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Chapter 1

Introduction

Over the past decades control engineers have developed various methods in an attempt
to control linear time-invariant (LTI) plants as ‘good’ as possible, or at least within design
specifications. Various linear design methods, like classic control theory, state space control
or H∞ control, all have their own advantages, but each suffers from the same fundamental
limitations (like Bode’s Sensitivity integral) which are inevitable in the linear control of lin-
ear systems [22, 25]. For this reason several non-linear controllers for LTI plants have been
suggested in literature [14]. This master’s thesis intensively discusses one of those non-linear
controllers, namely the reset controller.

A reset controller is basically a linear dynamic controller, whose states or subset of states
are reset to zero whenever its input and/or output satisfy a certain algebraic relation. The
idea of reset control can best be understood when considering an integrating controller in
particular. An integrator ‘sums up’ the error over time in order to achieve a zero steady state
error. However, when the error becomes zero for the first time, the integrator still has the
‘summed’ error stored in its states, which it has to get rid of. During this ‘emptying’ of the
integrator it causes overshoot in the error.

A very obvious choice is then of course to reset the states of this integrator to zero as soon
as its input (the error) becomes zero. This way the states, containing the ‘summed’ error,
are cleared instantaneously, and hence the overshoot is avoided. This concept was indeed
validated by simulations [3, 10], and the potential of reset control was furthermore shown in
experiments [9, 12, 27]. In each case reset control seemed to be able to meet specifications
which linear controllers could not meet.

Triggered by the apparent advantage of reset control over linear control, various people
have tried to analyze the stability and the performance of reset control systems. Highlights
in this respect are the Hβ-condition for strictly proper controller in [5] and the L2 analysis
for first order reset elements (FOREs) in [23, 26]. Multiple system descriptions and analysis
methodologies have been tried in history, but the state space description and Lyapunov based
stability results expressed in linear matrix inequalities (LMIs) of these papers can be called
the most promising of them all.

Hence, inspired by these results, this master’s thesis continues the work of [23,26], formu-
lating LMI-based performance measures for reset control systems. First, the results for L2

stability are extended in the paper in Chapter 2 such that the H∞ norm can be calculated
for general reset control systems. Hence, we can use any reset controller, instead of merely
FOREs like in [23, 26]. Moreover, this extension offers a solution for tracking problems and
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CHAPTER 1. Introduction

suggests future research directions to further decrease the conservatism present in the analy-
sis. In Chapter 3 a similar methodology is used in a paper where an LMI-based analysis to
calculate the H2 norm of a reset control system is derived. Furthermore, the use of the H2

norm is illustrated with an example, where reset control is shown to outperform the ‘optimal’
linear controller in terms of a constrained H2 problem.

Extra background information about various related subjects is provided in several ap-
pendices at the end of this thesis. The very first known reset controller, called the Clegg
integrator, is extensively described in Appendix A. The previously mentioned Hβ-condition
for stability is explained in Appendix B. Furthermore, Appendix C gives some necessary back-
ground information about dissipativity used in Chapters 2 and 3, whereas Appendices D and E
give an overview of induced norm analysis LMIs for linear systems in continuous and discrete
time, respectively. Finally, synthesis methods for linear systems are discussed in Appendices
F (using a linearizing change of variables) and G (using the elimination lemma).

For a complete overview of previous work on reset control, see [1,6,2,3,4,5,9,12,11,10,13,
17,16,18,19,21,23,26,27]. Other useful papers include [8, 20,7]
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Chapter 2

H∞ analysis of reset control systems

In this chapter a paper is presented in which the work of [23, 26] is generalized. This
paper provides an H∞ analysis tool, which is applicable to any reset control system which fits
into the general H∞ framework. It can hence be used for arbitrary linear plants and, more
importantly, for arbitrary reset controllers (with linear flow dynamics). The H∞ analysis itself
is derived using dissipativity theory and piecewise quadratic Lyapunov functions, resulting in
a computable set of LMIs.

Another improvement compared to [23, 26] is that the generalized system description re-
models the resetting condition, such that e.g. tracking problems are successfully included in
the H∞ analysis. Possible conservatism which can be present when considering these tracking
problems can be removed by including strictly proper input filters, thereby explicitly taking
a priori knowledge about the input signals into account.

Other contributions of the following paper include various future research directions to
reduce the conservatism even further, and a discussion on the usefulness of the H∞ norm and
other induced norms for reset control systems.
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An LMI-based H∞ performance analysis for reset control systems

G. Witvoet, W.H.T.M. Aangenent, W.P.M.H. Heemels, M.J.G. van de Molengraft, and M. Steinbuch

Abstract— We present a general LMI-based analysis method
to determine an upperbound on the L2 gain of a reset control
system. These results are derived using piecewise quadratic
Lyapunov functions. The computable sufficient conditions for
L2 stability are suitable for all LTI plants and linear-based
reset controllers, thereby generalizing the results available
in literature. Our results furthermore extend literature by
including tracking and measurement noise problems, while
using proper input filters to reduce conservatism. We conclude
by suggesting future research directions to reduce conservatism
even further.

Index Terms— Switched systems, reset control, linear matrix
inequality, Lyapunov stability, L2 gain, tracking.

I. INTRODUCTION

In order to overcome the fundamental performance limita-
tions which linear controllers are known to be subject to [1],
[2], various nonlinear feedback controllers for linear time-
invariant (LTI) plants were proposed in literature [3]. An
example of such a nonlinear feedback is the reset controller,
which is basically a linear controller whose states (or subset
of states) are reset to zero whenever its input and output
satisfy certain conditions.

The first resetting element was introduced in 1958 [4],
when Clegg proposed an integrator which resets whenever
the input is zero. The advantage of this Clegg integrator was
illustrated using its describing function, which has the same
magnitude plot as the linear integrator, but its performance
limiting phase lag is 38,1◦ instead of 90◦. However, the use
and effect of this resetting integrator is not straightforward
because of its nonlinear behavior, so its first use in a control
design procedure [5] was not until 1974. Subsequently, a
first order reset element (FORE) was introduced in [6], with
which a controller design procedure was proposed based on
frequency domain techniques. An overview of these results
is given in [7].

At the end of the ’90s there has been renewed interest in
reset control systems, resulting in various stability analysis
techniques. The first results were reported in [8], stating a
stability criterion for zero-input closed loops with a second
order plant and a Clegg integrator. However, the criterion
involves explicit computation of reset times and closed
loop solutions. A similar stability analysis for FOREs was
published in [9], again restricted to second order plants, and
hard to generalize for higher order systems. Additionally, in
[10] a stability analysis using an integral quadratic constraint
(IQC) was stated, which is however rather conservative due
to the independency of reset times.

In following publications stability conditions were for-
mulated using Lyapunov based conditions. This was first
done in [11] and [12], considering only second order closed

loops with constant inputs. The result has been extended
in [13] to a sufficient criterion on BIBO (bounded input
bounded output) stability, for which [14] has provided the
proof. These results were generalized in [15], resulting in
the so called Hβ-condition. The same paper also addressed
the tracking problem, based on the internal model principe.
Furthermore, the possible advantages of reset controllers over
linear ones have been shown both in simulations [9], [16] and
experiments [7], [14], [17]. A clear overview of [11]–[17] is
provided in [18], summarizing the Hβ stability analysis for
general reset systems.

The Hβ-condition is a reformulation of Lyapunov based
stability LMIs (linear matrix inequalities) using the Kalman-
Yakubovich-Popov Lemma, in order to provide computable
conditions to check the stability of zero-input reset control
systems. The analysis consists of two stability LMIs, one
corresponding to the flowing of the closed loop (i.e. smooth
evolution of the state) and the other to the reset of the
controller. These LMIs are coupled as a common quadratic
Lyapunov function is searched for both. Therefore the Hβ-
condition is conservative, and is only necessary and sufficient
for quadratic stability. Systems violating the Hβ-condition
can still be stable. Moreover, since the flowing LMI is solved
for the complete state space, it requires the linear part of
the closed loop dynamics to be stable. Since this is over-
restrictive, it introduces additional conservatism.

This conservatism was largely being dealt with in more
recent publications [19], [20]. To make the stability LMIs
less conservative, the authors first suggested a slightly dif-
ferent resetting condition. Indeed, their idea to reset when
controller in- and output have opposite sign instead of when
the input is zero results in a much smaller flow region. This
allows the flowing LMI to be solved over a smaller part
of the state space, thereby releasing the stability constraint
of the linear closed loop and thus sharpening the stability
bounds of the reset system. Second, the authors allowed
piecewise quadratic Lyapunov functions, thus approximating
higher order Lyapunov functions to capture a broader class
of stability problems. On top of this the analysis has been
extended to L2 stability, such that the closed loop H∞-
gain from input to output of a reset control system can be
approximated by an upperbound.

As such, the work in [19], [20] is the most general analysis
framework for reset control systems currently available in
literature. However, it is not generally applicable, since it
treats only FOREs and Clegg integrators. Furthermore, it
does not include a solution to the tracking problem, since
its system description assumes a zero reference. Hence, our
work will form an extension to [19], [20] in several direc-



tions. First, it generalizes the H∞ analysis to general reset
control systems fitting into the common H∞ framework.
Second, the tracking problem is successfully included in our
results. A solution to reduce the possible conservatism that
this might introduce, will be provided via input filtering.
Third, additional remaining conservatism problems are dis-
cussed, and several possible solution directions suggested.
Finally, in the discussion we will shortly reflect on synthesis
possibilities, the usefulness of H∞ for reset control systems
and possible extensions to other induced norms.

This paper is organized as follows. First, Section II intro-
duces the general H∞ framework for reset control systems
and describes the dynamics of the plant and the controller.
In Section III our main results are derived, as well as a
solution to deal with tracking problems. Furthermore, some
future research directions are provided in Section IV. After
the conclusions in Section V, we shortly discuss our results
in Section VI.

Notation. The set of real numbers is denoted by R.
The identity matrix of dimension n × n is denoted by
In∈Rn×n. Given two vectors x1, x2 we write (x1, x2) to
denote [xT

1 , xT
2 ]T . A vector x ∈ Rn is nonnegative, denoted

by x ≥ 0, if its elements xi ≥ 0 for i = 1, . . . , n. A
symmetric matrix A ∈ Rn×n is positive definite, denoted
by A � 0 if xT Ax > 0 for all x ∈ Rn\{0}. A sequence of
scalars (u1, u2, . . . , uk) is called lexicographically nonnega-
tive, written as (u1, u2, . . . , uk) ≥` 0, if (u1, u2, . . . , uk) =
(0, 0, . . . , 0) or uj >0 where j = min{p=1, . . . , k : up 6=0}.
For a sequence of vectors (x1, x2, . . . , xk) with xj ∈ Rn, we
write (x1, x2, . . . , xk) ≥` 0 when (x1

i , x
2
i , . . . , x

k
i ) ≥` 0 for

all i = 1, . . . , n.

II. GENERAL SYSTEM DESCRIPTION

In this section we present a mathematical description of
the reset controller and the resulting closed loop. These
descriptions are chosen to fit into the common multichannel
H∞ framework, as depicted in Figure 1. The augmented
plant P , with state xp ∈ Rnp , contains the system to
be controlled, together with possible input- and output-
weightings. The reset controller is denoted by K, whose
states are denoted by xk ∈ Rnk . The closed loop state is
defined by x∈Rn with x = (xp, xk). Moreover, w ∈ Rnw

and z ∈ Rnz denote the exogenous inputs and outputs, and
y, u ∈ R denote the controller input and output, respectively.
Note that we consider SISO plants and controllers only, since
reset control for MIMO systems is still an open issue.

K

P
w z

u y

Fig. 1. General multichannel closed loop system

For the remainder of this paper we will consider LTI
augmented plants P , whose dynamics are described by

ẋp = Axp + Bu + Bww
z = Czxp + Dzww + Dzu
y = Cxp + Dww.

(1)

Note that there is no direct feedthrough from u to y, as is
e.g. the case for general motion systems. Furthermore, for
feedback control to make sense, we assume that (A,B) is at
least stabilizable and (A,C) is at least detectable.

A. Reset controller

The controller K is described by a linear filter whose
(subset of) states are reset whenever its input y and output
u satisfy a certain condition, hence

ẋk = AKxk + BKy if (y, u) ∈ C′

x+
k = Arxk if (y, u) ∈ D′

u = CKxk + DKy
(2)

This reset controller can thus be seen as a hybrid system,
whose states xk flow linearly conform (AK , BK , CK , DK)
in one part of the (y, u)-space and are reset instantaneously
from xk to x+

k in another part. These parts, or regions, are
defined by a flow set C′ and a reset set D′ respectively, which
are defined by the resetting condition. There are various
resetting conditions possible, but here we will follow the
lines of [19], [20], where resetting occurs whenever input
and output have opposite sign (i.e. yu ≤ 0). Compared to
[18] this choice reduces the size of the flow set and thus
allows a considerable relaxation of the Lyapunov conditions
later on.

Furthermore, for robustness reasons the sets C′ and D′

should be closed and such that C′ ∪D′ = R2 [19]. To
describe C′ and D′ we follow the method described in
[21]. The controller states flow whenever y ≥ 0, u ≥ 0 or
y ≤ 0, u ≤ 0, and reset otherwise, hence

C′ :=
{[

y
u

]
∈ R2 : Ef

[
y
u

]
≥ 0 or Ef

[
y
u

]
≤ 0

}
(3a)

D′ :=
{[

y
u

]
∈ R2 : ER

[
y
u

]
≥ 0 or ER

[
y
u

]
≤ 0

}
(3b)

where

Ef =
[

1 0
0 1

]
and ER =

[
−1 0
0 1

]
.

The flow and reset sets can also be expressed in terms of the
closed loop state x. Therefore we introduce a transformation
matrix T =

[
Tx Tw

]
defined as

[
y
u

]
= T

[
x
w

]
=

[
C 0 Dw

DKC CK DKDw

] xp

xk

w

 ,
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such that

C :=
{[

x
w

]
∈ Rn+nw : EfT

[
x
w

]
≥ 0

or EfT

[
x
w

]
≤ 0

}
(4a)

D :=
{[

x
w

]
∈ Rn+nw : ERT

[
x
w

]
≥ 0

or ERT

[
x
w

]
≤ 0

}
. (4b)

Note that C and D also depend on the input w when Dw 6= 0.
The instantaneous reset from xk to x+

k itself is described
by the discrete map Ar ∈ Rnk×nk , indicating to which val-
ues the controller states are reset to. Various choices for Ar

are theoretically possible, but a reasonable and appropriate
choice, commonly used in literature, is typically

Ar =
[

Ink−nr
0

0 0nr

]
,

stating that the last nr of the nk controller states are reset
to zero, while the others remain unchanged.

B. Closed loop dynamics
The dynamics of the augmented plant and the reset con-

troller can be combined into one description for the closed
loop dynamics, denoted by Σ:

Σ :

 ẋ = Ax + Bw if (x,w) ∈ C
x+ = ARx if (x,w) ∈ D
z = Cx +Dw

(5)

where[
A B
C D

]
=

[
A + BDKC BCK Bw + BDKDw

BKC AK BKDw

Cz + DzDKC DzCK Dzw + DzDKDw

]
AR =

[
Inp 0
0 Ar

]
.

The linear closed loop system which results when resetting
is omitted (i.e. when AR = In, C = Rn and D = ∅), is
called the base linear system.

At this point we emphasize that the reset controller should
be such that multiple resets at one point in time are excluded,
in order to guarantee local existence of solutions. For the
remainder of this paper we thus assume that the closed loop
states can flow after each reset for at least a small amount of
time. For convenience we furthermore assume that the input
w is analytic, denoted by w ∈ Anw . We can then state our
flow-assumption mathematically as follows:

Assumption 1 The reset controller and the regions C and
D must be such that[

x
w

]
∈ D ⇒

[
x+

w

]
∈ FC, (6)

where FC is a subset of C defined as

FC :=
{[

x0

w

]
∈ Rn ×Anw :

∃ε>0 ∀τ ∈ [0, ε)
[

xx0,w(τ)
w(τ)

]
∈ C

}
. (7)

The set FC thus defines all combinations (x0, w) of initial
conditions x0 (or in this case x+) and inputs w for which
the closed loop solution trajectories xx0(τ) of (5) stay in C
for at least τ≥ε.

This assumption implies that the state after a reset x+ should
either lie in the interior of C, or when it is on the boundary
of C, should not be driven outside this region by either the
dynamics or the external input. This can also be formulated
with a lexicographic ordening:

Corollary 2 The closed loop system (5) can flow after a
reset x+ = ARx at time tr if at least one of the two following
lexicographic ordenings hold whenever (x,w) ∈ D

(EfTxARx + EfTww(tr),
EfTx [AARx+Bw(tr)] + EfTwẇ(tr),
EfTx

[
A2ARx+ABw(tr)+Bẇ(tr)

]
+EfTwẅ(tr), . . .) ≥` 0 (8a)

(EfTxARx + EfTww(tr),
EfTx [AARx+Bw(tr)] + EfTwẇ(tr), . . .) ≤` 0. (8b)

Note again that w ∈ Anw is analytic, meaning that all its
derivatives exist and are bounded.

We conclude our system description by making a small
comparison to the work in [19], [20].

