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ABSTRACT 

The network planning, deployment, and, architecture dictate how a Mobile Wireless 

Communication Network (MWCN) is going to perform through its lifetime. While 

a deployment, based on poor planning, may result in excessive expenses on 

compensating pitfalls, an incompetent architecture may lead to a total revamping of 

the network to a different technology. Whereas such experimental optimizations are 

mostly performed on a live network, the subscribers’ interests are often kept aside. 

Expecting the 100 percent fulfillment of coverage and capacity demands of all 

subscribers in the entire service area is not completely feasible for any technology 

and deployment strategy; however, there is always a scope to mitigate them. The 

latest swift developments in both technology (such as Long Term Evolution-

Advanced or LTE-A and 5th Generation of communications or 5G) and architecture 

(such as the Cloud-Radio Access Network or C-RAN  and Self Organising Network 

or SON ) are clear indicators that the user (subscriber) oriented upgrades are prime 

in focus. Nonetheless, besides all the new developments, there are always certain 

cases that the present technology and infrastructures are not able to cope up with. 

The subscribers’ accumulation at random places, the multi-technology environment, 

the Radio Access Network sharing, resource utilization, etc. are still the eternal 

challenges that MWCNs are facing even after big leaps in both technologies, 

architecture and strategy. This is because the basic physics behind how 

electromagnetic waves flux out from the antennas and its propagation properties 

remain the same and, the technological and infrastructural advancements are just 

about utilizing these properties and mitigating the challenges.  As an example, a 

service provider may need to add a capacity sites where it finds a periodical 

subscriber accumulation. However, for cities with huge versatilities in composition 

and subscriber base, such iterative approach to solving problems are less effective 

and often lead to draining of heavy investments on installation, maintenance, and 

operations. The dissertation defines in a novel way fundamental problems that may 

arise in an operational network and proposes solution based on an innovative 

architecture that could accommodate the aforementioned issues more conveniently 

than other present approaches. 

Coverage and capacity are the decisive parameters of a network performance. The 

impact of the subscriber, moving, grouping and moving in groups of the above 

phenomena are defined in a novel way as Place Time Coverage (PTCo) and Place 

time Capacity (PTC) respectively, and we would refer them collectively as Place 

Time Coverage & Capacity (PTC2). The dissertation  proves through the concept of 

the PTC2  that the network performance can severely be degraded by  the excessive 

and unrealistic site demands, the network management inefficiency,  and the 

consequence of the accumulation of subscribers substantially and randomly across 

the area under investigation (defined here as the Area of Interest or AoI).  Both the 

position and, the time of the position acquired by a subscriber, raises the demand 
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for service at the very location (termed here as PTC wobble), thereby posing an 

ongoing capacity demand and poor resource utilisation in the present MWCN. This 

random accumulation, being more intense and rapid in the highly populated 

metropolitan cities, tend to affect both the signal propagation and the capacity 

demand at the point of accumulation more severely.    

This PhD research addresses the  PTC2  challenge through a viable  solution that is 

based on injecting  intelligence and services in parallel layers through a Distributed 

Antenna Systems (DAS) network. This approach would enable the  remote sites to 

acquire intelligence and a resource pool at the same time, thereby managing the 

network dynamics promptly and aptly to absorb the PTC2 wobble. An  Active 

Probing Management System (APMS) is proposed as a supporting architecture,  to 

assist the intelligent system to keep a check  on the variations at each and every site 

by either deploying the additional antenna or by utilising the service antenna. The 

probing process is an independent layer and does not use paging channels of service 

technology, thereby, saving extra traffic channels. Further, it is discussed how this 

architecture can be compatible with multi-technology and densenet environments. 

The architecture that is proposed here is termed as Self Configurable Distributed 

Antenna System (SCIDAS). 

An analysis is performed to show how essential  the intelligence is to manage the 

PTC2 challenge.  To this end, a novel supporting  algorithm is proposed, defined as 

Amoebic Place Time Coverage and Place Time Capacity Response or Amoebic 

PTC2 Response (APR), which renders “amoeba-like” responses to approaching 

PTC2 contributors (user accumulation). 
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DANSK SUMMARY 

Netværket planlægning, implementering, og, arkitektur diktere, hvordan en Mobile 

Wireless Communication Network (MWCN) kommer til at udføre gennem sin 

levetid. Mens en implementering, baseret på dårlig planlægning, kan resultere i for 

store udgifter på at kompensere faldgruber, kan en inkompetent arkitektur føre til en 

total omlægning af netværket til en anden teknologi. Saadanne eksperimentelle 

optimeringer er for det meste udført på en levende netværk, bliver abonnenternes 

interesser ofte holdes til side. Forventer 100 procent opfyldelse af dækning og 

kapacitet krav fra alle abonnenter i hele serviceområdet er ikke helt muligt for 

enhver teknologi og implementering strategi; dog er der altid en mulighed for at 

afbøde dem. De seneste hurtige udvikling i både teknologi (såsom Long Term 

Evolution-Advanced eller LTE-A og 5. generation af kommunikation eller 5G) og 

arkitektur (såsom Cloud-Radio Access Network eller C-RAN og Self Organising 

netværk eller søn) er klare indikatorer at brugerens (abonnent) orienteret 

opgraderinger er prime i fokus. Ikke desto mindre, foruden alle de nye udviklinger, 

er der altid visse tilfælde, at den nuværende teknologi og infrastruktur ikke er i 

stand til at klare op med. Abonnenterne 'ophobning på tilfældige steder, multi-

teknologi miljø, Radio Access Network deling, ressourceudnyttelse, etc. er stadig 

de evige udfordringer, MWCNs står selv efter store spring i begge teknologier, 

arkitektur og strategi. Dette skyldes, at de grundlæggende fysikken bag hvordan 

elektromagnetiske bølger flux ud fra antenner og dets formering egenskaber 

forbliver de samme, og de teknologiske og infrastrukturelle fremskridt er bare om at 

udnytte disse egenskaber og afbøde udfordringer. Som et eksempel kan en 

tjenesteudbyder nødt til at tilføje et kapacitet steder, hvor den finder en periodisk 

abonnent ophobning. Men for byer med enorme versatilities i sammensætning og 

abonnent base, såsom iterativ tilgang til at løse problemer er mindre effektive og 

fører ofte til dræning af store investeringer på installation, vedligeholdelse og drift. 

Afhandlingen definerer på en ny måde fundamentale problemer, der kan opstå i et 

operationelt netværk og foreslår løsning baseret på en nyskabende arkitektur, der 

kunne rumme de førnævnte spørgsmål mere bekvemt end andre nuværende 

tilgange. 

Dækning og kapacitet er de afgørende parametre for et netværk ydeevne. 

Virkningen af abonnenten, flytning, gruppering og bevæger sig i grupper af de 

ovennævnte fænomener er defineret på en ny måde, som Place Time Dækning 

(PTCo) og Place tid Kapacitet (PTC) henholdsvis og vi ville henvise dem kollektivt 

som Place Time Dækning & Kapacitet (PTC2). Afhandlingen viser gennem 

begrebet PTC2 at netværkets ydeevne alvorligt kan nedbrydes af de alt for store og 

urealistiske websted krav, ineffektivitet netværkets ledelse og konsekvensen af 

ophobning af abonnenter væsentligt og tilfældigt over det område, der undersøges 

(her defineret som interesseområdet eller AOI). Både position og, tidspunktet for 

den erhvervet af en abonnent position, hæver efterspørgslen efter service på meget 



 

6 

placering (betegnes her som PTC wobble), og udgør dermed en løbende kapacitet 

efterspørgsel og dårlig ressourceudnyttelse i den nuværende MWCN. Denne 

tilfældige akkumulering, er mere intens og hurtig i de tæt befolkede storbyer, har 

tendens til at påvirke både signal udbredelsen og efterspørgslen kapacitet ved 

punktet for ophobning hårdere. 

