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This paper treats the computational method of the optimal 𝐻∞ model order reduction (MOR) problem of linear time-invariant
(LTI) systems. Optimal solution of MOR problem of LTI systems can be obtained by solving the LMIs feasibility coupling with a
rank inequality constraint, which makes the solutions much harder to be obtained. In this paper, we show that the rank inequality
constraint can be formulated as a linear rank function equality constraint. Properties of the linear rank function are discussed.
We present an iterative algorithm based on augmented Lagrangian method by replacing the rank inequality with the linear rank
function. Convergence analysis of the algorithm is given, which is distinct to the now available heuristic methods. Numerical
experiments for the MOR problems of continuous LTI system illustrate the practicality of our method.

1. Introduction

Model order reduction (MOR) problem has received consid-
erable attention since it was put up. In physical or engineering
system, the mathematical modeling of the system often
results in the high-order controllers, while the simulation
and physical implementation of the higher order controllers
are more difficult to realize due to the high order. The
purpose of the MOR is to obtain a stable lower-order system
that approximates the higher one according to some given
criterion. Many techniques and results on MOR problems
have been reported, and there are various approaches such
as the aggregation method [1], balanced truncation approach
[2], and optimal Hankel norm approximations methods [3,
4]. It is a difficult work to list all the references since we
have many references in this field. The 𝐻∞ MOR problem
has been studied by many researchers such as [4–13] and
references therein. It mainly consists of finding a lower-
order model 𝐺 of the original system 𝐺 such that the𝐻∞ error ‖𝐺 − 𝐺‖ is small. It has received quite a few
attentions since the 𝐻∞ norm of the difference between
two systems is one of the most meaningful measures of
approximations. Linear matrix inequality (LMI) is a well-
known convex feasibility problem which can be solved by the

semidefinite programming (SDP) interior algorithms [14].
LMI is also a powerful tool in control and systems theory and
was widely used in output feedback stabilization, reduced-
order 𝐻∞ synthesis, 𝜇 synthesis with constant scaling [15],
and so on. In [6], an LMI approach was followed for the𝐻∞ MOR problem, utilizing the Bounded Real Lemma [16],
and an iterative two-step algorithm was proposed but with
no guaranteed convergence to the global optimum. More
recently, [5] studied the deterministic𝐻∞ MOR problem for
deterministic case, necessarily and sufficient conditions are
derived for 𝛾− suboptimal MOR problems in terms of LMIs,
numerical techniques based on alternating projections are
proposed to solve the MOR problems, and [7] extends the
results to the stochastic MOR problem.

The optimal index 𝛾 of𝐻∞MORproblem is computed by
minimizing the model given in [5], and an algorithm to solve
the related LMIs feasibility coupling with a rank constraint is
also proposed in that paper. The rank constrained LMI prob-
lem can be considered as a generalization of LMI problem,
but the lack of convexity makes the rank constrained LMI
problem much harder to solve. Now available algorithms for
the rank constrained LMI problems are largely heuristic in
nature and most of them are not convergent. The existing
methods for LMI coupling with rank constrained are those
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based on linearization [17], alternating projections [18, 19],
trace minimization methods that solve the problem by
solving a related convex problem [20], augmentedLagrangian
methods (ALF) [21], sequential semidefinite programming
[22], and so on. Aside from [21, 22], these methods did not
give the proof of convergence and the challenge still remains
to find the numerical schemes with verifiable local/global
convergence. More recently, nuclear norm minimizations
method is a good relaxation approximation method to this
problem [23].

The contribution of this paper is as follows: an algorithm
is presented using the augmented Lagrangian method by
means of the equivalent condition to the rank constraints;
ALF method has more advantages compared with the PF
method. For PF method, the penalty item becomes more and
more possibly ill-conditioned when the penalty parameter
become decreasing, which makes the solution more difficult
to find. One of the modification methods to solve this prob-
lem for PF is the ALF method, which has better performance
in the aspect of robustness and convergence rate. So we
proposed an ALF method for Problem 10. Convergence of
the algorithm is also investigated in this paper. Numerical
experiments showed that our algorithm is effective.

The rest of this paper is structured as follows. Section 2
gives an introduction to the 𝐻∞ MOR problem and the
feasible set of convex LMI constraints coupling with rank
constraint. Section 3 presents an equivalent condition of the
rank constraints and reformulates the MOR problem as an
NLP problem using a cost function which combines 𝐻∞
gains index 𝛾 and a penalty term accounting for the rank
constraint. An augmented Lagrangian method solving the
NLP problem is proposed in Section 4, as well as convergence
results. Section 5 gives some computational details about the
algorithms. Numerical experiments are given in Section 6
for continuous LTI MOR problems. Section 7 concludes this
paper.

