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Abstract In an Internet of Things environment, where

multiple mobile devices are brought together, it is not

always possible to serve all these devices simultane-

ously. We developed an intelligent TDMA (Time Di-

vision Multiple Access) scheduler which allows to plan

the individual packets of the different streams in such a

way that everyone can be served by taking into account

the interference on the physical layer. The scheduler is

applied in a realistic industrial environment and eval-

uated based on the maximum link latency, the chan-

nel occupancy, and the jitter. Two strategies are com-

pared: one where the packets are sequentially allocated,

and one periodically. Our results show that the period-

ically allocated strategy performs the best for the max-

imum link latency (for a packet size below 1200 bytes)

and for the jitter. The channel occupancy is similar for

both strategies. Furthermore, the performance can be

improved by using a higher number of channels. Com-

pared to classic CSMA/CA (Carrier Sense Multiple Ac-

cess with Collision Avoidance), the channel occupancy

and the jitter are reduced up to 69.9% and 99.9%, re-

spectively. Considering the maximum link latency, the

proposed TDMA strategies perform significantly better

than the worst case CSMA/CA (up to 99.8%), how-

ever, when assuming a best case CSMA/CA scenario,

CSMA/CA performs better. Furthermore, we clearly

show that there are cases where it is not possible to plan

all streams when using CSMA/CA while this becomes

feasible when applying the proposed TDMA strategies.
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1 Introduction

In recent times, the mobile world around us has rapidly

changed. Today, we no longer have just a laptop, a

smart phone, and a tablet, but also wearables such

as smart (sport)watches, activity trackers, and smart

glasses. Furthermore, in industrial environments, ma-

chines are equipped with wireless radios and start to

communicate with each other. In 2015, more than half

a billion mobile devices and connections were added.

By 2020, there will be 11.6 billion mobile-connected
devices, including M2M (Machine To Machine) mod-

ules [24]. These numbers clearly show that we are mov-

ing towards an IoT (Internet of Things) environment,

where everything in our daily life will be connected. Es-

pecially in industry this is an ongoing evolution as op-

erators are continuously looking for ways to further au-

tomate processes, improve efficiency, and increase eco-

nomic benefits. An industry where everything becomes

connected to a network (e.g., the Internet or a private

factory network) by means of a communication infras-

tructure is often referred to as Industry 4.0 [2,3]. In

some cases, wired solutions might be possible, however,

at an excessive wiring cost. Wireless technologies are

gradually being adopted to realize the required com-

munication functionality and to offer a viable and cost-

efficient alternative. For instance, the uptake of hand-

held devices on the work floor, the use of mobile robots

such as Automated Guided Vehicles or the tracking of

goods, all necessitate the use of wireless solutions. Ac-

cording to [3,4], wireless networks can have an advan-
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tage in industry including the lower installation costs

due to cabling and hardware reduction, the lower op-

erational costs by eliminating cable failures, ability to

connect hard-to-reach and remote areas, gains in pro-

ductivity and efficiency due to equipment mobility, the

higher flexibility of reorganizing the process structures,

and finally a higher productivity and less downtime due

to personnel mobility.

For the realization of this wireless connectivity, a va-

riety of wireless communication technologies exist such

as WiFi (Wireless Fidelity), WirelessHART (Wireless

Highway Addressable Remote Transducer protocol), ISA

100 (International Society of Automation), Bluetooth,

IEEE 802.15.4, etc. [3]. Each of these technologies op-

erates in the ISM (Industrial, Scientific and Medical

radio bands) band and requires a well-designed MAC

(Medium Access Control) protocol to give every device

a fair share of the wireless medium and to avoid colli-

sions. In the context of industrial connectivity, devices

will typically have very specific requirements in terms of

reliability, data rate, latency, jitter, etc. To meet such

requirements, MAC protocols are needed that enable

fine-grained control over whom gets access to the wire-

less medium, at which moment in a contention-free way

(no collisions). Typically, this results in TDMA-based

(Time Division Multiple Access) protocols that provide

different time slots to different data streams in a cycli-

cally repetitive frame structure [5]. The resulting per-

formance is strongly determined by the frame structure

and slot allocation and requires intelligent scheduling

when multiple mobile devices with their own require-

ments are brought together.

Today, TDMA-based solutions for 802.15.4 networks

have become available and research on scheduling algo-

rithms is ongoing [5–8]. Barring some exceptions [9,10],

today’s 802.11 based solutions, however, still make use

of CSMA/CA (Carrier Sense Multiple Access/Collission

Avoidance), avoiding collisions by only transmitting when

the channel is sensed idle [11]. In order to deal with very

specific traffic requirements such as the ones encoun-

tered in industrial settings, it is expected that future

industrial WiFi systems might also move to TDMA-

based MAC protocols in combination with intelligent

scheduling.

To anticipate this evolution, this paper proposes

a solution for this problem by introducing an intelli-

gent TDMA (Time Division Multiple Access) scheduler

which allows to plan the individual packets of the dif-

ferent streams in such a way that all streams can be

served and the interference on physical layer is min-

imized. The scheduler is demonstrated for an indus-

trial environment. A TDMA scheduler for WiFi 802.11n

that takes into account the inter-channel interference

is novel and has, to the best of our knowledge, never

been proposed before. Note that our scheduler is only

compliant with the IEEE 802.11n specification of the

physical layer, since we have replaced the MAC layer

by our own TDMA scheduler. Furthermore, a compari-

son is made between the proposed novel TDMA strate-

gies and CSMA/CA, which is representative for today’s

WiFi networks.

The outline of this paper is as follows. In the next

section, we discuss the related work. In Section 3, the

heuristic algorithm of the scheduler is discussed. Sec-

tion 4 proposes the considered scenario and the differ-

ent strategies and cases are evaluated for three different

metrics: the maximum link latency, the channel occu-

pancy, and the jitter. Section 5 summarizes the most

important conclusions obtained from the results of Sec-

tion 4.

