications needed to modify TCNP to

compensate for tissue compression. However, to successfully model the tissue

compression, the amount o f modification to the g lobal threshold must be given at the

chest wall, this amount of modification being denoted as A, and at the edge of the breast

tissue region, where this amount of modification is denoted as B.

To s uccessfully d etermine the A and B v alues, e ach i mage will b e t ested for a

range of the A and B values. A represents the amount that the global threshold, TCNP, will
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FIGURE 5.6 - Parametric model for tissue location using Cartesian coordinates of each of the ten mammogram images from the
Harvard data set.
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be adjusted at the chest wall, where the effects of tissue compression are the greatest. B

represents the amount that the global threshold, TCNP, will be adjusted at the edge of the

breast tissue region, where the effects of tissue compression is at a relative minimum.

When the A and B values are selected, the variance of the Gaussian function is

determined to define the Gaussian function. After the function is fully defined, the

process, as explained in Section 4.6, is followed to generate the spatially varying

threshold model for that mammogram image. This process will produce a percentage of

radiodense tissue after the acquisition of values for A and B. Testing each image for a

range of both A and B while comparing the output percentage radiodensity with those

listed in Table 5.1 will produce an error surface plot, allowing for an automated method

of determining the most efficient choice for A and B. The range of values for A includes

the set of number from 0.9 to 3.1, in increments of 0.01 while the range of value for B

include the set of numbers from 0.3 to 0.9, in increments of 0.1. The error surfaces

obtained by varying the A and B values for four of the ten mammogram images are given

in Figures 5.7 - 5.10.
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5.5.1 Determining Characteristics of the Tissue Compression Model

An automated method to determine the appropriate values for A and B from the squared

error surface plot is desired. The assumption of tissue compression has been stated and

infers that in regions of a greater amount of tissue (i.e. at the chest wall), there will be a

higher amount of compression. This can be translated to stating that breasts of a larger

size contain more tissue than breasts of a smaller size, and therefore the larger breasts

will experience a greater amount of compression at the chest wall than in smaller breasts.

With this assumption, both the A and B value are now dependent of the length of the

breast. The A values will monotonically increase as the length of the breast increases for

the mammogram images being analyzed. However, the compression plates for breasts of

a smaller size will be pushed closer together in comparison to breasts of a larger size in

the mammography procedure due to the fact that more tissue will create a higher

resistance against the compression plates when compressing the breast. It is inferred

from this that the B values will be higher in smaller breasts and will monotonically

decrease as the breast size is increased and there is less compression at the end of the

breast.

A scan is performed on the squared error surface to extrapolate the A and B

values where the squared error is at its least. This data is collected for the set of ten

mammogram images. A trend will be formed to fit the following assumptions

1) A values will monotonically increase as the length of the breast increases,

2) B values will monotonically decrease as the length of the breast increase, and

3) Both A and B values are calculated as a function of the length of the breast.
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The A and B values being extrapolated correspond to the fifty minimum points of

error in the squared error surfaces for each of the ten images. A subset of the results for

two of the ten images is listed in Table 5.6.

TABLE 5.6 -Ten minimum points of error from the squared error surface and the
associated A and B values.

Image Length of A B Percentage Squared error
number the breast, radiodense (x103 )

xe (pixels) tissue

11051702 508 2.90 0.6 21.3999 0.00000
11051702 508 2.37 0.7 21.3547 2.05209
11051702 508 1.94 0.8 21.4576 3.31776
11051702 508 1.62 0.9 21.5861 27.58921
11051702 508 2.89 0.6 21.5732 29.99824
11051702 508 2.36 0.7 21.6089 43.63921
11051702 508 2.97 0.6 21.1865 45.58225
11051702 508 1.95 0.8 21.1134 82.13956
11051702 508 1.63 0.9 21.0554 118.74916
11051702 508 2.88 0.6 21.7698 136.75204

11599502 272 2.76 0.4 12.9502 2.52004
11599502 272 2.22 0.5 12.8428 3.27184
11599502 272 1.92 0.6 12.9723 5.22729
11599502 272 1.53 0.9 12.7705 16.77025
11599502 272 1.74 0.7 13.0598 25.53604
11599502 272 2.77 0.4 12.7264 30.13696
11599502 272 2.75 0.4 13.1801 78.45601
11599502 272 1.62 0.8 12.6152 81.11104
11599502 272 2.21 0.5 13.2090 95.48100
11599502 272 1.93 0.6 12.5795 102.72025

This extrapolation occurs for all of the ten images and a trend is chosen that coincides

with the assumptions outlined above and the values chosen for A and B based on this

trend is included in Table 5.7.
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TABLE 5.7 - Percentage of radiodense tissue using the optimal A and B values.

