126 research outputs found

    Output-Feedback Control of Nonlinear Systems using Control Contraction Metrics and Convex Optimization

    Get PDF
    Control contraction metrics (CCMs) are a new approach to nonlinear control design based on contraction theory. The resulting design problems are expressed as pointwise linear matrix inequalities and are and well-suited to solution via convex optimization. In this paper, we extend the theory on CCMs by showing that a pair of "dual" observer and controller problems can be solved using pointwise linear matrix inequalities, and that when a solution exists a separation principle holds. That is, a stabilizing output-feedback controller can be found. The procedure is demonstrated using a benchmark problem of nonlinear control: the Moore-Greitzer jet engine compressor model.Comment: Conference submissio

    LMI-Based Reset Unknown Input Observer for State Estimation of Linear Uncertain Systems

    Full text link
    This paper proposes a novel kind of Unknown Input Observer (UIO) called Reset Unknown Input Observer (R-UIO) for state estimation of linear systems in the presence of disturbance using Linear Matrix Inequality (LMI) techniques. In R-UIO, the states of the observer are reset to the after-reset value based on an appropriate reset law in order to decrease the L2L_2 norm and settling time of estimation error. It is shown that the application of the reset theory to the UIOs in the LTI framework can significantly improve the transient response of the observer. Moreover, the devised approach can be applied to both SISO and MIMO systems. Furthermore, the stability and convergence analysis of the devised R-UIO is addressed. Finally, the efficiency of the proposed method is demonstrated by simulation results

    LMI synthesis of H2 and mixed H2/H∞ controllers for singular systems

    Get PDF
    This paper considers the H2 control problems for continuous-time singular systems with and without an H∞ constraint. Without the constraint, we derive necessary and sufficient conditions for the existence of H2 output feedback controllers using the linear matrix inequality (LMI) approach. With the H∞ constraint, sufficient LMI conditions on the existence of the H2 controller are obtained. In both cases, the desired H2 controller can be constructed through the feasible solutions of the LMIs. The proposed synthesis method is illustrated through numerical examples.published_or_final_versio

    An Augmented Lagrangian Method for the Optimal H

    Get PDF
    This paper treats the computational method of the optimal H∞ model order reduction (MOR) problem of linear time-invariant (LTI) systems. Optimal solution of MOR problem of LTI systems can be obtained by solving the LMIs feasibility coupling with a rank inequality constraint, which makes the solutions much harder to be obtained. In this paper, we show that the rank inequality constraint can be formulated as a linear rank function equality constraint. Properties of the linear rank function are discussed. We present an iterative algorithm based on augmented Lagrangian method by replacing the rank inequality with the linear rank function. Convergence analysis of the algorithm is given, which is distinct to the now available heuristic methods. Numerical experiments for the MOR problems of continuous LTI system illustrate the practicality of our method

    Robust synchronization via homogeneous parameter-dependent polynomial contraction matrix