Denne ph.d.-forskning omhandler PTC2 udfordring gennem en holdbar løsning, der 

er baseret på indsprøjtning intelligens og tjenester i parallelle lag gennem en 

Distributed Antenna Systems (DAS) netværk. Denne fremgangsmåde vil gøre det 

muligt for fjerntliggende steder at erhverve intelligens og en ressource pulje på 

samme tid, og derved styre nettet dynamik hurtigt og rammende at absorbere PTC2 

wobble. Et Active Sondering Management System (APMS) foreslås som en 

understøttende arkitektur, for at hjælpe det intelligente system til at holde styr på 

variationerne på hvert eneste websted ved enten at indsætte den ekstra antenne eller 

ved at udnytte tjenesten antenne. Den sonderende proces er en uafhængig lag og 

ikke benytter pagingkanaler service teknologi, derved, sparer ekstra trafikkanaler. 

Endvidere er det diskuteret, hvordan denne arkitektur kan være forenelig med 

multi-teknologi og densenet miljøer. Arkitekturen der foreslås her, der betegnes 

som Self Konfigurerbar Distributed Antenna System (SCIDAS). 

En analyse er udført for at vise, hvor vigtigt intelligens er at styre PTC2 udfordring. 

Til dette formål foreslås en roman understøtter algoritme, defineret som Amoebic 

Place Time Dækning og Place Time Kapacitet respons eller Amoebic PTC2 

Response (ÅOP), som gør "amøbe-lignende" reaktioner på nærmer PTC2 

bidragydere (bruger akkumulation). 
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CHAPTER 1. INTRODUCTION 

It is the eccentricity of the Mobile Wireless Communication Network (MWCN) 

environment that has compelled me to look beyond the technological arena, on 

which the network systems are built; and, eventually, this motivated me to do this 

current research, which analyzes why such approach and architectures are not able 

to solve the issues of capacity and service provision. Being a Telecom Engineer in 

India for about eight years, I witnessed the mobile communication revolution (in 

India) at its maximum pace that has let the technology to gallop from 2G to 4G via 

2.5G, 2.9G, and 3G in a very short duration of time.  2.5G and 2.9G were the short-

lived intermediate pseudo generations comprising GPRS and EDGE technologies 

associated to GSM 900 and GSM 1800. In figure 1-1, we can see that a lot of 

developments have happened in the mobile wireless communication technology; 

however, the approach towards the Radio Access Network (RAN) is more or less 

the same (see, figure 1-1). Therefore, although every communication generation is 

profoundly associated with the technical advancements, not much attention was 

paid on how the technology disseminates in the network. For every technology, the 

RAN deployment process remains the same and follows the same phases namely (a) 

Green Field deployment, (b) Coverage1 Deployment (c) Capacity2  Deployment and 

(d) Network Optimization. From the Green Field phase, which is the very initial 

stage of the network planning and where (target area) the particular service 

provider’s service is inevitably absent, to a mature network, the deployment 

undergoes several stages through a process as shown in figure 1-2 [1] [2]. We call 

the target area as the Area of Interest (AoI), which is deeply investigated while 

planning the network sites3. Figure 1-2 shows the deployment process of an 

MWCN. Irrespective of the technology that an RAN sites are dealing with, the orbit 

of the deployment cycle has two perigees, signal, and subscribers. The objective of 

an MWCN service provider is always to provide right service to the right people. 

Hence, an RAN network often develops according to the distribution of the 

subscribers in the AoI. However, as both signal and subscribers are dynamic in 

nature, therefore, this approach is not sufficient to cater for some specific issues. 

Recent approaches such as C-RAN [3] [4] and the self-organising network (SON) 

[5] have been proposed, however, they may not be the solutions the service 

providers are looking for.  

                                                           
1 The area is said to be covered (by a radiating antenna) if the waves transmitted by the 

antenna are received with significant strength (detectable by receivers) within that area. 

2 The value that represents the simultaneous calls that can be sustained by a wireless 

transmitting and receiving device (known as Transceiver or TRX). 

3 The location where the Base Station equipment along with its infrastructure is installed to 

provide network coverage in the surrounding area. 
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Figure 1- 1: Commonality of RAN  Infrastructure deployment between GSM [6], UMTS 
[7]and LTE Advanced or 4G [8] [9] 
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1.1. BACKGROUND, MOTIVATION, AND JUSTIFICATION 

Figure 1-2 shows a standard procedure of the incremental stages and swaps in the 

process of deploying or upgrading an MWCN in any AoI. Here, the iteration ‘i’ 

represents the steps or phases (in time) that are taken to update the MWCN in a 

particular AoI. For every phase, the term deployment simply means site rollouts 

(estimating the needed sites and releasing the required budget), their planning, and, 

placements at suitable geographical locations for the fulfillment of the partial or 

complete network demands. The entire process undergoes a rigorous procedure, of 

which, a simplified version is shown in figure 1-2. The frequency of ‘i’ depends on 

how rapidly the new demands (or challenges) are appearing in the network. 

However, due to practical limitations, the value of ‘i’ cannot be indefinitely high 

and, therefore, the network cannot respond to immediate and short-lived challenges. 

Hence, despite the effort put on the network planing, the objectives of providing 

seamless coverage and ample capacity at every location are not met. This lag is 

often compensated by the guarantee of service which revolves around 95-98% of 

the total duration, thereby filling the gap. However, the following are the visible 

concerns: 

1) Public gatherings often trigger the network eccentricity, and are 

temporary and random in nature. This may be more problematic as 

there is no permanent solution for such a temporary and random 

problem; 

2) A huge infrastructure redundancy with every phase-out  resulting 

heavy capital reinvestment for new infrastructure and phasing out old 

ones;  

3) A huge difficulty in spectrum resource management in multi-

flavoured AoI comprising densenets, hotspots, rural, etc.; 

4) A significant time lapse while newer technology completely sweeps 

the older one, and hence, the dilemma of coexistence of multiple 

technologies in the same area; 

5) Multiple infrastructural layers can be seen in a single city for various 

technologies as a service provider may have to start from scratch for a 

new and every upcoming technology. 

6) Because the capacity is limited to the coverage range of a BS, the 

capacity distribution becomes a challenge. 

7) The deviation of the actual performance of the deployed network from 

what it has been planned for. It is very often and obvious situation of 

not finding a suitable place to deploy a site at the proposed location. 

This deviation from proposed to actual deployment, defined here as 

Planning Incongruence, often results in a drop in efficiency. Further, 

large or unacceptable deviation might result in the involvement of 

another such site.  
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8) The poor antenna distribution in the traditional approach often makes 

it difficult for RF planners to define carrier groups for the network, 

resulting a low-frequency reuse pattern and more repetition of sites for 

capacity. 

 

Figure 1- 2: Network Deployment Cycle 



CHAPTER: INTRODUCTION 
__________________________________________________________________________________________________ 

29 

1.2. THE RESEARCH PROPOSITION 

All the challenges that are discussed above cannot be addressed by a single 

endeavour. The present thesis identifies the challenges and proposes solutions to the 

still persistent problem of efficient mobile network deployment.   

1.2.1. PROBLEM DEFINITIONS 

This PhD research proposes solutions to the following network deployment 

problems: 

(i) The random subscriber accumulation can significantly degrade the 

network performance by raising capacity demands and deteriorating the 

SINR in the impacted area.  To this end, we have analyzed the currently 

enabled solutions to deal with the problem and have pointed out why these 

are inefficient in dealing with the problem. 

(ii) The second objective is to measure the phenomena to identify the severity 

of the impact (i) in various circumstances.  