The standard notation used throughout this paper is as
follows. 𝑆𝑛 denotes the set of all symmetric matrix in 𝑅𝑛, and𝐼𝑛 denotes the 𝑛 identity matrix. For a matrix𝐴, its transpose,
rank, inverse, and trace are denoted by𝐴𝑇, rank(𝐴),𝐴−1, and
trace(𝐴), respectively. If 𝐴 is a symmetric matrix, 𝐴 > (≥)
0 means that 𝐴 is positive (semidefinite) definite. Symbols ∇
and ∇2 mean the gradient and Hessian matrix of a function,𝜎(𝐴) denotes the maximum singular value of a matrix, ‖ ⋅ ‖
denotes the 𝐻∞ norm of a rational transfer function, and⟨𝐴, 𝐵⟩ denotes the inner product of two matrices.

2. Problem Formulation

Consider an asymptotically stable 𝑛th−order linear, time-
invariant continuous system 𝐺 with a state space represen-
tation

𝑥̇ = 𝐴𝑥 + 𝐵𝑢,𝑦 = 𝐶𝑥 + 𝐷𝑢, (1)

where 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑚, 𝐶 ∈ 𝑅𝑝×𝑛, and 𝐷 ∈ 𝑅𝑝×𝑚. The
optimal𝐻∞MORproblem is to find a stable 𝑛th order system𝐺(𝑛 ≪ 𝑛) with a state space representatioṅ̂𝑥 = 𝐴𝑥 + 𝐵𝑢̂,𝑦 = 𝐶𝑥 + 𝐷𝑢̂, (2)

where 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×𝑚, 𝐶 ∈ 𝑅𝑝×𝑛, and 𝐷 ∈𝑅𝑝×𝑚, such that the 𝐻∞ gain index of ‖𝐺 − 𝐺‖∞ with
respect to 𝐺 is minimized. The balanced truncation method
for MOR problem [2] and the optimal Hankel norm MOR
method [3] are the most popular among the now available
methods. Methods based on the LMIs are the ones which
can reformulate the MOR problem as LMIs by means of
the Bounded real lemma. The optimal MOR solution can
be obtained by solving a feasible point of LMIs feasible set
coupling with a rank constraint. The method is proposed in
[6] in terms of time domain response of the error system
and [5] extends the result to the 𝐻∞ MOR problem in the
state space. Reference [7] extends the results to the stochastic
case. More recently, basing on LMIs method, [24] presents
a sufficient and necessary condition for positivity-preserving𝐻∞ MOR of LTI positive system.

Theorem 1 (see [5]). There exists a stable system 𝐺 such that
the𝐻∞MORproblem of the 𝑛th-order continuous-time system
in the form of (1) is solvable for a given 𝛾 > 0 if and only if there
exists positive definite matrix𝑋 > 0, 𝑌 > 0 satisfying

min
𝛾,𝑋,𝑌

𝛾 (3)𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝐵𝑇 < 0, (4)𝑌𝐴 + 𝐴𝑇𝑌 + 𝐶𝑇𝐶 < 0, (5)(𝑋 𝛾𝐼𝛾𝐼 𝑌) ≥ 0,
rank(𝑋 𝛾𝐼𝛾𝐼 𝑌) ≤ 𝑛 + 𝑛. (6)

The optimal 𝐻∞ error and the corresponding feasible solution
for 𝑋,𝑌 can be obtained by solving the following optimization
Problem 2, and all 𝛾− suboptimal of 𝑛th− order models that
correspond to a feasible matrix pair (𝑋, 𝑌) are given by

(𝐷 𝐶𝐴 𝐵) = 𝐺1 + 𝐺2𝐿𝐺3, (7)

where 𝐿 ∈ 𝑅(𝑝+𝑛)×(𝑚+𝑛) is any matrix such that ‖𝐿‖ < 1, and𝐺1 = (𝑀1 − 𝑄12𝑄−122𝑀𝑇2 ) (𝑀2𝑄−122𝑀𝑇2 )−1 , (8)𝐺2 = (−𝑄11 + 𝑄12𝑄−122𝑄𝑇12 − 𝐺1𝐺23𝐺𝑇1 )1/2 , (9)𝐺3 = − (𝑀2𝑄−122𝑀𝑇2 )1/2 , (10)
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where 𝑀1 = (0 00 𝑅2𝑥) ,𝑀2 = ( 0 𝐼𝑅𝑥𝐿𝑇𝑥 0) ,𝑄11 = ( −𝛾2𝐼 𝐶𝐿𝑥𝑅𝑥𝑅𝑥𝐿𝑇𝑥𝐶𝑇 0 ) ,
𝑄12 = ( 𝐶𝑋 𝐷𝑅𝑥𝐿𝑇𝑥𝐴𝑇 0) ,
𝑄22 = (𝐴𝑋 + 𝑋𝐴𝑇 𝐵𝐵𝑇 𝐼)