2 Related work

As mentioned above TDMA-based solutions for WSN

(Wireless Sensor Networks) networks have become avail-

able. Existing industrial WSN technologies have demon-

strated that the IEEE 802.15.4e TSCH (Time Slotted

Channel Hopping) effectively enables industrial-grade

deterministic properties for control loops with low la-

tency, ultra-low jitter, ultra-low power consumption and

a high reliability [5]. Furthermore, the basic concept of

TSCH is also incorporated in standards such as Wire-

lessHART and ISA100.11a. [6] introduces Orchestra in

which nodes autonomously compute their own, local

schedules. They maintain multiple schedules, each al-

located to a particular traffic plane (application, rat-

ing, MAC) and updated automatically as the topology

evolves. Orchestra exploits the robustness of TSCH.

In [7], an On-The-Fly (OTF) bandwidth reservation

module plays a complementary role for TSCH. This is a

distributed approach for adapting the scheduled band-

width to the network requirements. Finally, [8] pro-

poses a distributed PID (Proportional, Integral, and

Derivative) based control for TSCH. This distributed

scheduling policy is based on the well-known industrial

control paradigm referred to as PID control. The pro-

posed technique is completely decentralized, enabling

the schedule to one another, according to its traffic de-

mand.

Considering WiFi, all solutions for the considered

industrial scenario are largely CSMA-based. Techniques

such as PCF (Point Coordination Function) and EDCA

(Enhanced Distributed Channel Access) are incorpo-

rated in the standard, but even with this kind of QoS

extensions, WiFi cannot handle real-time traffic prop-

erly as shown in [12,13]. In literature, some TDMA-
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based solutions for WiFi are proposed to tackle these

limitations. One of these solutions is RT-WiFi [14]. RT-

WiFi is a TDMA data link layer protocol based on

the IEEE 802.11 physical layer to provide deterministic

timing guarantee on packet delivery and high sampling

rate up to 6 kHz. It includes a link scheduler as com-

ponent, but no real scheduling such as in our approach.

[15] investigates an isochronous wireless communica-

tion system consisting of a deterministic MAC based

on IEEE 802.11 and extended with additional features

for isochronous communication. It uses IsoMAC which

is based on TDMA and divides the communication into

two different phases, a scheduled phase for real-time

data and a contention phase for best-effort traffic. Only

real-time cyclic traffic is thus considered here. Finally,

[16] proposes OpenTDMF, an architecture to enable

TDMA on commodity WLAN devices and is related to

SDN (Software Defined Networking).

This overview of related work shows that there is

definitely a need for appropriate scheduling mechanisms

for IEEE 802.11. Considering schedulers, it is worth

mentioning the contributions of [17,18]. [17] proposes

an extension for the RT-WiFi of [14]. As discussed above,

RT-WiFi tries to achieve predictable packet delivery la-

tency. [17] proposes a RT-WiFi network manager design

and algorithms for controlling jitter in network con-

trolled systems. This is done by the HCJF (Harmonic

Chain Jitter Free) scheduler which selects the sampling

period for each communication task and by doing so

eliminates the transmission jitter. However, it does not

account for physical layer interference. The SchedWiFi

of [18] provides flexible support to the scheduled traffic

class i.e., a high priority traffic class that is transmitted

according to a fixed schedule, over IEEE 802.11 ad-hoc

industrial networks. However, it modifies the EDCA

QoS mechanism allowing to transmit scheduled traffic

without requiring any predefined superframe structure,

or time slots, and can thus not be considered as a pure

TDMA scheduler.

3 Heuristic TDMA scheduler

In this section, the heuristic algorithm of the TDMA

scheduler is discussed. Fig. 1 shows the flow diagram of

the algorithm. The algorithm can be divided in three

major blocks: input block, making wireless connections

(connecting block), and the scheduling block. Each block

is discussed in detail in the following subsections.

Fig. 1 Flow diagram of the heuristic algorithm.

3.1 Assumptions

WiFi 802.11n is here considered as wireless technol-

ogy as it has dominated wireless since it was intro-

duced in 2009 and can be found in most homes and

businesses today [19]. The performance of the different

strategies and cases will be compared for three differ-

ent metrics: maximum link latency, channel occupancy,

and jitter. Each of these metrics will be discussed in

detail in the following subsections. The packet size is

varied from 100 bytes to 1500 bytes and is considered

to be fixed. Smaller packet sizes are representative for

monitoring applications where sensor systems periodi-

cally transmit collected, similarly sized monitoring data

or process control applications where you have continu-

ous periodic communication in both uplink and down-

link. Larger packet sizes are more representative for

more bandwidth demanding applications such as au-
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dio or video streaming. Modelling the traffic streams

in such a way, does not limit the proposed scheduling

technique to constant bit rate applications. Industrial

applications may also result in unpredictable traffic (i.e.

traffic that can occur any moment) that needs to be de-

livered within a certain time frame. To accommodate

such traffic streams in a schedule and to meet the la-

tency requirements, it is mandatory to allocate slots in

a similar way as for CBR traffic. The only difference

however is that not every slot will be used at all times.

We assume a centralized controller which broadcasts

the schedule to all nodes. Furthermore, simultaneous

use of overlapping channels is possible in certain condi-

tions. Finally, the sender and receiver pairs are known

in advanced, meaning that we know their locations and

their traffic requirements. The 95th percentile over 150

simulations is considered here. The sequence in which

the packets are planned will differ from simulation to

simulation, resulting in a different schedule and thus

different performance.