(iii) The third research problem proposes a quantifying model for (i) that 

allows evaluating (ii) on the coverage and capacity of a network site. An 

innovative architecture has been proposed that allows to deal with the 

identified network deployment challenges and that caters for dynamic 

situations, such as a rapid subscriber accumulation. 

1.2.2. RESEARCH SCENARIO 

The background for the performed research is the Indian scenario. India, with its 

more than one billion population and specific traditions and lifestyle, is particularly 

subject to rapid subscriber accumulation. 

1.3. THESIS OUTLINE AND CONTRIBUTIONS 

This thesis is organized in 7 Chapters. This chapter also covers the measurement 

procedures and setups that were followed while performing in-field measurements 

in various scenarios. Chapter 7 concludes the thesis and also gives plan for future 

work.  The following novel scientific contributions have been made and presented 

in the various Chapters. 

 Chapter 2: Investigates the spectrum utilization and variation in signal 

strength in heavy gathering situations, based on the in-field measurements 

performed at various locations and at different times. As contributions, (a) 

it is found that accumulations iteratively change the spectrum utilization in 

time and position domains and over-accumulations blocks users from 
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using resources, and (b) a mathematical formulation is developed to relate 

a number of people per unit area and received signal strength. 

 Chapter 3: A network subscriber, roaming around in an area, creates a 

demand for service at all places he/she visits. This forces a service 

provider to cater for all those locations. Thus, as contributions, (a) this 

chapter identifies users in a novel way as place-time entities and 

formulates the “demand of service”, in terms of both capacity and 

coverage, as functions of place (position) and time, (b) this chapter 

investigates the challenges of the present static network deployment 

paradigm to cater for users that are dynamic in place and time, and (c) this 

chapter analyzes  through mathematical formulations,  how  the probability 

distribution function based on which the network dimensioning is carried 

out, also varies in the place and time domain. 

 Chapter 4: An innovative architecture, defined as Self Configurable 

Distributed Antenna System (SCIDAS), is proposed, and evaluated; to 

accommodate the Place and Time-based user dynamics, especially in the 

case when multiple subscribers move in groups. 

 Chapter 5: We propose six novel supporting algorithms that collectively 

operate on the SCIDAS network to mitigate the variations created in the 

network environment. Two are used for sensing the disturbances 

(accumulations) and other four are to manage them. 

 Chapter 6: A basic model of SCIDAS is developed and investigated 

empirically to understand the working of SCIDAS. 

The following is the outline of this thesis: 

Chapter 2. Analysis of Radio Spectrum Management Crisis & Occupancy 

Measurements 

The prime purpose of all investigations, study, and measurements that were 

conducted and mentioned in this chapter was to identify the suitable location 

demonstrating the significance of the environmental dynamics. This scenario was 

used as the reference scenario for the scientific contributions of this thesis.  ITU 

Recommendations were the baseline for conducting the research, and identifying 

the feasibility of using the system for IMT applications. This chapter, holds a 

significant importance in understanding closely the impact of the environmental 

changes on a network system. A holistic picture has been presented about the 

occupancy/vacancy measurements of the radio spectrum, i.e. the 800, 900 and 1800 

MHz bands identified for commercial applications, which have been made in 

various cities/locations of India. Further, the impact of rapid people accumulation 

on the received signal power level was studied in the frequency bands mentioned 

above. It may be mentioned that ITU’s Joint Task Group, set up in 2012 has 

submitted its recommendations identifying several frequency bands including 470-

698 MHz for IMT application. In this regard, a decision was taken at the World 



CHAPTER: INTRODUCTION 
__________________________________________________________________________________________________ 

31 

Radio Conference (WRC) 2015, scheduled during November 2-27, 2015. Keeping 

the WRC decision in mind, we performed measurements of the occupancy in the 

whole band of 470-698 MHz in India, to make a fair assessment that how IMT 

applications can be introduced in this frequency band. As of now there are no 

commercial mobile operations in the 1400 MHz band, however, this band is 

identified by JTG as a potential candidate band for IMT applications. A 

measurement campaign at a place of rapid accumulation, in India, was carried out 

to assess the impact of people’s gathering in an open area on the received signal 

power levels in the 1400 MHz band.  

Chapter 3. Place time Coverage & Capacity (PTC2)  

For any MWCN, the capacity and coverage requirements of the subscribers are a 

challenge. This problem aggravates when the coverage and capacity needs are to be 

catered for a large number of subscribers, particularly, when they accumulate 

randomly in relatively smaller areas and under extraordinary situations like a 

carnival, sports events, marathon events, etc.  On these occasions, the subscribers 

move in a group, thereby creating huge capacity demand throughout the locus of the 

traversed path. From time to time, we come across news about network failing to 

serve in a crowded environment [10] [11]. In [12], the slowing of the speed of an 

LTE network in a crowded environment is discussed. The future generation 

networks (i.e. 5 G) will break the huge capacity demands into smaller high capacity 

pico-cells, and next to the demand for connectivity ‘anytime, anyplace’, there 

would be a need to address a question that the subscriber is ‘at what time and at 

which place’. In order to answer these questions, two new research concepts have 

been defined, namely the ‘Place Time Coverage’ and, the ‘Place Time Capacity or, 

collectively PTC2, to evaluate the impact on the network behaviour. The results of 

this evaluation have been published in  [13] and [14]. In Chapter 3, we show that 

random network behaviours seek random responses from the network, and when the 

random element is the subscriber accumulation, most of the present MWCN fail to 

cater them, and therefore, to cater them.  

We, further evaluate the consequences of the entwining of the place and time 

phenomena on simple looking events. From a Network Service Provider’s (NSP’s) 

point of view, the PTC2 is a perpetual challenge. The magnitude of this 

phenomenon is the motion of high capacity-hungry subscribers either individually 

or in groups due to any arbitrary triggers. This eventually becomes a problem when 

the phenomena goes beyond the absorbable limit. 

Chapter 4. Self Configurable Intelligent Distributed Antenna System: 

Architecture. 

To address the network dynamics, the obvious solution would be to optimize and 

expand the network by adding more and more coverage or capacity sites as 
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described in figure 1-2. Although this leads to considerable expansion of the RAN 

network, the total offered Erlangs at the CORE Network (see, figure 1-1) are almost 

the same; which means that the total capacity demand of the network is almost 

invariable and, therefore, there are no gain in revenues. Therefore, this may not be a 

feasible solution. Further, the situation also leads to overplanning thereby affecting 

the network health (poor SINR, etc.). Other disadvantages of overplanning are 

briefly discussed in the previous section. 

The subscriber accumulation is one of the major culprits of raising this random 

demand. This chapter proposes a solution to the PTC2 problem in five steps: 

(i) An architecture that can accommodate the needed attributes to react as 

per demand.  

(ii) A system to sense the dynamics independent of the technology in use. 

(iii) Intelligence to take up a decision based on the sensed information. 

(iv) A set of processes this intelligence will employ to react to the situation. 

(v) More flexibility in a multi-technology environment. 

To incorporate these steps in a single system, in this chapter, we propose an 

innovative, intelligent and prompt architecture that follows the normative 

framework of a Distributed Antenna System (DAS), a well-established technique of 

distributing the resources over a certain area, and utilizing its capabilities in 

distributing attributes of the network to tackle such issues. As DAS allows 

resources to stay at some defined location from where it is distributed across the 

network through suitable “cabled” or wireless networks, we propose both intelligent 

and service module to reside at the core, that we call as “SCIN,” from where they 

are distributed by under laid DAS based architecture. As to manage the resources 

and tackle PTC2 related issues, the network must be iteratively dynamic at every 

corner of its reach, emphasizing the need of approachability of its intelligent till the 

last destination (terminal) of the network. Therefore, the system needs to operate in 

such a way that the resource and intelligence may propagate parallelly in layers, for 

which, DAS is an excellent platform. The DAS based architecture is proposed in 

this chapter is termed here as the Self Configurable Intelligent Distributed Antenna 

System (SCIDAS). The findings reported in this Chapter have been partially 

published  in [15]. Further, here a supporting algorithm has been proposed. 