Image Length of A B Percentage Squared
number breast, xe Optimized Optimized radiodense error

(pixels) tissue

11599502 272 1.922 0.7 6.3396 43.0388
14480101 293 2.075 0.7 36.7904 16.0769
27786202 298 1.8 0.6 59.9903 97.8180
28657701 310 1.9 0.5 51.7253 328.5265
26799401 348 1.8 0.6 46.6353 75.0770
19131709 350 2.025 0.6 0.1146 1.9193
20110811 371 2.22 0.5 3.4853 0.9708
15839502 398 2.4 0.45 19.4733 38.1096
26253102 400 3.01 0.35 23.1385 0.4076
11051702 508 2.9 0.45 18.4783 8.5363

The optimal A and B values chosen in Table 5.6 were chosen with respect to a set of

minimum squared errors. These values must now be calculated with a dependence on the

length of the breast, Xe to allow for an automated process in selecting the A and B values.

To do so, the A values and the B values will be calculated as a function of the length of

the breast

A = f(x,) (5.4)

B= f(x,). (5.5)

5.5.1.1 - Determining the Length of the Breast Tissue Edge

To automate this process of generating efficient A and B values, an important value to

obtain about the mammogram image is the length of the breast, Xe. The segmentation

masks shown in Figure 5.3 represent the breast tissue region with a minimal amount of

error. The length of the breast tissue region can be produced with through an analysis of

the segmentation mask. This analysis is simply performed by seeking the outermost

column in which the segmentation mask contains a pixel with an intensity value of' 1'

which represents the breast tissue region. This process appears in Figure 5.11.
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FIGURE 5.11 - Method to determine the length of the breast tissue, Xe, by analyzing the
segmentation mask of the original mammogram image.

TABLE 5.8 - e for each of the ten mammogram images.

Image Identification Xe
Number

11051702 508

11599502 272

14480101 293

15839502 398

19131709 350

20110811 371

26253102 400

26799401 348

27786202 298

28657701 310
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5.5.1.2 - Determining the A values for the Tissue Compression Model

The functions, fi and f2, must abide by the assumption in that fi must be monotonically

increasing whilef 2 is monotonically decreasing. To determine f, the optimized A values

found in Table 5.7 are plotted against the length of the breasts, Xe, for each of the ten

mammogram images and this is shown in Figure 5.12.

The data in Figure 5.12 is fit with a monotonically increasing linear equation and

A can now be solved automatically as a function of the length of the breast tissue, Xe.

Figure 5.13 s hows t he d ata from F igure 5 .12 w ith t he m onotonically i ncreasing 1 inear

equation fitting the data. The linear equation is

A = f (Xe) = 0.005l1x + 0.3891. (5.6)

FIGURE 5.12 - Plot of the optimized A values from Table 5.6 versus the length of the
breast tissue for each of the ten mammogram images from the Harvard data set.
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FIGURE 5.13 - Monotonically increasing linear equation in the form of A =fi(xe).

5.5.1.3 - Determining the B values for the Tissue Compression Model

To determine f2, the optimized B values found in Table 5.7 are plotted against the length

of the breasts, Xe, for each of the ten mammogram images and this is shown in Figure

5.14.

The data in Figure 5.14 is fit with a monotonically decreasing 2nd order

polynomial equation and B can now be solved automatically as a function of the length of

the breast tissue, Xe. Figure 5.15 shows the data from Figure 5.14 with the monotonically

decreasing 2nd order polynomial equation fitting the data. The 2nd order polynomial

equation is

B = f 2 (x) = 7.9059e- 6x 2 - 0.0076x + 2.1882. (5.6)
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FIGURE 5.14 - Plot of the optimized B values from Table 5.6 versus the length of the
breast tissue for each of the ten mammogram images from the Harvard data set.

FIGURE 5.15 - Monotonically decreasing 2nd order polynomial equation in the form of
B =f2(Xe).