3.2 Input

As for every algorithm, some input is required before

starting the calculations. Here, the input can be divided

in four groups as shown in Fig. 1 (Block 1, Input):

– List of transmitters (Fig. 1, Input 1): For every

transmitter present in the considered environment,

the (x, y, z) coordinates are provided. Furthermore,

it is also indicated which type of receiver can con-

nect to each transmitter.

– List of receivers (Fig. 1, Input 2): For every receiver

present in the considered environment, the (x, y, z)

coordinates are provided, along with the required

physical bit rate.

– Settings environment and technology (Fig. 1, In-

put 3): This input consists of two settings files: one

describing the environment (e.g., an industrial en-

vironment) which allows us to select the most ap-

propriate propagation model and one describing the

technology. The other file describing the technology

contains all the relevant link budget parameters as

discussed in [20]. Note that considering the technol-

ogy, we assume here homogeneity, meaning that all

transmitters and receivers are supporting the same

technology. However, the receivers have different bit

rate requirements, resulting in heterogeneous traffic.

– Settings superframe (Fig. 1, Input 4): this input

parameter indicates how many bytes are used per

packet.

3.3 Connecting

The second block in Fig. 1, ”connecting”, is responsi-

ble for determining which receiver connects with which

transmitter. In case a receiver can only connect to one

transmitter, the choice is obvious, but when the receiver

can deliver its data to multiple transmitters, it should

be connected to the one from which it receives the best

signal quality. By taking into account the location of

the receiver and the transmitter (Fig. 1, Input 1 and 2),

the selected propagation model (Fig. 1, Input 3), and

the link budget parameters (Fig. 1, Input 3), we can

determine the path loss between each transmitter and

the receiver. The transmitter from which the receiver

experiences the lowest path loss is the one to which the

receiver should be connected (Fig. 1, Step 1). This will

be considered as a transmitter-receiver pair or stream

from then on. Note that interference between the dif-

ferent connections is not accounted for in this stage,

this will be taken into account when we are actually

scheduling the connection in a certain time slot.

3.4 Scheduling

The last block, scheduling, in Fig. 1 contains all the

logic to allocate time slots to the different connections

or transmitter-receiver pairs. For each transmitter-receiver

pair (Fig. 1, Step 2), the required number of time slots

is determined (Fig. 1, Step 3). In this study, two differ-

ent strategies are considered:

– Strategy I - Sequentially allocated: based on the re-

quired bit rate and the packet size (in bytes, Fig. 1,

Input 4), we calculate how many time slots the trans-

mitter - receiver pair needs. These time slots will

consecutively be allocated for the considered stream.

Note that this strategy is a sort of allocation where

you have no limits on how frequent a node can send

and thus a sequence of time slots can be allocated.

Fig. 2 (a) shows a possible outcome of the scheduler

when applying this strategy. The sequentially allo-

cated strategy is denoted as ”Sequentially” in the

figures of this paper.

– Strategy II - Periodically allocated: similar as for

the other strategy, we calculate the number of time

slots required by the transmitter-receiver pair based

on the demanded bit rated and the packet size. How-

ever, here, an extra requirement is imposed on the

scheduling of a stream by taking into account that

the stream demands a time slot every x time slots.

Examples include periodic reporting or closed loop

optimizations [21,22]. This periodicity of x time slots

can be calculated based on the bit rate offered by
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the considered technology, the bit rate demanded

by the stream, and the packet size. Fig. 2 (b) shows

a possible outcome of the scheduler when applying

this strategy. The periodically allocated strategy is

denoted as ”Periodically” in the figures of this pa-

per.

(a) Example of the obtained schedule when using the
sequentially allocated strategy.

(b) Example of the obtained schedule when using the peri-
odically allocated strategy.

Fig. 2 Comparison of the obtained scheduling when applying
the two different strategies.

Once the number of required time slots (and the

periodicity in case of the latter strategy) are known

(Fig. 1, Step 3) for the considered stream, the transmitter-

receiver pair is added to the list with streams that need

to be planned (Fig. 1, Step 4). Steps 2 to 4 are re-

peated until the number of required time slots (and

if needed the periodicity) of all connections is known

(Fig. 1, Step 5).

In the next steps (Fig. 1, Steps 6 to 10), we will try

to schedule the packets for each of the streams. Which

transmitter-receiver pair will be handled first is chosen

randomly (Fig. 1, Step 6). Each pair will be scheduled

in time and in frequency as discussed in the following

subsections.

3.4.1 Frequency scheduling

The algorithm will always start to plan the first packet

of the considered stream in time slot 1 on channel 1. If

the algorithm detects that the time slots 1, 1 + y, 1 +

2 · y, ..., 1 +m · y (with y the periodicity which equals 1

when applying the sequentially allocated strategy and

1 + m · y ≤ the maximum number of time slots avail-

able) are already occupied on channel 1, it will try to

plant the streams in the same time slots but on another

channel (2, 3, etc.). If all these time slots are free, the

algorithm will plan the packets of this stream in these

time slots on channel 1 (Fig. 1, Step 12). The frequency

scheduling is indicated in Fig. 2(a) by a vertical arrow.

Once the stream has been planned, the algorithm will

continue with scheduling the next transmitter-receiver

pair if any still available (Fig. 1, Step 13).