(11)

and 𝑅𝑥 ∈ 𝑅𝑛×𝑛 is an arbitrary positive definite matrix, 𝐿𝑥 ∈𝑅𝑛×𝑛 is an arbitrary matrix factor such that 𝐿𝑥𝐿𝑇𝑥 = 𝑋−𝛾2𝑌−1.
Problem 2. According to Theorem 1, the solution of the
optimal 𝐻∞ MOR problem can be obtained by solving the
following LMIs constrained minimization problem coupling
with rank constraints.

min
𝛾,𝑋,𝑌

𝛾 (12)𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝐵𝑇 < 0, (13)𝑌𝐴 + 𝐴𝑇𝑌 + 𝐶𝑇𝐶 < 0, (14)

(𝑋 𝛾𝐼𝛾𝐼 𝑌) ≥ 0,
rank(𝑋 𝛾𝐼𝛾𝐼 𝑌) ≤ 𝑛 + 𝑛. (15)

Assumption 3. Throughout the paper, we assume that Prob-
lem 2 has at least one feasible solution.

Theorem 4 (see [12]). The rank of a symmetric positive
semidefinite matrix 𝑊 satisfies rank(𝑊) ≤ 𝑟 if and only if
there exist matrices 𝑉 ∈ 𝑅𝑛×(𝑛−𝑟) with 𝑉𝑇𝑉 = 𝐼𝑛−𝑟 such that
tr(𝑉𝑇𝑊𝑉) = 0.

Theorem 4 is a lemma in [12]; we give a detailed different
proof here.

Proof. Given a symmetric positive semidefinite matrix𝑊 ≥0, rank(𝑊) ≤ 𝑟, 𝑟 > 0, there exists an orthogonal matrix 𝑈
such that

𝑈𝑇𝑊𝑈 = (𝜆1 d 𝜆𝑛), (16)

where the eigenvalues are ordered 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑛 ≥ 0,
since the rank of matrix 𝑊 is less than or equal to 𝑟; there
must be at most 𝑟 eigenvalues that are not 0. The columns
of matrix𝑈 are the corresponding eigenvectors of the related
eigenvalues; take 𝑉 = (𝑢𝑟+1, . . . , 𝑢𝑛) ∈ 𝑅𝑛×(𝑛−𝑟); the columns
of 𝑉 consist of the eigenvectors corresponding to the 𝑛 − 𝑟
smallest eigenvalues of 𝑊, and 𝑉𝑇𝑉 = 𝐼𝑛−𝑟; this ends the
necessity part.

If there exists a matrix 𝑉 ∈ 𝑅𝑛×(𝑛−𝑟), with 𝑉𝑇𝑉 = 𝐼𝑛−𝑟
satisfying tr(𝑉𝑇𝑊𝑉) = 0, suppose the eigenvalues of the
symmetric matrix 𝑉𝑇𝑊𝑉 are 𝜆1, 𝜆2, . . . , 𝜆𝑛−𝑟. They are also
the eigenvalues of the matrix 𝑊 since matrix 𝑉 is full rank
which means 𝜆1, 𝜆2, . . . , 𝜆𝑛−𝑟 ≥ 0 because𝑊 is a symmetric
positive semidefinite matrix. We have𝜆1 + 𝜆2 + ⋅ ⋅ ⋅ + 𝜆𝑛−𝑟 = tr (𝑉𝑇𝑊𝑉) = 0, (17)

from the nonnegativity of the eigenvalues𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑛−𝑟,
we have 𝜆𝑖 = 0, 𝑖 = 1, 2, . . . , 𝑛 − 𝑟, which means rank(𝑊) ≤ 𝑟;
this ends the proof of sufficiency part.

For simplification, we note the closure of the semipositive
feasible constraints set in Problem 2 as Ω = {(𝛾, 𝑋, 𝑌) | 𝛾 ≥0, ∃𝑋, 𝑌 > 0, such that 𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝐵𝑇 ≤ 0, 𝑌𝐴 + 𝐴𝑇𝑌 +𝐶𝑇𝐶 ≤ 0, − ( 𝑋 𝛾𝐼𝛾𝐼 𝑌 ) ≤ 0}.
Proposition 5. Set Ω as a convex in variable 𝛾.