Remark 3 Consider a simple tracking problem, depicted
in Figure 2, where H is a dynamical system with output
ȳ, u is the output of the controller C, and r and e are the
reference signal and the error, respectively. It is easy to see

C H
r6=0 e ȳu

−+

Fig. 2. Simple tracking problem

that in this case w = r and thus, due to the direct feedthrough
between r and e, Dw =1 6=0. This means that the flow and
reset regions C and D in (4) explicitly depend on w. Hence
the input r clearly influences the reset moment, since resets
should occur at signchanges of u or e. In the analysis of
[20] however, the dependency on w was omitted, making
it not applicable for tracking problems, but for disturbance
rejection only. Indeed, the authors of [20] only include state
information in the definition of C and D, as the latter is
defined as

{
x : xT Mx≤0

}
. This results in resets whenever

u or ȳ changes sign. It is easy to see that when r 6= 0 this
resetting condition is not correct, since e=r−ȳ. �

Remark 4 In [19] Assumption 1 is simplified to

x ∈ D ⇒ x+ ∈ C. (9)

Besides the fact that the influence of w is neglected, this rela-
tion corresponds to only the first vector in the lexicographic
ordening in (8). Hence, it is only necessary but not sufficient
to guarantee a state flow after each reset. Still, one way to
satisfy (9) for all (x,w) ∈ D is to assume CKAr = 0. �
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III. MAIN RESULTS

In this section we present our main results on L2 stability,
applicable to any LTI plant (1) and any reset controller (2).
These results use the following definition:

Definition 5 The L2-gain ||Γ||2∞ of an arbitrary dynamical
system Γ is defined as the worst case finite gain from a
bounded input w to an output z, thus

||Γ||2∞ = sup
0<||w||2<∞

||z||22
||w||22

≤ γ2, (10)

such that with initial condition x(0) = 0∫ ∞

0

zT zdt ≤ γ2

∫ ∞

0

wT wdt. (11)

Here ||.||22 denotes the square of the 2-norm of a signal.

Furthermore, we rely on the following lemma [22]:

Lemma 6 (Bounded Real Lemma) An arbitrary dynami-
cal system with state x has a finite L2 gain from input w
to output z smaller than or equal to γ when it is strictly
dissipative w.r.t. the supply function

s(w, z) = γ2wT w − zT z. (12)

This means that for this s(w, z) and for all t1 ≥ t0

V (x(t1))− V (x(t0)) <

∫ t1

t0

s(w(t), z(t))dt, (13)

where V :Rn →R is a storage function of the dissipative
system. Furthermore, this system is stable if V is continuous
and non-negative, and has a strong local minimum at the
equilibrium point of the system. In that case the storage
function V is a Lyapunov function.

The smallest possible value of γ for which Lemma 6 holds
is known as the H∞ norm of a dynamical system.

A. General L2 analysis

In order to find the L2 gain of a reset system we apply
the Bounded Real Lemma to the closed loop system (5).
As noted before, a reset x+ = ARx is instantaneous,
yielding

∫ t1
t0

s(w, z)dt = 0 since t0 = t1. With this and
the differential form of (13) we can formulate a special case
of Lemma 6:

Lemma 7 The reset system (5) is stable and has a finite gain
from w to z smaller than or equal to γ > 0 if there exists
a non-negative Lipschitz continuous function V : Rn → R+

such that
d

dt
V (x) < γ2wT w − zT z if (x,w) ∈ C (14a)

V (x+)− V (x) ≤ 0 if (x,w) ∈ D (14b)

Finding the actual lowest possible value of γ can be
very hard, since it depends on the used storage function V .
Since we are dealing with a nonlinear closed loop system,
the ‘optimal’ V will probably be a very complex function,
possibly of high order. For the sake of computability we

therefore choose to approximate such a complex function
V by using piecewise quadratic Lyapunov functions [20].
This choice is motivated by the linear flow behavior in a
large part of the state space, and results in computable LMIs.
Nevertheless, it introduces some conservatism, which implies
that the found minimal value of γ will only be an upperbound
on the actual H∞ norm.

The piecewise quadratic Lyapunov functions are ob-
tained by partitioning the flow set C′ into smaller regions
C′i and assigning a different quadratic Lyapunov function
Vi(x) = xT Pix to each of them [20], see Figure 3.

y

u

θ1

θi

θi+1θN

P1

Pi

Pi+1 PN

PR

PR

Fig. 3. Partitioning of the (y, u)-space

Each region C′i is bounded by two lines uniquely defined
by the angles θi and θi−1. These angles should be chosen
such that 0 < θ0 < θ1 < . . . < θN = π

2 , for example
equidistantly distributed as θi = i

N
π
2 , where i = 0, . . . , N

and N is the number of desired subregions. Translated into
the (x,w)-domain using the transformation matrix T , the
regions Ci and D are then defined by

Ci :=
{[

x
w

]
∈ Rn+nw : EiT

[
x
w

]
≥ 0

or EiT

[
x
w

]
≤ 0

}
(15a)

D :=
{[

x
w

]
∈ Rn+nw : ERT

[
x
w

]
≥ 0

or ERT

[
x
w

]
≤ 0

}
(15b)

where

Ei =
[
− sin(θi−1) cos(θi−1)

sin(θi) − cos(θi)

]
, ER =

[
−1 0
0 1

]
.

Moreover, using T =
[

Tx Tw

]
, we introduce

EiT =
[

EiTx EiTw

]
=

[
Ex,i Ew,i

]
, (16a)

ERT =
[

ERTx ERTw

]
=

[
Ex,R Ew,R

]
. (16b)
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The region borders are defined by the equality[
− sin(θi) cos(θi)

]
T

[
x
w

]
= Φi

[
x
w

]
= 0, (17)

whose solutions are in the kernel of Φi. We can also
use an image representation for these boundaries, yielding
im(WΦi) = ker(Φi), where WΦi ∈R(n+nw)×(n+nw−1) is a
matrix with full columnrank, and im(WΦi) denotes its image.

Using these subregions and borders we can now formulate
LMIs to calculate an upperbound on the L2 gain, as stated
in the following theorem:

Theorem 8 Consider the reset control system in (5) with a
partitioning of the flow set given by (15). This system is stable
and has an L2 gain from w to z smaller than or equal to
γ>0 if the following linear matrix inequalities and equalities
in the variables Pi, PR, Ui, UR, Vi, VR are feasible:[
ATPi+PiA+ET

x,iUiEx,i PiB+ET
x,iUiEw,i CT

BT Pi+ET
w,iUiEx,i −γI+ET

w,iUiEw,i DT

C D −γI

]
≺ 0,

i=1, . . . , N (18a)[
AT

RPRAR−PR+ET
x,RUREx,R ET

x,RUREw,R

ET
w,RUREx,R ET

w,RUREw,R

]
� 0 (18b)[

Pi−ET
x,iViEx,i −ET

x,iViEw,i

−ET
w,iViEx,i −ET

w,iViEw,i

]
� 0, i=1, . . . , N (18c)[

PR−ET
x,RVREx,R −ET

x,RVREw,R

−ET
w,RVREx,R −ET

w,RVREw,R

]
� 0 (18d)

WT
Φi

[
Pi − Pi+1 0

0 0

]
WΦi = 0, i=1, . . . , N−1 (18e)

WT
Φ0

[
PR − P1 0

0 0

]
WΦ0 = 0 (18f)

WT
ΦN

[
PN − PR 0

0 0

]
WΦN = 0 (18g)

where Ui, UR, Vi, VR ∈ R2×2 are arbitrary symmetric ma-
trices with non-negative elements. Minimizing (18) over γ
returns an upperbound on the actual H∞ norm of (5).

Proof: First, (18a) is the elaboration of the dissipativity
equation (14a) using the quadratic supply function s(w, z) =
γ2wT w − zT z and piecewise quadratic Lyapunov functions
Vi(x) = xT Pix:

ẋT Pix + xT Piẋ < γ2wT w − zT z[
x
w

]T [
AT Pi+PiA PiB
BT Pi 0

][
x
w

]
<

[
w
z

]T [
γ2I 0
0 −I

][
w
z

]
[

x
w

]T [
AT Pi+PiA PiB
BT Pi 0

][
x
w

]
−

[
x
w

]T [
0 I
C D

]T [
γ2I 0
0 −I

][
0 I
C D

][
x
w

]
< 0

⇒
[

x
w

]T [
AT Pi+PiA+CT C PiB+CTD
BT Pi+DT C DTD−γ2I

] [
x
w

]
< 0

which should hold for at least all (x,w) belonging to
Ci. As is explained in [21], this subset of (x, w) can be
overapproximated with a quadratic form, hence[

x
w

]T [
ET

x,i

ET
w,i

]
Ui

[
Ex,i Ew,i

] [
x
w

]
≥ 0, (19)

where Ui is a square symmetric matrix with non-negative
elements. Since any (x,w) ∈ Ci also satisfies the quadratic
constraint, we know that the subset {(x,w) : (19)} ≥ Ci,
as required. The S-procedure [22] can then be used to
include (19) into the dissipativity inequality, resulting in an
LMI. Finally, applying a Schur complement yields (18a).
Moreover, (18b) results from (14b) in a similar way.

The Lyapunov functions Vi(x) = xT Pix and VR(x) =
xT PRx should furthermore be positive in their corresponding
domain. Applying the S-procedure in a similar fashion results
in the LMIs (18c) and (18d).

Finally, in Lemma 7 we have assumed that the Lyapunov
function V is Lipschitz continuous. This also implies that V
does not increase nor decrease whenever a boundary from Ci

to Ci+1 or vice versa in the (x, w)-plane is crossed, i.e. when
switching between xT Pix and xT Pi+1x takes place. Hence,
we have to require continuity of the Lyapunov function, i.e.
xT Pix = xT Pi+1x across the i-th border. These borders
are spanned by ker(Φi), or the matrix WΦi equivalently,
so application of Finsler’s Lemma [22] finally results in
equalities (18e) to (18g).

Remark 9 As already mentioned earlier, the obtained min-
imal value of γ will always be an upperbound on the actual
H∞ norm. This upperbound can be lowered by increasing
the number of subdivisions N , see [21]. �

Remark 10 Theorem 8 is a generalization of previous sta-
bility results in literature and is applicable to all augmented
plants and reset controllers which fit into the common multi-
channel H∞ framework described in Section II. It therefore
extends the work in [19], [20], which only considers FOREs
(including the Clegg integrator) and plants in observability
canonical form. Furthermore, as mentioned in Remark 3,
our analysis includes tracking problems, while [19], [20] do
not. Moreover, Theorem 8 is slightly less conservative, since
Pi and PR are not necessarily positive definite. Compared
to [18], our result is much less conservative, includes H∞
performance and is applicable to cases where DK 6= 0. �

B. L2 for tracking problems

The analysis in Theorem 8 is capable of providing an
upperbound on the actual L2 gain of any closed loop reset
control system. However, in some situations the upperbound
may still be too conservative, like in tracking problems as
in Figure 2. The cause of this high upperbound, as is shown
next, is the fact that Dw 6= 0 in those situations.

First note that T ∈ R2×(n+nw) and Φi ∈ R1×(n+nw).
Hence the kernel of Φi is spanned by n+nw−1 independent
columns, so WΦi ∈ R(n+nw)×(n+nw−1). Moreover, (18e)
can be rewritten by removing its zeros, such that

W ′T
Φi(Pi − Pi+1)W ′

Φi = 0 (20)

where W ′
Φi ∈Rn×(n+nw−1) are the first n rows of WΦi. If

Dw = 0 the last nw entries of Φi are 0, which implies
that the structure of WΦi is such (it contains columns
[0, · · · , 0, Inw ]T or linear combinations of this with its other
columns) that W ′

Φi consists of only n − 1 independent

12



w

x

V2(x)=1 V2(x)=4

Ω1 : w ≤ x

Ω2 : w ≥ x

V1(x)=4V1(x)=1

Fig. 4. Common Lyapunov function

columns. Hence its rank is n−1, which gives design freedom
in Pi−Pi+1, since Pi ∈ Rn. However, when Dw 6= 0 the
rank of W ′

Φi is equal to n, and the only solution to (20) is
Pi−Pi+1 =0 for all i. This means that all Vi are the same,
yielding V (x) = xT Px for all subregions. Hence Theorem 8
is solved with a common quadratic Lyapunov function,
which clearly introduces conservatism, and increases the
upperbound on the H∞ norm.

This conservatism also allows a more comprehensible
interpretation. Each subregion Ci has its own Lyapunov
function Vi(x), which solely depends on x, while (15)
shows that the region itself is defined in terms of both x
and w. Figure 4 illustrates this for the simple case where
x,w ∈ R. Continuity of V (x) across the border between
Ω1 and Ω2 requires that V1(x) = V2(x), since V (x) only
depends on x (depicted by the dashed vertical lines).

The above problem of a common Lyapunov function arises
in any situation where Dw 6= 0, including measurement
noise and tracking problems. This drawback can be avoided
however, by making some explicit assumptions about the
structure of the augmented plant P .

Wr K P
r̄ r e yu

η η̄
Wη

Fig. 5. Closed loop with filtered inputs

The solution we suggest is to force Dw = 0, which can be
done by including strictly proper input filters for exogenous
signals that enter the closed loop before the controller, see
Figure 5. Since these strictly proper filters have no direct
feedthrough of the input, there is also no direct feedthrough
from w (containing r̄ and η̄) to y in the augmented plant in
(1), so Dw = 0. By including input filters in the augmented
plant we assume to have a priori knowledge of the inputs,
which is often the case in practice. As such we are able to
include this knowledge inside the state vector xp. This way
the Lyapunov function V (x) also depends on this knowledge
of the input, while Ci no longer depends on w. Theorem 8
can now be simplified, since T = Tx, Ew,i = Ew,R = 0 and
im(W̄Φi) = ker([− sin(θi), cos(θi)] · Tx).

Theorem 11 Consider the reset control system in (5), where
as a special case Dw = 0. This system is stable and has an
L2 gain from w to z smaller than or equal to γ > 0 if the

following set of linear matrix inequalities and equalities in
the variables Pi, PR, Ui, UR, Vi, VR are feasible:[

ATPi+PiA+ET
x,iUiEx,i PiB CT

BT Pi −γI DT

C D −γI

]
≺ 0,

i=1, . . . , N (21a)
AT

RPRAR−PR+ET
x,RUREx,R � 0 (21b)

Pi−ET
x,iViEx,i � 0, i=1, . . . , N (21c)

PR−ET
x,RVREx,R � 0 (21d)

W̄T
Φi (Pi − Pi+1) W̄Φi = 0, i=1, . . . , N−1 (21e)

W̄T
Φ0 (PR − P1) W̄Φ0 = 0 (21f)

W̄T
ΦN (PN − PR) W̄ΦN = 0 (21g)

where Ui, UR, Vi, VR ∈ R2×2 are arbitrary symmetric matri-
ces with non-negative elements. The smallest possible value
of γ for which (21) holds, is an upperbound on the actual
H∞ norm of the considered system.

Remark 12 Theorem 11 is similar to the result in [20].
Note however that our result is applicable to all possible LTI
plants and reset controllers which fit the H∞ framework, as
long as Dw = 0. In contrast to [20] it can cope with tracking
problems and measurement noise, as long as these inputs are
filtered with a strictly proper filter. �

Since the analysis in Theorem 11 encompasses a priori
knowledge of the inputs, it can be performed for a broad
class of desired input types (and corresponding input filters).
Filter examples include

• unit step: Wr(s) = 1
(s+ε) ;

• unit ramp: Wr(s) = 1
(s+ε)2 ;

• sine wave with frequency ω: Wr(s) = ω
(s+ε)2+ω2 ;

where s is the Laplace variable and ε > 0 is a small number
to force the eigenvalues of the filters to the LHP. This is
common in H∞ analysis and necessary to prevent closed
loop poles at s = 0, which causes infeasibility of (21a).

IV. FUTURE RESEARCH DIRECTIONS

Remark 9 already stated that the above analysis tools only
give an upperbound on the actual H∞ norm of a reset control
system, and are hence to some extend conservative. In this
section we shortly address some future research possibilities
to further reduce this conservatism.

A. Discontinuous Lyapunov function

The equalities (18e) to (18g) result from the assumption
that the Lyapunov function is Lipschitz continuous. This is
necessary when it is unclear whether solutions of (5) move
from Ci to Ci+1, or vice versa (or even both). However, in
some situations we might be able to determine beforehand
whether the closed loop solution follows a purely clockwise
or counterclockwise path in the (y, u) plane. In these cases
the Lipschitz continuity can be dropped, as we can allow
decreases of the Lyapunov function across region boundaries.
Since a pure (counter)clockwise path can be expressed in
terms of y and u (e.g. by using d

dt
u
y ), we can formulate a

priori tests. Hence if, depending on the plant and controller
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dynamics, either of the following two tests is valid, equalities
(18e) to (18g) may be relaxed into inequalities as follows:

• Counterclockwise path in (y, u): yu̇− uẏ ≥ 0
⇒ the equality signs in (18e) to (18g) can be replaced

by ‘greater or equal’ signs;
• Clockwise path in (y, u): yu̇− uẏ ≤ 0
⇒ the equality signs in (18e) to (18g) can be replaced

by ‘less or equal’ signs;
These tests can be hard to use in practise however, so
further research is necessary to formulate computable tests.
Moreover, it still needs to be seen whether or not this
relaxation is advantageous in specific situations.

B. Non-decreasing Lyapunov function

Since Theorem 8 is only a sufficient criterion, it can
still be infeasible for systems where the actual closed loop
is stable. Examples may include unstable linear systems
stabilized through resets or unstable resets compensated by
stable linear behavior. The Lyapunov functions as a function
of time for such systems may evolve as depicted in Figure 6.
Clearly, although the closed loop is stable, in either situation
Theorem 8 is too restrictive to prove stability, since it
requires a decreasing V (x) over all time.

A possible strategy to prove stability for these cases,
inspired by [23], is to find a Lyapunov function which
decreases between flow-reset-cycles, marked by the dots
in Figure 6. Consider the example of Figure 6(b) and for
simplicity assume no input or output:

Σ :
{

ẋ = Ax if x ∈ C
x+ = ARx if x ∈ D

(22)

where

C : {x ∈ Rn : ±EfTxx ≥ 0} (23a)
D : {x ∈ Rn : ±ERTxx ≥ 0} (23b)

Choose xi to be the state right before a reset at time ti, x+
i

right after it, and xi+1 right before the next reset at ti+1.
Moreover, assume the flow region to be stable, hence

V̇ (x) + αV (x) ≤ 0, with α ≥ 0, (24)

t

V(t)

reset
reset

reset

(a) Unstable flow region, stable reset

t

V(t) reset
reset

reset

(b) Stable flow region, unstable reset

Fig. 6. Possible Lyapunov functions V (x) as a function of time t

If V (x) may not increase between reset times, this yields

V (xi+1) ≤ e−α(ti+1−ti)V (x+
i ) ≤ V (xi) (25)

As an example, suppose we again use quadratic Lyapunov
functions V (x) = xT Px. Then (25) can be written as

xT
i AT

ReA
T(ti+1−ti)P eA(ti+1−ti)ARxi ≤ xT

i Pxi, (26)

with must be valid for all xi ∈ D. This then yields

AT
ReA

T(ti+1−ti)P eA(ti+1−ti)AR − P

+ET
x,RUREx,R � 0 (27)

Although this result might seem useful, it requires explicit
knowledge of the reset times ti and ti+1, which are in
practise hard to find and may be state dependent. Further
research in this direction is therefore necessary, possibly in
combination with non-quadratic V (x).