To achieve promptness in response, it is required that both intelligence and service 

must disseminate in parallel. In Chapter 4, we have discussed how this can be 

achieved by using an efficient technology known as Wavelength Division 

Multiplexing (WDM). This technology creates wavelength diversity and therefore 

allows multiple wavelengths to flow through a common Fiber Optic Network 

(FON). We have utilized this diversity as an opportunity to send intelligent signals 

to the remote units, that we have termed as buds (to differentiate from buds of 
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present technology base stations), parallel along with services, thereby, reducing 

latency in response time.  

We have also introduced Smart Modules at both SCIN and bud ends. At SCIN, we 

have Smart Master Unit (SMU), and at bud end, we have Smart Remote Unit 

(SRU). These units work in coordination with an intelligent unit that we have 

defined as Network Intelligence Unit (NIU) through the base DAS network 

architecture. 

Another capability of the proposed architecture is the adoption of multiple access 

technologies. To this end, we have evaluated the feasibility of accommodating 

newer access technologies. The advent of Light Emitting Diodes (LEDs) led to the 

realization of Visible Light Communications (VLC), which in turn relieves the 

burden on licensed/unlicensed radio spectrum for providing communications. In 

this way, VLC shall emerge as an alternative to communication technology using 

RF spectrum and proposes a concept for integrating VLC to enable intelligent 

communication infrastructure. The purpose of incorporating and discussing this 

feature is because one of the ways of wiseful utilization of the spectrum is to 

distribute users among various parallel technologies. Shifting of some dedicated 

statics from RF to VLC may relieve some extra Erlangs of the RF spectrum. The 

VLC module proposed in this chapter is a suitable avenue for Li-Fi based 

communications.  

Chapter 4 describes the attributes of the SCIDAS architecture in terms of its 

Expandability (DAS based architecture), Manageability (control on each bud 

distinctively), Deployability (street furniture, light poles, etc., can be used for 

difficult areas), Flexibility (co-existence in multiple technologies, can be deployed 

readily where FON is available), and Adaptability (plug and play feature) with 

Intelligent and Futuristic attributes (can accommodate future technologies; the 

access radios of future technologies can work without revamping SCIDAS 

architecture). 

Chapter 5. Active Probing and Self Configurability in SCIDAS 

After proposing the architecture, we realized that just the architecture will not be 

sufficient unless we know how it can be used for the purpose it is proposed, i.e., 

mitigating PTC2 problem. To address this task, this chapter explains two things: 

a) How SCIDAS senses the accumulations. 

b) How these accumulations are catered.  

To answer (a), we have elaborated a technique that we used in SCIDAS and defined 

in Chapter 4 as Active Probing Technique. Conventionally, this technique is used to 

identify the faults in the computer networks and in space research (to remove 
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environmental errors from the received signals of a distant star), however, a similar 

approach is used in SCIDAS architecture to obtain a holistic estimation of the area 

under observation. Active Probing is the salient feature of SCIDAS architecture that 

involves independent monitoring of the network environment. The real-time 

measurement reduces a lot of complexity in “prediction” of environmental 

dynamism. By the virtue of DAS architecture incorporating WDM [16] [17], active 

probing may involve the service antennas or dedicated separate antennas may be 

deployed at each site for the monitoring of the subscriber mobility and 

accumulation in paralle to the service layer. Making it independent of the 

technology in use, active probing reduces a lot of paging work related to updates. 

The active probing is the sub-architecture of the intelligent system in SCIDAS that 

we have defined as Active Probing Management Systems (APMS). The active 

probing process is performed by two kinds of mechanism that we define as Whisper 

and Listen Method (WHISLME) and Silent Probing Method (SPM). 

For (b), novel supporting algorithms have been proposed to assist APMS to follow 

the accumulations and provide additional resources only to the region of 

accumulation. We have proposed a Amoebic PTC2 Response (APR) mechanism to 

react according to the PTC2 occurrences.  The APR includes several procedures that 

are defined separately as individual algorithms. Once such sub-algorithm has been 

defined as Channel Matrix Estimator (CME) and it plays a major role in estimating 

the PTC2 wobbles in coordination with other algorithms such as Transmitter –

Receiver Distance Optimizer (TDO), PTC2 Environment Estimatior (PTC2 EE), and 

Proactive Place-Time Predictor (PoPP).  

Chapter 6. Empirical analysis 

In this chapter, empirical analysis was performed across various locations in India 

to investigate the working of SCIDAS in situations were subscriber accumulations 

are significant. We chose three locations in India for our experiments namely, the 

city of Pune, Okhla (Delhi), and, Connaught Place (Delhi). For realistic 

investigations, we considered the true challenges of the service providers that they 

face in these locations. We took permissions from the active service providers to 

use their equipment and network resources for our investigations and, the choice 

and the period of investigations were chosen by them. In Pune, we hypothesized the 

SCIDAS deployment that could serve the severe accumulations during the 

procession of Lord Ganesha’s immersion in holy water (river or lake), which 

happens every year during the month of September. Our CME algorithm predicted 

the positions where the accumulations are regular and likely to occur, with a 

considerable efficiency. One recommendation to be made to the service provider 

based on the findings in this Chapter is to install additional sites at the identified 

locations that could temporarily serve the hefty accumulations. In this Chapter, 

while discussing the case of Pune, we investigated how this problem of temporary 

accumulations can be dealt with SCIDAS. A similar experiment was conducted in 
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Okhla Delhi where we created an APMS-like system by using industrial spectrum 

analyzers and service provider’s base stations to perform simultaneous and 

coordinated spectrum sensing at four different locations. This provided a holistic 

idea of the problematic carriers in the regions, which is one of the purposes of the 

actual APMS system.  

In Connaught Place (CP), initially, the idea was to use vendor’s FON and DAS 

equipment to deploy a working model of SCIDAS. However, as mentioned earlier, 

this process was halted. However, we used an industrial planning tool to simulate 

the SCIDAS network in the CP area, and algorithms were developed as programs to 

generate iteratively results that were iteratively fed in the tool to show dynamics 

with accumulations. Although, unlike the other two cases, this experiment was not 

performed in-field, however, we used the latest digital map of the city of Delhi to 

match with the current morphology of the area. The dynamics, however, was 

incorporated feeding additional losses in the environment due to accumulations, as 

identified in Chapter 3. 

Pune and Okhla analysis was based on GSM technology. The reason why we chose 

GSM technology as compared to 3 G and/or 4 G is that: 

 The GSM in India was launched way back in 1994. The GSM technology 

is fully matured by now not only in India but worldwide. The GSM 

subscriber base in India has crossed more than one billion. For our 

research work, we needed to have the mobile services that experience 

massive accumulation of the subscribers in a geographical area or service 

area.  The licenses, for operating the 3 G and 4 G services, to the service 

providers were issued in India only a few years back. The 4G services 

were launched only last year (2015) in a few service areas. Because of 

these reasons, at the time of measurements, we selected GSM services for 

this research work. Moreover, the GSM service providers offered 

themselves to conduct measurements in their live network. 

 

 Further, for pan-India coverage, each service provider is compelled to 

install more than 100,000 sites all over the country for GSM 900/1800 

network. This led to the lack of interest for providing 3G and 4G 

technologies on a massive scale; therefore, there is a significant delay in 

launching these services. This is also a motivation for us to seek an 

alternative approach (continuous architecture than a discrete). 