The set is the intersection of some polynomial inequalities
constrained set. The proof of Proposition 5 can be done by the
positive definiteness (positive semidefiniteness) of matrix.

Proposition 6. Denote ℎ(𝛾; 𝑉) = tr(𝑉𝑇𝑊𝑉), where 𝑊 =( 𝑋 𝛾𝐼𝛾𝐼 𝑌 ); then ℎ(𝛾) is a linear function in matrix variable 𝑋,𝑌 for a given fixed matrix 𝑉.
Proof. From Theorem 1, matrices 𝑋, 𝑌 are functions in
variable 𝛾; according to the definition of function ℎ(𝛾) and
the inner product of matrix, we haveℎ (𝛾) = tr (𝑉𝑇𝑊𝑉) = ⟨𝑉,𝑊𝑉⟩ , 𝑊 = (𝑋 𝛾𝐼𝛾𝐼 𝑌) . (18)

Its obvious that ℎ(𝛾) is a linear function in 𝑋, 𝑌 for a given𝑉 and 𝑊 = ( 𝑋 𝛾𝐼𝛾𝐼 𝑌 ) but keep in mind that 𝑋, 𝑌 are related
to variable 𝛾, and 𝑉 varies with matrix𝑊. Matrix 𝑉 can be
obtained by the singular decomposition of the specificmatrix𝑊.

Proposition 7. For a given matrix 𝑊 with a fixed rank 𝑛,
function ℎ(𝛾; 𝑉) is continuous differentiable in variable 𝛾 for
fixed 𝑋, 𝑌. Suppose 𝛾∗ is the solution of equation ℎ(𝛾) = 0;
then when 𝛾 → 𝛾∗, ℎ(𝛾) → 0.
Proof. From Theorem 4, matrix 𝑉 is a submatrix of the
orthogonal transformation matrix, so 𝑉𝑇𝑊𝑉 has the same
eigenvalues as matrix𝑊. The value of ℎ(𝛾; 𝑉) is the addition
of some eigenvalues of matrix 𝑊. From the definition of
eigenvalues of amatrix andOstrowskiTheorem, the eigenval-
ues of matrix𝑊 are a continuous and differentiable function
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in the entries of thematrix𝑊 (whilematrix𝑉 is not the case).
Theproof of this lemma is obvious. Conclusions can be drawn
according to the continuity of ℎ(𝛾) and Proposition 6.

Proposition 7 suggests that |ℎ(𝛾; 𝑉)| ≤ 𝜀 can be used as the
iteration termination criterion, although the rank condition
for matrix𝑊 in Theorem 1 does not hold.

Proposition 8. If the rank of matrix 𝑊 is full, functionℎ(𝛾; 𝑉) > 0 for any 𝛾 ≥ 0 and 𝑋, 𝑌 satisfies the LMIs; if the
rank of matrix𝑊 is less than or equal to 𝑛 + 𝑛 (𝑛 ≪ 𝑛), there
must exists a 𝛾 > 0 such that ℎ(𝛾; 𝑉) = 0.
Proof. 𝑊 = ( 𝑋 𝛾𝐼𝛾𝐼 𝑌 ), it is obvious that rank(𝑊) ≥ 𝑛 since𝑊
has a block matrix𝑋 which is positive definite. If rank(𝑊) ≤𝑛 + 𝑛, then

rank (𝑊) = rank(𝑋 00 𝛾2𝐼 − 𝑋𝑌)
= rank (𝑋) + rank (𝛾2𝐼 − 𝑋𝑌) ≤ 𝑛 + 𝑛. (19)

Since rank(𝑋) = 𝑛, we have rank(𝛾2𝐼 − 𝑋𝑌) ≤ 𝑛.
Matrix 𝑌 = 𝑆2, where 𝑆 is also a symmetric positive

definite matrix for the reason that 𝑌 is a symmetric positive
definite matrix; then we have

rank (𝛾2𝐼 − 𝑋𝑌) = rank {𝑆−1 (𝛾2𝐼 − 𝑆𝑋𝑆) 𝑆} ; (20)

there must exist an orthogonal matrix 𝑄 such that

𝑄𝑇𝑆𝑋𝑆𝑄 = (𝜇1 d 𝜇𝑛), (21)