Note that this approach does not include L2 gains yet.
The needed introduction of w and z further complicates the
analysis, while we believe that the stability proof by itself is
already challenging enough.

V. CONCLUSIONS

In this paper we have derived a set of LMIs with which
the L2 gain of any reset control system which fits into
the H∞ framework can be calculated, and is therefore a
generalization of the work in [20]. Our analysis can also
be applied to tracking and measurement noise problems;
possible conservatism in these cases can be removed by
including strictly proper input filters. Finally we have sug-
gested possible future research directions to further improve
stability and L2 analysis techniques for reset control systems.

VI. DISCUSSION

As mentioned before, previous publications have shown in
both simulations [9], [16] and experiments [7], [14], [17] that
reset control can perform ‘better’ than linear control in some
situations. This brings on the need for a performance measure
to quantify this ‘betterness’. Therefore the H∞ analysis for
reset control systems published in this paper and previously
introduced in [19], [20] can be very useful.

Using H∞ techniques it is now theoretically possible to
define the best linear controller for an LTI system, e.g. by
using the synthesis method in [24], and then search for a
reset controller which outperforms it. The search for this
reset controller might however be impossible.

First of all, it seems impossible to formulate H∞ synthesis
LMIs with the currently available knowledge, hence the H∞
optimal reset controller is hard to find. This problem is to a
large extend caused by the ET

·,·U·E·,· terms in (18) and (21),
which introduce nonlinear combinations of design variables.
Unfortunately this nonlinearity cannot be eliminated using
the results in [25] or linearized by the change of variables
described in [24], so the synthesis does not yield an LMI.

Secondly, we question whether reset control can ever
outperform the optimal L2-minimizing linear controller. As
is shown in [26] and [27], for LTI plants there exists no non-
linear (possibly time-varying) controller which yields a lower
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L2 gain than the optimal linear controller. Unfortunately, we
expect reset control to be no exception to this. We therefore
point out that Examples 2 and 3 in [19] do not provide a
fair comparison between linear and reset controllers; in both
examples it is easy to find linear controllers with much lower
H∞ norms.

We therefore suggest to use other norms than H∞ to
quantify reset control performance. Since the proof of The-
orem 8 shows that (18a) is the result of using a specific
quadratic supply function, we believe that it is possible to
derive analysis LMIs for various other induced norms too, as
long as they can be described using other specific quadratic
supply functions. Moreover, the advantage of reset control
was especially shown in the transient behavior of the step
response, hence we believe the H2 analysis in particular to
be very useful. Since one of the interpretations of H2 is the
total output energy to specific initial values, we foresee reset
opportunities in this area. Furthermore, it is recommended
to examine whether reset control is advantageous in mixed
problems, like in mixed H2/H∞ analysis.

Finally, note that nonlinear controllers might be better than
linear controllers in H∞ sense, when we consider structured
uncertainties, i.e. in the robust stabilization problem. Future
research might indeed show that in these situations there are
also possibilities for reset controllers.
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Chapter 3

H2 analysis of reset control systems

As already mentioned in Chapter 1, reset control is one of the possible non-linear control
methods which might overcome some or all limitations which linear controllers are subject
to. Indeed, both simulations [3, 10] and experiments [9, 12, 27] have shown the potential of
reset control, especially in the transient behavior of the step response. Although there are
some connections between H∞ and step responses, the H∞ performance analysis of Chapter 2
is mostly a steady state measure however. Hence, this brings on the need for a different
performance measure, which has a clear transient time domain interpretation. A possible
answer is the H2 norm, for which the paper in this chapter provides an analysis tool.

Analogous to Chapter 2, this analysis is derived using dissipativity theory and piecewise
quadratic Lyapunov functions. The result is again a computable set of LMIs, which returns
an upperbound on the actual H2 norm for reset control systems. The usefulness of this LMI-
based H2 norm calculation is shown in a simple though convincing example, where it is shown
that reset control can outperform the ‘optimal’ linear controller for specific input-constrained
H2 problems.
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H2 performance analysis of reset control systems

G. Witvoet, W.H.T.M. Aangenent, W.P.M.H. Heemels, M.J.G. van de Molengraft, and M. Steinbuch

Abstract— To overcome fundamental limitations of linear
controllers, reset controllers were proposed in literature. Since
the closed loop system including such a reset controller is of
a hybrid nature, it is difficult to determine its performance.
The focus in this paper is the performance determination of
a reset control system in H2 sense. The method is generally
applicable in the sense that it is valid for any proper LTI plant
and linear-based reset controller. We derive convex optimization
problems in terms of LMIs to compute an upperbound on the
total output energy, using dissipativity theory with piecewise
quadratic Lyapunov functions. Finally, by means of a simple
multiobjective tracking example, we show that reset control
can outperform a linear controller obtained via a standard
multiobjective control design method.

Index Terms— Reset control, H2, stability, hybrid systems,
linear matrix inequality, step response.

I. INTRODUCTION

In order to overcome the fundamental performance lim-
itations that linear controllers are known to be subject to
[1]–[3], various nonlinear feedback controllers for linear
time-invariant (LTI) plants were proposed in literature. An
example of such a nonlinear feedback is the reset controller,
which is basically a linear controller whose states (or subset
of states) are reset to zero whenever its input and output
satisfy certain conditions.

The concept of reset control was first introduced in 1958
by means of the resetting integrator of Clegg [4]. The
describing function of the Clegg integrator has the same
magnitude plot as a linear integrator, but its performance
limiting phase lag is only 38,1◦ instead of the normal 90◦.
However, because of its nonlinear hybrid behavior, the use
and effect of this resetting integrator is not straightforward,
so it was not until 1974 that it was first used in a control
design procedure [5]. Subsequently, in [6] a first order
reset element (FORE) was introduced, which was used in
a controller design procedure based on frequency domain
techniques. An overview of these results is given in [7].

At the end of the ’90s there has been renewed interest in
reset control systems, resulting in various stability analysis
techniques. The first results were reported in [8] and [9],
stating stability criterions for zero-input closed loops with a
second order plant and a Clegg integrator or a FORE, respec-
tively. However, these criterions involve explicit computation
of reset times and closed loop solutions, and are hard to
generalize for higher order systems.

In following publications stability conditions were formu-
lated using Lyapunov based conditions. This was first done in
[10] and [11], in which only second order closed loops with
constant inputs were considered. These results have been
extended in [12] and [13] to a sufficient criterion for BIBO

(bounded input bounded output) stability, and later to the so-
called Hβ-condition [14]. The latter paper also addressed the
tracking problem, based on the internal model principe. The
possible advantages of reset controllers over linear ones have
been shown both in simulations [9], [15] and experiments
[7], [13], [16]. A clear overview of this work is provided in
[17], summarizing the Hβ stability analysis for general reset
systems.

The Hβ-condition is a computable stability check for zero-
input reset control systems, based on a reformulation of
Lyapunov based stability linear matrix inequalities (LMIs)
using the well known Kalman-Yakubovich-Popov Lemma.
The Hβ-condition is however conservative, since it considers
only quadratic stability by using common quadratic Lya-
punov functions, and it requires stability of the linear closed
loop dynamics.

In more recent publications [18], [19] the authors were
able to remove part of this conservatism by introducing two
important adjustments. First, a slightly different resetting
condition was suggested, i.e. resetting when the controller
input and output have opposite sign instead of when the input
is zero. Second, piecewise quadratic Lyapunov functions
were used, to capture a broader class of stability problems
than merely quadratic stability. On top of this the analysis
has been extended to L2 stability, such that the closed loop
H∞-gain from input to output of a reset control system can
be approximated by an upperbound. However, the results in
[18] and [19] are not universally applicable, since it considers
only Clegg integrators and FOREs.

Still, the proposed calculation of the L2 gain is very useful,
since it expresses the performance of certain reset control
systems (in this case FOREs) in a quantitative measure.
Hence, it provides a measure to objectively compare the
performance of reset controllers to that of linear ones.
Although there are known to be some connections between
L2 and closed loop step responses, the L2 gain is typically a
steady state measure, whereas the advantage of reset control
over linear control is especially apparent during the transient
behavior [15]. In particular, it has been shown that reset
controllers are able to reduce the overshoot of step responses,
thereby decreasing the total energy of the error signal. This
observation shows similarities with one of the interpretations
of the H2 norm, which can be seen as the total output
energy (of in this case the tracking error) of a closed loop
system to either an impulse input or non-zero initial values.
Because of this transient interpretation, we believe that the
H2 norm might be a very helpful measure, even more than
the L2 gain, to objectively show that reset controllers can
outperform linear ones in specific situations.



For this reason this paper derives an LMI-based analysis
method to calculate upperbounds on the H2 norm of a
closed loop reset control system. The results can be used to
approximate the energy content of the output resulting from
specific input signals. We will use the same reset condition
as in [19] and also adopt piecewise quadratic Lyapunov
functions to reduce conservatism of the analysis. However, in
contrast to [19] our results are not only useful for FOREs, but
for any reset controller with linear flow dynamics. Moreover,
they use H2 performance instead of the L2 gain. Finally, we
provide a simple though convincing example to illustrate the
accuracy of our proposed H2 norm calculation and show
that, for an input-constrained H2 problem, reset control can
indeed outperform a linear controller designed by a common
multiobjective design method.

This paper is organized as follows. Section II provides
some background on the H2 norm for linear systems. In
Section III we introduce the closed loop layout under consid-
eration, and give mathematical descriptions of the dynamics
of the plant and the reset controller. Our main results on the
H2 norm for reset control systems are derived in Section IV.
Finally, the advantage of reset control in H2 sense is shown
by an example in Section V.

Notation. The set of real numbers is denoted by R, the set
of positive real numbers is denoted by R+. The set of real
symmetric matrices with non-negative elements is denoted
by S+. The identity matrix of dimension n×n is denoted by
In∈Rn×n. Given two vectors x1, x2 we write (x1, x2) to
denote [xT

1 , xT
2 ]T . A vector x ∈ Rn is nonnegative, denoted

by x ≥ 0, if its elements xi ≥ 0 for i = 1, . . . , n. A
symmetric matrix A ∈ Rn×n is positive definite, denoted
by A � 0 if xT Ax > 0 for all x ∈ Rn\{0}. A sequence of
scalars (u1, u2, . . . , uk) is called lexicographically nonnega-
tive, written as (u1, u2, . . . , uk) ≥` 0, if (u1, u2, . . . , uk) =
(0, 0, . . . , 0) or uj >0 where j = min{p=1, . . . , k : up 6=0}.
For a sequence of vectors (x1, x2, . . . , xk) with xj ∈ Rn, we
write (x1, x2, . . . , xk) ≥` 0 when (x1

i , x
2
i , . . . , x

k
i ) ≥` 0 for

all i = 1, . . . , n.

II. LINEAR H2 THEORY

Our main results on the H2 analysis of reset control
systems uses some common H2 results for linear single input
single output (SISO) systems

Σ :
{

ẋ = Ax + Bw
z = Cx.

(1)

where A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n are the system
matrices, x ∈ Rn is the state, and w ∈ R and z ∈ R denote
the input and output, respectively. We shortly summarize
some of these results here (see [20], [21] for more details).

A. H2 norm for linear systems

It is well-known that one of the possible interpretations of
the H2 norm is the total energy content of the output z due to
an impulsive input w. The response of system (1) to such an
impulsive input is equivalent to the response obtained when
the system is subjected to the initial condition x0 = B. In

this paper we focus on the latter and hence assume w.l.o.g.
that w = 0.

Definition 1 Consider the linear system (1), with initial state
x0 ∈ Rn and no input, so w = 0. The total output energy in
z is then defined by:∫ ∞

0

zT zdt =
∫ ∞

0

xT
0 eA

TtCTCeAtx0dt. (2)

The square root of this integral is called the H2 norm for
x0 and is denoted by ||Σ||2,x0 .

To calculate (2) we introduce the observability gramian

M :=
∫ ∞

0

eA
TtCTCeAtdt, (3)

so that the H2 norm is equal to

||Σ||22,x0
=

∫ ∞

0

zT zdt = xT
0 Mx0. (4)

It is well known that for Hurwitz matricesA the observability
gramian M is the solution to the Lyapunov equality

AT M + MA+ CTC = 0. (5)

B. An LMI-approach to H2

The H2 norm of a linear system can also be formulated
using the concept of dissipativity [20]:

Definition 2 The linear system (1) with state x ∈ Rn, input
w ∈ R and output z ∈ R is stable and strictly dissipative
w.r.t. a supply function s : R × R → R if there exists a
storage function V : Rn → R+ such that

V (x(t1))− V (x(t0)) <

∫ t1

t0

s(w(t), z(t))dt (6)

for all t1 ≥ t0 and V (0) = 0.

For the initial state H2 problem for (1) there is no input
and we are only interested in the energy content of the
output, hence we select s(w, z) = −zT z. Using quadratic
Lyapunov functions V (x) = xT Px with P positive definite,
the differential form of (6) then yields

dV
dx ẋ < s(w, z) ∀x 6= 0

ẋT Px + xT Pẋ < −zT z ∀x 6= 0
xT (AT P + PA)x + xTCTCx < 0 ∀x 6= 0

AT P + PA+ CTC ≺ 0, (7)

which is an LMI in the design variable P � 0. The actual
H2 norm again follows from 6 and can be upperbounded
by using t0 = 0 and letting t1 → ∞, V (x(t1)) = 0 and
s(w, z) = −zT z. We then obtain:

||Σ||22,x0
=

∫ ∞

0

zT zdt < V (x(t0)) = xT
0 Px0. (8)

We now approximate the H2 norm by infimizing γ2 subject
to the LMI constraints

AT P + PA+ CTC ≺ 0 (9a)
xT

0 Px0 < γ2 (9b)
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Fig. 1. Closed loop layout with input w and output z

which should be solved for P � 0 and γ2. The infimum
of this optimization problem retrieves ||Σ||22,x0

. These LMIs
are, of course, closely related to (4) and (5).

III. SYSTEM DESCRIPTION

In this section we introduce the closed loop layout and re-
set control system for which the H2 norm will be calculated.

A. Closed loop layout

In recent papers (see e.g. [15]), reset control is shown
to be advantageous when the transient response to specific
input signals (like step functions) is considered. Therefore,
we focus on the general reset control system layout depicted
in Figure 1, consisting of various input filters, a linear plant
P and a reset controller K. Our goal is to calculate the
total output energy of the unfiltered output z, consisting of
the signals e (tracking error), up (control) and yp (plant
output) or a subset of these signals, subject to certain specific
exogenous inputs w, consisting of the signals r (reference), d
(disturbance) and η (measurement noise) or a subset of these
inputs. For ease of exposition, all these signals are assumed
to take values in R, i.e. we only consider SISO plants and
controllers. The input w is assumed to be known a priori,
and this knowledge is captured in input filters Wr, Wd and
Wη. Possible filters include:

• unit step: W (s) = 1
(s+ε) ;

• unit ramp: W (s) = 1
(s+ε)2 ;

• sine wave with frequency ω: W (s) = ω
(s+ε)2+ω2 ;

where s is the Laplace variable and ε > 0 is a small offset to
ensure stability of the filter. This offset is needed to guarantee
closed loop stability, as is standard in H2 and H∞ problems
[22]. Note that when an impulse input is applied to these
filters, the filter outputs indeed approximate a step, ramp or
sine wave respectively, when ε tends to zero. Hence, the
total energy in z as a result of these specific input signals
gets arbitrarily close to the total output energy of the impulse
response from w to z, which is one of the interpretations of
the H2 norm. As discussed in Section II, to compute the H2

norm we can equivalently use the initial condition setting
and assume w = 0. For reasons of generality, however, we
will elaborate on the plant and controller dynamics without
this assumption.

B. Plant dynamics

The plant P and all input filters are LTI systems. Together
they form the augmented plant Paug, depicted by the dashed

box in Figure 1. Since this augmented plant is also LTI, we
can describe the dynamics by:

ẋp = Axp + Bww + Bu
z = Czxp + Dzww + Dzu
e = Cxp + Dww,

(10)

where A,Bw, B,Cz, Dzw, Dz, C, Dw are matrices of appro-
priate dimension, xp ∈ Rnp is the augmented plant state,
and w ∈ Rnw and z ∈ Rnz are the exogenous input and
output, respectively. The tracking or stabilization error is
available for feedback and we assume that there is no direct
feedthrough from u to e, as is e.g. the case for general motion
systems.

C. Reset controller

The reset controller K is modeled as a linear controller
which resets whenever its input e and output u satisfy a
certain condition. This controller is thus described by

ẋk = AKxk + BKe if (e, u) ∈ C′

x+
k = Arxk if (e, u) ∈ D′

u = CKxk + DKe,
(11)

where xk ∈ Rnk is the controller state. The closed loop
state then becomes x = (xp, xk) where x ∈ Rn. The
reset controller can be considered as a hybrid system with
a flow set C′ and a reset set D′ [18]. Indeed, as long as
(e, u) ∈ C′ the controller behaves linearly and its output
flows conform (AK , BK , CK , DK). When (e, u) ∈ D′ the
state is changed instantaneously from xk to x+

k by the
discrete map Ar ∈ Rnk×nk .

For analysis purposes the sets C′ and D′ should be closed
and such that C′ ∪ D′ = R2 [18]. The sets are defined by
a resetting condition, for which many choices are possible,
but here we will follow [18] and [19] where resetting occurs
whenever input and output have opposite sign, i.e. eu ≤ 0.
Hence, the controller flows whenever e ≥ 0, u ≥ 0 or
e ≤ 0, u ≤ 0, which yields, using the notation from [23],

C′ :=
{[

e
u

]
∈ R2 : Ef

[
e
u

]
≥ 0 or Ef

[
e
u

]
≤ 0

}
(12a)

D′ :=
{[

e
u

]
∈ R2 : ER

[
e
u

]
≥ 0 or ER

[
e
u

]
≤ 0

}
(12b)

where

Ef =
[

1 0
0 1

]
and ER =

[
−1 0
0 1

]
.