 

 

 PTC holds the same impact in every technology in service till date. With 

data/packet technologies (4G and beyond) there is a severe drop in 

throughput rate with increase in users at a location. As the capacity within 

an area is related to the number of sites, the only solution to cater PTC 
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issue is the addition of more sites. This creates heterogeneous networks in 

LTE environment which is not an efficient solution if the accumulations 

are random and un-scaled. The functionalities have been discussed in 

chapter 4 that can mitigate this challenge to a certain level. 

1.4. MEASUREMENTS DETAILS 

As discussed earlier, a detailed measurement campaign was organized to identify 

the experiment location for the research work; this included the deployment and 

investigations through drive tests. We have used the measurement results as a 

reference scenario to provide the research direction of this thesis.  The snapshot of 

Radio Frequency spectrum sensing and occupancy/vacancy measurements were 

carried out as follows: 

During the Period from April- August 2012 and July-December 2013 

A V/UHF Mobile Monitoring System (V/UMMS) was provided by the Ministry of 

Communications & Information Technology, Government of India and with 

these facilities, an extensive series of spectrum sensing measurements were 

undertaken in different cities/locations of India, in the frequency bands of 800 MHz 

(2G CDMA), 900 MHz (2G GSM) and 1800 MHz (2G GSM) both in their 

DownLink (DL) and Up Link (UL) bands. The cities, where the measurements were 

carried out were: Ahmadabad, Bhopal, Delhi, Goa, and Mumbai. However, due to 

the paucity of space, the measurements their analysis conducted at Ahmadabad, 

Bhopal, and Goa have not been reported in this Thesis. 

To investigate the spectrum management capabilities of the proposed SCIDAS 

architecture, it was inevitable to have a complete knowledge of the radio spectrum 

environment at all those locations, where the remote units were to be placed. This 

was achieved by carrying out band occupancy measurements at all such locations, 

and under various conditions to reveal the coverage footprint and network health 

status in the whole network area. During this period, separately, the 

vacancy/occupancy measurements in a commercially available band (GSM 900 

down-link, i.e. 935-960 MHz) at suitable selected locations in the capital city of 

India (Delhi). Based on the study in the frequency band 935-960 MHz, the results 

were published in [13] and [18]. 

During the Month of February 2014 

The impact of a gathering of authorized mobile subscribers, serviced by the mobile 

operators in assigned frequency bands of 800, 900 and 1800 MHz, during a season 

of a carnival, was assessed. Besides, this, the effect of the accumulation of people 

during a carnival season at a location in Goa, at 1400 MHz, on received signal 

power level has been studied. The 1400 MHz frequency was chosen, as there are no 
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mobile operations, hence there is no interference from any near base stations. These 

measurements were carried out during February 2014.       

The details of the measurements and their analysis are  included in Chapter 2 of this 

thesis. The measuring system setup and procedure of the measurements are 

described below.        

It may be mentioned that ITU-Radiocommunications (R)’s Study Group-1, 

recognizing more complex and challenging tasks for monitoring of radio signals, 

has been periodically studying the various aspects of measurements and their 

procedures. The details are contained in the Reports ITU-R SM.1880 [18], ITU-R 

SM.1809 [19]and also in the 2011 Edition of the ITU Handbook on Spectrum 

Monitoring [20]. Taking into account these Reports and Handbook, a far more 

detailed discussion on different approaches to spectrum occupancy measurements, 

the relevant issues, and possible solutions are available in the Report ITU-R 

SM.2256 [21].   

In order to understand the spectrum occupancy behaviour of different frequency 

bands (800, 900 and 1800 MHz), which are presently in use for commercial mobile 

services (IMT) and are recommended by ITU as potential candidate bands (viz 470-

698 MHz), for IMT applications, spectrum measurement campaign has been carried 

out at various locations viz Ahmadabad, Bhopal, Delhi, Goa and Mumbai in India 

during the period 2012-2014. A series of measurements had also been conducted at 

Goa at 1400 MHz.   

1.5. RADIO FREQUENCY SPECTRUM MEASUREMENTS- 
SYSTEMS AND PROCEDURES 

A brief on the theoretical formulations relating frequency channel occupancy, the 

measuring setup, and the procedures related to the spectrum measurements  for this 

research is given below.  

1.5.1. THEORETICAL FORMULATIONS 

A given service area may be illuminated by a spectrum resource that may contain 

all the carriers of a certain frequency band and available for the entire period of 

operation. The locations of measurements need to be selected such that the expected 

signal strength for the emissions of interest is above the threshold level. The 

relations between these two parameters define an area within which the 

measurement performed is of relevance to any station operating above a certain 

effective radiated power level. The frequency channel occupancy (FCO) of one 

channel is calculated as follows [21]: 
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 𝐹𝐶𝑂 =
𝑇0

𝑇𝑡
⁄  (1.1) 

Where, T0= Time when the level measured in this channel is above the threshold 

and Tt = Total duration of monitoring. Assuming a constant revisit time, the FCO 

can also be calculated as:   

 𝐹𝐶𝑂 =
𝑁0

𝑁𝑐
⁄  (1.2) 

in which, N0 = Number of measurement samples with levels above the threshold 

and Nc= Total number of measurement samples taken from the channel concerned. 

The measurements present the different aspects of measuring and evaluating 

spectrum resource occupancy also addressing frequency channel occupancy.  

The measurement analysis can be presented optimally by answering specific 

measurement oriented questions namely, (i) number of channels, (ii) bandwidth, 

(iii) type of user (s), (iv) threshold level used, (v) occupancy in the busy hour, (vi) 

and the duration of monitoring. 

1.5.2. DETAILS OF MEASURING SETUP  

In our work in [18], we have elaborately discussed the measuring setup. The 

descriptions mentioned in [18] are compact, precise, and well organized. Therefore, 

instead of re-writing the entire content, we have mentioned the relevant descriptions 

here, in due quotations, again, for the sake of continuity, clarity, and ready 

reference.  

It may be mentioned that for the purpose of the radio signal measurements, a 

V/UHF Mobile Monitoring System (V/UMMS) was deployed that satisfies the 

requirements and is as per the Recommendation ITU-R SM.1723-2 (09/2011)[22]. 

This MMS is designed to monitor radio signals in two sub-bands i.e. 20-700 MHz 

(part of VHF band i.e. 30-300 MHz) and 700-3000 MHz (UHF band).  “It may be 

appreciated that V/UMMS efficiently performs measurement tasks as compared to 

the fixed monitoring set up. Mobile monitoring system effectively performs in the 

entire scenario including that of low transmitter power levels, high antenna 

directivity and specific propagation characteristics. With a view detecting weak 

signals under low signal-to-noise ratio condition, it would be required to improve 

the sensitivity of the monitoring system. ” [18]. 

To detect weak signals, the technologies proposed are broadly (i) increase of the 

antenna gain (ex. directional antenna,   reconfigurable antenna), (ii) decrease the 

transmission loss (ex. outdoor installation of equipment for minimizing RF cable 

loss), and (iii) reduction of the receiver noise figure. “The MMS used for the 
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measurements consists of antenna systems, receivers, field-strength meters, 

frequency measuring equipment, bandwidth measurement, channel occupancy 

measurement, spectrum analyser, vector signal analyser, decoders, signal 

generators and recording equipment, etc. Usually, the sensing measurement tasks 

are normally performed for understanding occupancy/vacancy status of different 

radio signals in the frequency band (s) of interest. The main spectrum sensing tasks 

performed with a V/UMMS are for (a) type of emission for compliance with 

frequency assignment conditions, (b) occupancy measurement, (c) interference 

measurement, (d) radio coverage measurements, and (e) technical and scientific 

studies, etc.” [18]. The V/UMMS comprising of antenna and measuring facilities is 

capable of doing the following ITU measurements: 

 Modulation: Measurement of the modulation depth, frequency deviation or 

phase deviation. 