As already mentioned above, if the time slots 1, 1+y, 1+

2 · y, ..., 1 +m · y are already occupied on channel 1, the

algorithm will try to schedule the stream in the same

time slots but on a different channel. The packets can

only be scheduled when the interference from the other

streams planned in these time slots is low enough in or-

der for the transmitter to obtain a good signal (Fig. 1,

Step 8). This is contrast to traditional WiFi approaches

in which only 3 non-overlapping channels (often 1, 6,

and 11) are used. How the interference between the

different scheduled streams is determined will be dis-

cussed in the next subsection. If the interference is low

enough, the packets of the transmitter-receiver pair will

be scheduled in time slots 1, 1 + y, 1 + 2 · y, ..., 1 +m · y
on the considered channel (Fig. 1, Step 12) and the al-

gorithm will proceed with scheduling the next stream if

any still available (Fig. 1, Step 13). If the interference is

too high, the algorithm will try to schedule the stream

on the next channel (Fig. 1, Step 9) if still channels

available to check (Fig. 1, Step 10) and repeat Steps 7

to 9 if needed. If all the channels are checked and no

match if found, the algorithm will try to schedule in

time (Fig. 1, Step 10) as discussed in subsection 3.4.2.

3.4.2 Time scheduling

As discussed above, when all channels are checked for

a time slot and no match is found, the algorithm will

try to schedule in the next time slot (Fig. 1, Step 10).

The time scheduling is indicated as a horizontal arrow

in Fig. 2(a). Adding TDMA i.e., time scheduling, to the

scheduler is very novel compared to existing schedulers

as mentioned in Section 1.

When a new time slot is selected, the frequency schedul-

ing is repeated. In case no match is found with any time

slot or channel, it will not be able to plan the considered

stream (Fig. 1, Step 11).
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3.4.3 Interference

To determine if a certain stream can be planned in a

time slot on a certain channel, the interference between

the already planned streams in this time slot and this

‘new’ stream should be determined. In this section, the

transmitter and the receiver from the stream that needs

to be planned will be indicated by Txc and Rxc i.e., the

considered transmitter and receiver respectively. There-

fore, the SNR (Signal-to-Noise Ratio) experienced by

each already planned transmitter Txp from Txc has to

be determined. To this end, the amount P of overlap

between the channels on which Txp and Txc are operat-

ing needs to be known, as well as the power Pr received

by Rxc from Txp. Indeed, only a part P , represented

by the overlap of the channels, of Pr will be taken into

account in the SNR calculation as shown in Fig. 3. To

determine the amount P of overlap between the chan-

nels on which Txp and Txc are operating, the spectral

masks of these channels are determined which can be

found in the standard [11]. Fig. 3 shows as an exam-

ple of the spectral masks assuming Txp is operating

on channel 1 (in blue) and Txc on channel 5 (in or-

ange). To calculate the amount of overlap between the

two channels, the procedure proposed in [23] is used.

Therefore, the surface Stot of the full spectral mask of

one of the channels is determined which can easily be

done by integrating the function describing the spec-

tral mask. For example for channel 1, this corresponds

with the surface below the blue line in Fig. 3. Next, the

surface Soverlap of the gray hatched area in Fig. 3 is

determined; this can again be done by integrating the

corresponding parts of the function describing the spec-

tral mask of each channel. The percentage P of overlap

is calculated as the ratio
Soverlap

Stotal
· 100.

To determine the power Pr received from Txp in

Rxc, an appropriate propagation model will be used

as the distance between Txp and Rxc is known. The

intended SNR (in dB) is then determined as follows:

SNR = 10 · log10P + Pr −NF (1)

with NF the noise floor (in dB) i.e., the level of noise

introduced by the system itself.

The experienced interference I (in dB) is then a com-

bination of the SNRs from all of the other transmitter

planned in the considered time slot:

I = 10 · log10
N∑
i=1

10
SNRi

10 (2)

with N the number of other transmitters planned in

the considered time slot and SNRi the SNR obtained

by transmitter Txi (Eq. 1). I will be included in the

final link budget. This link budget will be used to cal-

culate the maximum allowable path loss between Txc

Fig. 3 Determining overlap between the spectral masks
of two different streams or transmitter and receiver pairs
(Soverlap = hatched area).

and Rxc. If the experienced path loss between Txc and

Rxc (calculated by an appropriate propagation model)

is higher than the maximum allowable path loss, the in-

terference is too high and the transmitter-receiver pair

can not be planned in this time slot and/or on the con-

sidered channel.

Note that the above described procedure needs to be

repeated for every stream already planned in the con-

sidered time slot in order to make sure that the ‘new’

stream does not interfere with any of them. Further-

more, note also that we only assume interference be-

tween the nodes and not from other signals present in

the environment.

3.5 Cases

In this study, three different cases are investigated:

1. Only 1 out of the 13 channels of the WiFi 802.11n stan-

dard can be used which is a worst case scenario.

2. Only 3 out of the 13 channels of the WiFi 802.11n stan-

dard can be allocated. These are the three available

non-overlapping channels: channels 1, 6, and 11. The

approach of using only these 3 channels is used in

literature [24–26].

3. All the 13 channels of the WiFi 802.11n standard

can be used. This is the novel approach described

in this paper.

Each of these cases will be combined with the two strate-

gies (sequentially allocated and periodically allocated)

of Section 3.4, resulting in 6 different combinations to

compare.
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3.6 Scenario

An indoor industrial scenario is assumed. Fig 4 shows

the blueprint of the considered scenario in a processing

factory. Four different types of streams are considered:

1. 5 Mbps stream (downlink): this corresponds with

video streaming in HD (High Definition) quality.

This type of stream is set up between the nodes

connected by the cyan arrow in Fig. 4. The largest

dot is the transmitter (located at 6 m), the smallest

the receiver (2.5 m height).

2. 1 Mbps stream (downlink): this represents a down-

loading process. This type of stream is set up be-

tween the two nodes connected by the yellow arrow

in Fig. 4. The largest dot is again the transmit-

ter (6 m height), the smallest the receiver (2.5 m

height).

3. 320 kbps stream (downlink): this corresponds with

audio streaming. This type of stream is only re-

quested between the two nodes connected in purple

in Fig. 4. As mentioned above, the largest dot is the

transmitter (6 m height), the smallest the receiver

(2.5 m height).

