433 research outputs found

    Field Measurements in Determining Incumbent Spectrum Utilization and Protection Criteria in Wireless Co-existence Studies

    Get PDF
    Studies of spectrum sharing and co-existence between diļ¬€erent wireless communication systems are important, as the current aim is to optimize their spectrum utilization and shift from static exclusive spectrum allocation to more dynamic co-existence of diļ¬€erent systems within same frequency bands. The main goal of this thesis is to provide measurement methodologies for obtaining realistic results in modeling incumbent spectrum utilization and in determining incumbent protection criteria. The following research questions are considered in this thesis: Q1) How should ļ¬eld measurements be conducted and used to model incumbent spectrum utilization? Q2) How should ļ¬eld measurements be conducted and used to determine protection criteria for incumbents in a co-existence scenario with mobile broadband? and Q3) Which licensing methods and technological solutions are feasible to enable spectrum sharing in frequency bands with incumbents? To answer to Q1, this thesis describes the development of a spectrum observatory network concept created through international collaboration and presents measurement methodologies, which allow to obtain realistic spectrum occupancy data over geographical areas using interference map concept. A cautious approach should be taken in making strong conclusions from previous single ļ¬xed location spectrum occupancy studies, and measurements covering larger geographical areas might be needed if the measurement results are to be used in making spectrum management decisions. The ļ¬eld interference measurements considered in Q2 are not covered well in the current research literature. The measurements are expensive to conduct as they require substantial human resources, test network infrastructure, professional level measurement devices and radio licenses. However, ļ¬eld measurements are needed to study and verify hypotheses from computer simulations or theoretical analyses in realistic operating conditions, as ļ¬eld measurement conditions can not or are not practical to be adequately modeled in simulations. This thesis proposes measurement methodologies to obtain realistic results from ļ¬eld interference measurements, taking into account the propagation environments and external sources of interference. Less expensive simulations and laboratory measurements should be used both to aid in the planning of ļ¬eld measurements and to complement the results obtained from ļ¬eld measurements. Q3 is investigated through several ļ¬eld interference measurement campaigns to determine incumbent protection criteria and by analyzing the spectrum observatory data to determine the occupancy and trends in incumbent spectrum utilization. The ļ¬eld interference measurement campaigns have been conducted in real TV White Space, LTE Supplemental Downlink and Licensed Shared Access test network environments, and the obtained measurement results have been contributed to the development of the European spectrum regulation. In addition, ļ¬eld measurements have been conducted to contribute to the development and technical validation of the spectrum sharing frameworks. This thesis also presents an overview of the current status and possible directions in spectrum sharing. In conclusion, no single spectrum sharing method can provide universally optimal eļ¬ƒciency in spectrum utilization. Thus, an appropriate spectrum sharing framework should be chosen taking into account both the spectrum utilization of the current incumbents and the future needs in wireless communications.Siirretty Doriast

    Licensed Shared Access Evolution to Provide Exclusive and Dynamic Shared Spectrum Access for Novel 5G Use Cases

    Get PDF
    This chapter studies the Licensed Shared Access (LSA) concept, which was initially developed to enable the use of the vacant spectrum resources in 2.3ā€“2.4Ā GHz band for mobile broadband (MBB) through long-term static licenses. The LSA system was developed to guarantee LSA licensees a predictable quality of service (QoS) and exclusive access to shared spectrum resources. This chapter describes the development and architecture of LSA for 2.3ā€“2.4Ā GHz band and compares the LSA briefly to the Spectrum Access System (SAS) concept developed in the USA. 5G and its new use cases require a more dynamic approach to access shared spectrum resources than the LSA system developed for 2.3ā€“2.4Ā GHz band can provide. Thus, a concept called LSA evolution is currently under development. The novel concepts introduced in LSA evolution include spectrum sensing, short-term license periods, possibility to allocate spectrum locally, and support for co-primary sharing, which can guarantee the quality of service (QoS) from spectrum perspective. The chapter also describes a demonstration of LSA evolution system with spectrum user prioritization, which was created for Programme Making and Special Events (PMSE) use case

    Practical Extensions to the Evaluation and Analysis of Wireless Coexistence in Unlicensed Bands