5.5.1.4 - Results

The assumptions have been made that the fi(xe) should be monotonically increasing and

f 2 (xe) should be monotonically decreasing, both with dependence on the length of the
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breast t issue r egion. B y k nowing o nly t he 1 ength o f t he b reast t issue, w hich i s found

through analysis of the segmentation mask, the parametric model for tissue compression

can be generated. The results from by applying fi(xe) and f2(xe) to determine A and B

values are shown in Table 5.9.

TABLE 5.9 - The A and B values obtained by solving forfi(xe) andf2 (xe).

Image Number xe, length of A fromfi(xe) B fromf(xe)
breast tissue

11599502 272 1.7814 0.7125
14480101 293 1.8889 0.6472
27786202 298 1.9145 0.6327
28657701 310 1.9759 0.5995
26799401 348 2.1704 0.5092
19131709 350 2.1806 0.5051
20110811 371 2.2881 0.4657
15839502 398 2.4263 0.4253
26253102 400 2.4366 0.4228
11051702 508 2.9894 0.3799

The variance, o2, is calculated using the A and B values as an input for each of the

Gaussian equations that represent the parametric model for tissue compression using

equation 4.13. A plot of each of the parametric models for tissue compression for each of

the ten images is shown in Figure 5.16.

5.6 - Spatially Varying Threshold Models

The Gaussian functions given in Figure 5.16 must now be transcribed to the

corresponding family of curves shown in Figure 5.6 using the process from Section 4.8.

The resulting spatially varying threshold model for each of the ten images after the

moving average filter is applied is shown in Figure 5.17-5.26.
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FIGURE 5.17 - Spatially varying threshold model for Image 11051702.
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FIGURE 5.18 - Spatially varying threshold model for Image 11599502.
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FIGURE 5.19 - Spatially varying threshold model for Image 14480101.
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FIGURE 5.20 - Spatially varying threshold model for Image 15839502.
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FIGURE 5.21 - Spatially varying threshold model for Image 19131709.
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FIGURE 5.25- Spatially varying threshold model for Image 27786202.
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FIGURE 5.26 - Spatially varying threshold model for Image 28657701.

5.7 Density Estimation Results

A piecewise comparison is generated between the original image applied with the

segmentation mask and the spatially varying threshold model for that particular image. If

the intensity of the pixel at (x,y) in the masked original image is greater than the intensity

value of the pixel at the same location in the spatially varying threshold model, then that

pixel is classified as being radiodense tissue and will appear as white ('1'). Otherwise,

the pixel is classified as radiolucent tissue and will appear as black ('0'). These images

that are segmented between radiodense and radiolucent tissue are shown in Figure 5.27.

Table 5.10 shows the calculated percentages of radiodense tissue of all images for each of

the spatially varying thresholds used along with a squared error between these results and

the validated percentages of radiodense tissue from the Toronto method and Figure 5.28

illustrates this comparison. A comparison of this automated method and the CNPA

algorithm is shown along with the validated results in Table 5.11 and is illustrated in

Figure 5.29.
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TABLE 5.10 - Percentage of radiodense tissue calculated from using the spatially
varying threshold models for each image. The squared error is provided to show the
accuracy with respect to the validated percentages of radiodense tissue.

Image Number xe, length of A from B from Percentage Squared
breast tissue fi(Xe) f2(xe) radiodense error

tissue

11599502 272 1.7814 0.7125 10.9755 3.7037
14480101 293 1.8889 0.6472 47.7815 48.7413
27786202 298 1.9145 0.6327 45.1030 24.9700
28657701 310 1.9759 0.5995 36.9872 11.4731
26799401 348 2.1704 0.5092 38.4296 284.6104
19131709 350 2.1806 0.5051 0.4004 1.2091
20110811 371 2.2881 0.4657 5.9543 11.9321
15839502 398 2.4263 0.4253 12.7074 0.3511
26253102 400 2.4366 0.4228 20.5918 3.6412
11051702 508 2.9894 0.3799 31.6093 104.2298

The overall mean squared error for percentage radiodense tissue using the spatially

varying threshold models in comparison with the validated results is 49.49. This was

calculated using

MSE = - TOR -RDS- )2I
N

(5.3)

where RDroR is the percentage radiodense tissue found using the 'Toronto' method,

RDSVTM is the percentage radiodense tissue found using the spatially varying threshold

models, and N is the total number of mammograms being analyzed. This mean squared

error is approximately twice as better than the mean squared error found when using the

CNPA, which is 111.58.
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FIGURE 5.28 - Percentage of radiodense tissue for the Harvard data set using both the
'Toronto' method as validation and the spatially varying threshold algorithm (SVTA).