 Bandwidth: Selected bandwidth measurement.  

 Frequency and level: Frequency and level measurements. 

 Noise measurement: Power spectral density and noise-to-signal 

measurement. 

A typical V/UMMS used for measurements carried out at various cities/locations in 

India is presented at Appendix-1. The details about the antenna system, receiving 

system, procedures of measurements used for carrying out measurements are also 

highlighted in this Appendix.   

1.6. PUBLICATIONS 

Part of the the findings, reported in this thesis, have been published as follows.   

Journal Publications 

1) Kumar, Ambuj; Mihovska, Albena D.; and Prasad, Ramjee, ‘Spectrum 

Sensing in relation to Distributed Antenna System for Coverage 

Predictions',  Wireless Personal Communications, Vol. 76, No. 3, 

doi:10.1007/s11277-014-1724-0, March 2014, p. 549-568.  

2) Kumar, Ambuj; Mihovska, Albena D.; Kyriazakos, Sofoklis; and Prasad, 

Ramjee, ‘Visible Light Communications (VLC) for Ambient Assisted 

Living',  Wireless Personal Communications, Vol. 78, No. 3, s11277-014-

1901-1, July 2014, p. 1699-1717.  

Conference Publications 

3) Tripathi, P. S. M.;  Kumar,  Ambuj ; Chandra, A; and Sridhara, K., 

‘Dynamic Spectrum Access and Cognitive Radio’ Presented at the 2nd 

International Conference on Wireless Communications, Vehicular 



SECTION: CHAPTER MAPPING 
__________________________________________________________________________________________________ 

40 

Technology, Information Theory, Aerospace & Electronic System 

Technology (Wireless VITAE 2011), pp. 1-5, February 28 to March 3, 

2011.  

4) Kumar, Ambuj; Mehta, P. L.; and Prasad, R., ‘Place Time Capacity Place 

Time Capacity- A Novel Concept for Defining Challenges in 5G Networks 

and Beyond in India’, Presented at the ‘2014 IEEE Global Conference on 

Wireless Computing and Networking (GCWCN)’,  December 2014. 

5) Kumar, Ambuj; Mihovska, Albena D.; and Prasad, Ramjee, ‘Dynamic 

Pathloss Model for Future Mobile Communication Networks’,   Presented 

at the 18th International Symposium on Wireless Personal Multimedia 

Communications (WPMC) of the Global Wireless Summit-2015, 

December 13-16, 2015. 

6) Kumar, Ambuj; Mihovska, Albena D.; and Prasad, Ramjee, ‘Self-

Configurable Distributed Antenna System for Dynamic Spectrum 

Management in multi-layered Dense-Nets’, Presented at the Fifth 

International Conference on Wireless Communications, Vehicular 

Technology, Information Theory, Aerospace & Electronic System 

Technology (Wireless VITAE 2015)of the Global Wireless Summit-2015, 

December 13-16, 2015. 

Book Chapter 

7) Sridhara, K.; Tripathi, P. S. M.; Kumar, Ambuj; Chandra, A; and Prasad, 

Ramjee, ’Multi-users Participation in Bidding Process in a Congested 

Cellular Network’ in book "Globalization of Mobile and Wireless 

Communications: Today and in 2020’. Signal and Communication 

Technology Series, Springer, 1st Edition, 2011, XXI, ISBN: 978-94-007-

0106-9.  

1.7. CHAPTER MAPPING 
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CHAPTER 2. ANALYSIS OF RADIO 

SPECTRUM MANAGEMENT CRISIS, 

AND OCCUPANCY MEASUREMENTS 

There are a number of open research challenges related to the random accumulation 

of subscribers in a Mobile Wireless Communication Network (MWCN). As a first 

step to addressing these challenges, extensive measurements were performed on a 

number of suitable locations in India. The purpose of the extensive field 

measurements was to assess the spectrum occupancy in several frequency bands, 

which are currently assigned to the commercial mobile networks. The objective of 

the performed measurements was to identify and assess the existing unutilized 

portions of the spectrum and how these can be incorporated to increase the capacity 

of the Areas of Interest (AoI). Based on the recommendations and studies initiated 

by the International Telecommunications Union (ITU), and performed 

measurements, a detailed analysis of the current spectrum situation in India for 

different frequency bands and at various cities/locations, was carried out. An initial 

model was designed to scan the spectrum to identify its usage and scarcity. The 

measurement studies allowed assessing the availibilty of un-utilized spectrum (e.g. 

the white spectrum). The ‘white spectrum’, can be extrapolated so that some 

spectrum could be released from a service provider’s allocated spectrum size. The 

amount of ‘white spectrum’ (WS) varies for the different spectrum bands based on 

the geographical location and the time of day. This variation may be in the range of 

less than 5 to more than 50 MHz of the spectrum bandwidth of about 100 MHz. The 

spectrum occupancy measurements were planned in the frequency bands (800 

MHz, 900 MHz, 1800 MHz), which are currently used for commercial mobile 

applications (IMT) and also in those frequency bands (470-698 MHz and 1400 

MHz) that are earmarked for future IMT applications. In Chapter 4, we have 

introduced an innovative architecture that is defined as the Self Configurable 

Intelligent Distributed Antenna System (SCIDAS) that is intended to manage the 

heavy and itinerant user accumulations. The behaviour of these user accumulations 

is thoroughly studied in Chapter 3 of this thesis. Apart from proposing the 

architecture, we needed some experiment results to verify the working of the 

proposed architecture. We developed a basic model that was required to 

experimentally verified, for which, some suitable locating was needed for deploying 

this basic model. The measurements, metioned in this chapter, were intended to 

help in identifying an area for deployment of the SCIDAS test bed. Further, also, in 

order to investigate the impact of the rapid subscriber (i.e., users) accumulation in 

an open area on the received signal power level, detailed measurements at 1400 

MHz were carried out. In this open area, people gathered starting in a group of 10 to 

1000. 
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This Chapter is organized as follows. Section-1 briefly describes the growth of 

mobile subscribers, future projections of wireless devices and thereby the need for 

additional radio frequency spectrum for such applications. Section 2.2 describes the 

occupancy measurements in the frequency band 470-698 MHz earmarked for future 

IMT applications. Section 2.3 deliberates on the detailed spectrum measurements 

activities that have been carried out in 800, 900, and 1800 MHz frequency bands in 

the Indian metro cities of Delhi and Mumbai. This section also summarizes the 

spectrum occupancy measurements conducted, in these frequency bands, by other 

researchers in a few countries. Section 2.4 studies the impact of the dynamic 

movement of people on the propagation of radio signal at 1400 MHz in Goa (India).  

The probable research questions are highlighted in Section 2.5. Section 2.6 presents 

the conclusions and references are given at the end of this chapter.    

2.1. INTRODUCTION 

In the last few years, there has been an astonishing growth of wireless technology 

and an increasing number of smart wireless devices resulting in a significant global 

mobile traffic growth. It is expected that worldwide the mobile devices and 

connections would reach a figure of over 10 billion by 2018 [1], of which 8 billion 

would be hand-held or personal mobile-ready devices. Devices such as 

smartphones, tablets, and many others have made mobile information access 

essential tools for our day-to-day needs. In the coming years, the radio frequency 

spectrum, required for the wireless-based systems, will be a significant foundation 

for the global economic growth and technological challenges. The number of 

devices being connected to mobile networks worldwide will be around ten times by 

2020. As per an estimate, the numbers of subscribers in 2013 were more than 3.4 

billion, and by 2020, it is expected that 56% of world population will have their 

own mobile [1]. The Compound Annual Growth Rate (CAGR) is shown in figure 2-

1-1 [2].  