4. 8 kbps stream (downlink): this corresponds with the

transmitting process of sensor data. All the red dots

in Fig. 4 (2.5 m height) can receive data from all the

green dots in Fig. 4 (2.5 m height).

Fig. 4 Industrial scenario with 5 different types of traffic
stream.

Furthermore, we assume that all nodes are support-

ing the WiFi 802.11n standard [11]. For the considered

indoor industrial environment, the propagation model

proposed in [27], which is based on actual measurements

in processing factories, is used for all simulations. Since

we are assuming an industrial environment, nLoS (non-

Line-of-Sight) is considered. The path loss in dB as a

function of the distance d in m between the transmitter

and the receiver is determined as follows:

PL(d) = PL(d0) + 10n · log(
d

d0
) (3)

with PL(d0) the path loss in dB at an arbitrarily chosen

reference distance d0 in m and n the dimensionless path

loss exponent. Based on the measurements of [27] for

the 2.4 GHz frequency band, the following values are:

PL(d0) = 71.84 dB at a reference distance d0 of 15 m, n

= 2.16, and a standard deviation σ of 8.13 dB. Table 1

shows the considered values for the different link budget

parameters.

Parameter Value
Frequency 2.4 GHz
Input power antenna transmitter 20 dBm
Antenna gain transmitter Based on radiation pattern
Antenna gain receiver Based on radiation pattern
Feeder loss transmitter 0.5 dB
Feeder loss receiver 0 dB
Yearly availability 99.995%
Bandwidth 20 MHz
Receiver SNR 1/2 BPSK = 4.5 dB (6.5 Mbps)
Number of data carriers 56
Number of total carriers 64
Implementation loss receiver 0 dB
Antenna height transmitter 6 m or 2.5 m

(as mentioned in Section 3.6)
Antenna height receiver 2.5 m
MIMO gain 0 dB
Noise figure receiver 10 dB
Fade margin 10 dB
Soft handover gain 0 dB

Table 1 Link budget parameters for WiFi 802.11n in the
industrial environment of Fig. 4 [28,29].

3.7 Metrics

The different strategies will be evaluated for three dif-

ferent metrics: maximum link latency, channel occu-

pancy, and jitter. In this section, the definition and -

if possible - the formula for the different metrics is dis-

cussed.

3.7.1 Maximum link latency

The maximum link latency LL is defined as the max-

imum delay (worst-case) between the time a packet

becomes available for transmitting and the time the
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packet is actually sent (in microseconds). We assume

that an application requires one slot every x slots. One

slot has a duration of S microseconds. Depending on

which strategy is applied, a different formula is used.

TDMA - Strategy I - Sequentially allocated When ap-

plying this strategy, x sequent slots will be allocated

every y slots (as shown in Fig. 2(a)). The worst-case

scenario occurs when the first packet becomes available

just after the beginning of the x-th (i.e., the last) se-

quent slot. This slot can not be used anymore and the

sender has to wait (y − x + 1) more slots before

the packet can be sent. This results in a maximum link

latency of (y − x + 1) · S microseconds (S = slot

duration).

TDMA - Strategy II - Periodically allocated As shown

in Fig. 2(b), the periodicity of one slot every x slots is

here guaranteed. The worst-case scenario occurs when

the packet is ready to be sent when its slot has just

started. The packet has to wait x more slots until a

next slot allocated to this application. This results in a

maximum link latency of x · S.

CSMA/CA The best case for CSMA/CA occurs when

a node can transmit as first one. In this case it depends

on your back-off size how large the latency becomes.

In the very best case, the packet has to wait only for

one DIFS (DCF (Distributed Coordination Function)

Interframe Space). One DIFS for WiFi 802.11n has a

duration of 34 µs [11]. This case is denoted as ”CSMA

best” in the figures of this paper. On average, the packet

has to wait DIFS + CW
2 · S with CW the considered

contention window and S the duration of a time slot

(in microseconds). This case is denoted as ”CSMA best

on average CW = cw” with cw the chosen contention

window. The maximum time that the packet has to

wait, even if it can be send as first one is: DIFS+CW ·
S. This case is denoted as ”CSMA best max CW = cw”

in the figures of this paper. The worst-case CSMA/CA

scenario is when the packet has to wait until all the

other streams in the environment have sent a packet. In

this case, the maximum link latency LL is determined

as follows:

LL =

∑n
i=1 (DIFS + CW · S +

∑n
j=1,j 6=i pi)

n
(4)

with n the number of streams, CW the contention win-

dow, S the slot duration in µs, and pi the duration to

send one packets of stream i in µs. Again, the duration

of the DIFS is 34µs. In the figures of this paper, this

will be denoted as ”CSMA worst CW = cw” with cw

the considered contention window. Note that we do not

account for retransmissions and collisions, which will

increase the link latency even further.

3.7.2 Channel occupancy

The average channel occupancy is defined as the amount

of time that the available channels are occupied and is

expressed as a percentage. The average channel occu-

pancy CO is calculated as follows:

CO =
TS·S
Stot

n
· 100 (5)

with TS the number of used time slots over a duration

of Stot (in seconds), S the duration of the time slot (in

seconds), and n the number of available channels.

The duration of the time slot S accounts not only for

the time needed to send the application data but also

for the overhead. The 802.11n physical frame consists of

20 µs (fixed time) for the preamble and signal, 16 bits

service data, the PSDU (Physical layer Service Data

Unit) payload, and 6 tail bits. The PSDU payload on

his turn consists of 28 bits overhead and the MSDU

(MAC Service Data Unit) payload. The MSDU pay-

load contains the LLC (Logical Link Control) header

of 8 bits and the IP (Internet Protocol) packet [11]. As-

suming IPv4 and UDP (User Datagram Protocol), the

IP packet has a size of 20 bytes for the IPv4 header,

8 bytes for the UDP header, and X bytes for the ap-

plication data. Taking all the above into account, the

duration of the time slot S is determined as follows (in

microseconds):

S = 20 µs+
22 + (28 + 8 + 20 + 8 +X) · 8

B
(6)

with X the packet size (in bits) and B the physical bit

rate (in Mbps). As we assume here WiFi 802.11n, B
equals 67.5 Mbps. Note that a channel occupancy of

more than 100% can be obtained. This means that it

will be impossible to serve all the streams.