so we have

rank (𝛾2𝐼 − 𝑋𝑌) = rank {𝑆−1 (𝛾2𝐼 − 𝑆𝑋𝑆) 𝑆}
= rank

{{{{{{{𝑆−1𝑄(
𝛾2 − 𝜇1

d 𝛾2 − 𝜇𝑛)𝑄𝑇𝑆}}}}}}} ,
(22)

so there must exist at least 𝑛 − 𝑛 eigenvalues which are zero;
that is, 𝛾2 = 𝜇𝑖𝑗 , 𝑗 = 1, 2, . . . , 𝑛 − 𝑛. The property ℎ(0) > 0
comes from the positive definite of matrix𝑋, 𝑌. Propositions
5–8 show that the rank constraint in (15) can be replaced by
the equality constraint ℎ(𝛾; 𝑉) = 0.
3. Reformulation of Problem 2

By means of the function ℎ(𝛾, 𝑋, 𝑌) andTheorem 1, Problem
2 can be reformulated as follows.

Problem 9.

min
𝛾,𝑋,𝑌

𝛾𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝐵𝑇 < 0,𝑌𝐴 + 𝐴𝑇𝑌 + 𝐶𝑇𝐶 < 0,(𝑋 𝛾𝐼𝛾𝐼 𝑌) ≥ 0,ℎ (𝛾; 𝑉) = 0.
(23)

The above minimization Problem 9 can be written into the
following standard optimization Problem 10, but keep in
mind that 𝑋, 𝑌 is related to 𝛾. We make a notation 𝑥 =(𝛾,𝑋, 𝑌) (we omit the dimension of matrix here), which is
the decision variable.

Problem 10.

min
𝛾,𝑋,𝑌

𝑓 (𝑥) (24)ℎ (𝑥; 𝑉) = 0, 𝑥 = (𝛾,𝑋, 𝑌) ∈ Ω. (25)

Problem 10 is an optimization problem with equality
constraint and closed feasible set; standard optimization
techniques and algorithms can be used to solve this problem.
Recently, [12] presented a penalty function (PF) algorithm by
means of the rank function given in this paper. Numerical
experiments showed that the algorithm is effective while
there is no convergence analysis given in that paper. Also
there are somedisadvantages such as ill conditions for penalty
function methods. This motivates us to present a convergent
algorithm with good numerical performance for Problem 10
(also Problem 2) by means of the function ℎ(𝛾; 𝑉).
4. Augmented Lagrangian Function Algorithm

4.1. ALF Algorithm. One of the effective convergent algo-
rithms for Problem 10 with equality constraints is the aug-
mented Lagrangian function (ALF) method. ALF method
has more advantages compared with PF method. For PF
method, the penalty term becomes more and more possibly
ill-conditioned when the penalty parameter is decreasing,
which makes the solution more difficult to find. One of the
modification methods to overcome this problem for PF is the
ALF method, which has better performance in the aspect of
robustness and convergence rate. So we proposed an ALF
method for Problem 10 in this paper. For more detailed
information about the ALF methods, refer to [25–28].

Problem 10 can be considered as a standard equality
constrained nonlinear programming problem (NLP). Aug-
mented Lagrangian function method is an effective method
to solve an optimization with equality constraints. We refor-
mulate Problem 10 as the form of augmented Lagrangian
function optimization Problem 11, where 𝜆 is the multiplier
and 𝑐 is the penalty parameter.
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Problem 11.

min
𝛾,𝑋,𝑌

Φ𝑐 = 𝑓 (𝑥) + 𝜆ℎ (𝑥; 𝑉) + 𝑐2ℎ2 (𝑥; 𝑉) (26)𝑥 = (𝛾,𝑋, 𝑌) ∈ Ω,𝜆 ∈ Λ. (27)

Suppose the 𝑘th iteration solution of Problem 11 is 𝑥𝑘 =(𝛾𝑘, 𝑋𝑘, 𝑌𝑘). The rationale for the ALF method is based on
the fact that when 𝜆𝑘 is bounded and 𝑐𝑘 →∞, then the term𝜆ℎ(𝑥; 𝑉) + (𝑐/2)ℎ2(𝑥; 𝑉) tends to infinity if ℎ(𝑥; 𝑉) ̸= 0 and
is equal to 0 if ℎ(𝑥; 𝑉) = 0. The minimum of Problem 10 can
be obtained by solving the unconstrained Problem 11 under
some conditions.