The flow set (12a) and reset set (12b) can also be expressed
in terms of x and w. Therefore we introduce a transformation
matrix T =

[
Tx Tw

]
:[

e
u

]
= T

[
x
w

]
=

[
C 0 Dw

DKC CK DKDw

] xp

xk

w

 ,

such that

C̃ :=
{[

x
w

]
∈ Rn+nw : EfT

[
x
w

]
≥ 0

or EfT

[
x
w

]
≤ 0

}
(13a)
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D̃ :=
{[

x
w

]
∈ Rn+nw : ERT

[
x
w

]
≥ 0

or ERT

[
x
w

]
≤ 0

}
. (13b)

The flow and reset regions C̃ and D̃ depend in general
on both the closed loop state x and the exogenous input
w, due to the presence of Dw. However, it is known that
the H2 norm of a linear system is bounded, only if the
corresponding closed loop transfer matrix between w and
z is strictly proper [21], [22]. As in our closed loop system
the transfer between e.g. r and e is defined by the sensitivity
function, which is biproper, we need a strictly proper Wr to
obtain a strictly proper transfer matrix from r̄ to e. A similar
reasoning can be applied to the other input signals, which
implies that the following assumption is needed to ensure a
bounded H2 norm

Assumption 3 The input filters Wr, Wd and Wη are all
strictly proper.

Note that strict properness of the input filters is quite natural
in practice, as is also indicated by the three examples in
Section III-A. The strict properness of the input filters
implies that there is no direct feedthrough between the input
w and the controller input signal e (i.e. Dw = 0) or between
w and z (i.e. Dzw = 0). This simplifies the definitions of C̃
and D̃ to:

C := {x ∈ Rn : EfTxx ≥ 0 or EfTxx ≤ 0} (14a)
D := {x ∈ Rn : ERTxx ≥ 0 or ERTxx ≤ 0} (14b)

which now only depend on x. These flow and reset maps are
used in the remainder of this paper.

The reset action itself is defined by the reset matrix Ar,
indicating to which values the controller states are reset
to. Various choices of Ar are possible, depending among
others on the plant and controller dynamics. A common and
appropriate choice in most cases, is to reset (a subset of) the
states to zero, i.e.

Ar =
[

Ink−nr 0
0 0nr

]
,

stating that that only the last nr of the nk controller states
are reset to zero, while the other states remain unchanged.

D. Closed loop dynamics

We can now combine the augmented plant and the reset
controller into one closed loop system, described by Σ:

Σ :

 ẋ = Ax + Bw if x ∈ C
x+ = ARx if x ∈ D
z = Cx +Dw,

(15)

where, using Dw = 0 and Dzw = 0,[
A B
C D

]
=

[
A + BDKC BCK Bw

BKC AK 0
Cz + DzDKC DzCK 0

]
AR =

[
Inp 0
0 Ar

]
.

The linear closed loop system which results when resetting
is omitted (i.e. when AR = In, C = Rn and D = ∅), is
called the base linear system. At this point we return to the
assumption that w = 0 and consider non-zero initial values
of the input filters. Hence, we assume w = 0 and x0 = Bj ,
where Bj denotes the j-th column of B, corresponding to
the j-th input (filter). Note that x0 = Bi + Bj where i 6= j
is also a valid initial condition.

To exclude multiple resets at one point in time, hence to
guarantee that after each reset the system can flow on a non-
trivial time interval (local existence of solutions), we adopt
the following assumption:

Assumption 4 The reset controller and the regions C and
D are such that

x ∈ D ⇒ x+ ∈ FC. (16)

where FC is given by

FC := {x0 ∈ C : ∃ε>0 ∀τ ∈ [0, ε) xx0(τ) ∈ C} (17)

defining all initial conditions x0 (or in this case x+) for
which the closed loop solution xx0(τ) remains inside C at
least on the interval τ ∈ [0, ε).

This assumption implies that the state after a reset x+ should
either lie in the interior of C, or the flow dynamics should not
drive x outside C when it is on the boundary of C. Hence,
we can formulate a check for Assumption 4, based on a
lexicographic ordering.

Corollary 5 The closed loop system (15) can flow after
a reset x+ = ARx if at least one of the two following
lexicographic orderings holds whenever x ∈ D(

EfTxARx,EfTxAARx,EfTxA2ARx,
. . . , EfTxAn−1ARx

)
≥` 0 (18a)(

EfTxARx,EfTxAARx,EfTxA2ARx,
. . . , EfTxAn−1ARx

)
≤` 0 (18b)

Remark 6 As FC ⊆ C, we at least need

x ∈ D ⇒ x+ ∈ C, (19)

to satisfy (16), which corresponds to the first vector in the
lexicographic ordering of (18). Hence, this relation as used
in [18] is only a necessary condition that can be obtained
from Corollary 5. One way to satisfy this condition is to
assume that CKAr = 0 for all x ∈ D. �

The goal of this paper is to compute the H2 norm for reset
control systems, which is defined as follows:

Definition 7 The H2 norm of the reset control system (15),
or equivalently the total energy in its output z ∈ Rnz due to
a non-zero initial value x0 ∈ Rn, is defined as

||Σ||22,x0
=

∫ ∞

0

zT zdt (20)

It turns out that the concept of dissipativity and the LMI
formulation can be extended to calculate the H2 norm for
reset control systems as will be done in the next section.
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IV. MAIN RESULTS

We now present our main results on the LMI-based
calculation of an upperbound on the H2 norm of reset control
systems. For this initial state H2 analysis we extend the
approach of Section II-B, i.e. we derive analysis LMIs based
on dissipativity theory using a common quadratic Lyapunov
function, after which we relax the Lyapunov conditions by
introducing piecewise quadratic Lyapunov functions as in
[24].

A. Common Lyapunov function

Although a reset control system behaves in a hybrid
manner, the mathematical description of its dynamics (15)
shows that both the flow and the reset part can be described in
a linear fashion. This motivates our choice to use a common
quadratic Lyapunov function V (x) = xT Px.

Theorem 8 Consider the reset control system (15) with C
and D as defined in (14). The following statements are
equivalent

i) system (15) is asymptotically stable and ||Σ||2,x0 < γ
ii) there exists P � 0 and Uf , UR ∈ S2×2

+ such that

AT P + PA+ CTC + TT
x ET

f UfEfTx ≺ 0 (21a)

AT
RPAR − P + TT

x ET
RURERTx � 0 (21b)

γ2 − xT
0 Px0 > 0 (21c)

Proof: The proof is based on showing that the hypoth-
esis of the theorem imply, for V (x) = xT Px, that

d

dt
V (x) < s(w, z) when x ∈ C\{0} (22a)

V (x+) ≤ V (x) when x ∈ D (22b)

Indeed, if (22) holds then

V (x(t1))− V (x(t0)) ≤
∫ t1

t0

s(w(t), z(t))dt (23)

which means that system (15) is dissipative w.r.t. the supply
function s(w, z). Furthermore, by letting t1 →∞ and using
V (x(t1)) = 0, s(w, z) = −zT z, this yields that

||Σ||22,x0
=

∫ ∞

0

zT zdt = −
∫ ∞

0

s(w, z)dt ≤ V (x(t0)) < γ2

(24)
To show (22a) and (22b), note that

x ∈ C ⇒ xT TT
x ET

f UfEfTxx ≥ 0 (25a)
x ∈ D ⇒ xT TT

x ET
RURERTxx ≥ 0. (25b)

Hence, combining (25a) with (21a) yields that

xT (AT P + PA+ CTC)x < 0 if x ∈ C\{0} (26)

and combining (25a) with (21b) gives

xT (AT
RPAR − P )x ≤ 0 if x ∈ D, (27)

which are just reformulations of (22a) and (22b). Hence, the
proof is complete.

B. Piecewise quadratic Lyapunov functions

Although Theorem 8 provides an easy way to determine
an upperbound on the H2 norm for a specific x0, it can be
conservative. Indeed, recalling the dissipativity inequalities

V (x(t1))− V (x(t0)) ≤
∫ t1

t0

s(w(t), z(t))dt

γ2 > V (x(t0)),

it is easy to see that by considering quadratic Lyapunov
functions we have restricted the storage function V (x) cor-
responding to the computed H2 norm γ to be quadratic as
well. However, since a reset control system (15) behaves in a
hybrid manner, we expect the storage function corresponding
to the actual H2 norm of the reset system, V (x0)||Σ||2,x0

=
||Σ||22,x0

, to be a complex function, possibly of high order.

e

u

θ1

θi

θi+1θN

P1

Pi

Pi+1 PN

PR

PR

Fig. 2. Partitioning of the (e, u)-space

To reduce this conservatism, we will approximate this
complex storage function by using piecewise quadratic Lya-
punov functions [24], which also results in a set of LMIs.
These piecewise Lyapunov functions are obtained by parti-
tioning the flow set C′ into smaller regions C′i and assigning
a different quadratic Lyapunov function Vi(x) = xT Pix to
each of them, see Figure 2. The angles θi and θi−1 uniquely
define two lines

u cos(θi) = e sin(θi)
u cos(θi−1) = e sin(θi−1)

which bound each region C′i. These angles should be chosen
such that 0 < θ0 < θ1 < . . . < θN = π

2 . Here we choose to
distribute θi equidistantly, so θi = i

N
π
2 , where i=0, . . . , N

and N is the number of desired subregions. Using the
coordinate transformation matrix Tx, we can now define
regions Ci and D as

Ci := {x ∈ Rn : EiTxx ≥ 0 or EiTxx ≤ 0} (28a)
D := {x ∈ Rn : ERTxx ≥ 0 or ERTxx ≤ 0} (28b)
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where

Ei =
[
− sin(θi−1) cos(θi−1)

sin(θi) − cos(θi)

]
, ER =

[
−1 0
0 1

]
.

Furthermore, the boundaries of the regions are defined by[
− sin(θi) cos(θi)

]
Txx = Φix = 0, (29)

whose solutions are in the kernel of Φi. We can also
use an image representation for these boundaries, yielding
im(WΦi) = ker(Φi), where WΦi ∈ Rn×(n−1) is a matrix
with full column rank, and im(WΦi) denotes its image.

Using this partitioning we can now formulate our main
result on the calculation of an H2 upperbound, as stated in
the following theorem:

Theorem 9 The following statements are equivalent
i) system (15) is asymptotically stable and ||Σ||2,x0 < γ

ii) there exists Pi, PR � 0 and Ui, UR, Vi, VR ∈ S2×2
+ such

that

AT Pi + PiA+ CTC + TT
x ET

i UiEiTx ≺ 0,
i = 1, . . . , N (30a)

AT
RPRAR − PR + TT

x ET
RURERTx � 0 (30b)

Pi − TT
x ET

i ViEiTx � 0 i = 1, . . . , N (30c)
PR − TT

x ET
RVRERTx � 0 (30d)

WT
Φi (Pi − Pi+1) WΦi = 0, i = 1, . . . , N−1 (30e)

WT
Φ0 (PR − P1) WΦ0 = 0 (30f)

WT
ΦN (PN − PR) WΦN = 0 (30g)

γ2 − xT
0 Pjx0 > 0, j ∈ I(x0) (30h)

where I(x0) := {i : x0 ∈ Ci} denotes the indices of the
regions that contain x0.

Proof: We will show that V , defined as V (x) = xT Pix
when x ∈ Ci and V (x) = xT PRx when x ∈ D, is Lipschitz
continuous and satisfies

∂Vi

∂x
Ax < −zT z if x ∈ Ci, x 6= 0. (31a)

V (x+)− V (x) ≤ 0 if x ∈ D (31b)
γ2 > V (x0), (31c)

Using the results in [25] it can be proven that (31a) and (31b)
guarantee that

V (x(t1))− V (x(t0)) ≤
∫ t1

t0

s(w(t), z(t))dt (32)

which yields similarly as in the proof of Theorem 8 that
||Σ||22,x0

≤ γ2. To show that V is Lipschitz continuous we
will use (30e), (30f), and (30g). As Ci ∩ Ci+1 ∈ im(WΦi

)
we have that any x ∈ Ci∩Ci+1 can be written as x = WΦi

x̄
for some x̄ and thus

xT (Pi+1 − Pi)x = x̄WT
Φi

(Pi+1 − Pi)WΦi x̄
(30e)= 0. (33)

The same applies for the intersections C1 ∩D and CN ∩D.
As D ∪ ∪iCi = Rn this proves the Lipschitz continuity of
V .
Applying a similar reasoning to (30a) and (30b) as in the
proof of Theorem 8, yields (31a) and (31b), respectively.

Finally, to show that V is a positive definite function, note
that for x ∈ Ci\{0} it holds that

V (x) = xT Pix
(30c)
> xT TT

x EiViEiTxx ≥ 0 (34)

as x ∈ Ci ⇒ xT TT
x EiViEiTxx ≥ 0 due to the fact that

Vi has non-negative elements. The same applies for x ∈ D
using (30d). This establishes (31).
Applying now analogous arguments as in the proof of
Theorem 8, completes this proof.

Remark 10 The results of Theorem 9 are related to [24],
in which an H2 analysis is provided for piecewise affine
systems. Analogously to [24] we thus have to conclude
that the found minimal value of γ is only an upperbound
on the actual H2 norm. However, as is explained in [24],
this upperbound can be lowered by increasing the number
of subregions N , thereby increasing the tightness of the
approximation of the actual H2 norm. Hence, Theorem 9
is always less conservative than Theorem 8. �

Remark 11 Note that continuity of V is a very natural re-
quirement, since we do not know beforehand whether or not
closed loop solutions will go from Ci to Ci+1 or vice versa.
As such we use continuity to prevent the Lyapunov function
to increase along border crossings. However, in some special
cases we might be able to determine the path of the solution
in the (e, u)-plane beforehand. If this movement is purely
clockwise or counterclockwise, the Lipschitz continuity of V
can be dropped, allowing decreases of the Lyapunov function
across border crossings. This removes conservatism in the
stability analysis even further. �

Remark 12 In situations where Dw 6= 0 and w 6= 0, e.g.
in certain H∞ problems, the flow and reset regions could still
depend on the input w. In that case each piecewise quadratic
Lyapunov function Vi(x) = xT Pix depends only on x, but
should be valid in a subregion C̃i which depends on both
x and w, i.e. V (x) = xT Pix when (x,w) ∈ C̃i. Since for
any x there is a wi such that (x,wi) ∈ C̃i, it must hold that
xT Pix = V (x) = xT Pjx and thus Pi = Pj . For example,
with (x,w) ∈ Rn+nw :

C̃i :=
{[

x
w

]
: EiT

[
x
w

]
≥ 0 or EiT

[
x
w

]
≤ 0

}
. (35)

Since for any x we can always find a w such that (35) is
valid, subregion C̃i covers all x, and hence Vi should hold
for all x. Since this holds for all i, the piecewise Lyapunov
approach reduces to a common quadratic one, which is a
more conservative analysis, as discussed earlier. �

V. EXAMPLE

As we mentioned before, performance improvement by
using reset control is especially apparent in the transient
closed loop behavior, which motivates our choice to consider
the H2 norm of reset control systems. Indeed, in this section
we show, by means of a multiobjective H2/H∞ problem,
that reset control can perform better than the optimal linear
controller for this problem. We wish to minimize the energy

23



content of the error e, subject to a maximum allowed control
effort u. Moreover, the example illustrates the accuracy of
our proposed LMI method in Theorem 9.

Example 1 (Tracking performance of an integrator plant)
In this example we consider a closed loop system with an
integrator plant, G(s) = 1

s where s is the Laplace variable,
which should track a unit step reference r(t) = 1(t). Our
goal is to minimize the energy in the error e for this specific
reference, subject to a maximum allowed control signal u
to the plant, as is usually the case in practical situations.
Hence, our design problem is defined by the multiobjective
problem

min
K

√∫ ∞

0

e2 dt (36a)

subject to |u(t)| < 1 (36b)

The theoretical best non-linear controller for our integrator
plant is described by the discontinuous feedback

u = sign(e). (37)

This controller produces the maximum control signal as
long as possible, and vanishes as soon as the plant output
reaches the desired value. This way the plant reacts as fast
as possible, without any overshoot, thus realizing a minimal
amount of energy in e, i.e.

√
1/3 ≈ 0.577. The closed loop

response resulting from this hybrid feedback is depicted in
Figure 4 in grey.

Common multiobjective controller design methods rely on
norm based optimization functionals and constraints [21].
Problem (36), however, is given in terms of time domain
signals. As discussed in Section III, the step reference can
be accurately approximated by including an input filter
Wr(s) = 1

s+ε and considering an impulsive input to this
filter. A common attempt to capture the essence of time
domain specifications such as (36b) is the reformulation into
the frequency domain. In general such reformulations are
either approximate or conservative. However, in [26] the
authors propose to use a static output filter Wu = m

U0
for

a standard H∞ optimization problem in order to obtain that
|u(t)| < U0 for the specific step reference r(t) = m · 1(t).
These considerations result in the multiobjective problem as
depicted in Figure 3, where, using U0 = m = 1, ε = 10−4,
the matrices defining the augmented plant Paug are given by

A =
[

0 0
0 −ε

]
, B =

[
1
0

]
, Bw =

[
0 0
1 0

]
,

Cz =
[
−1 1
0 0

]
, C =

[
−1 1

]
Dz =

[
0
1

]
.