TABLE 5.11 - Comparison of CNPA and SVTA, with SECNp being the squared error
between percentage radiodense tissue using CNPA and the Toronto method, and SESVTA
being the squared error between percentage radiodense tissue using SVTA and the
Toronto method.

Image Percentage Percentage Percentage SECNPA SESVTA
Number radiodense radiodense radiodense

using Toronto using using SVTA
method CNPA

19131709 1.5 0.34412 0.4004 1.3360 1.2091
20110811 2.5 1.6514 5.9543 0.7201 11.9322
11599502 12.9 14.9553 10.9755 4.2242 3.7037
15839502 13.3 7.5043 12.7074 33.5901 0.3512
11051702 21.4 21.0694 31.6093 0.1093 104.2298
26253102 22.5 23.6981 20.5918 1.4354 3.6412
28657701 33.6 38.8218 36.9872 27.2672 11.4731
14480101 40.8 71 47.7815 912.04 48.7413
27786202 50.1 58.0623 45.103 63.3982 24.9700
26799401 55.3 47.8176 38.4296 55.9863 284.6104
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FIGURE 5.29 - Percentage of radiodense tissue for the Harvard data set using the
'Toronto' method as validation, the constrained Neyman-Pearson algorithm (CNPA) and
the spatially varying threshold algorithm (SVTA).

5.8 Validation of the Proposed Technique using FCCC Data

The SVTA radiodensity estimation technique that was developed using the set of 10

mammogram images from Harvard was next exercised on a separate database drawn

from Fox Chase Cancer Center. This data set consisted of 40 mammograms (including 6

repeats). A subset of the 34 distinct images, 16 (47%) was used as training data to

generate the parameters for the SVTA; and the remaining 18 (53%) was used for testing

the algorithm. Particular images were flagged due to the fact that Dr. Celia Byrne was

not confident in her own decision making in quantifying radiodense tissue. Figures 5.30

and 5.31 show the calculation of the A and B parameters for the model. Table 5.12 shows

a comparison of radiodensity estimates that were assessed using three methods - (a) the

"Toronto" method by Dr. Celia Byrne, (b) the Constrained Neyman-Pearson algorithm
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(CNPA) [53] (c) the SVTA segmentation threshold, described in this thesis. The results

are also graphically shown in Figure 5.32. Performance measures of the CNPA and

SVTA algorithm in comparison with the Toronto method are shown in Table 5.13. It can

be seen that the SVTA segmentation technique is correlated positively with Dr. Byre's

assessment using the Toronto method.

/ -----~~ ~~-' ~~ -~- -- I
2

1.8

1.6

' 1.4

> 1.2

lI °
N

E 0.8

o 0.6

0.4

0.2

0
100 150

FIGURE 5.30 - Calculation of the A parameter for the FCCC images analyzed using the
SVTA segmentation technique.
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FIGURE 5.31 - Calculation of the B parameter for the FCCC images analyzed using the
SVTA segmentation technique.
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FIGURE 5.32 -Comparison of radiodense tissue segmentation results.

TABLE 5.13 - Performance measures in comparison with the Toronto method.
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RMS Error - ALL images (SVTA) 459.8

RMS Error - ALL images (CNPA) 666.5

RMS Error - NON-FLAGGED images (SVTA) 271.62

RMS Error - NON-FLAGGED images (CNPA) 662.6

Correlation - ALL images (SVTA) 49.8%

Correlation - ALL images (CNPA) -36.9%

Correlation - NON-FLAGGED images (SVTA) 66.5%

Correlation - NON-FLAGGED images (CNPA) -48.3%
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CHAPTER 6: CONCLUSIONS

Cancer is second only to heart disease as the leading cause of death among Americans.

More specifically, breast cancer is the second leading cause of cancer related deaths.

Early detection of breast cancer and the use of breast cancer risk factors are significant in

aiding the attack against breast cancer. Breast cancer risk factors play an important role

in that they can help predict the possibility of developing breast cancer at an early stage.