ALF Algorithm for NLP Problem 10

Step 1 (initialization). Initialize the algorithmby determining
a feasible of the LMI constraints𝑋0,𝑌0, and 𝛾0.Then initialize
the Lagrangian multiplier 𝜆0 and penalty parameter 𝑐0 > 0,𝑘 fl 0,
Step 2 (inner optimization). For 𝑘 = 0, 1, 2, . . ., solving the
NLP problem for fixed 𝑐𝑘, 𝜆𝑘

min
𝛾,𝑋,𝑌

Φ𝑐𝑘 = 𝑓 (𝑥) + 𝜆𝑘ℎ (𝑥; 𝑉) + 𝑐𝑘2 ℎ2 (𝑥; 𝑉) (28)𝑥 = (𝛾,𝑋, 𝑌) ∈ Ω,𝜆 ∈ Λ. (29)

Using algorithm solving LMI feasibility (such as SeDuMi [29]
or YALMIP [29]) to solve the subproblem, an eigenvalue
decomposition of matrix𝑊 needs to be done at 𝑘th iteration,
and let 𝑥𝑘 = (𝛾𝑘, 𝑋𝑘, 𝑌𝑘) (30)

be the solution of 𝑥𝑘 = argminΦ𝑐𝑘𝑓(𝑥) + 𝜆𝑘ℎ(𝑥; 𝑉) +(𝑐𝑘/2)ℎ2(𝑥; 𝑉). If 𝑥𝑘 satisfies the termination criterion in
Step 4, stop!

Step 3 (update penalty and multiplier).𝜆𝑘+1 = 𝜆𝑘 + 𝑐𝑘ℎ (𝑥𝑘+1; 𝑉) ,
𝑐𝑘+1 = {{{𝜌𝑐

𝑘, if 󵄨󵄨󵄨󵄨󵄨ℎ (𝑥𝑘+1)󵄨󵄨󵄨󵄨󵄨 > 𝜇 󵄨󵄨󵄨󵄨󵄨ℎ (𝑥𝑘; 𝑉)󵄨󵄨󵄨󵄨󵄨 ;𝑐𝑘, if 󵄨󵄨󵄨󵄨󵄨ℎ (𝑥𝑘+1; 𝑉)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜇 󵄨󵄨󵄨󵄨󵄨ℎ (𝑥𝑘; 𝑉)󵄨󵄨󵄨󵄨󵄨
(31)

for given 𝜌 > 1, 0 < 𝜇 < 1. To ensure that 𝜆𝑘 → 𝜆∗ during
the iteration, we use the above update of the multiplier. This
method is discussed in [25, 26]. Let 𝑘 = 𝑘 + 1; go to Step 2.

Step 4 (terminating phase). Due to the linearity of the
constraints function ℎ(𝑥), the terminate criterion of the
algorithm can be chosen with (𝛾, 𝑋, 𝑌) ∈ Ω and |ℎ(𝑥)| ≤ 𝜀.

Proposition 12. ALF algorithm is well defined.

Proof. From Assumption 3, the feasible set of Problem 11 is
nonempty; Propositions 5 and 6 showed that there must exist𝑥 such that ℎ(𝑥) = 0; it is obvious that the algorithm is well
defined.

4.2. The Optimality Conditions for Problem 11. We note the
Lagrangian part ofΦ𝑐(𝑥, 𝜆) as Φ(𝑥, 𝜆); that is,Φ𝑐 (𝑥, 𝜆) = Φ (𝑥, 𝜆) + 𝑐2ℎ2 (𝑥; 𝑉) . (32)

Let 𝑥∗ be a local minimizer of Problem 10; suppose
there exists a Lagrangian multiplier 𝜆∗ such that the first-
and second-order optimality conditions for Problem 10 are
satisfied [25]. Then there exists a large enough 𝑐 > 0 for any𝑐 > 𝑐, at the point (𝑥∗, 𝜆∗); we haveΦ𝑐 (𝑥∗, 𝜆∗) = Φ (𝑥∗, 𝜆∗) ,∇Φ𝑐 (𝑥∗, 𝜆∗) = ∇Φ (𝑥∗, 𝜆∗) ,∇2Φ𝑐 (𝑥∗, 𝜆∗) ≤ ∇2Φ(𝑥∗, 𝜆∗) (33)

so we can obtain the optimality conditions for Problem 11,∇Φ𝑐 (𝑥∗, 𝜆∗)𝑇 (𝑥 − 𝑥∗) ≥ 0,
for any 𝑥 ∈ Ω, (First order condition)(𝑥 − 𝑥∗)𝑇 ∇2Φ𝑐 (𝑥∗, 𝜆∗) (𝑥∗ − 𝜆∗) ,

for any 𝑥 ̸= 𝑥∗ ≥ 0. (Second order optimality condition).
(34)