    Get PDF
    Sharing spectrum resources in unlicensed bands has proven cost effective and beneficial for providing ubiquitous access to wireless functionality for a broad range of applications. Chipsets designed to implement communication standards in the Industrial, Scientific and Medical (ISM) band have become increasingly inexpensive and widely available, making wireless-enabled medical and non-medical devices attractive to an increased number of users. Consequently, wireless coexistence becomes a concern. In response, the U.S. Food and Drug Administration (FDA) has issued a guidance document to assist medical device manufacturers ensure reasonable safety and effectiveness. Coexistence-testing methods are now being reported in literature, and novel solutions are under consideration for inclusion in the American National Standards Institute (ANSI) C63.27 Standard for Evaluation of Wireless Coexistence. This dissertation addresses practical issues for evaluating and reporting wireless coexistence. During testing, an under-test-system (UTS) is evaluated in the presence of an interfering system (IS). Accordingly, an innovative method is suggested for estimating channel utilization of multiple, concurrent wireless transmitters sharing an unlicensed band in the context of radiated open environment coexistence testing (ROECT). Passively received power measurements were collected, and then a Gaussian mixture model (GMM) was used to build a classifier for labeling observed power samples relative to their source. Overall accuracy was verified at 98.86%. Case studies are presented utilizing IEEE 802.11n as an IS with UTS based on either IEEE 802.11n or ZigBee. Results demonstrated the mutual effect of spectrum sharing on both IS and UTS in terms of per-second channel utilization and frame collision. The process of approximating the probability of a device to coexist in its intended environment is discussed, and a generalized framework for modeling the environment is presented. An 84-day spectrum survey of the 2.4 GHz to 2.48 GHz ISM band in a hospital environment serves as proof of concept. A custom platform was used to monitor power flux spectral density and record received power in both an intensive care unit (ICU) and a post-surgery recovery room (RR). Observations indicated that significant correlation in activity patterns corresponded mainly to IEEE 802.11 channels 1, 6, and 11. Consequently, channel utilization of three non-overlapping channels of 20 MHz bandwidth---relative to IEEE 802.11 channels 1, 6, and 11---were calculated and fitted to a generalized extreme value (GEV) distribution. Low channel utilization ( 50%), was observed in the surveyed environment. Reported findings can be complementary to wireless coexistence testing. Quantifying the probability of UTS coexistence in a given environment is central to the evaluation of coexistence, as evidenced in the draft of the C63.27 standard. Notably, a method for this calculation is not currently provided in the standard. To fill this void, the work presented herein proposes the use of logistic regression (LR) to estimate coexistence probability. ROECT was utilized to test a scenario with an 802.11n IS and ZigBee UTS medical device. Findings demonstrate that fitted LR model achieves 92.72% overall accuracy of classification on a testing dataset that included the outcome of a wide variety of coexistence testing scenarios. Results were incorporated with those reported in [1] using Monte Carlo simulation to estimate UTS probability of coexistence in a hospital environment

    RURAL BROADBAND MOBILE COMMUNICATIONS: SPECTRUM OCCUPANCY AND PROPAGATION MODELING IN WESTERN MONTANA

    Get PDF
    Fixed and mobile spectrum monitoring stations were implemented to study the spectrum range from 174 to 1000 MHz in rural and remote locations within the mountains of western Montana, USA. The measurements show that the majority of this spectrum range is underused and suitable for spectrum sharing. This work identifies available channels of 5-MHz bandwidth to test a remote mobile broadband network. Both TV broadcast stations and a cellular base station were modelled to test signal propagation and interference scenarios

    Spectrum measurement, sensing, analysis and simulation in the context of cognitive radio