One of the strongest risk factors is breast density. It has been shown that breast density

may p redict a four t o s ix fold i ncrease i n t he risk o f d eveloping b reast c ancer. A Iso,

breast density may be heritable.

Breast density is loosely defined and many of the methods developed suffer from

inter- and i ntra- observer v ariability. T his v ariability i s due t o the i ntervention o ft he

observer in the calculation of radiodense tissue along with breast density being loosely

defined. To minimize the inconsistencies between observers, methods were developed

that included the support of digital image processing techniques. These methods showed

improvements upon previous methods, however still suffered from the variability

introduced with the needed interaction of the observer.

A n umber o f m ethods h ave r ecently been d eveloped t b a How for a completely

automated method to quantify the amount of radiodense tissue in digitized mammograms.

While these automated methods have shown improvements from the semi-automated

techniques, there are still areas to be improved upon.

6.1 Summary of Accomplishments

The automated method to segment radiodense tissue presented in this thesis incorporates

90



the effects of tissue compression from the mammography procedure. A survey of

existing literature regarding the automated segmentation of radiodense tissue infers that

no other researchers are including the effects created by tissue compression.

This method segments the breast tissue region from the outside film region

automatically with the assistance of radial basis function neural networks. The system

creates a binary mask template that localizes the breast tissue region and allows for

subsequent processes to be performed for the segmentation of radiodense tissue.

The constrained Neyman-Pearson algorithm is used to analyze the digitized

mammogram for a global threshold. This threshold is created with the knowledge of the

underlying distributions that make up the tissue region of the mammogram.

A parametric model for tissue location is developed using the homotopy

continuation algorithm. The homotopy continuation algorithm generates a family of

curves between the chest wall boundary and the edge of the breast tissue boundary in the

mammogram. Tissue compression is modeled as a Gaussian function to allow for the

global threshold to be greater at the chest wall and decrease outward towards the edge of

the breast tissue. The threshold values generated using the Gaussian functions are

transcribed to the parametric model for tissue location. A series of moving average filters

applied to the family of curves with the values from the Gaussian function creates a

spatially varying threshold model. Using this threshold model, the radiodense tissue is

segmented and quantified.

The proposed algorithm presented in this thesis has been developed using a set of

ten images provided by an expert radiologist. The ten images were analyzed by an expert

using the 'Toronto' method to calculate the percentage of radiodense tissue. Promising
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results were obtained using an optimization procedure to determine the parametric model

for tissue compression in each image. The algorithm was then validated using a separate

database; again, the radiodensity estimates provided by expert radiologist was used to

compare the performance of the technique described in this thesis. The results presented

in this thesis demonstrate significant improvement in performance, as compared with an

expert, over previously developed automated radiodensity estimation techniques.

6.2 Recommendations for Future Work

The algorithm presented in this thesis is a step towards developing a robust, completely

automated system for quantifying radiodense tissue in digitized mammograms. However,

the technique presented in this thesis suffers some drawbacks. The following areas of

research are possible advancements towards this automated system:

The segmentation of radiodense regions is done on a pixel-by-pixel basis, which

is unlike the procedure employed by a radiologist. Area based segmentation approaches

must be explored.

The tissue compression model in this thesis, while reasonable, remains to be

validated. Experiments and finite element modeling studies are necessary for arriving at

accurate compression characteristics.

Breast density is not objectively defined. There is significant intra- and inter-

observer variability in breast density estimation. Efforts towards developing a more

formal and objective definition of breast density, using calibrated breast phantoms, may

help in the design of an accurate and robust automated segmentation technique.

Additional risk factors and a priori information is ignored in this research.

However, the inclusion of additional risk factors such as the age and patient history may

92



prove beneficial in the segmentation of radiodense tissue.

93



REFERENCES

1. R. A. Anderson, "Deaths: leading causes for 2000," National Vital Statistics
Reports, Vol. 50, No.16, Centers for Disease Control, 2002 [Online].

http://www.cdc.gov/nchs/data/nvsr/nvsr50/nvsr50_16.pdf

2. American Cancer Society, Breast Cancer Facts & Figures, 2001-2002 [Online].
http://www.cancer.org/downloads/STT/BrCaFF2001.pdf

3. E.J. Feuer, L.M. Wun, "DEVCAN: Probability of Developing or Dying of
Cancer," Software, version 4.0, National Cancer Institute, 1999.