Then from the Taylor expansion and the optimality
conditions, we haveΦ𝑐 (𝑥, 𝜆∗) ≥ Φ𝑐 (𝑥∗, 𝜆∗) + 𝜂2 󵄩󵄩󵄩󵄩𝑥 − 𝑥∗󵄩󵄩󵄩󵄩2 , (35)

for any 𝑥 ∈ Ω, ‖𝑥 − 𝑥∗‖ < 𝜀, and certain 𝜂, 𝜖 > 0, 𝑐 > 𝑐.
Proposition 13. From the above inequality (35), we conclude
that there must exist a local minimum of Φ𝑐(𝑥, 𝜆) that is close
to 𝑥∗ for every 𝑐 > 𝑐 when 𝜆 is close to 𝜆∗.
4.3. The Convergence of ALF Algorithm

Theorem 14 (local convergence of the algorithm). Suppose
the feasible set {𝑥 | 𝑥 = (𝛾,𝑋, 𝑌) ∈ Ω} is nonempty. For𝑘 = 1, 2, . . ., let 𝑥𝑘 be global minima of the objective function
in Problem 10 over the feasible set. If the Lagrangian multiplier
sequence 𝑥𝑘 is bounded, for all 𝑘, 0 < 𝑐𝑘 < 𝑐𝑘+1, and 𝑐𝑘 →0, then every convergent point of the sequence 𝑥𝑘 is a global
optimal solution of Problem 10.
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Proof. From Propositions 5 and 7, 𝑓(𝑥), ℎ(𝑥) are continuous
in closed set Ω; the proof of the theorem is similar to that of
Bertsekas in [25].

Remark 15. The constraint set of Problem 11 is a closure of the
open set in Problem 2. According to Theorem 14 and Weier-
strass Theorem, Problem 11 must have a global minimum.
But whether the ALF algorithm will obtain a unique global
minimum point or not depends on the concrete problem
given. Usually the global point is not unique for the LMIs
problem. But the feasible set for Problem 2 is not closed, so
the convergent point of Problem 11 may be a local solution to
Problem 2.

Remark 16. The convergence rate of the ALF algorithm
presented in this paper depends on the optimization method
in the subproblem. If the inner algorithm in the subproblem
is superlinear convergent, and the ALF algorithm will be
superlinear convergent.

5. Computational Issues of the ALF Algorithm
and Choice of Parameter

5.1. Choice of Initial Point. The initial point of the algorithm
can be found by solving the following LMIs feasibility
problem using YALMIP [30]:

min {𝑡 | 𝐴𝑋 + 𝑋𝐴𝑇 + 𝐵𝐵𝑇 < 𝑡𝐼, 𝑌𝐴 + 𝐴𝑇𝑌 + 𝐶𝑇𝐶 < 𝑡𝐼, −(𝑋 𝛾𝐼𝛾𝐼 𝑌) < 𝑡𝐼} ; (36)

then determine 𝑋0, 𝑌0, 𝛾0 such that ℎ(𝑥) is as close as
possible to 0. The initial value 𝛾0 can be chosen as the square
root of minimum eigenvalue of matrix 𝑆𝑋𝑆, which shows in
Theorem 1 that 𝛾 → 𝛾 as 𝑘 → ∞.

5.2. The Inner Optimization for the Subproblem in Step 2.
About the inner optimization for the subproblem in Step 2,
we use the interior point algorithm for LMI feasibility such
as SeDuMi in [29] and YALMIP in [30], respectively, in
our numerical experiments. At the 𝑘th iteration, we replaceℎ(𝑥𝑘; 𝑉) with ℎ̃(𝑥𝑘; 𝑉) = tr(𝑉𝑇𝑘−1𝑊(𝑥)𝑉𝑘−1). Since ℎ(𝑥; 𝑉) is
continuous, when 𝑥 → 𝑥∗, we haveℎ (𝑥; 𝑉) − ℎ̃ (𝑥; 𝑉)= tr (𝑉𝑇𝑊(𝑥)𝑉) − tr (𝑉𝑇𝑘−1𝑊(𝑥)𝑉𝑘−1)= tr (𝑉𝑇𝑊(𝑥)𝑉 − 𝑉𝑇𝑘−1𝑊(𝑥)𝑉𝑘−1) 󳨀→ 0. (37)

5.3. The Choice of the Penalty Parameter and
Lagragian Multiplier

5.3.1. Penalty Parameter 𝑐0. The initial value of 𝑐0 should
not be too large, and 𝑐𝑘 should not be increased too fast
to a point where the subproblem (27) and (28) becomes ill-
conditioned, also 𝑐𝑘 should not be increased too slowly in that
the first-order update of the Lagrange multiplier has a poor
convergence rate otherwise.