This allows us to translate (36) into the mixed H2/H∞
problem

min
K

γ2 = ||T2||2 (38a)

subject to ||T∞||∞ < γ∞ (38b)

where T2 denotes the transfer function from w1 to z1, T∞
denotes the transfer between w2 and z2, and γ∞ = 1. This
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Fig. 3. Augmented plant description for the multiobjective problem

multiobjective problem is hard to solve in general since
the corresponding LMIs involve products of the Lyapunov
variables and controller parameters. The standard method
to convexify (38) is by requiring a common Lyapunov
function for both specifications, and is thus to some extend
conservative [21]. It is therefore necessary to iteratively
increase γ∞ until the H∞-norm of the control sensitivity
function R(s) = u(s)

r(s) = K
1+KG is just below 1, which in this

case happens when γ∞ = 1.25. Furthermore, the actual H2

norm with the obtained controller should be recalculated with
a separate linear H2 analysis afterwards. Using this method,
we obtain γ2 = 1 and the static linear controller K = 1.
The closed loop response using this controller is depicted
in Figure 4 by the dashed line. The actual H2 norm from
w1 to z1 is

√
1/2 ≈ 0.707 for this linear controller, which

can be validated by either an LMI optimization or numerical
integration of the output energy in e.

However, a better performance, i.e. a smaller minimum
for (36a) while maintaining (36b), can easily be obtained by
using the reset controller satisfying (11) where

AK =
[
−0.01 7.8125

0 −62.5

]
, BK =

[
0
8

]
,

CK =
[

1.32 7.0313
]
, DK = 0, Ar =

[
0 0
0 0

]
.

The solid lines in Figure 4 show its closed loop response.
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Fig. 4. Closed loop responses u and e using hybrid feedback (grey), the
linear controller (dashed), and a reset controller (solid)
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TABLE I
H2 NORMS FOR VARIOUS CONTROLLERS

reset control
hybrid linear N=2 N=5 N=10 N=50

Numerical int. 0.577 0.707 0.601 0.601 0.601 0.601
LMI approx. 0.577 0.707 0.721 0.618 0.604 0.601

Theorem 9 can now be applied to calculate the energy
content in e for this controller by selecting the appropriate
rows and columns of the augmented plant matrices. With
N = 5 subregions to divide the state space, we obtain γ2 =
0.618, which is much smaller than the linear H2 norm. It can
be seen in Figure 4 that our reset controller approximates
the discontinuous controller (37) fairly well, resulting in an
almost as fast response and an H2 norm that is only slightly
larger. The actual H2 norm from w1 to z1 obtained by the
reset controller and calculated by numerical integration of
the output energy in e equals

√
1/2 ≈ 0.601. To check the

approximation power of Theorem 9, we divide the state space
into more regions N . All results are summarized in Table I.
Note that indeed our LMI-based H2 analysis converges to
the correct value as N increases. �

VI. CONCLUSION

Motivated by recent publications on the potential ad-
vantages of reset control, we have developed a framework
which can be used to calculate the H2 norm of a reset
control system. The framework is based on LMIs obtained
via Lyapunov and dissipativity theories. We removed much
conservatism by introducing piecewise quadratic Lyapunov
functions, which are much more flexible than quadratic
ones. Furthermore, we have presented an example which
shows that reset control can be close to the performance of
the optimal (discontinuous) controller for a constrained H2

problem, while a common method to design a good linear
controller provides a worse H2 performance. The example
also shows the accuracy of our LMI-based calculation of
the H2 norm in the sense that by increasing the number
of regions in the piecewise quadratic Lyapunov function, we
recover the actualH2 performance of the reset control system
for this specific case.
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Chapter 4

Synthesis of reset controllers

Now Chapters 2 and 3 have provided analysis techniques to evaluate the performance of
general reset control systems, a next step would be to synthesize reset controllers, based on the
same H∞ and H2 performance measures. It would be desirable to define a method, such as the
ones for linear systems in Appendices F and G, which automatically returns the optimal reset
controller. Unfortunately, with the current knowledge such an LMI-based synthesis is hard, if
not impossible, to formulate for reset control systems. This chapter will shortly address why.

As described in Chapters 2 and 3, both the H∞ and the H2 analysis for reset control
systems contain the terms

AT P + PA+ T T
x ET

f UfEfTx (4.1)

in the flow region C, where

Tx =
[

C 0
DKC CK

]
and Ef =

[
1 0
0 1

]
.

For synthesis problems, the terms A, P , Tx and Uf in (4.1) are all design variables, hence
(4.1) is a non-linear relation. However, for convenience and w.l.o.g. we assume that

Uf = α

[
0 1
1 0

]
,

such that, using DK ∈ R,

T T
x ET

f UfEfTx = T T
x UfTx = α

[
2CT DKC CT CK

CT
KC 0

]
. (4.2)

If we furthermore fix α, this term becomes linear in the design variables CK and DK .
First consider the approach of the linearizing change of variables (LCV) described in

Appendix F and [24]. This method removes the non-linearity in AT P + PA by pre- and
post-multiplication with Π1. However, this introduces non-linearities in T T

x UfTx:

ΠT
1 T T

x UfTxΠ1 =
[

X M
I 0

] [
2CT DKC CT CK

CT
KC 0

] [
X I

MT 0

]
=

[
2XCT DKCX + MCT

KCX + XCT CKMT 2XCT DKC + MCT
KC

2CT DKCX + CT CKMT 2CT DKC

]
=

[
XCT Ĉ + Ĉ

T
CX Ĉ

T
C + XCT D̂C

CT Ĉ + CT D̂CX 2CT D̂C

]
, (4.3)
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CHAPTER 4. Synthesis of reset controllers

which contains nonlinear combinations of the new design variables X, Ĉ and D̂. Hence (4.3)
will turn the synthesis problem into a BMI, which is generally hard to solve. Unfortunately,
the non-linear terms cannot be removed using e.g. a Schur complement like

? + ΠT
1 T T

x UfTxΠ1 ≺ 0 →
[

? ΠT
1 T T

x

TxΠ1 −U−1
f

]
≺ 0,

since this requires Uf � 0 which is by definition not the case. In summary, the LCV of [24]
linearizes the term AT P + PA, at the cost of de-linearizing T T

x ET
f UfEfTx. The synthesis

problem can hence not be written as an LMI.

As an alternative one can try to use the elimination method described in Appendix G
and [15]. Therefore, (4.1) should be written in the affine form Ψ + KT ΘT L + LT ΘK. Again
using (4.2), this yields

AT P + PA+ T T
x ET

f UfEfTx =
(
AT

0 P + PA0

)
+ B̄ΘC̄ + C̄T ΘT B̄T (4.4)

where A0 is as defined in (G.3), and

C̄ =
[

0 I
C 0

]
and B̄ = P

[
0 B
I 0

]
+

[
0 αCT

0 0

]
The design variables in 4.4 are P and Θ, which appear non-linearly (through B̄). Hence, P
should be removed from B̄, as is done by multiplication with P−1 in Appendix G, but this is
impossible here. Removal of P from the first term in B̄, introduces it in the second. As such,
due to this dependency on P , it is impossible to find the kernel of B̄, and thus to apply the
elimination lemma.

Besides this, note that the analysis LMI for the reset region D contains a term sim-
ilar to (4.1). Analogous to the drawback mentioned in the discussion at the end of Ap-
pendix G, the elimination method will check the feasibility of these LMIs separately. Hence
this can only guarantee the existence of a Θflow and a Θreset separately, whilst not necessarily
Θ = Θflow = Θreset. The elimination method thus cannot guarantee the existence of a con-
troller which makes both the flow and the reset LMI feasible.

In an attempt to make the last term in (4.1) independent on the design variables, one
might choose to fix BK , CK and DK and to synthesize only AK . However, this cannot be
solved using the linearizing change of variables, since this LCV demands full freedom in at
least AK , BK and CK . Fixing BK , CK and DK results in an inequality linear in the design
variables X, Y , M and N . However, the matrices M and N should follow from X and Y
afterwards, using the non-linear relation MNT = I −XY , hence the LMI-obtained M and
N make no sense and cannot be used to construct P , let alone AK . A similar problem arises
when using the elimination lemma.

The above described problems hence make it impossible to construct computable synthesis
LMIs. However, further research might yield that the resulting BMIs might still be solvable in
specific situations. The described problems also arise in output feedback synthesis problems
for general hybrid systems, which thus makes research in this direction very relevant.
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Appendix A

The Clegg integrator

In control, ordinary linear integrators are often needed to avoid steady-state errors. How-
ever, using integrators can also cause stability problems, since each linear integrator introduces
a phase lag of 90 degrees for all frequencies:

I(s) = 1
s ⇒ I(jω) = 1

jω

Magnitude: 1
|jω| = 1√

ω2
= 1

ω

Phase: arctan(0
1)− arctan(ω

0 ) = 0− arctan(∞) = −90◦
(A.1)

1
Output

0

Initial
condition

1
s

xo

Clegg
Integrator

1
Input

Figure A.1: Clegg integrator

To overcome this problem J.C. Clegg introduced a special non-
linear integrator in 1958, which has much less phase loss. His
integrator resets itself anytime the input of the integrator be-
comes 0. Figure A.1 shows how such an integrator can be
modeled in Simulink R© . The behavior of this Clegg integrator
is illustrated in Figure A.2, where its response to a sinusoidal
input u(t) = sin(ωt) is depicted. Note that the output of a
linear integrator (with initial condition 0) is given by∫

sin(ωt) = − 1
ω

cos(ωt) +
1
ω

. (A.2)

One can see in figure A.2 that the output of the Clegg integrator can be described as the
sum of a square wave (in phase with the input) and a cosine (90◦ phase lag), both with
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Figure A.2: Output of linear and Clegg integrator
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APPENDIX A. The Clegg integrator

amplitude 1
ω . In order to estimate the effective amplitude and phase of the Clegg output,

the describing function concept can be used. Therefore one calculates the first harmonic of
its Fourier transform, which defines its fundamental component. The Fourier transform of a
function f(t) is given by:

f(t) = 1
2a0 +

∞∑
n=1

an cos(nt) +
∞∑

n=1
bn sin(nt)

where a0 = 1
π

π∫
−π

f(t)dt

an = 1
π

π∫
−π

f(t) cos(nt)dt

bn = 1
π

π∫
−π

f(t) sin(nt)dt.

(A.3)

The cosine of course has only one fundamental component, so its magnitude and phase are 1
ω

and −90◦. For a square wave with amplitude 1 and period 2π the integral over one period is
zero, since the positive and the negative square cancel each other. Hence a0 = 0, while the
other components are:

a1 =
1
π

(∫ 0

−π
− cos(t)dt +

∫ π

0
cos(t)dt

)
=

1
π

[− sin(t)]0−π +
1
π

[sin(t)]π0 = 0

an =
1
π

(∫ 0

−π
− cos(nt)dt +

∫ π

0
cos(nt)dt

)
= 0 (A.4)

b1 =
1
π

(∫ 0

−π
− sin(t)dt +

∫ π

0
sin(t)dt

)
=

1
π

[cos(t)]0−π +
1
π

[− cos(t)]π0 =
1
π

(2 + 2)

bn =
1
π

(∫ 0

−π
− sin(nt)dt +

∫ π

0
sin(nt)dt

)
=

1
nπ

(
[cos(nt)]0−π + [− cos(nt)]π0

)
=

4
nπ

. (A.5)

Hence a square wave g(t) with amplitude 1
ω and frequency ω can be approximated by:

g(t) =
4

ωπ
sin(ωt) +

4
3ωπ

sin(3ωt) + . . . =
∞∑

n=1,3,5,...

4
nωπ

sin(nωt), (A.6)

Its first harmonic is thus simply defined by 4
ωπ . When combined with the cosine part of the

Clegg output, defined by 1
jω = − j

ω , this then results in:

ytotal = ysquare + ycos = 1
ω

(
4
π − j

)
Amplitude: 1

ω

√(
4
π

)2 + 1 ≈ 1.62
ω

Phase: arctan(−π
4 ) ≈ −38.1◦

(A.7)

This indeed shows that the Clegg integrator has much less phase lag than a linear integrator,
and on top of that, has a little bit more gain. Note however that the other harmonics are
omitted in this. Since the Clegg integrator is a nonlinear element, it cannot simply be used
as a linear filter, and care must be taken when implementing it in linear feedback systems.
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Appendix B

Reset control and the Hβ-condition

In this appendix the so called Hβ-condition, or β positive real condition, is derived and
explained, a theorem used to analyse the stability of reset control systems. Its most general
form is given in [5], which will be used in this appendix.

Definition of a reset control system

Before continuing, the reset control system has to be defined explicitly. Here, the general
description proposed in [5] and schematically shown in Figure B.1 is adopted. In this figure
P (s) with states xp ∈ Rnp represents the LTI plant and R represents the reset controller with
states xr ∈ Rnr . The latter is a system with linear flow dynamics, whose states or subset of
states reset to zero when its input (in this case e) is zero. The plant P (s) is described by:

ẋp(t) = Apxp(t) + Bpu(t)
yp(t) = Cpxp(t),

(B.1)

where Ap ∈ Rnp×np , Bp ∈ Rnp×1 and Cp ∈ R1×np . The reset controller is described by:

ẋr(t) = Arxr(t) + Bre(t) if e(t) 6= 0
xr(t+) = A%xr(t) if e(t) = 0
ur(t) = Crxr(t),

(B.2)

where Ar ∈ Rnr×nr , Br ∈ Rnr×1 and Cr ∈ R1×nr . When e(t) = 0 the last n% of the nr

controller states are reset to zero, whilst the others remain unchanged. This is embedded in

P(s)
r e y

-
R

n

d

u yp

Figure B.1: Block diagram of a reset control system [5]
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APPENDIX B. Reset control and the Hβ-condition

the matrix A% ∈ Rnr×nr , which has the diagonal form

A% =
[

In%̄ 0
0 0n%

]
.

The controller which arises when resetting is omitted (i.e. A% = Inr) is called the base linear
controller, which is denoted by Rbl(s) = Cr(sI −Ar)−1Br.

Using e(t) = r(t)− (y(t)+n(t)) = r(t)− (yp(t)+d(t)+n(t)) and w(t) = r(t)−n(t)−d(t),
one can write e(t) = w(t)− yp(t). With this the closed loop dynamics can be written as:

ẋ(t) = Aclx(t) + Bclw(t) if x(t) /∈M(t)
x(t+) = ARx(t) if x(t) ∈M(t)

y(t) = Cclx(t) + d(t)
(B.3)

where

x(t) =
[

xp(t)
xr(t)

]
, Acl =

[
Ap BpCr

−BrCp Ar

]
, Bcl =

[
0

Br

]
Ccl =

[
Cp 0

]
, AR =

[
Inp 0
0 A%

]
=

[
Inp+n%̄ 0

0 0n%

]
,

so Acl ∈ Rncl×ncl , AR ∈ Rncl×ncl , Bcl ∈ Rncl×1 and Ccl ∈ R1×ncl , where ncl = (np +nr).
The reset surface M(t) defines the states where the controller (B.2) resets, so when e(t) = 0.
These states are denoted by ξ. The trivial case where ξr = 0 is avoided, since a reset then
again yields ξr = 0 and is thus useless. Hence M(t) is defined by:

M(t) = {ξ ∈ Rncl : e(t) = 0, (I −AR)ξ 6= 0}. (B.4)

This definition also states that when x(t∗) ∈ M(t∗), a single reset causes x(t+∗ ) /∈ M(t+∗ ).
Finally, note that when resets are omitted (hence AR = Incl

) and Rbl(s) is used, the resulting
closed loop is LTI, which is called the base linear system:

Ccl(sI −Acl)−1Bcl. (B.5)

Derivation of Hβ for stability

In the following stability analysis, based on Lyapunov theory, only zero-input stability is
considered. Hence, (B.3) is simplified to the unforced case, i.e. w = 0, resulting in

ẋ(t) = Aclx(t) if x(t) /∈M
x(t+) = ARx(t) if x(t) ∈M

y(t) = Cclx(t),
(B.6)

with initial condition x(0) = x0 and where M = {ξ ∈ Rncl : Cclξ = 0, (I − AR)ξ 6= 0}.
The equilibrium point x = 0 of this system is globally asymptotically stable if there exists a
continuously-differentiable positive definite function V (x) : Rncl → R, such that

V̇ (x) =
[
∂V

∂x

]
Aclx < 0 if x 6= 0 (B.7)

∆V (x) = V (ARx)− V (x) ≤ 0 if x ∈M. (B.8)

34



APPENDIX B. Reset control and the Hβ-condition

Furthermore, (B.6) is quadratically stable if V (x) = xT Px, with P a symmetric positive-
definite matrix. For convenience this matrix P is divided into a number of submatrices:

P =

 P1
P T

2

P T
%̄

P2 P%̄ P%

 , with: P1 ∈ R(np+n%̄)×(np+n%̄), P2 ∈ Rn%×np

P%̄ ∈ Rn%×n%̄ , P% ∈ Rn%×n%

Based on (B.7) and (B.8), a reset control system is thus quadratically stable if

V̇ (x) = ẋT Px + xT Pẋ = xT AT
clPx + xT PAclx

= xT (AT
clP + PAcl)x < 0 if x 6= 0 (B.9)

∆V (x) = xT AT
RPARx− xT Px = xT (AT

RPAR − P )x ≤ 0 if x ∈M (B.10)

Since M = {ξ ∈ Rncl : Cclξ = 0, (I − AR)ξ 6= 0} (B.10) is valid for all (non-zero) states
ξ ∈ Rncl for which Cclξ = 0. These states ξ are all in the kernel of Ccl. Hence one can define
im(Θ) = ker(Ccl), where im(Θ) denotes the image of Θ, such that ξ = Θη for any η. Hence

Cclξ = 0
Θη = ξ, ∀η ∈ Rncl−1

}
⇒ CclΘη = 0, ∀η ∈ Rncl−1 ⇒ CclΘ = 0 (B.11)

where Ccl ∈ R1×ncl and hence Θ ∈ Rncl×(ncl−1). Now M can be rewritten as

M = {Θη : η ∈ Rncl−1}, (B.12)

such that (B.10), using Finsler’s Lemma, now becomes:

ΘT (AT
RPAR − P )Θ ≤ 0. (B.13)

Since the first (np+n%̄)×(np+n%̄) block of AR is identity and the other blocks zero, and P
is symmetric, AT

RPAR − P returns a symmetric ncl×ncl matrix, which is equal to −P with
zeros on the first (np+n%̄)×(np+n%̄) elements. Schematically:

AT
RPAR − P =

 0
−P T

2

−P T
%̄

−P2 −P%̄ −P%

 .