4. American Cancer Society, Cancer Facts & Figures, 2002 [Online].

http://www.cancer.org/downloads/STT/CancerFacts&Figures2002TM.pdf

5. L. Tabar, B. Vitak, H.H. Chen, M.F. Yen, S.W. Duffy, and R.A. Smith, "Beyond
randomized controlled trials: organized mammographic screening substantially
reduces breast carcinomar mortality, Cancer 2001, Vol. 91, No. 9, pp. 1724-1731,
2001.

6. Imaginis. 2002. Methods of Breast Biopsy. Siemens [Online].

http://www.imaginis.com/breasthealth

7. Issam El-Naqa, Yongyi Yang, Miles N. Werick, Nikolas P. Galatsanos, and
Robert Nishikawa, "Support Vector Machine Learning for Detection of
Microcalcifications in Mammograms", IEEE International Symposium on
Biomedical Imaging, Washington D.C., July 2002.

8. Bazzani, A. Bevilacqua, D. Bollini, R. Campanini, N. Lanconelli, A. Riccardi, D.
Romani, Proceedings of the International Workshop on Digital Mammography
2000, pp. 161-167, Toronto, Canada, June 11-14, 2000.

9. Bazzani, A. Bevilacqua, D. Bollini, R. Campanini, N. Lanconelli, A. Riccardi, D.
Romani, "Automatic detection of clustered microcalcifications using a combined
method and an SVM classifier", LXXXVII Congresso Nazionale Societa' Italiana
di Fisica, Milan, Italy, September 24-29, 2001.

10. Keir Bovis and Sameer Singh, "Detection of masses in mammograms using
texture features", International conference on pattern recognition, Vol. 2,
Barcelona, Spain, September 03-08, 2000.

11. M.F. Salfity, G.H. Kaufmann, P.M. Granitto and H.A. Ceccatto, "A computer-
aided diagnosis method for automated detection and classification of clustered
microcalcifications in mammograms", Proceedings of the Argentine Symposium
on Healthcare Informatics, Tandil, 41-47 (2000).

12. J.L. Kelsey and M. Gammon, "The epidemiology of breast cancer", CA Cancer
Journal; Vol. 41, pp. 146-165, 1991.

94



13. Byrne, C, et. al. "Mammographic features and breast cancer risk: effects with
time, age, and menopause status." Journal of the National Cancer Institute, Vol.
87, pp. 1622-1629, 1995.

14. Byre, "Studying mammographic density: implications for understanding breast
cancer," Journal of the National Cancer Institute, Vol. 89, pp. 531-533, 1997

15. Haiman, L. Bernstein, D. Van Den Berg, S. A. Ingles, M. Salane and G. Ursin,
"Genetic determinants of mammographic density," Breast Cancer Res 2002
4(3):R5.

16. Mirada Solutions, Virtual Mammo - "Radiation Dose in Mammography" -
Continuing Education Program, 2001-2002.

17. N.F. Boyd, G.A. Lockwood, J.W. Byng, D.L. Tritchler, and M.J. Yaffe,
"Mammographic densities and breast cancer risk," Cancer Epidemiol Biomarkers
Prev, Vol. 7, pp. 1133-1144, 1998.

18. R.L. Egan, "Breast imaging: diagnosis and morphology of breast diseases," W.B.
Saunders Company, Philadelphia, 1988.

19. J. W. Byng, N. F. Boyd, E. Fishell, R. A. Jong and M. J. Yaffe, "Quantitative
analysis of mammographic densities," Physics in Medicine and Biology, Vol. 41,
pp. 909-923, 1996.

20. J.N. Wolfe, Xeroradiography of the breast, Thomas, 1972.

21. C.A. Beam, E.F. Conant, E.A. Sickles, "Factors affecting radiologist
inconsistency in screening mammography," Academic Radiology, Vol. 9, No. 5,
pp. 531-540, 2002.

22. American College of Radiology (ACR) Breast Imaging Reporting and Data
System (BI-RADS) Third Edition. Reston, VA: American College of Radiology,
2003.

23. J.N. Wolfe, "Breast patterns as an index of risk of developing breast cancer,"
American Journal ofRoentgenology, Vol. 126, pp. 1130-1139, 1976.