The scarcity of radio spectrum alongside its efficient utilization is a major challenge 

and for tackling this,  there could be  a number of solutions, viz either (i)  identify 

the additional spectrum bands under the ‘Mobile Services’ for IMT including 

Broadband applications or (ii) examining the status of its usage of the unused 

portion of spectrum already earmarked by ITU and assigned by the Administrations 

for other services/applications on time/geographical sharing basis or (iii) deploying 

some spectrum efficient techniques/methodologies including advanced intelligent 

antenna systems etc or (iv) a combination of all above four solutions in different 

permutations etc.  

This chapter addresses the issues and challenges with regard to (a) the spectrum co-

existence and how to enable additional spectrum, and (b) how to utilize the vacant 

portion of the existing spectrum dynamically. In both cases, (a) and (b), the detailed 

measurement studies in a different set of frequency bands assigned for IMT 
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applications, were undertaken. The measurement campaign leads to understand the 

vacancy and occupancy of a frequency band at a given time and in a geographical 

area. It is known that the unused portion of the spectrum can be exploited by the 

deployment of cognitive radios [3, 4]. A Dynamic Spectrum Management (DSM) 

for the implementation of cognitive radio based network was proposed in [5]. DSM 

allows the new user to access spectrum which has already been allocated to another 

user. The definition of cognitive radio (CR) is given in [6]. The cognitive radio 

technology is a way forward in meeting the challenges of the spectrum scarcity and 

also provides spectral efficient solutions. CR is an intelligent wireless system that is 

aware of its surrounding environment and uses the methodology to sense the 

availability of the free spectrum at a given time and location. CR adapts the 

statistical variations in the incoming radio signals of assigned spectrum and has the 

ability to change in certain operating parameters (e.g. transmit-power, carrier 

frequency, and modulation strategy, etc.) in real-time.  In [5], the process of 

spectrum sensing is described. The relation of spectrum sensing to this PhD 

research is further explained in Chapter 5 where we propose spectrum sensing 

algorithms. 

 

Figure 2-1-1: Mobile Subscriber Growth across Continents [2] 

Appendix 2.1 details further the spectrum management proceedure in India for 

commercial mobile applications [7, 8], the broad principles of the radio spectrum 

management, the role of ITU in the earmarking of spectrum for various radio 

services specifically for IMT applications [9], the radio spectrum bands and the 

roadmap for identification of various frequency bands for IMT applications [10].     
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2.2. SPECTRUM OCCUPANCY MEASUREMENT IN 470-698 MHZ 

It may be noted that as per the Table of Frequency Allocations of Radio 

Regulations (RR) Articles, each frequency band is shared among different services. 

In the event of earmarking of a radio service/application in that frequency band, 

detailed sharing and the co-existence studies are required to be undertaken. The 

broad principles behind such studies are described in Appendix 2.2 [11, 12]. This 

Appendix also highlights co-existence and sharing studies between the existing 

broadcasting service and proposed IMT applications in the 470-698 MHz frequency 

band [13, 14, 15, 16]. Further, with a view to understanding the vacancy and 

occupancy in the frequency band 470-698 MHz, and the behaviour of the radio 

signals of any existing service (s) in this frequency band, an extensive measurement 

campaign was undertaken in the dense business areas in the heart of the City of 

Delhi, India. This place is popularly known as Connaught Place (CP), which is one 

of the largest financial, commercial and business centers of Delhi and houses the 

headquarters of several Indian firms surrounded by large establishments of central 

government offices. This site was intentionally selected as it encompasses a high 

level of wireless activity. Another location ‘Dwarka’, a very large area of 

residential colonies, which is about 25 Km from ‘CP’ was also selected for 

measurements of radio signals. These locations are further described in section 

2.3.3. This study was aimed to broadly determine the following: 

(i) The level of  utilization of this frequency band;  

(ii) The purpose for which this band is mostly used (i.e. mobile, fixed, 

broadcasting, etc.); 

(iii) The duration and time of the band utilization;  

(iv) The number and latitude-longitude of the transmitting locations; and 

(v) The background noise level. 

From the above-mentioned vacancy and occupancy studies, the band can be 

potentially identified for the introduction of any new services/applications including 

IMT. As shown in Table 2-3 [in Appendix 2.2], the frequency band 470-698 MHz 

is shared amongst ‘BC’, ‘Fixed (FX)’ and ‘Mobile (MO)’ services. During the 

measurements, the spectrum analyzer was tuned to receive radio signals in the 

frequency band 470-698 MHz. The measuring setup, the procedure of 

measurements and other details are described in Appendix-1. A frequency v/s 

received power level (in dBµV) spectrum data was recorded. The measured average 

and peak power levels for both the ‘CP’ and ‘Dwarka’ locations are shown in 

figures 2-2-1 and 2-2-3, respectively.  

Analysis of the Frequency Band 470-698 MHz- It may be observed from figures 2-

2-1 and 2-2-2, that, for both, CP and Dwarka locations the whole band of 470-698 

MHz is fully occupied with power levels of a maximum of 25 dB µV with an 

average power level of about 10 dBµV. These transmissions appear to be of low-
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powered terrestrial links. Because the maximum power throughout is significant, 

therefore, for low powered multiple Internet of Things (IoT) devices, there would 

be higher chances of interference/collision. There is an exception of the presence of 

a very strong signal in the range 508.1 to 518.19 MHz. The maximum power level 

in the CP area was close to 130 dBµV and the average level of the order of 110 

dBµV, In the Dwarka are, the power levels were found to be reduced by about 70% 

as compared to the CP area. The maximum and average levels are almost 

comparable, which demonstrates full – time presence of a high powered transmitter, 

closer to the CP area. This is of a Television (TV) station, as in India 470-698 MHz 

is also allocated to broadcasting services. It amounts to the fact that the frequency 

band is almost fully occupied with low powered terrestrial links and a high-powered 

TV link, and therefore, there appears to be less or no vacancy in this spectrum band.  

In the case of future planning for establishing IMT networks in this band, two 

scenarios appear: either shifting of the existing services/operations to another 

suitable frequency band (s); or shrinking the existing ones and making room for the 

introduction of IMT applications. In the first option, for shifting of the existing 

operations, there might be a huge cost involved in the relocation processes and this 

would also be time-consuming. However, in the second scenario, detailed co-

existence studies are required for the calculation of the ‘GB’ and the ‘geographical 

separation’ between two services/applications. It may be further added that the co-

existence of the existing services may require the advance system to cope up with 

unprecedented interference/collision for IMT devices. A detailed study would be 

required for enabling sharing of TV and the proposed IMT operations.   

Occupancy statistics in CP in 470-698 MHz: Out of the frequency range 470-698 

MHz, the range of signal level values between 510- 518MHz were fairly occupied 

with occupancy above 30% (maximum 44.6%). Other frequencies were occupied 

less than 15% (minimum 2.6 %).  

A theoretical formulation of spectrum channel occupancy is given in chapter 1 of 

this thesis and is described in equations 1.1 and 1.2. 