    Get PDF
    published_or_final_versio

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples

    Networked and event-triggered control systems

    Get PDF
    In this thesis, control algorithms are studied that are tailored for platforms with limited computation and communication resources. The interest in such control algorithms is motivated by the fact that nowadays control algorithms are implemented on small and inexpensive embedded microprocessors and that the sensors, actuators and controllers are connected through multipurpose communication networks. To handle the fact that computation power is no longer abundant and that communication networks do not have in finite bandwidth, the control algorithms need to be either robust for the deficiencies induced by these constraints, or they need to optimally utilise the available computation and communication resources. In this thesis, methodologies for the design and analysis of control algorithms with such properties are developed. Networked Control Systems: In the first part of the thesis, so-called networked control systems (NCSs) are studied. The control algorithms studied in this part of the thesis can be seen as conventional sampled-data controllers that need to be robust against the artefacts introduced by using a finite bandwidth communication channel. The network-induced phenomena that are considered in this thesis are time-varying transmission intervals, time-varying delays, packet dropouts and communication constraints. The latter phenomenon causes that not all sensor and actuator data can be transmitted simultaneously and, therefore, a scheduling protocol is needed to orchestrate when to transmit what data over the network. To analyse the stability of the NCSs, a discrete-time modelling framework is presented and, in particular, two cases are considered: in the first case, the transmission intervals and delays are assumed to be upper and lower bounded, and in the second case, they are described by a random process, satisfying a continuous joint probability distribution. Both cases are relevant. The former case requires a less detailed description of the network behaviour than the latter case, while the latter results in a less conservative stability analysis than the former. This allows to make a tradeoff between modelling accuracy (of network-induced effects) and conservatism in the stability analysis. In both cases, linear plants and controllers are considered and the NCS is modelled as a discrete-time switched linear parameter-varying system. To assess the stability of this system, novel polytopic overapproximations are developed, which allows the stability of the NCS to be studied using a finite number of linear matrix inequalities. It will be shown that this approach reduces conservatism significantly with respect to existing results in the literature and allows for studying larger classes of controllers, including discrete-time dynamical output-based controllers. Hence, the main contribution of this part of the thesis is the development of a new and general framework to analyse the stability of NCSs subject to four network-induced phenomena in a hardly conservative manner. Event-Triggered Control Systems: In the second part of the thesis, socalled event-triggered control (ETC) systems are studied. ETC is a control strategy in which the control task is executed after the occurrence of an external event, rather than the elapse of a certain period of time as in conventional periodic control. In this way, ETC can be designed to only provide control updates when needed and, thereby, to optimally utilise the available computation and communication resources. This part of the thesis consists of three main contributions in this appealing area of research. The first contribution is the extension of the existing results on ETC towards dynamical output-based feedback controllers, instead of state-feedback control, as is common in the majority of the literature on ETC. Furthermore, extensions towards decentralised event triggering are presented. These extensions are important for practical implementations of ETC, as in many control applications the full state is hardly ever available for feedback, and sensors and actuators are often physically distributed, which prohibits the use of centralised event-triggering conditions. To study the stability and the L1-performance of this ETC system, a modelling framework based on impulsive systems is developed. Furthermore, for the novel output-based decentralised event-triggering conditions that are proposed, it is shown how nonzero lower bounds on the minimum inter-event times can be guaranteed and how they can be computed. The second contribution is the proposition of the new class of periodic event-triggered control (PETC) algorithms, where the objective is to combine the benefits that, on the one hand, periodic control and, on the other hand, ETC offer. In PETC, the event-triggering condition is monitored periodically and at each sampling instant it is decided whether or not to transmit the data and to use computation resources for the control task. Such an event-triggering condition has several benefits, including the inherent existence of a minimum inter-event time, which can be tuned directly. Furthermore, the fact that the event-triggering condition is only verified at the periodic sampling times, instead of continuously, makes it possible to implement this strategy in standard time-sliced embedded software architectures. To analyse the stability and the L2-performance for these PETC systems, methodologies based on piecewiselinear systems models and impulsive system models will be provided, leading to an effective analysis framework for PETC. Finally, a novel approach to solving the codesign problem of both the feedback control algorithm and the event-triggering condition is presented. In particular, a novel way to solve the minimum attention and anytime attention control problems is proposed. In minimum attention control, the `attention' that a control task requires is minimised, and in anytime attention control, the performance under the `attention' given by a scheduler is maximised. In this context, `attention' is interpreted as the inverse of the time elapsed between two consecutive executions of a control task. The two control problems are solved by formulating them as linear programs, which can be solved efficiently in an online fashion. This offers a new and elegant way to solve both the minimum attention control problem and the anytime attention control problem in one unifying framework. The contributions presented in this thesis can form a basis for future research explorations that can eventually lead to a mature system theory for both NCSs and ETC systems, which are indispensable for the deployment of NCSs and ETC systems in a large variety of practical control applications
    corecore