24. J.N. Wolfe, "Risk of breast cancer development determined by mammographic
parenchymal pattern," Cancer, Vol. 37, pp. 2486-2492.

25. A.F. Saftlas, M. Szklo, "Mammographic parenchymal patterns and breast cancer
risk," Epidemiol Rev, Vol. 9, pp. 146-174, 1987.

26. A.M. Oza, N.F. Boyd, "Mammographic parenchymal patterns: a marker of breast
cancer risk," Epidemiol Rev, Vol. 15, pp. 196-208, 1993.

27. E. Warner, G. Lockwood, D. Tritchler, N.F. Boyd, "The risk of breast cancer
associated with mammographic parenchymal patterns: a meta-analysis of the
published literature to examine the effect of method of classification," Cancer
Detect Prev, Vol. 16, pp. 67-72, 1992.

28. N.F. Boyd, G.A. Lockwood, L.J. Martin, J.A. Knight, J.W. Byng, M.J. Yaffe,
D.L. Tritchler, "Mammographic densities and breast cancer risk," Breast Disease,
Vol. 10, pp. 113-126, 1998.

95



29. N.F. Boyd, J. Byng, R. Jong, E. Fishell, L. Little, A.B. Miller, G. Lockwood, D.
Tritchler, M. Yaffe, "Quantitative classification of mammographic densities and
breast cancer risks: results from the Canadian National Breast Screening Study,"
Journal of the National Cancer Institute, Vol. 87, pp. 670-675, 1995.

30. C.A. Bodian, "Benign breast diseases, carcinoma in situ, and breast cancer risk,"
Epidemiol Rev, Vol. 15, pp. 177-187, 1993.

31. N.F. Boyd, B. O'Sullivan, J.E. Campbell, E. Fishell, I. Simor, G. Cooke, et al,
"Mammographic signs as risk factors for breast cancer," British Journal of
Cancer, Vol. 45, pp. 185-193, 1982.

32. J.N. Wolfe, A.F. Saftlas, M. Salane, "Mammographic parenchymal patterns and
quantitative evaluation ofmammographic densities: a case-control study,"
American Journal ofRoentgenology, Vol. 148, pp. 1087-1092, 1987.

33. J. Brisson, R. Verreault, A.S. Morrison, S. Tennina, F. Meyer, "Diet,
mammographic features of breast tissue, and breast cancer risk," American
Journal ofEpidemiology, Vol. 130, pp. 14-24, 1989.

34. A.F. Saftlas, R.N. Hoover, L.A. Brinton, M. Szklo, D.R. Olson, M. Salane, et al,
"Mammographic densities and risk of breast cancer," Cancer, Vol. 67, pp. 2833-
2838, 1991.

35. S.A. Bartow, D.R. Pathak, F.A. Mettler, C.R. Key, and M.C. Pike, "Breast
mammographic pattern: a concatenation of confounding and breast cancer risk
factors," American Journal of Epidemiology, Vol. 142, pp. 813-819, 1995.

36. N.F. Boyd, G.S. Dite, J. Stone, A. Gunasekara, D.R. English, M.R. McCredie, et
al, "Heritability ofmammographic density, a risk factor for breast cancer," New
England Journal of Medicine, Vol. 347, pp. 886-894, 2002.

37. J.S. Grove, M. J. Goodman, F.I. Gilber, et al, "Wolfe's mammographic
classification and breast cancer risk: the effect of misclassification on apparent
risk ratios," British Journal of Radiology, Vol. 58, pp. 15-19, 1985.

38. N.F. Boyd, H.M. Jensen, G. Cooke, H. Lee Han, "Relationship between
mammographic and histological risk factors for breast cancer," Journal of the
National Cancer Institute, Vol. 84, pp. 1170-1179, 1992.

39. M.J. Yaffe, N.F. Boyd, J.W. Byng, R.A. Jong, E. Fishell, G.A. Lockwood, L.E.
Little, D. L. Tritchler, "Breast cancer risk and measured mammographic density,"
European Journal of Cancer Prevention, Vol. 7 (suppl 1), pp. S47-S55, 1998.

40. J.W. Byng, N.F. Boyd, E. Fishell, R.A. Jong, and M.J. Yaffe, "Quantitative
analysis of mammographic densities," Physics in Medicine and Biology, Vol. 39,
pp. 1629-1638, 1994.

