1,460 research outputs found

    Towards efficient coexistence of IEEE 802.15.4e TSCH and IEEE 802.11

    Full text link
    A major challenge in wide deployment of smart wireless devices, using different technologies and sharing the same 2.4 GHz spectrum, is to achieve coexistence across multiple technologies. The IEEE~802.11 (WLAN) and the IEEE 802.15.4e TSCH (WSN) where designed with different goals in mind and both play important roles for respective applications. However, they cause mutual interference and degraded performance while operating in the same space. To improve this situation we propose an approach to enable a cooperative control which type of network is transmitting at given time, frequency and place. We recognize that TSCH based sensor network is expected to occupy only small share of time, and that the nodes are by design tightly synchronized. We develop mechanism enabling over-the-air synchronization of the Wi-Fi network to the TSCH based sensor network. Finally, we show that Wi-Fi network can avoid transmitting in the "collision periods". We provide full design and show prototype implementation based on the Commercial off-the-shelf (COTS) devices. Our solution does not require changes in any of the standards.Comment: 8 page

    Intelligent TDMA heuristic scheduling by taking into account physical layer interference for an industrial IoT environment

    Get PDF
    In an Internet of Things environment, where multiple mobile devices are brought together, it is not always possible to serve all these devices simultaneously. We developed an intelligent Time Division Multiple Access (TDMA) scheduler which allows to plan the individual packets of the different streams in such a way that everyone can be served by taking into account the interference on the physical layer. The scheduler is applied in a realistic industrial environment and evaluated based on the maximum link latency, the channel occupancy, and the jitter. Two strategies are compared: one where the packets are sequentially allocated, and one periodically. Our results show that the periodically allocated strategy performs the best for the maximum link latency (for a packet size below 1200 bytes) and for the jitter. The channel occupancy is similar for both strategies. Furthermore, the performance can be improved by using a higher number of channels. Compared to classic Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), the channel occupancy and the jitter are reduced up to 69.9 and 99.9%, respectively. Considering the maximum link latency, the proposed TDMA strategies perform significantly better than the worst case CSMA/CA (up to 99.8%), however, when assuming a best case CSMA/CA scenario, CSMA/CA performs better. Furthermore, we clearly show that there are cases where it is not possible to plan all streams when using CSMA/CA while this becomes feasible when applying the proposed TDMA strategies

    Analysis of an IEEE 802.11-based protocol for real-time applications in agriculture

    Get PDF
    La tesi descrive un sistema originale basato sullo standard IEEE 802.11 per il monitoraggio ed il controllo remoto in tempo reale di una macchina agricola attraverso dispositivi commerciali quali smartphones e tablet. Le prestazioni del sistema sono state attentamente caratterizzate, sia dal punto di vista teorico che da quello pratico, tramite numerose sessioni di misure sperimentali. Opportune soluzioni alle problematiche riscontrate sono proposte, evidenziando sostanziali miglioramentiopenEmbargo temporaneo per motivi di segretezza e/o di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    An IEEE 802.11 protocol test-bed in industrial environments using personal computing devices

    Get PDF
    IEEE 802.11 is being currently considered to develop telecommunications infrastructures in industrial environments. However, in such environments there may exist a high level of electromagnetic fields (EMF) contamination, due to the machinery in use. Wireless LANs are sensitive to this type of hazard, and therefore the performance of the protocols may be affected inside the industrial facilities. In this paper we conduct a study of the wireless link performance in these industrial scenarios, using personal computing devices. Such equipments will be likely used by employees rather than conventional computers. Since the results do not characterize the environment itself, but the set of environment and hardware, a proper measurement test-bed must include direct measurements with these devices. Besides, due to limitations in these equipments, a specific protocol to measure pairs of packet error probability and latency is also developed. Results reveal a significant linear dependency between both magnitudes, and a large correlation coefficient in the measurements under high EMF activity at mid-large ranges (distances greater than 5 meters)This work has been cofunded by the Economy,Industry and Innovation Council,with the SOLIDMOVIL project(2I04SU044),supported by Fundación Séneca,from the Región of Murcia with the ARENA Project(00546/PI/04),and by the Spanish Research Council with the ARPaq project(TEC2004-05622-C04-02/TCM)and the CSI-RHE Tproject(TEC2005-08068-C04-01/TCM)

    Frame delay and loss analysis for video transmission over time-correlated 802.11A/G channels

    Get PDF

    Wireless model-based predictive networked control system over cooperative wireless network

    Get PDF
    Owing to their distributed architecture, networked control systems (NCSs) are proven to be feasible in scenarios where a spatially distributed feedback control system is required. Traditionally, such NCSs operate over real-time wired networks. Recently, in order to achieve the utmost flexibility, scalability, ease of deployment, and maintainability, wireless networks such as IEEE 802.11 wireless local area networks (LANs) are being preferred over dedicated wired networks. However, conventional NCSs with event-triggered controllers and actuators cannot operate over such general purpose wireless networks since the stability of the system is compromised due to unbounded delays and unpredictable packet losses that are typical in the wireless medium. Approaching the wireless networked control problem from two perspectives, this work introduces a practical wireless NCS and an implementation of a cooperative medium access control protocol that work jointly to achieve decent control under severe impairments, such as unbounded delay, bursts of packet loss and ambient wireless traffic. The proposed system is evaluated on a dedicated test platform under numerous scenarios and significant performance gains are observed, making cooperative communications a strong candidate for improving the reliability of industrial wireless networks

    Assessing Coexistence of IEEE 802.15.4 Networks and IEEE 802.11b/g/n Networks - A Study of Interference Effects

    Get PDF
    The study of the coexistence capabilities of networks based on the IEEE 802.11 and IEEE 802.15.4 standards has long been of interest to researchers owing to the individual success of these two technologies in various applications of Internet of Things (IoT). Operating in the same Industrial-Scientific-Medical (ISM) band, their coexistence does not always yield satisfactory results. The performance of a network based on IEEE 802.15.4 standard has been shown to be significantly lowered in the presence of a strong IEEE 802.11 based network (Wireless LAN) to the extent that communication based on the IEEE 802.15.4 standard can be rendered impossible in certain scenarios. This work is an effort towards analyzing interference caused by the three non-overlapping channels 1, 6 and 11 of IEEE 802.11b/g/n on the usable 2.4GHz spectrum of IEEE 802.15.4 standard. Recommendations of plausible scenarios for successful coexistence of these two networking technologies have been made. Assessment of the performance of an IEEE 802.15.4 standard based network through the Packet Delivery Ratio (PDR) on various channels of operation has yielded valuable insights. The experiments carried out in real-world environment stand as datapoints in predicting and understanding the interference behavior in real-life applications
    • …
    corecore