    Get PDF
    The radio frequency (RF) spectrum is a scarce natural resource, currently regulated locally by national agencies. Spectrum has been assigned to different services and it is very difficult for emerging wireless technologies to gain access due to rigid spectmm policy and heavy opportunity cost. Current spectrum management by licensing causes artificial spectrum scarcity. Spectrum monitoring shows that many frequencies and times are unused. Dynamic spectrum access (DSA) is a potential solution to low spectrum efficiency. In DSA, an unlicensed user opportunistically uses vacant licensed spectrum with the help of cognitive radio. Cognitive radio is a key enabling technology for DSA. In a cognitive radio system, an unlicensed Secondary User (SU) identifies vacant licensed spectrum allocated to a Primary User (PU) and uses it without harmful interference to the PU. Cognitive radio increases spectrum usage efficiency while protecting legacy-licensed systems. The purpose of this thesis is to bring together a group of CR concepts and explore how we can make the transition from conventional radio to cognitive radio. Specific goals of the thesis are firstly the measurement of the radio spectrum to understand the current spectrum usage in the Humber region, UK in the context of cognitive radio. Secondly, to characterise the performance of cyclostationary feature detectors through theoretical analysis, hardware implementation, and real-time performance measurements. Thirdly, to mitigate the effect of degradation due to multipath fading and shadowing, the use of -wideband cooperative sensing techniques using adaptive sensing technique and multi-bit soft decision is proposed, which it is believed will introduce more spectral opportunities over wider frequency ranges and achieve higher opportunistic aggregate throughput.Understanding spectrum usage is the first step toward the future deployment of cognitive radio systems. Several spectrum usage measurement campaigns have been performed, mainly in the USA and Europe. These studies show locality and time dependence. In the first part of this thesis a spectrum usage measurement campaign in the Humber region, is reported. Spectrum usage patterns are identified and noise is characterised. A significant amount of spectrum was shown to be underutilized and available for the secondary use. The second part addresses the question: how can you tell if a spectrum channel is being used? Two spectrum sensing techniques are evaluated: Energy Detection and Cyclostationary Feature Detection. The performance of these techniques is compared using the measurements performed in the second part of the thesis. Cyclostationary feature detection is shown to be more robust to noise. The final part of the thesis considers the identification of vacant channels by combining spectrum measurements from multiple locations, known as cooperative sensing. Wideband cooperative sensing is proposed using multi resolution spectrum sensing (MRSS) with a multi-bit decision technique. Next, a two-stage adaptive system with cooperative wideband sensing is proposed based on the combination of energy detection and cyclostationary feature detection. Simulations using the system above indicate that the two-stage adaptive sensing cooperative wideband outperforms single site detection in terms of detection success and mean detection time in the context of wideband cooperative sensing

    IEEE 802.11ac Performance Analysis and Measurement Tools

    Get PDF
    Wireless local area networks have witnessed a large growth over the course of the last decade which has led to increased data traffic and demand for higher speeds. One of the IEEE 802.11 standards family that was developed to offer very high throughput WLANs is IEEE 802.11ac. Theoretically, with the PHY and MAC enhancements embedded in this standard, it is expected to provide gigabit-per-second data rates. The WLAN standards in addition to other wireless technologies such as Bluetooth and ZigBee share the same unlicensed band, and the increase in the use of this band requires monitoring the wireless spectrum and addressing wireless coexistence problems via spectrum surveys which usually produce a large data volume, that requires advanced hardware capabilities to help overcome the challenges of storing, retrieving and processing the data. This thesis reports on the performance analysis of an IEEE 802.11ac network with respect to varied channel conditions such as SNR and SIR. Mathematical models of the relationship between the throughput, the delay of the network and SNR using interpolation, were provided. The results show that for good channel conditions i.e. high SNR, 802.11ac offers high throughput values. However, the throughput is highly affected by the interference level caused by other 802.11ac devices that share the same channel, as the throughput of the under-test network is directly proportional to the level of SIR. Moreover, this thesis details a measurement tool that implements a probabilistic efficient storage algorithm (PESA) proposed by Dr. Al-Kalaa with US FDA that could be used in deploying long-term spectrum surveys in the time-domain using LabVIEW. PESA algorithm is based on representing the dynamic range of a monitoring device by a Gaussian Mixture Model, establishing windows of activity and inactivity and mapping the windows to the Gaussian component with the largest responsibility for each window mean. The indexes of the Gaussian components are stored in addition to the count of samples in each window resulting in a significant storage volume reduction. The software was used to survey the 2.4 GHz band in a healthcare facility for 7 hours. The results show a reduction in the required storage size of approximately 98.8% while maintaining an accurate estimation of the channel utilization

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radarā€”a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveformsā€”revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Mooreā€™s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications
    • ā€¦
    corecore