Furthermore, the kernel of Ccl, spanned by Θ ∈ Rncl×(ncl−1), can be related to the null space
of Cp, spanned by Θp ∈ Rnp×(np−1), since Ccl = [Cp, 0]:

Θ =
[

Θp 0np×nr

0nr×(np−1) Inr×nr

]
. (B.14)

The left hand side of (B.13) thus returns a symmetric (ncl−1)×(ncl−1) matrix, with zeros
on the first (np+n%̄−1)×(np+n%̄−1) elements. Schematically:

ΘT (AT
RPAR − P )Θ =

 0
−ΣT

−P T
%̄

−Σ −P%̄ −P%

 ≤ 0

This matrix should thus be negative semi-definite. Because of its shape, this is only possible if
Σ = P%̄ = 0 and if P% is positive definite. The latter is always true, since P is positive definite,
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but the former specifies restrictions on P . Because of its symmetry, it suffices to look only to
the last n% rows of (B.13), which then yields[

−P2 −P%̄ −P%

]
Θ =

[
−Σ −P%̄ −P%

]
=

[
0 0 −P%

]
.

Because of the structure of Θ, see (B.14), this gives:

P%̄ = 0 and P2Θp = 0

Since Θp is defined by CpΘp = 0 (similar to (B.11)), this latter statement can only be true
when P2 consists of n% linear combinations of Cp: P2 = βCp with β ∈ Rn%×1. In summary,
the last n% rows of the symmetric positive definite matrix P should be equal to [βCp, 0, P%]:[

0 0 In%

]
P =

[
βCp 0n%×n%̄ P%

]
or B]P = C] (B.15)

Hence, system (B.6) is quadratically stable if there exists a positive definite P which satisfies
both (B.9) and (B.15). These relations correspond to the Kalman-Yakubovich-Popov Lemma,
which states that this P exists if and only if the system ẋ = Aclx + B]u, y = C]x, or
equivalently

Hβ(s) =
[

βCp 0n%×n%̄ P%

]
(sI −Acl)−1

 0np×n%

0n%̄×n%

In%

 (B.16)

is strictly positive real (SPR), for some β ∈ Rn%×1. So if Hβ is SPR for some value of β and
some positive definite P%, the unforced reset control system is quadratically stable. Note that
this Hβ-condition is both necessary and sufficient for quadratic stability, and only sufficient
to prove stability. Moreover, note that (B.9) indicates that the Hβ-condition at least requires
stability of the base linear system, which is quite restrictive.

Example

Consider the plant P (s) = 1/s and reset controller Rbl(s) = 1/(s + 1). This means that

Ap = 0, Bp = 1, Cp = 1, Ar = −1, Br = 1, Cr = 1, A% = 0,

Acl =
[

Ap BpCr

−BrCp Ar

]
=

[
0 1
−1 −1

]
.

Without loss of generality one can take P% = 1, such that the Hβ-condition becomes

Hβ =
[

β 1
] [

s −1
1 s + 1

]−1 [
0
1

]
=

[
β 1

] 1
s2 + s + 1

[
s + 1 1
−1 s

] [
0
1

]
=

β + s

s2 + s + 1

which is a minimum phase stable system for β > 0. Its SPR-ness is tested with Hβ(jω):

Hβ(jω) =
jω + β

1− ω2 + jω
· 1− ω2 − jω

1− ω2 − jω
=

jω(1− ω2 − β) + ω2(1− β) + β

[1− ω2]2 + ω2

⇒ Re[Hβ(jω)] =
ω2(1− β) + β

[1− ω2]2 + ω2
> 0 ∀ω > 0, if 0 ≤ β ≤ 1.

So indeed there exists a β (here 0 ≤ β ≤ 1) for which Hβ is SPR, so the reset control system
is quadratically stable.
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APPENDIX B. Reset control and the Hβ-condition

Other results

As a consequence of the quadratic stability result defined above, [5] also states bounded-
input bounded-state (BIBS) stability and asymptotic tracking results. Without further de-
tailed explanation this appendix will shortly summarize these results.

First note that the Hβ analysis only holds for unforced systems, so w(t) = 0. However,
in [5] is was shown that systems satisfying the Hβ condition are also BIBS-stable, meaning
that x(t) is bounded for bounded w(t), if the controller system matrix Ar has the shape

Ar =
[

Ar11 Ar12

0 Ar22

]
, (B.17)

which means that the derivatives of the resetting controller states not explicitly depend on
the non-resetting states.

BIBS stability does not guarantee asymptotic tracking of a reference r(t). However, if an
internal model of r(t) is present in the plant P (s) or in the non-resetted part of the controller
R and the closed loop reset control system satisfies the Hβ-condition, asymptotic tracking is
achieved [5]. Hence, when r(t) is an initial condition response of a linear system M(s), then
P (s) (or the non-resetted part of R) should contain the same system M(s). For example,
for step references r(t) = 1(t) it is known that M(s) = 1/s, so P (s) should also contain an
integrator to guarantee asymptotic tracking.

It is important to note that the internal model should not be present in the resetted part
of the reset controller R. This is illustrated by the following example. Consider a plant
P (s) = 1/(s + 1) controlled by a Clegg integrator. The Hβ-condition yields

Hβ =
[

β 1
] [

s + 1 −1
1 s

]−1 [
0
1

]
=

s + β + 1
s2 + s + 1

⇒ Re[Hβ(jω)] =
β(1− ω2) + 1
[1− ω2]2 + ω2

> 0 ∀ω > 0, if − 1 ≤ β ≤ 0.

Hence, this reset control system is (zero-input) quadratically stable and thus x → 0 for t →∞.
Furthermore, since all states of the reset controller are reset, as required in (B.17), the system
is also BIBS stable, so any bounded input results in a bounded output. However, when a step
reference (1/s) is applied, there is no guaranteed asymptotic tracking, since P (s) lacks an
internal model of the reference. The plant P (s) needs a persistent input u to keep its output
at the desired value. The Clegg integrator however reset this u to zero as soon as y = r. The
three described situations are shown in figure B.2.
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Figure B.2: Typical responses of a reset control system: P (s) = 1/(s + 1) with Clegg
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Appendix C

Dissipativity and stability

Dissipativity and stability of dynamical systems are often linked to each other in litera-
ture. In particular, this can be used to derive LMIs to determine closed loop stability and
performance (e.g. the L2 gain). This appendix will shortly explain dissipative behavior of
dynamical systems and how this can be linked to stability. This knowledge will then be used
to derive stability LMIs, after which some examples will be given.

Dissipativity

For a dynamical system Σ described by

Σ :
{

ẋ = f(x,w)
z = g(x,w)

(C.1)

dissipativity can be defined as follows:

Definition 1 The system Σ is dissipative with respect to a certain supply function s if there
exists a storage function V : X → R such that

V (x(t1))− V (x(t0)) ≤
∫ t1

t0

s(w(t), z(t))dt (C.2)

for all t1 ≥ t0 and all signals satisfying (C.1).

Whether or not a certain system is labeled ‘dissipative’ hence depends on s. A system Σ could
be dissipative with respect to a certain s1 but not with respect to s2. This supply function
(or supply rate) should thus be chosen with care, depending on each specific situation.
Basically the dissipativity definition just states that ‘energy’ is lost, or dissipated, inside the
system. It states that the difference between the final and the initial energy, given by the
storage functions V (x(t1)) − V (x(t0)), can never exceed the energy supplied to the system,
given by the ‘sum’ of the supply rate,

∫ t1
t0

s(w(t), z(t))dt.
Note that in (C.2) the storage function V is not necessarily non-negative to show dissipative

behavior of (C.1). Such constraints on V are only needed to link dissipativity to stability:

Definition 2 When the system in (C.1) has an equilibrium point x∗ and its storage function
V satisfying (C.2) for some s is in fact continuous and non-negative and attains a strong
local minimum at x∗, then the point x∗ is in fact a stable point of the dissipative system Σ.
Furthermore, the storage function V is then a Lyapunov function in the neighborhood of x∗.

39



APPENDIX C. Dissipativity and stability

This definition thus states that V (x(t))−V (x∗) ≥ 0, ∀t, so if the initial condition of (C.1)
is at the equilibrium x(t0) = x∗, the supply function for a stable system must satisfy∫ t1

t0

s(w(t), z(t))dt ≥ V (x(t1))− V (x∗) ≥ 0, ∀t1 ≥ 0. (C.3)

Linear systems and quadratic supply and storage functions

This section limits itself to linear systems, for which it will derive some general dissipativity
and stability results. First consider a simple linear system with a non-zero initial condition

ẋ = Ax, x(0) = x0 (C.4)

and no in- or output, so s = 0. Following Definitions 1 and 2 its equilibrium point x∗ = 0 is
stable if and only if there exists a positive definite Lyapunov function V , with a strong local
minimum at x∗, e.g. V (x∗) = 0, satisfying

V (x(t0))− V (x(t1)) ≥ 0, ∀t1 ≥ t0,

which is thus monotonically decreasing over time, i.e. d
dtV < 0. For linear systems one can even

define asymptotic stability by taking a quadratic Lyapunov function V (x) = xT Px, whose
derivative V̇ (x) = ∂V

∂x ẋ = xT (AT P + PA)x should be negative. Hence (C.4) is asymptotically
stable if and only if the following inequalities hold

xT Px > 0, and xT (AT P + PA)x < 0, ∀x 6= 0 (C.5)
⇒ P � 0, and AT P + PA ≺ 0. (C.6)

Now expanded system (C.4) with an input w and an output z, so that

T :
{

ẋ = Ax + Bw
z = Cx + Dw.

(C.7)

For such linear systems we can assume quadratic supply and storage functions without loss of
generality. In other words, in (C.2) one can assume

s(w, z) =
[

w
z

]T

S

[
w
z

]
and V (x) = xT Px,

so that the derivative of the positive definite Lyapunov function V (x) then satisfies

V̇ (x) = ẋT Px + xT Pẋ

= (xT AT + wT BT )Px + xT P (Ax + Bw)
= xT (AT P + PA)x + wT BT Px + xT PBw

=
[

x
w

]T [
AT P + PA PB

BT P 0

] [
x
w

]
(C.8)

Using this and
[
w
z

]
=

[
0 I
C D

] [
x
w

]
in the differential form of (C.2), one then obtains:

d

dt
V (x) =

d

dt
x(t)T Px(t) ≤ s(w(t), z(t)) (C.9)[

x
w

]T [
AT P + PA PB

BT P 0

] [
x
w

]
≤

[
x
w

]T [
0 I
C D

]T

S

[
0 I
C D

] [
x
w

]
, (C.10)
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or in LMI formulation:[
AT P + PA PB

BT P 0

]
≺

[
0 I
C D

]T

S

[
0 I
C D

]
(C.11)

According to Definition 1, if this LMI is feasible for some arbitrary P , the original system
(C.7) is dissipative with respect to the chosen quadratic supply function s. Then (C.7) is said
to satisfy a certain quadratic performance measure, defined by the matrix S. Furthermore,
following Definition 2, if the Lyapunov function is restricted to be non-negative with a local
minimum V (x∗) = 0, hence if (C.11) is feasible for some P � 0, system (C.7) is also stable.

The only remaining problem is now how to choose the supply function s. For a system
with input w and output z a reasonable choice could be

s = ‘input energy’− ‘output energy’ = ||w||22 − ||z||22.

In this equation ||w||22 can be seen as the total amount of energy put into the system and
||z||22 the amount of energy that comes out of the system. The difference is the net amount of
supplied energy and is thus an appropriate choice for the supply function. In this interpretation
the internal energy storage is then given by the Lyapunov function V (x) = xT Px.

The previous supply function can be written in matrix form:

s = wT w − zT z =
[

w
z

]T [
I 0
0 −I

] [
w
z

]
(C.12)

So in order to check the stability of (C.7) and its dissipativity w.r.t the supply function (C.12),
one has to test the feasibility of the following LMIs:[

AT P + PA PB
BT P 0

]
+

[
0 I
C D

]T [
−I 0
0 I

] [
0 I
C D

]
≺ 0, P � 0. (C.13)

Hence, if the LMIs (C.13) are feasible, it means that the system is asymptotically stable and
dissipative with respect to ||w||22 − ||z||22. The latter means that the performance of (C.7) is
such that the output energy is always less than the supplied input energy.

Stability and H∞ performance

The above dissipativity theory can hence be used to derive quadratic performance measures
in terms of LMIs. A well-known example is the H∞ norm, also known as the L2 induced norm,
which is the worst case energy gain from w to z. For system (C.7) this norm is defined as

||T ||2∞ =
||z||22
||w||22

≤ γ2,

Whether or not ||T ||∞ is smaller than γ can be tested with appropriate LMIs. Therefore
define the supply function s as:

s(w, z) = γ2||w||22 − ||z||22 = γ2wT w − zT z =
[

w
z

]T [
γ2I 0
0 −I

] [
w
z

]
(C.14)
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Hence inserting S =
[

γ2I 0
0 −I

]
in (C.11), then yields the following LMI:[

AT P + PA PB
BT P 0

]
−

[
0 I
C D

]T

S

[
0 I
C D

]
≺ 0 (C.15a)[

AT P + PA PB
BT P 0

]
+

[
0 I
C D

]T [
−γ2I 0

0 I

] [
0 I
C D

]
≺ 0 (C.15b)[

AT P + PA + CT C PB + CT D
BT P + DT C DT D − γ2I

]
≺ 0 (C.15c)

This LMI can be reformulated by multiplying it with γ−1 > 0, substituting P = γ−1P , and
applying a Schur complement:[

ATP + PA + γ−1CT C PB + γ−1CT D
BTP + γ−1DT C γ−1DT D − γI

]
≺ 0[

ATP + PA PB
BTP −γI

]
+

[
γ−1CT C γ−1CT D
γ−1DT C γ−1DT D

]
≺ 0[

ATP + PA PB
BTP −γI

]
−

[
CT

DT

]
(−γ−1I)

[
C D

]
≺ 0

Schur−−−−→

 ATP + PA PB CT

BTP −γI DT

C D −γI

 ≺ 0 (C.16)

Note again that if this LMI holds for some P, that ||T ||∞ < γ. If (C.16) is feasible for some
P � 0, then (C.7) is also stable. The latter can easily be verified by noting that element (1,1)
of (C.16), i.e. ATP + PA ≺ 0, together with P � 0 again form the stability LMI in (C.6).
The result in (C.16) is also known as the Bounded Real Lemma.

Example

As an example, consider the following system:

ẋ =
[

0 1
−2 −3

]
x +

[
0
1

]
w

z =
[

1 0
]
x

Suppose a supply rate as in (C.12) is chosen. Then (C.13) is feasible, with e.g.

P =
[

2.3672 0.5352
0.5352 0.5791

]
.

Note however, that if one chooses the opposite supply function s = ||z||22−||w||22, the resulting
LMI is infeasible. This shows that for this system ||z||22 ≤ ||w||22, and not ||z||22 ≥ ||w||22. Hence
the input energy always exceeds the output energy.

One can also perform an H∞ analysis on this system by solving the LMI in (C.16) for some
γ. When the objective to minimize γ is added to this LMI, one finds the following optimal
solution:

P =
[

1.5 0.5
0.5 0.4358

]
for γ = 0.5
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Overview of system analysis LMIs

This appendix shortly summarizes some of the most important continuous time LMIs, used
to analyse linear time-invariant systems in terms of induced norms. Moreover, some common
interpretations of these norms are provided. The following system description will be used:

T :
{

ẋ = Ax + Bw
z = Cx +Dw,

(D.1)

where x is the system state, w is the input and z is the output.

H∞ analysis

The definition of the H∞-norm, or L2 induced norm, of system (D.1) is the following:

||T ||∞ = sup
0<||w||2<∞

||z||2
||w||2

= sup
0<||w||2<∞

||z||pow

||w||pow
= sup

ω∈R
σmax(T (jω)) (D.2)

It thus denotes the maximum possible gain from the input energy of w to the output energy
of z. It is the largest possible gain when the system T is fed by harmonic input signals, and
thus it corresponds to the maximum singular value (denoted by σmax) of T over all ω.

The system (D.1) is asymptotically stable and ||T ||∞ < γ for some value of γ > 0, if and
only if there exists a P � 0 such that ATP + PA PBj CT

j

BT
j P −γI DT

j

Cj Dj −γI

 ≺ 0. (D.3)

H2 analysis

The (ordinary) H2-norm of a system T given in (D.1) is defined by:

||T ||22 =
1
2π

trace
∫ ∞

−∞
T (jω)T (jω)∗dω (D.4)

and is thus equal to the surface beneath the magnitude of the Bode plot of T (jω). The H2-
norm coincides with the total output energy of the impulse responses of T . A more practical
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interpretation is that the H2-norm corresponds to the asymptotic variance of the output when
it is excited by white noise input signals.

The H2 analysis can be done with the following definition of the H2-norm:

||T ||22 = trace(CjWCT
j ) = trace(BT

j MBj) < γ2 (D.5)

where W and M are the controllability and the observability gramians defined by:

AW + WAT + BjBT
j = 0 (D.6a)

AT M + MA+ CT
j Cj = 0 (D.6b)

A typical computation of the H2-norm is equivalent to: there exists a X � 0, such that

AX + XAT + BjBT
j ≺ 0, trace(CjXCT

j ) < γ2

Pre- and post-multiplying this with P = X−1 and introducing an auxiliary variable Q, this
means there exists a P � 0 such that

ATP + PA+ PBjBT
j P ≺ 0, CjP−1CT

j ≺ Q, trace(Q) < γ2

Using two Schur complements this finally leads to the result: system (D.1) is asymptotically
stable and ||T ||2 < γ for some value γ>0, if and only if there exists a P � 0 and Q such that[

ATP + PA PBj

BT
j P −I

]
≺ 0 (D.7a)[

P CT
j

Cj Q

]
� 0 (D.7b)

trace(Q) < γ2. (D.7c)

Note that the H2-norm is bounded, thus ||T ||2 < ∞, if and only if D=0.