41. P. Silgen, "Quantification of breast density using magnetic resonance imaging,"
MS thesis, Department of Radiology, Minneapolis, MN: University of Minnesota,
1996.

42. J.C. Weinreb and G. Newstead, "MR imaging of the breast," Radiology, Vol. 196,
pp. 593-610, 1995.

96



43. S.L. Lou and Y. Fan, "Automatic evaluation of breast density for full-field digital
mammography," Medical Imaging 2000: Image Processing, Vol. 3979, pp. 1362-
1369, 2000.

44. C. Zhou, H. Chan, N. Petrick, M.A. Helvie, M.M. Goodsitt, B. Sahiner, and L.
Hadjiiski, "Computerized image analysis: Estimation of breast density on
mammograms," Medical Physics, Vol. 28, pp. 1056-1069, June 2001.

45. C. Zhou, H. Chan, N. Petrick, B. Sahiner, M. Helvie, M. Roubidoux, L. Hadjiiski,
M. Goodsitt, "Computerized image analysis: Estimation of breast density on
mammograms," Medical Imaging 2000: Image Processing, Vol. 3979, pp. 1615-
1624, 2000.

46. K. Bovis and S. Singh, "Classification of breast density in digital mammograms,"
Submitted to Pattern Analysis and Neural Networks.

47. S. Petroudi, K. Marias, R. English, R. Adams, and M. Brady, "Classification of
mammogram patterns using area measurements and the standard mammogram
form (SMF)," Medical Image Understanding and Analysis, 2002.

48. P.K. Saha, J.K. Udupa, E.F. Conant, D.P. Chakraborty, and D. Sullivan, "Breast
tissue density quantification via digitized mammograms," IEEE Transaction on
Medical Imaging, Vol. 20, No. 8, 2001.

49. B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, 1982.

50. K. R. Castleman, Digital Image Processing, Prentice-Hall, 1996.

51. M. J. Yaffe, J. W. Byng, N. F. Boyd, "Quantitative image analysis for estimation
of breast cancer risk," Handbook of Medical Imaging, Processing and Analysis,
Ch. 21, Academic Press, 2000.

52. J.W. Byng, N.F. Boyd, L. Little, et al, "Symmetry of projection in the quantitative
analysis of mammographic images," European Journal of Cancer Prevention,
Vol. 5, pp. 319-327, 1996.

53. J.T. Neyhart, "Automated segmentation ofradiodense tissue in digitized
mammograms using a constrained Neyman-Pearson classifier," MS Thesis,
Department of Electrical and Computer Engineering, Glassboro, NJ: Rowan
University, 2002.

54. J. Neyhart, M. Ciocco, R. Polikar, S. Mandayam, and M. Tseng, "Dynamic
segmentation of breast tissue in digitized mammograms using the discrete wavelet
transform," Proceedings of the 23rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Istanbul, Turkey, October 2001.

55. J.T. Neyhart, R.E. Eckert, R. Polikar, S. Mandayam and M. Tseng, "A modified
Neyman-Pearson technique for radiodense tissue estimation in digitized
mammograms", Proceedings of the 24t h Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Houston, Texas, October
2002.

97



56. J. Neyhart, M. Kirlakovsky, L. Coleman, R. Polikar, M. Tseng and S. Mandayam,
"Automated Segmentation and Quantitative Characterization of Radiodense
Tissue in Digitized Mammograms", Proceedings of the 28th Annual Review of
Progress in Quantitative NDE, American Institute of Physics, New York, July
2001.

57. R.E. Eckert, J.T. Neyhart, L. Burd, R. Polikar, S. Mandayam and M. Tseng,
"Neural and Decision Theoretic Approaches for the Automated Segmentation of
Radiodense Tissue in Digitized Mammograms", Proceedings of the 29'h Annual
Review of Progress in Quantitative NDE, American Institute of Physics,
Bellingham, Washington, July 2002.

58. S. Haykin, Neural Networks - A Comprehensive Foundation, Second Edition,
Prentice Hall, Upper Saddle River, NJ, 1999.

98


	Spatially varying threshold models for the automated segmentation of radiodense tissue in digitized mammograms
	Let us know how access to this document benefits you - share your thoughts on our feedback form.
	Recommended Citation

	Spatially Varying Threshold Models For The Automated Segmentation Of Radiodense Tissue In Digitized Mammograms