3.7.3 Jitter

The jitter is defined as the deviation of the time (in

microseconds) between the moment the packet is ready

to be sent and the moment that the packet is actually

scheduled. The following formula is used:

J =

∑n
i=1 (TSs,i − TSp,i) · S

n
(7)

with n the number of packets that needs to be sent,

TSs,i the number of the time slot where the packet is

actually been scheduled, TSp,i the number of the time

slot where the packet was originally planned, and S the

duration of a time slot (in seconds).
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4 Results

4.1 Comparison of the different TDMA strategies

4.1.1 Maximum link latency

For every type of stream described in Section 3.6, the

maximum link latency is calculated as described in Sec-

tion 3.7. The average of the maximum link latency (in

seconds) over the 13 streams is shown in Fig. 5 as a

function of the packet or slot size (in bytes) for the

two considered strategies. For the sequentially allocated

strategy in Fig. 5, the maximum link latency does not

depend on the size of the packet or the slot. The larger

the packet size, the less packets will be needed to send

the same amount of data, and the shorter the maxi-

mum link latency will be in terms of slots. However,

the larger the packets, the higher the duration in time

of a slot. This results in the same maximum link latency

expressed in time i.e., 1 second.
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Fig. 5 Comparison of the maximum link latency for the con-
sidered strategies.

Fig. 5 shows that, on the contrary, when considering

the periodically allocated strategy, the maximum link

latency linearly depends on the packet size (0.08 s for

100 bytes and 1.16 s for 1500 bytes for WiFi 802.11n).

The larger the packets, the larger the maximum link

latency due to the fact that the ratio of 1 slot every x

slots remains the same. Again, a higher slot duration is

obtained for a larger packet size thus results in a higher

maximum link latency.

When comparing both strategies in Fig. 5, the period-

ically allocated strategy performs the best for packet

sizes less than 1200 bytes (for example, 0.85 s versus

1.0 s for 1100 bytes). For packet sizes greater than

1200 bytes, the sequentially allocated strategy performs

better (1.0 s versus 1.08 s for 1400 bytes). For a packet

size of 1200 bytes, both strategies have an equal perfor-

mance (Fig. 5).

4.1.2 Channel occupancy

In this section, the average channel occupancy is com-

pared. Ideally, the channel occupancy should be as low

as possible. Fig. 6 shows the 95th percentile over 150 sim-

ulations for the different strategies and cases. Based on

Fig. 6, we conclude that a higher number of available

channels results in a lower channel occupancy. E.g., as-

suming the periodically allocated strategy with a packet

size of 500 bytes, the channel occupancy equals 7.3% if

1 channel is available, 2.4% when using 3 channels, and

0.5% if there are 13 channels available. This is logical

as the same amount of data needs to be sent irrespec-

tively of the number of available channels. The higher

the number of available channels, the more the traffic

is spread over the different channels. As the traffic can

be spread over different channels, the interference will

be reduced thus allowing more packets to be sent si-

multaneously. This results in a lower average channel

occupancy.
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Fig. 6 Comparison of the channel occupancy for the consid-
ered strategies and cases.

Fig. 6 shows that the difference in channel occu-

pancy is very limited when comparing the two strate-

gies. When considering only 1 channel, differences are

lower than 1% (Fig. 6). As all packets should be sched-

uled on the same channel, the interference becomes too

high. Due to this, packets can not be sent simultane-

ously which results in the same channel occupancy in-

dependent of the considered strategy. Also when we use

3 channels, the same channel occupancy is obtained as

shown in Fig. 6. For the 13 channels case, the difference
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in channel occupancy is not significant (Fig. 6). The

sequentially allocated strategy performs slightly better

with a 0 to 0.2% lower channel occupancy (depend-

ing on the considered packet size). The main reason

is that some (parts of the) streams can be scheduled

completely simultaneously when using the sequentially

allocated strategy, while this is not the case when pe-

riodically assigned due to the periodicity requirement.

If the periodicity of these streams is not a multiple of

each other, some of their packets might not be sched-

uled during the same time slots.

Finally, the packet size has also a high influence on

the obtained channel occupancy. For each considered

strategy and case, Fig. 6 that the larger the packet

size, the lower the channel occupancy becomes. For ex-

ample, if we consider the periodically allocated strat-

egy and 3 available channels, a channel occupancy of

5.5% is obtained for a packet size of 100 bytes and

2.0% when using a packet size of 1000 bytes. This dif-

ference in channel occupancy is due to the overhead

as it makes no difference in time if, for example, we

send 1 time 1000 bytes or 10 times 100 bytes of appli-

cation data. When taking into account the overhead,

146.4 µs (Eq. 6) are needed to send 1000 bytes of ap-

plication data, while sending 100 bytes of application

data takes 39.8 µs (Eq. 6). However, for the latter, we

need 10 times 39.8 µs (Eq. 6) i.e., 398 µs, thus resulting

in a higher channel occupancy.

4.1.3 Jitter

In this section, the jitter is compared for the differ-

ent strategies and cases. Ideally, the jitter should be
as low as possible. Fig. 7 compares the jitter averaged

over all the packets that need to be sent for the con-

sidered streams in Section 3.6. The 95th percentile over

150 simulations is presented.