Generalized H2 analysis

The generalized H2-norm, or L2-L∞ induced norm, differs slightly from the ordinary H2-
norm, since the former is defined by:

||T ||2g = ||T ||2,∞ = sup
0<||w||2<∞

||z||∞
||w||2

. (D.8)

This norm is also called the ‘energy to peak’ norm, since it measures the peak amplitude (in
time) of the output signal z over all unity energy inputs w.
An alternative definition of the generalized H2-norm, which resembles the ordinary H2-norm
to a large extend, is given by

||T ||22g = CjWCT
j < γ2I, with AW + WAT + BjBT

j = 0 (D.9)

In LMI-form this thus becomes

AX + XAT + BjBT
j ≺ 0, CjXCT

j ≺ γ2I
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The rest of the derivation is completely analogous to the ordinary H2-norm. And thus system
(D.1) is asymptotically stable and ||T ||2g < γ for some γ > 0, if and only if there exists a
P � 0 such that[

ATP + PA PBj

BT
j P −I

]
≺ 0 (D.10a)[

P CT
j

Cj γ2I

]
� 0. (D.10b)

Peak to peak analysis

The peak to peak gain, or L∞ induced norm, is simply defined by

||T ||peak = sup
0<||w||∞<∞

||z||∞
||w||∞

(D.11)

which defines a mapping from the (bounded) maximum amplitude of the input w to the
(bounded) maximum amplitude of the output z. Note that ||T ||∞ ≤ ||T ||peak.
If, for some value γ>0, there exists a P � 0, λ > 0 and µ such that[

ATP + PA+ λP PBj

BT
j P −µI

]
≺ 0 (D.12a) λP 0 CT

j

0 (γ − µ)I DT
j

Cj Dj γI

 � 0. (D.12b)

is feasible, then (D.1) is asymptotically stable and ||T ||peak < γ. Note that this condition is
sufficient but not necessary.
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Discrete time analysis LMIs

In an answer to the previous appendix, some analysis LMIs for discrete time systems will
now be derived. The results in this appendix cover stability LMIs as well as H∞, H2 and
generalized H2 results. Starting point is the following linear discrete time system:

T :
{

xk+1 = Axk + Bwk

zk = Cxk + Dwk
(E.1)

where xk is the state, wk the input and zk the output at timestep k. Furthermore, quadratic
Lyapunov (or storage) functions will be used, such that V (xk) at timestep k is defined by

V (xk) = xT
k Pxk > 0 for xk 6= 0, hence P � 0. (E.2)

Discrete time stability LMI

Internal asymptotic stability of the state xk is determined by the system matrix A, since for
internal stability wk = 0 and hence it follows that xk+1 = Axk. Internal asymptotic stability
for such linear systems can be proven if the quadratic Lyapunov function (E.2) is monotonically
decreasing in time, hence the change in the Lyapunov function ∆V = V (xk+1)−V (xk) should
be negative, in other words

∆V = xT
k+1Pxk+1 − xT

k Pxk < 0

xT
k AT PAxk − xT

k Pxk < 0
xT

k (AT PA− P )xk < 0 (E.3)

Hence, system (E.1) is internally asymptotically stable if and only if the inequalities

AT PA− P ≺ 0, P � 0, (E.4)

are feasible. Using a Schur complement (E.4) can be transformed into a single LMI :

P −AT PA � 0, P � 0
P − (AT P )P−1(PA) � 0, P � 0

Schur−−−−→
[

P AT P
PA P

]
� 0 (E.5)
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Discrete time H∞ LMI

The derivation of the LMI for the H∞ norm is done by using the concept of dissipativity,
see Definition 1 in Appendix C. For the discrete case the inequality (C.2) can be stated as

∆V = V (xk+1)− V (xk) ≤ s(wk, zk), (E.6)

where s(wk, zk) is a certain supply function. For the discrete system (E.1) ∆V becomes

∆V = xT
k+1Pxk+1 − xT

k Pxk

= (xT
k AT + wT

k BT )P (Axk + Bwk)− xT
k Pxk

= xT
k (AT PA− P )xk + wT

k BT PAxk + xT
k AT PBwk + wT

k BT PBwk

=
[

xk

wk

]T [
AT PA− P AT PB

BT PA BT PB

] [
xk

wk

]
Since here the H∞-norm of (E.1) is considered, i.e.

||T ||∞ = sup
0<||w||2<∞

||z||2
||w||2

< γ

the supply function s(wk, zk) in E.6 should be chosen as

s(wk, zk) = γ2wT
k wk − zT

k zk

=
[

wk

zk

]T [
γ2I 0
0 −I

] [
wk

zk

]
=

[
xk

wk

]T [
0 I
C D

]T [
γ2I 0
0 −I

] [
0 I
C D

] [
xk

wk

]
= −

[
xk

wk

]T [
CT C CT D
DT C DT D − γ2I

] [
xk

wk

]
By using this ∆V and s(wk, zk) in (E.6), it can then be concluded that system (E.1) is
asymptotically stable and ||T ||∞ < γ if and only if the following LMI in P � 0

−
[

AT PA− P AT PB
BT PA BT PB

]
−

[
CT C CT D
DT C DT D − γ2I

]
=[

P −AT PA− CT C −AT PB − CT D
−BT PA−DT C −BT PB −DT D + γ2I

]
� 0, (E.7)

is feasible. Using a Schur complement this LMI can be rewritten:[
P − CT C −CT D
−DT C −DT D + γ2I

]
−

[
AT PA AT PB
BT PA BT PB

]
=[

P − CT C −CT D
−DT C −DT D + γ2I

]
−

[
(AT P )P−1(PA) (AT P )P−1(PB)
(BT P )P−1(PA) (BT P )P−1(PB)

]
=[

P − CT C −CT D
−DT C −DT D + γ2I

]
−

[
AT P
BT P

]
P−1

[
PA PB

]
� 0

Schur−−−−→

 P PA PB

AT P P − CT C −CT D
BT P −DT C −DT D + γ2I

 � 0
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Now multiply with γ−1 > 0, define P = γ−1P , and apply another Schur complement: P PA PB
ATP P − γ−1CT C −γ−1CT D
BTP −γ−1DT C −γ−1DT D + γI

 =

 P PA PB
ATP P 0
BTP 0 γI

−
 0 0 0

0 γ−1CT C γ−1CT D
0 γ−1DT C γ−1DT D

 =

 P PA PB
ATP P 0
BTP 0 γI

−
 0

CT

DT

 γ−1
[

0 C D
]
� 0

Schur−−−−→


P PA PB 0

ATP P 0 CT

BTP 0 γI DT

0 C D γI

 � 0 (E.8)

Of course, Schur complements are not unique; it is allowed to pre- and post-multiply the
obtained matrix to interchange rows and columns, e.g.:

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


T 

P PA PB 0
ATP P 0 CT

BTP 0 γI DT

0 C D γI




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 =


P 0 ATP CT

0 γI BTP DT

PA PB P 0
C D 0 γI

 � 0 (E.9)

One thus needs just a single LMI (E.8) or (E.9), if desired with the objective to minimize γ,
to solve the H∞ problem. Note that the additional constraint P � 0 is no longer necessary,
since it is already contained inside LMIs.

Discrete time H2 LMI

The definition for the H2-norm is the discrete case differs slightly from the continuous
case. For discrete systems the H2-norm is defined by

||T ||22 = trace(DDT + CWCT ) < γ2, (E.10)

where W is the controllability gramian, defined by the solution of

AWAT −W + BBT = 0. (E.11)

These definitions are equivalent to the following inequalities, where X � 0:

AXAT −X + BBT ≺ 0, DDT + CXCT ≺ Z, trace(Z) < γ2 (E.12)

One can again apply various Schur complements, multiplications and substitutions to simplify
the above LMIs. The first Schur complement results in

X −BBT −AXX−1XAT � 0, X � 0
Schur−−−−→

[
X XAT

AX X −BBT

]
� 0
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Pre- and post-multiplication by X−1, substitution of P = X−1 and a Schur complement yields:[
X−1 0

0 X−1

]T [
X XAT

AX X −BBT

] [
X−1 0

0 X−1

]
=[

X−1 AT X−1

X−1A X−1−X−1BBT X−1

]
=

[
P AT P

PA P − PBBT P

]
=[

P AT P
PA P

]
−

[
0 0
0 PBBT P

]
=[

P AT P
PA P

]
−

[
0

PB

]
I

[
0 BT P

]
� 0

Schur−−−−→

 P AT P 0
PA P PB

0 BT P I

 � 0 (E.13)

Again, one might wish to switch rows and columns to obtain a more common LMI: 0 1 0
1 0 0
0 0 1

T  P AT P 0
PA P PB
0 BT P I

 0 1 0
1 0 0
0 0 1

 =

 P PA PB
AT P P 0
BT P 0 I

 � 0 (E.14)

Note that the constraint X = P−1 � 0 does not have to be formulated explicitly anymore,
since P � 0 is already explicitly included in (E.14).
The second inequality in (E.12) can also be rewritten, again using P = X−1:

Z − CXCT −DDT = Z − CP−1CT −DDT � 0, P � 0
Schur−−−−→

[
I DT

D Z − CP−1CT

]
� 0, P � 0[

I DT

D Z

]
−

[
0 0
0 CP−1CT

]
=[

I DT

D Z

]
−

[
0
C

]
P−1

[
0 CT

]
� 0, P � 0

Schur−−−−→

 P 0 CT

0 I DT

C D Z

 � 0 (E.15)

In summary, the discrete time system given in (E.1) is asymptotically stable and its perfor-
mance such that its H2 norm ||T ||2 < γ, if and only if the following LMIs in the variables P
and Z are feasible: P PA PB

AT P P 0
BT P 0 I

 � 0,

 P 0 CT

0 I DT

C D Z

 � 0, trace(Z) < γ2 (E.16)

If desired, the objective to minimize γ2 can be added, in order to find an upperbound on the
actual H2-norm of the system.
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Discrete time generalized H2 LMI

As in the continuous case, the generalized H2-norm resembles the ordinary H2-norm to a
large extend. For a discrete system (E.1) its definition is given by

||T ||22g = DDT + CWCT < γ2I, (E.17)

where W is the controllability gramian, defined by the solution of

AWAT −W + BBT = 0. (E.18)

Introducing X � 0, these equations are equivalent to the inequalities

AXAT −X + BBT ≺ 0, DDT + CXCT ≺ γ2I,

which, completely analogous to the ordinary H2-norm, finally results in the LMIs: P PA PB
AT P P 0
BT P 0 I

 � 0,

 P 0 CT

0 I DT

C D γ2I

 � 0 (E.19)

Hence, if and only if the above LMIs in the variable P are feasible, then the discrete time
system (E.1) is asymptotically stable and its performance such that ||T ||2g < γI.
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Controller synthesis using LMIs and a
change of variables

The analysis methods mentioned in Appendices D and E can also be used to synthesize
controllers. However, these methods often result in non-linear sets of equations, which are
numerically hard to solve. Fortunately, for these situations a smart linearizing change of
variables (LCV) can be found [24], which results in computable sets of LMIs. These LCVs are
discussed in this appendix.

State feedback: stability

The simplest illustration of the necessity of a change of variables is the stabilizing state
feedback control situation. Consider the following system

T :
{

ẋ = Ax + Bu
y = Cx + Du

(F.1)

which should be stabilized using a state feedback controller, u = Kx, where the controller
gain K has to be designed. The stability of the closed loop

ẋ = Ax + BKx = (A + BK)x

is determined by (A + BK). The stability analysis and controller synthesis follow from the
same optimization problem, using a quadratic Lyapunov function V (x) = xT Px > 0, ∀x 6= 0:

V̇ (x) = ẋT Px + xT Pẋ

= xT (A + BK)T Px + xT P (A + BK)
= xT (AT P + PA + KT BT P + PBK)x < 0

resulting in the following inequality in the variables P � 0 and K:

AT P + PA + KT BT P + PBK ≺ 0, (F.2)

which is non-linear in its decision variables, since it contains products of K and P . However,
pre- and post-multiplying with P−1 and introducing Q=P−1 and Y =KQ=KP−1 yields:

P−1(AT P + PA + KT BT P + PBK)P−1 ≺ 0, P � 0
P−1AT + AP−1 + P−T KT BT + BKP−1 ≺ 0, P � 0

QAT + AQ + Y T BT + BY ≺ 0, Q � 0 (F.3)
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These inequalities are now linear in its decision variables Q and Y , and are thus LMIs which
can easily be solved. The actual controller can be retrieved using P = Q−1 and K = Y P .

State feedback: pole placement

LMIs can also be used to place the poles of a closed loop system. In that case a so called
LMI region should be defined, inside which the poles of the closed loop system matrix must
lie. In the state feedback case the LMI region thus defines a set of allowed eigenvalues of the
closed loop system matrix (A + BK).

An LMI region R is a subset of the complex plane C, usually defined as

R :=
{
s ∈ C : L + sM + s̄MT + s̄Ns < 0

}
, (F.4)

where s̄ is the complex conjugate of s, or alternatively by

RT :=
{

s ∈ C :
(

I
sI

)∗
T

(
I
sI

)
≺ 0

}
with T =

[
L M

MT N

]
. (F.5)

In practice, often N = 0, so an LMI region is the set of all s satisfying L + sM + s̄MT < 0.
For example, the region Re(s) < −α can be written as an LMI region by choosing

T =
[

L M
MT N

]
=

[
2α 1
1 0

]
⇒ 2α + s + s̄ = 2α + 2Re(s) < 0

These LMI regions can be used to check the location of the eigenvalues of a matrix A.
Assuming N = 0, all these eigenvalues are inside the LMI region R defined by (F.4) if and
only if there exists a matrix P � 0 satisfying[

lijP + mijAT P + mjiPA
]
i,j
≺ 0 (F.6a)

l11P + m11AT P + m11PA · · · l1nP + m1nAT P + mn1PA
l21P + m21AT P + m12PA · · · l2nP + m2nAT P + mn2PA

...
. . .

...
ln1P + mn1AT P + m1nPA · · · lnnP + mnnAT P + mnnPA

 ≺ 0 (F.6b)

where lij and mij are the i, j-th elements of the n × n matrices L and M respectively. Note
that when state feedback is considered A = (A+BK). To synthesize the controller K in that
case, (F.2) is replaced by the following inequality in the variables P � 0 and K:[

lijP + mij(AT P + KT BT P ) + mji(PA + PBK)
]
i,j
≺ 0 (F.7)

Pre- and post-multiplying by P−1 and using the same change of variables as before (Q = P−1

and Y = KQ = KP−1), this results in the LMI:[
lijQ + mij(QAT + Y T BT ) + mji(AQ + BY )

]
i,j
≺ 0, Q � 0 (F.8)
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s

s̄

φ

Re

Im

Figure F.1: Conic stability region

As an example, consider the case where the closed loop
poles should be placed inside a certain vertical band in the
left half plane (to achieve a certain speed) and within a cone
to assure some amount of damping. These regions can be
defined separately and then stacked together. The actual
LMI region is then the intersection of these regions.

First define the vertical band: −α2 < Re(s) < −α1.
Hence we specify L and M in (F.4) as

L+sM + s̄MT =
[

2α1 0
0 2α2

]
+s

[
1 0
0 −1

]
+ s̄

[
1 0
0 −1

]
,

such that (F.8), with Q � 0, becomes[
2α1Q + QAT + Y T BT + AQ + BY 0

0 −2α2Q−QAT − Y T BT −AQ−BY

]
≺ 0.

The idea of the cone is illustrated in figure F.1. The conic region is defined by the inequality
Re(s) tan(φ) < −|Im(s)|, and thus the matrices L and M should be specified as

L + sM + s̄MT = s

[
sin(φ) cos(φ)
− cos(φ) sin(φ)

]
+ s̄

[
sin(φ) − cos(φ)
cos(φ) sin(φ)

]
The closed loop poles are inside this region if and only if there exists a Q � 0 such that[

(QAT + Y T BT + AQ + BY ) sin(φ) (QAT + Y T BT −AQ−BY ) cos(φ)
(QAT + Y T BT −AQ−BY )T cos(φ) (QAT + Y T BT + AQ + BY ) sin(φ)

]
≺ 0.

If the system is controllable, solving both LMIs simultaneously and applying P = Q−1 and
K = Y P will finally result in a control matrix K placing the poles in the predefined region.

Output feedback: H∞ controller synthesis

This section will discuss the H∞ controller synthesis for output feedback systems. The
considered general system layout is given in figure F.2, where P is the augmented plant with
states x ∈ Rn and K is the controller with states xk ∈ RnK , which uses y to calculate
the control signal u. Notice there are nw exogenous inputs w and nz exogenous outputs z.
Moreover, with wj and zj specific in/outputs or combinations of in/outputs will be denoted.

The augmented plant P in figure F.2 is defined by

P :


ẋ = Ax + Bww + Bu
z = Czx + Dzww + Dzu
y = Cx + Dww

(F.9)

Notice that D = 0, so there is no direct coupling between u and y, hence P is strictly proper.
The controller K can be described by

K :
{

ẋk = AKxk + BKy
u = CKxk + DKy

(F.10)
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K

P... ...

w1

w2

wnw

z1

z2

znz

u y

Figure F.2: General multichannel closed loop system

With these descriptions the closed loop dynamics can be obtained:

ẋ = Ax + Bww + B(CKxk + DK(Cx + Dww))
= (A + BDKC)x + BCKxk + (Bw + BDKDw)w

ẋk = AKxk + BK(Cx + Dww) = BKCx + AKxk + BKDww

z = Czx + Dzww + Dz(CKxk + DK(Cx + Dww))
= (Cz + DzDKC)x + DzCKxk + (Dzw + DzDKDw)w

With xT
cl = [xT , xT

k ] this closed loop T can be written as

T :
{

ẋcl = Axcl + Bw
z = Cxcl +Dw

⇒

 ẋ
ẋk

z

 =
[
A B
C D

] x
xk

w

 (F.11)

where[
A B
C D

]
=

 A + BDKC BCK Bw + BDKDw

BKC AK BKDw

Cz + DzDKC DzCK Dzw + DzDKDw

 .