5.3.2. LagrangianMultiplier 𝜆0. Any prior knowledge should
be exploited to select 𝜆0 close to 𝜆∗, but this is generally
difficult. Many trials need to be done in our experiments.

6. Numerical Experiments

We provide two examples for the applicability of the above
method for determining the suboptimalmodel errors and the
corresponding reduced state space. We use the benchmark
model reduction examples: Wilson’s example and Boiler
system. Both examples are continuous-time LTI system 𝐻∞
model reduction problems.

Example 1. Consider the fourth-order system reduces to a
second system, Wilson example in [31].

𝑥̇ (𝑡) = (0 0 0 −1501 0 0 −2450 1 0 −1130 0 1 −19)𝑥 (𝑡) +(4100)𝑢 (𝑡) ,
𝑦 (𝑡) = (0 0 0 1) 𝑥 (𝑡) .

(38)

Example 2. Consider the ninth-order system reduce to a
third-order system, Boiler System in [32].

𝑥̇ (𝑡) =((((((((
(

−0.910 0 0 0 0 0 0 0 00 −4.449 0 0 0 0 0 0 00 0 −10.262 571.479 0 0 0 0 00 0 −571.479 −10.262 0 0 0 0 00 0 0 0 −10.987 0 0 0 00 0 0 0 0 −15.214 11.622 0 00 0 0 0 0 −11.622 −15.214 0 00 0 0 0 0 0 0 −89.874 00 0 0 0 0 0 0 0 −502.665
))))))))
)

𝑥(𝑡)
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Figure 1: Gamma convergence.

+
(((((((((((((
(

−4.336−3.69110.141−1.61216.629−242.476−14.26113.67282.187

)))))))))))))
)

𝑢(𝑡) ,

𝑦 (𝑡) = (−0.422 −0.736 −0.0416 0.232 −0.816 −0.715 0.546 −0.235 −0.080) 𝑥 (𝑡) .
(39)

Tables 1 and 2 list the optimal indexes obtained by
our algorithm. Figures 1 and 2 indicate the error and
the convergence by the ALF algorithm. The computation
parameters used in the ALF algorithms were 𝜖 = 1𝑒 − 12,𝜇 = 0.85, 𝜌 = 1.1, 𝑐0 = 1000, and 𝜆0 = 1000. Our
experience showed that this algorithm works quite well for
both problems compared with the now available algorithms
[31, 32] under the frame of feasibility coupled with a rank
constraint. The iterations were both less than 100 times when
the terminationwere satisfied; this showed that our algorithm
has good convergence performance and also the error is less
than the results obtained by other methods, especially for
Boiler System; our algorithm performed quite better than
that in [32]. The suboptimal errors can be obtained as well
as the corresponding positive matrices 𝑋, 𝑌 by means of
our algorithm. The reduced state space can be evaluated
according to (6)–(8) (Theorem 1 in [5]), and the obtained
reduced system is stable.

7. Conclusion

We presented an ALF algorithm for optimal 𝐻∞ MOR
problem of the LTI system by means of an augmented
Lagrangian method. First, we give a rank function which
can reformulate the rank constraint of the optimal𝐻∞MOR
problem as a linear function equality constraint; then we
reformulate the original problem as an optimization problem
with LMIs constraints and linear equality constraints; an ALF
algorithm is presented in the following. Compared with the
now available algorithms, the goodness of our algorithm is
the better convergence, which is opposite to the heuristic
algorithm; our algorithm can also overcome the ill condition
of PF algorithm in the process iteration. The algorithm is
applicable to both continuous system and discrete system.
Numerical experiments showed that the algorithm is effective
for deterministic 𝐻∞ MOR problem. MOR is an interesting
and practical topic; not only is it applied in physics or
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Table 1: Wilson’s example.

Method 𝛾
Wilson’s model reduction 2.525𝑒 − 4‖𝐻‖∞ model reduction 2.729𝑒 − 4
ALF model reduction 1.638𝑒 − 4

Table 2: Boiler system.

Method 𝛾‖𝐻‖∞ model reduction 1.127𝑒 − 1
ALF model reduction 0.043𝑒 − 1
engineering systems, but also it can be used in some models
in biological systems [33–36].
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