Fig. 7 shows that the sequentially allocated strategy

clearly results in a higher jitter. An improvement of

96.7% to 99.7% (depending on the considered number

of channels) is found for the periodically allocated strat-

egy compared to the sequentially allocated strategy.

The reason is twofold. First, if two streams can not be

scheduled simultaneously, the second stream has to wait

until the first stream is completely finished before start-

ing when considering the sequentially allocated strat-

egy. However, when these streams are scheduled period-

ically, the second stream has to wait only one time slot

before another slot comes available, and maybe a couple

more to ensure that its periodicity does not match the

periodicity of the first stream. In general, when the pe-

riodically allocated strategy is applied, a stream has a

smaller waiting period before it can send its first packet.

Second, the periodically allocated strategy guarantees

the periodicity of each stream. So, there might be a de-

lay in the first packet (as discussed above) but for all

the other packets a slot will be available as soon as the

packet becomes available which is not the case with the

sequentially allocated strategy.
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Fig. 7 Comparison of the jitter for the considered strategies
and cases

Furthermore, Fig. 7 shows that the number of avail-

able channels also influences the obtained jitter. When

applying the sequentially allocated strategy, the jitter

is reduced by 0.3% to 4.3% (depending on the packet

size) when increasing the available channels from 1 to 3.

A further reduction of 26.4% to 26.6% is obtained when

13 channels become available. This is a total reduction

of 26.9% to 29.5% compared to the case where only
1 channel is available. The main reason is that a higher

number of available channels allows to plan the streams

more simultaneously, the streams can be planned ear-

lier, and time slots can be more guaranteed. Due to this

a lower jitter is obtained. The same reason is true when

allocating the packets periodically, although it is not

visible in Fig. 7. Therefore, Table 2 shows the jitter for

the three different cases and different packet sizes rang-

ing from 34335 µs to 48889 µs for strategy I and from

118 µs to 1100 µs for strategy II. For completeness,

we have also added a comparison with the sequentially

allocated strategy. For the periodically allocated strat-

egy, a reduction of 0.2% to 7.6% is found when moving

from 1 channel to 3 channels and 0.1% to 46.2% when

allowing 13 channels instead of 3 (i.e., a total reduction

of 1.1% to 46.3%) as shown in Table 2.

Finally, the jitter increases when increasing the packet

size (Fig. 7 & Table 2). For example, when the pack-

ets are periodically scheduled with 13 channels, a jitter

of 118 µs and 923 µs is found when using packets of
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Sequentially Periodically
Channels Channels

Packet size 1 3 13 1 3 13
100 bytes 46945 µs 46803 µs 34335 µs 220 µs 220 µs 118 µs
500 bytes 47467 µs 46760 µs 34344 µs 633 µs 624 µs 516 µs
1000 bytes 48119 µs 46714 µs 34388 µs 855 µs 847 µs 846 µs
1500 bytes 48889 µs 46801 µs 34451 µs 1100 µs 1017 µs 923 µs

Table 2 Comparison of the jitter for the considered strate-
gies and cases and a selection of packet sizes.

100 bytes and 15000 bytes, respectively (Table 2). This

is due to the slight mismatch between the time that the

packet becomes available and the time the packet is ac-

tually sent. Assuming that it takes 20 µs to send some

data and each slot has a duration of 6 µs, in some case,

the slot will be immediately available, while in other

case the packet has to wait up to 6 µs. The longer the

slots become i.e., the larger the packet size, the larger

this waiting period can be, and thus the higher the jit-

ter.

4.2 Improvement of TDMA compared to classical

CSMA/CA for WiFi 802.11n

The main aim of this section is to make a comparison

between legacy CSMA/CA and the two TDMA strate-

gies we propose. For a thorough comparison of the per-

formance of the two TDMA strategies, we refer to Sec-

tion 4.1. Note that the results for CSMA/CA are based

on theoretical calculations and are not obtained by a

simulator as been done for the TDMA strategies.

4.2.1 Channel occupancy

The first considered parameter is the channel occu-

pancy. Fig. 8 shows the channel occupancy for CSMA/

CA and the two proposed strategies as a function of

the packet size when only 1 channel is available. For

the CSMA/CA case, four different content windows are

considered: 8, 16, 32, and 64. Based on Fig. 8, we con-

clude that both the proposed TDMA strategies per-

form much better than CSMA/CA. The channel occu-

pancy decreases with 67.2% to 96.9% (depending on the

used contention window and packet size) when using a

TDMA strategy. The same improvement is obtained

by both TDMA strategies as they have the same per-

formance when using only one channel as discussed in

Section 4.1.2. The main reason for the better TDMA

performance is due to the fact that there is no longer

a need to send DIFSs and to account for a contention

window. Once a packet is assigned to a certain time

slot, it is guaranteed that the packet can be sent.

In Fig. 8, a channel occupancy of more than 100%

is obtained for CSMA/CA in combination with certain
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Fig. 8 Comparison of the channel occupancy for CSMA/CA
and the proposed strategies (1 channel available).

packet sizes. When the channel occupancy is higher

than 100%, it is not possible to serve all the streams. For

a contention window of 8, this means that the streams

can only be served when using packet sizes from 200 bytes

on. Similar for a contention window of 16, 32, and 64, a

packet size equal or higher than 300, 400, and 500 bytes,

respectively, is needed to serve all streams. For the pro-

posed TDMA strategies, the channel occupancy is also

lower than 100% and thus all streams can be served for

all packet sizes. This is due the fact that no overhead

is needed for the DIFS and the contention window as

mentioned above.

Finally, Fig. 8 shows that a larger packet size (CSMA/

CA) results in a lower channel occupancy, similar as for

the TDMA strategies (see Section 4.1.2).