That the dimensions of this matrix are indeed correct is shown in figure F.3. The closed loop
in (F.11) represents the transfer from all inputs w to all outputs z. If only specific in- and



A + BDKC BCK Bw + BDKDw

BKC AK BKDw

Cz + DzDKC DzCK Dzw + DzDKDw



(n× n) + (n× nu)(nu × ny)(ny × n)

(n× nu)(nu × nK)

(nK × ny)(ny × n)

(nK × nK)
(n× nw) + (n× nu)(nu × ny)(ny × nw)

(nK × ny)(ny × nw)

(nz × n) + (nz × nu)(nu × ny)(ny × n) (nz × nu)(nu × nK) (nz × nw) + (nz × nu)(nu × ny)(ny × nw)

Figure F.3: Size check of closed loop matrix. Total size is (n+nK +nz)× (n+nK +nw).
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outputs wj and zj should be considered (wj and zj can still be multidimensional!), one can
apply a matrix multiplication to select the right channels and/or combination of channels:

Tj = LjTRj ⇒ w = Rjwj and zj = Ljz, (F.12)

where Lj ∈ Rnzj×nz and Rj ∈ Rnw×nwj . Here nwj ≤ nw and nzj ≤ nz are the number of
considered inputs and outputs in the H∞ synthesis. With this transformation any input and
any output (or combinations of these) can now be selected. Hence, the j-th realization of the
closed loop transfer Tj = LjTRj from wj to zj is now completely described by[

A Bj

Cj Dj

]
=

[
A BRj

LjC LjDRj

]
=

 A + BDKC BCK Bj + BDKFj

BKC AK BKFj

Cj + EjDKC EjCK Dj + EjDKFj

 (F.13)

where
Bj = BwRj , Cj = LjCz, Dj = LjDzwRj ,
Ej = LjDz, Fj = DwRj .

The H∞ controller synthesis starts with the analysis LMI (C.16), derived in Appendix C.
It states that the closed loop system Tj is asymptotically stable and ||Tj ||∞ < γ if and only if
there exists a P � 0 and γ > 0 such that ATP + PA PBj CT

j

BT
j P −γI DT

j

Cj Dj −γI

 ≺ 0. (F.14)

Furthermore, minimization of γ in (F.14) returns the actual H∞ norm of Tj .
When a controller needs to be designed, the matrices AK , BK , CK and DK are unknown

and should be found using the above inequality. However, P is also unknown, resulting in
non-linear terms like PA and PBj . Thus a linearizing change of variables is needed. This
LCV starts with the partitioning of the positive definite matrix P and its inverse P−1:

P =
[

Y N
NT ?

]
and P−1 =

[
X M
MT ?

]
(F.15)

where X,Y ∈ Rn×n and symmetric. Since PP−1 = I it holds that P
[

X
MT

]
=

[
I
0

]
, and thus

PΠ1 = Π2 with Π1 =
[

X I
MT 0

]
and Π2 =

[
I Y
0 NT

]
.

With this, by pre- and post-multiplying with Π1, the constraint P � 0 can be converted into

ΠT
1 PΠ1 = ΠT

1 Π2 =
[

X I
I Y

]
� 0. (F.16)

The H∞ LMI (F.14) should also be pre- and post-multiplied with the scaling Π1: ΠT
1 0 0
0 I 0
0 0 I

 ATP + PA PBj CT
j

BT
j P −γI DT

j

Cj Dj −γI

 Π1 0 0
0 I 0
0 0 I

 ≺ 0

 ΠT
1ATPΠ1 + ΠT

1 PAΠ1 ΠT
1 PBj ΠT

1 CT
j

BT
j PΠ1 −γI DT

j

CjΠ1 Dj −γI

 ≺ 0 (F.17)
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APPENDIX F. Controller synthesis using LMIs and a change of variables

Now calculate all the terms containing Π1 and define new variables Â, B̂, Ĉ and D̂:

Dj = Dj + EjDKFj = Dj + EjD̂Fj

⇒ D̂ = DK (F.18a)

CjΠ1 =
[

Cj + EjDKC EjCK

] [
X I
MT 0

]
=

[
CjX + Ej(DKCX + CKMT ) Cj + EjDKC

]
=

[
CjX + EjĈ Cj + EjD̂C

]
⇒ Ĉ = DKCX + CKMT (F.18b)

ΠT
1 PBj = ΠT

2 Bj =
[

I 0
Y N

] [
Bj + BDKFj

BKFj

]
=

[
Bj + BDKFj

Y Bj + (Y BDK + NBK)Fj

]
=

[
Bj + BD̂Fj

Y Bj + B̂Fj

]
⇒ B̂ = Y BDK + NBK (F.18c)

ΠT
1 PAΠ1 = ΠT

2AΠ1 =
[

I 0
Y N

] [
A + BDKC BCK

BKC AK

] [
X I
MT 0

]
=

[
AX + B(DKCX + CKMT ) A + BDKC

?big term? Y A + (Y BDK + NBK)C

]
=

[
AX + BĈ A + BDKC

Â Y A + B̂C

]
⇒ Â = Y AX + Y BDKCX + NBKCX + Y BCKMT + NAKMT (F.18d)

Using this change of variables, (F.17) now becomes linear in the decision variables Â, B̂, Ĉ,
D̂, X and Y , thereby creating a computable set of LMIs:[

X I
I Y

]
� 0 (F.19a) AX + XAT + BĈ + Ĉ

T
BT Â

T
+ (A + BD̂C) ? ?

Â + (A + BD̂C)T Y A + AT Y + B̂C + CT B̂
T

? ?

(Bj + BD̂Fj)
T (Y Bj + B̂Fj)

T −γI ?

CjX + EjĈ Cj + EjD̂C Dj + EjD̂Fj −γI

 ≺ 0 (F.19b)

When all inputs w and outputs z are considered (so Lj = Rj = I), LMI (F.19b) becomes: AX + XAT + BĈ + Ĉ
T
BT Â

T
+ (A + BD̂C) ? ?

Â + (A + BD̂C)T Y A + AT Y + B̂C + CT B̂
T

? ?

(Bw + BD̂Dw)T (Y Bw + B̂Dw)T −γI ?

CzX + DzĈ Cz + DzD̂C Dzw + DzD̂Dw −γI

 ≺ 0 (F.20)

The new variables can then be used to derive the controller matrices and the Lyapunov
matrix P. First note that P−1P = I yields MNT = I − XY . Since

[
X I
I Y

]
� 0 and

thus I − XY ≺ 0, the matrix MNT is nonsingular. Thus one can always find square and
nonsingular matrices M and N satisfying MNT = I −XY , for example by making an SVD-
decomposition of I −XY :

I −XY = MNT = UΣV T = U
√

Σ
√

ΣV T
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APPENDIX F. Controller synthesis using LMIs and a change of variables

M = U
√

Σ ⇒ M−1 = UT 1√
Σ

⇒ M−T = U
1√
Σ

N =
√

ΣV ⇒ N−1 =
1√
Σ

V T

Once M−T and N−1 are found, the controller matrices can easily be computed:

DK = D̂ (F.21a)
CK = (Ĉ −DKCX)M−T (F.21b)
BK = N−1(B̂ − Y BDK) (F.21c)
AK = N−1ÂM−T −BKCXM−T

−N−1Y BCK −N−1Y (A + BDKC)XM−T (F.21d)

It can easily be shown that the dimensions of the new linearizing variables are:

X : n× n D̂ : nu × ny B̂ : n× ny

Y : n× n Ĉ : nu × n Â : n× n

With this, and the fact that the matrices M and N must be invertible and thus nonsingular,
it can be proven that both M and N should be n× n, yielding that nK = n. In other words,
the order of the controller is equal to the order of the plant.
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Appendix G

Alternative H∞ controller synthesis

This appendix will discuss an alternative way to formulate the H∞ controller synthesis,
as is described in [15]. This synthesis does not use a change of variables, as in Appendix F,
but instead pulls the controller parameters out of the inequalities and eliminates them to find
an appropriate Lyapunov function. After that, the controller is subtracted using a similar LMI.

Problem description

The method is illustrated by means of an ordinary linear system. Therefore, the same
closed loop configuration as in figure F.2 is used, and furthermore the dynamics of the aug-
mented plant and the controller are identical to the ones in (F.9) and (F.10). The closed loop
dynamics, with state xcl = [xT , xT

k ]T , is thus given by

ẋcl = Axcl + Bw
z = Cxcl +Dw

⇒

 ẋ
ẋk

z

 =
[
A B
C D

] x
xk

w

 (G.1)

where[
A B
C D

]
=

 A + BDKC BCK Bw + BDKDw

BKC AK BKDw

Cz + DzDKC DzCK Dzw + DzDKDw

 .

The controller parameters AK , BK , CK and DK can be pulled out of these matrices, and
written in one matrix Θ:

Θ :=
[

AK BK

CK DK

]
(G.2)

so that A, B, C and D can be written as

A =
[

A 0
0 0

]
+

[
BDKC BCK

BKC AK

]
=

[
A 0
0 0

]
+

[
0 B
I 0

]
Θ

[
0 I
C 0

]
= A0 + B1ΘC1 (G.3a)
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B =
[

Bw

0

]
+

[
BDKDw

BKDw

]
=

[
Bw

0

]
+

[
0 B
I 0

]
Θ

[
0

Dw

]
= B0 + B1ΘD2 (G.3b)

C =
[

Cz 0
]
+

[
DzDKC DzCK

]
=

[
Cz 0

]
+

[
0 Dz

]
Θ

[
0 I
C 0

]
= C0 + D1ΘC1 (G.3c)

D = Dzw + DzDKDw = Dzw +
[

0 Dz

]
Θ

[
0

Dw

]
= Dzw + D1ΘD2 (G.3d)

Since A0, B0, C0, Dzw, B1, C1, D1 and D2 are all parameters of the augmented plant and
thus known beforehand, one can conclude that the closed loop matrices A, B, C and D depend
affinely on the controller parameters Θ, a property that will be used in the next section.

Moreover, the remainder of this appendix will use the following elimination lemma.

Lemma 1 Given a symmetric matrix Ψ and two matrices K and L, consider the problem of
finding a matrix Θ which satisfies the LMI

Ψ + KT ΘT L + LT ΘK ≺ 0 (G.4)

If WK and WL denote the null spaces of K and L respectively, then this LMI is feasible if and
only if the LMIs{

W T
KΨWK ≺ 0

W T
L ΨWL ≺ 0

(G.5)

are feasible. Note that the actual solution Θ is eliminated in the latter LMIs.

Feasibility LMIs

Recall from (C.16) that the H∞-norm of a system can be found with the LMI AT P + PA PB CT

BT P −γI DT

C D −γI

 ≺ 0. (G.6)

If this LMI is feasible for a certain P � 0 and γ > 0, then the closed loop system (G.1) is
asymptotically stable and the L2-gain ||z||2

||w||2 < γ. When the definitions of (G.3) are substituted
into (G.6), the following result is obtained: (A0 + B1ΘC1)T P + P (A0 + B1ΘC1) P (B0 + B1ΘD2) (C0 + D1ΘC1)T

(B0 + B1ΘD2)T P −γI (Dzw + D1ΘD2)T

C0 + D1ΘC1 Dzw + D1ΘD2 −γI


=

 AT
0 P + PA0 + CT

1 ΘT BT
1 P + PB1ΘC1 PB0 + PB1ΘD2 CT

0 + CT
1 ΘT DT

1

BT
0 P + DT

2 ΘT BT
1 P −γI DT

zw + DT
2 ΘT DT

1

C0 + D1ΘC1 Dzw + D1ΘD2 −γI


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=

 AT
0 P + PA0 PB0 CT

0

BT
0 P −γI DT

zw

C0 Dzw −γI

 +

 CT
1 ΘT BT

1 P 0 CT
1 ΘT DT

1

DT
2 ΘT BT

1 P 0 DT
2 ΘT DT

1

0 0 0

 +

 PB1ΘC1 PB1ΘD2 0
0 0 0

D1ΘC1 D1ΘD2 0


=

 AT
0 P + PA0 PB0 CT

0

BT
0 P −γI DT

zw

C0 Dzw −γI

 +

 CT
1

DT
2

0

ΘT
[

BT
1 P 0 DT

1

]
+

 PB1

0
D1

Θ
[

C1 D2 0
]

= Ψ + KT ΘT LP + LT
P ΘK ≺ 0

According to Lemma 1, there is a parameter set Θ for which this inequality is feasible if and
only if the LMIs{

W T
KΨWK ≺ 0

W T
LP

ΨWLP
≺ 0

are feasible for some P � 0 and γ > 0. Here WK and WLP
are matrices whose columns span

the kernels of K and LP respectively. These should be known beforehand, but WLP
contains

P which is yet unknown. However, for any im(WΩ) = ker(Ω) it holds that

ΩWΩ = 0 ⇒ ΩQQ−1WΩ = 0 ⇒ im(Q−1WΩ) = ker(ΩQ).

So for L=
[

BT
1 0 DT

1

]
and LP =L

 P 0 0
0 I 0
0 0 I

, then WLP
=

 P−1 0 0
0 I 0
0 0 I

WL.

This thus means that W T
LP

ΨWLP
≺ 0 can be rewritten using WL:

W T
L

 P−1 0 0
0 I 0
0 0 I

 AT
0 P + PA0 PB0 CT

0

BT
0 P −γI DT

zw

C0 Dzw −γI

 P−1 0 0
0 I 0
0 0 I

WL

= W T
L

 A0P
−1 + P−1AT

0 B0 P−1CT
0

BT
0 −γI DT

zw

C0P
−1 Dzw −γI

WL = W T
L ΦWL ≺ 0

Thus there exists a controller which yields a stable closed loop with an L2-gain smaller than
γ > 0 if and only if the following LMIs are feasible for some P � 0:{

W T
KΨWK ≺ 0

W T
L ΦWL ≺ 0

(G.7)

with im(WK) = ker(
[

C1 D2 0
]
), im(WL) = ker(

[
BT

1 0 DT
1

]
) and

Ψ =

 AT
0 P + PA0 PB0 CT

0

BT
0 P −γI DT

zw

C0 Dzw −γI

 and Φ =

 A0P
−1 + P−1AT

0 B0 P−1CT
0

BT
0 −γI DT

zw

C0P
−1 Dzw −γI


However, since these inequalities should be solved for P , they are not linear (due to P−1).
This can be solved by assuming the following structure of P :

P :=
[

Y N
NT ?

]
� 0 and P−1 :=

[
X M

MT ?

]
� 0 (G.8)
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By introducing a proper multiplication matrix (see Appendix F), the constraint P � 0 can be
written as[

X I
MT 0

]T [
Y N

NT ?

] [
X I
MT 0

]
=

[
X I
I Y

]
� 0

The structure of (G.8) and the definitions of (G.3) can be substituted into the matrices Ψ
and Φ, which then become

Ψ =


AT Y + Y A AT N Y Bw CT

z

NT A 0 NT Bw 0
BT

wY BT
wN −γI DT

zw

Cz 0 Dzw −γI



Φ =


AX + XAT AM Bw XCT

z

MT AT 0 0 MT CT
z

BT
w 0 −γI DT

zw

CzX CzM Dzw −γI


Now since L =

[
0 I 0 0

BT 0 0 DT
z

]
and K =

[
0 I 0 0
C 0 Dw 0

]
it holds that the second row

of both WL and WK contains solely zeros:

WL =


Wl1 0
0 0
0 1

Wl2 0

 and WK =


Wk1 0
0 0

Wk2 0
0 1


Therefore the second rows and columns in Ψ and Φ do not influence W T

KΨWK ≺ 0 and

W T
L ΦWL ≺ 0 and can thus be canceled. Furthermore, if one defines NX =

[
Wl1

Wl2

]
and

NY =
[

Wk1

Wk2

]
, where the columns of NX span ker(

[
BT DT

z

]
) and the columns of NY

span ker(
[

C DT
w

]
), this finally results in the following set of feasibility LMIs:

[
NX 0
0 I

]T
 AX + XAT Bw XCT

z

CzX Dzw −γI
BT

w −γI DT
zw

[
NX 0
0 I

]
≺ 0 (G.9a)

[
NY 0
0 I

]T
 AT Y + Y A Y Bw CT

z

BT
wY −γI DT

zw

Cz Dzw −γI

[
NY 0
0 I

]
≺ 0 (G.9b)

[
X I
I Y

]
� 0, (G.9c)

It is clear to see that these inequalities are linear in their decision variables X and Y , and
can thus easily be solved. If these LMIs are feasible for a certain γ > 0, then there exists a
controller which can achieve this γ. By minimizing over γ one can find optimal values of X
and Y , which guarantees the existence of a controller at this optimal value of γ.
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Controller synthesis

The obtained X and Y can then be used to derive P according to

MNT = I −XY, (G.10)

which is solvable by using e.g. the SVD-decomposition of I − XY . In was shown in the
previous section that this P guarantees the existence of a controller, which can again be found
using (C.16): AT P + PA PB CT

BT P −γI DT

C D −γI

 = Ψ + KT ΘT LP + LT
P ΘK ≺ 0 (G.11)

Now all terms on the left hand side of this inequality are known, except for the controller Θ.
Hence (G.11) is linear in its design variable Θ. So using the obtained P and γ, this LMI will
result in a controller Θ with an L2-gain smaller or equal to γ.

Discussion

Compared to the method of the linearizing change of variables described in Appendix F, the
above described elimination method has a major drawback, which is the reason why the former
is more commonly used. Namely, the elimination method will not work for multichannel or
mixed problems. Take for example a mixedH2/H∞ problem, where the elimination lemma will
result in two sets of feasibility LMIs. Feasibility of the first set only guarantees the existence
of an H∞-controller Θ∞ and the second only guarantees the existence of an H2-controller Θ2,
however, these two are not necessarily equal! Even if these LMIs are solved for a common P ,
there is no guarantee that the controller synthesis LMI can find one Θ = Θ∞ = Θ2, since this
equality is not taken into account in the first feasibility LMI. In the LCV method however,
all controller variables are explicitly present in the same LMI which checks the feasibility,
hence the H∞ and H2 LMIs can be solved simultaneously using a common controller (and
necessarily a common P ). This controller is then guaranteed to satisfy both the H∞ and H2

constraints, which is impossible with the elimination method.
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