4.2.2 Maximum link latency

Fig. 9 shows the maximum link latency for the consid-

ered CSMA/CA cases and the two TDMA strategies

as a function of the packet size. A lower link latency is

obtained by all the CSMA/CA best cases. For the best

on average scenario, a maximum link latency between

332.5 µs and 0.1 s (depending on the considered packet

size and contention window) is obtained compared to

latencies between 0.08 s and 1.2 s for our strategies. A

47.2% to 99.9% lower link latency is obtained for the

CSMA/CA best case scenarios compared to our strate-

gies. Note that such low link latencies are only possible

when a node can transmit his data before all the other

notes, as mentioned above. In many cases, the medium

will be occupied by another node and the node has to

wait to send his data. In the worst case scenario, the

node has to wait until each other node has send his

packet as discussed above. A maximum link latency of
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34.2 s is found when using a contention window of 1023

and a packet size of 1500 bytes. Compared to the worst

case scenario for CSMA/CA, both our strategies per-

form significantly better (between 0.08 s and 1.2 s). De-

pending on the considered packet size and contention

window, an improvement of 97.1% to 99.8% in link la-

tency is found.
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4.2.3 Jitter

Fig. 7 compares the jitter for the three considered CSMA/

CA cases and the two TDMA strategies as a function

of the packet size when only 1 channel is available.

The lowest jitter for TDMA (ranging from 220.1 µs

to 1100.4 µs depending on the packet size, Fig. 10) is

obtained when using the periodically allocated strat-

egy. This is an improvement between 97.8% and 99.0%

compared to the CSMA/CA best case and up to 99.9%

compared to the CSMA/CA worst case, where all the

other streams send one packet first. When applying the

periodically allocated strategy, the difference in time

between the moment the packet is ready to be sent and

the moment that it is actually sent is very limited as a

timeslot every x timeslots is guaranteed for each stream.

In all CSMA/CA cases, one has to check if the medium

is free and one has to back off in case it is occupied, thus

larger time differences can occur. Furthermore, the cho-

sen contention window also influences the moment that

the packet can actually be sent.

The sequentially allocated strategy performs also

better than the CSMA/CA worst case scenario (Fig. 10).

A jitter reduction between 87.2% to 98.4% is obtained.
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This also due to the fact that for the CSMA/CA case,

the packet can only be sent when the medium is avail-

able instead of having a guaranteed timeslot. A lower

jitter is obtained for the two other CSMA/CA cases

than for the sequentially allocated strategy when the

packet size is below 600 bytes. From 600 bytes, the se-

quentially allocated strategy has the best performance

with a jitter reduction up to 55.4%. We refer to Sec-

tion 4.1.3 for the explanation of the better performance

of the sequentially allocated compared to the periodi-

cally allocated approach.

5 Conclusion

In a world where everything will be connected, the

limitations of today’s wireless technologies will quickly

come to light. Indeed, when multiple mobile devices

with each their own requirements considering bit rate

and latency are brought together in an environment

such as an office or warehouse, it is no longer possi-

ble to serve all these devices simultaneously. We de-

veloped an intelligent TDMA scheduler which allows

to plan the individual packets of the different streams

in such a way that all streams can be served by taking

into account the interference on the physical layer. Two

different strategies are proposed, one where the pack-

ets are sequentially allocated and another one where

the packets are periodically allocated. The scheduler is

evaluated for a realistic industrial scenario with WiFi

802.11n as wireless technology and the results show that

is possible to serve all the required connections.

The strategies are evaluated based on the maximum

link latency, channel occupancy, and jitter for differ-

ent packet sizes. The periodically strategy performs the

best for the maximum link latency for packet sizes be-

low 1200 bytes and the jitter. The latter reduces with
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97% to 99% compared to the sequentially strategy. The

channel occupancy does not significantly differ between

the different strategies. Furthermore, the number of

available channels has a high influence on the channel

occupancy and the jitter. Using 13 channels reduces the

channel occupancy up to 30% and 46% for the sequen-

tially and the periodically allocated strategy, respec-

tively.

Compared to CSMA/CA, the proposed TDMA strate-

gies reduce the channel occupancy significantly with

an improvement between 67.2% to 96.9%. When us-

ing CSMA/CA, in some cases a channel occupancy of

more than 100% is obtained which is not achievable

in reality. We clearly showed that by using one of our

TDMA strategies, it is still possible to plan all the

considered streams for the industrial scenario, in con-

trary to CSMA/CA. For the maximum link latency,

CSMA/CA performs 99% in the best case better than

the proposed TDMA strategies, however, when con-

sidering the CSMA/CA worst case, in which all other

nodes send one packet first, the proposed TDMA strate-

gies perform 99% better than CSMA/CA. For the jitter,

the periodically allocated strategy performs the best

for all considered cases (98% and 99.9% lower than

CSMA/CA best and worst case, respectively).

We recommend to use the periodically allocated strat-

egy with 13 channels as best solution for the considered

scenario.

The proposed scheduler has been evaluated in the

2.4 GHz band and hence compared with 802.11n solu-

tions. Today, a majority of the Wi-Fi devices operate

in the 2.4 Ghz band and this band is becoming more

and more crowded. As such, it is very hard to design

dependable systems with more deterministic behavior

when relying on CSMA/CA. In the future, we plan to

assess the proposed mechanisms in the 5 GHz band and

in light of the 802.11ac standard that supports beam-

forming. More channels are available in this band at

the expense of a smaller effective range. Also, joint op-

timizations between 2.4 GHz and 5 GHz Wi-Fi bands

might be considered. Furthermore, the performance of

the scheduler will be experimentally validated and a

comparison with PCF will be made. Finally, we will

also further focus on the optimization of the schedul-

ing opportunity in the spatial domain (i.e., the order in

which the nodes are treated).
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