Occupancy statistics in Dwarka in 470-698 MHz: Dwarka is very dense in all 

frequency ranges; frequencies in 510-518MHz being most occupied with values 

above 33% (maximum 47.8%). Other frequencies were also fairly occupied above 

26% (minimum 8.7%). 
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Figure 2-2-1: Radio Signal Level Measurements in C.P. (Delhi) for 470-698 MHz Band 

  

 

Figure 2-2-2: Radio Signal Level Measurements in Dwarka (Delhi) for 470-698 MHz Band 
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2.3. RADIO SPECTRUM MEASUREMENTS IN THE FREQUENCY 
BANDS OF 800, 900, AND 1800 MHZ AT DIFFERENT 

INDIAN CITIES/LOCATIONS      

The frequency bands namely 800 (2G CDMA), 900 (2G GSM), and 1800 (2G 

GSM) have been used for providing worldwide commercial mobile applications 

since the late 1980’s. Afterwards, the whole world has witnessed tremendous 

growth of subscribers, thereby putting a lot of stress on the spectrum requirements 

for IMT applications. Subscribers of mobile telecom services in India have 

witnessed unprecedented growth during the last decade with an average monthly of 

1 to 1.5% particularly since 2004. The demand for spectrum has been increasing 

over the past several decades due to the increase in subscribers and traffic. One of 

the missions of the spectrum management is the efficient utilization of spectrum as 

the growth of telecom is to be sustained and enhanced in terms of teledensity. For 

that matter, there is now a need for a periodical assessment of the current utilization 

of the assigned spectrum.  

The capacity enhancement techniques, which are available and may be used in the 

network, need to be examined before enabling the efficient and effective use of 

spectrum. The demands for spectrum and simultaneous dynamic random movement 

of the subscribers puts a huge demand on data and voice, and have opened another 

dimension of complex technological challenges in terms of capacity and coverage 

needs. The frequency bands for commercial mobile applications have been assigned 

for the whole of the service area on a 24-hours basis, and theoretically, these should 

be fully utilized. A revealing analysis of the Federal Communications Commission 

(FCC) [17] has shown that significant portion of the time, the assigned spectrum for 

various wireless applications is not in use and stays vacant, which has prompted to 

study in detail about the occupancy of the spectrum bands. The reported results of 

FCC demonstrate sporadic and geographical variations in the utilization of 

spectrum ranging from 15% to 85%. Our research studies in different frequency 

bands do reveal similar results, which are presented in the following sub-sections.  

The ‘white spaces’ thus created ‘temporally’ and ‘geographically’ can be put to use 

for providing public utility services. There are several studies reported in literature 

about the spectrum occupancy for different regions and in various frequency bands 

[18-23]. Such experimental results reveal that  the spectrum is not fully utilized, and 

the usages vary with time, location etc. ‘Time’ means, it is peak hour or less busy 

hour of utilization, while ‘location’ means whether the utilization is in an extremely 

dense or lowly dense areas; or semi-urban areas; or rural areas etc. In the following 

paragraph, we review the published work in relation to spectrum occupancy.   

[18] explored the possibilities of deploying the cognitive radio technology, through 

spectrum measurement campaigns in the city of San Luis Potosi (Mexico). and 

showed the underutilisation the 30-910 MHz frequency band. [18] further reported  
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that in the VHF band, there was a very low activity zone and the majority of the 

time the power level spectrum was  below −70 dBm. [19] presented  the spectrum 

occupancy measurements for  the 2.3-2.4 GHz band in Turku (Finland) and 

Chicago (USA). This band, as per European standards is earmarked for IMT 

applications. However, in India, 40 MHz out of this band have  been assigned for 

Broadband Wireless Access (BWA) including IMT applications. The spectrum 

occupancy measurements  in Finland and Chicago demonstrated that the usage was  

rather low and in a certain portion of the band, no signals had been noticed. [20] 

reported the occupancy measurements  for Barcelona (Spain), and Poznan (Poland) 

in the 400 MHz frequency band. The results revealed that there was a significant 

amount of the unused spectrum, and the average occupancy was  27% and 22 % in 

Poznan and in Barcelona respectively. The spectrum utilization data in the 900 

MHz, (GSM-based cellular system) was collected in South Africa and was reported 

in [21]. The measurements were carried out on two locations at Site I (University of 

Pretoria) and Site II (Johannesburg).  The results revealed that at Site I, the 

utilization of the band was  92%, whereas at Site II, it was  about 60%.  It was 

found that there was  appreciably less activity at 04:00 hrs compared to 16:00 hrs. 

The analysis, of the spectrum occupancy in the frequency bands from 56 MHz to 6 

GHz,  was  reported in [22]. The results of occupancy statistics in Bogota, the 

capital city of Colombia, demonstrated that utilization was very even in this 

metropolitan city. The TV bands namely 54-88 MHz, 174-216 MHz, and 512-806 

were occupied about 12% time. However, GSM 900 was found to be active for 

about 80%. The paper reported that the frequency band was almost totally un-

utilized throughout the period of observations. In [23], the authors reported 48 

hours of spectrum occupancy measurements at seven locations in Europe. The 

measurements were undertaken in the frequency 110-3000 MHz but primarily 

focusing on the GSM 900 and GSM 1800 bands. The GSM bands are normally 

quite busy and understanding the traffic pattern including utilization would be 

revealing. This paper also discussed the occupancy situation in the ISM band. The 

locations of the measurement campaign were Aachen, Maastricht, Hannover, 

Leuven, Krefeld, Skopje, and Constance. The GSM bands were found less active 

during the night hours while the ISM band in outdoors was  reported vacant for 

most of the time in the oudoor scenario. In Skopje, the occupancy of less than 20% 

in the 20 MHz bandwidth of the ISM band was found. In a nutshell, the results of 

the spectrum occupancy campaign carried out by these researchers reveal that in the 

commercial frequency bands, broadly the GSM bands, are occupied slightly more 

than 80 % of the time during the activity, while other frequency bands are occupied 

even less 20% time.    

2.3.1. CLASSIFICATION OF SERVICE AREA ON THE BASIS OF 
MOBILE TRAFFIC HANDLING CAPACITY   

The mobility of subscribers in a given service area create an accumulation, 

precisely during the daytime at one place and a vacuum at another place. However, 
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the total number remains the same. Though this situation may be different in the 

case of any high peak event (could for a shorter duration) namely carnival, sports 

event, man-made/natural disaster, where subscribers from another service area (s) 

do participate. Such an occurrence would lead to an imbalance distribution of the 

subscribers. The traffic pattern is not uniform in a city or service area, therefore, the 

coverage area needs to be classified into various types of regions on the basis of 

traffic. For the calculation of the maximum traffic density handling capability and 

subscriber base for a given spectrum, the area may be divided into sub-areas on the 

basis of traffic density i.e. Erlang/ Sq. Km. The service area may be classified 

broadly say into five regions i.e. Dense Urban (DU), Urban (U), Semi-Urban (SU), 

Rural (R) and Un-Inhabited Area (UIA). The details of these classifications are 

enumerated in Appendix 2.3. 

With this classification of the locations of the wireless networks, it was decided to 

undertake spectrum occupancy measurements at various locations in India 

including New Delhi (Capital of India and an extremely dense area) and Bombay 

(business capital of India and extremely thickly populated). The other cities of India 

selected for measurements were Ahmadabad, Bhopal, and Goa. These cities can be 

classified as dense urban/urban/semi-urban areas for the purpose of measurements.  

Various regions in India have different flavours like climate, terrain, population 

density and man-made structures. Another objective of the measurement was to 

obtain information about the utilized spectrum in the target regions that will be 

helpful in the signal analysis while optimizing the network. The target location(s) in 

a city/service area are scanned for many days for the entire spectrum bandwidth 

(both Uplink and Down Link) in the frequency bands of 800, 900, and 1800 MHz. 

Based on the measurements, sufficient information was  extracted to pinpoint the 

area where an SCIDAS test bed can be deployed for the proof of concept and also 

to effectively utilize the vacant portion of operation of a ‘secondary device (may be 

cognitive radio)’ at any given time of the concerned frequency band in the area of 

operation. These vacant spaces, in various existing IMT bands, popularly known as 

‘white space (WS)’ can be used for introducing newer wireless applications. 

2.3.2. SPECTRUM MEASUREMENT CAMPAIGN 

The status of allocations of different frequency bands in 800 MHz, 900 MHz and 

1800 MHz assigned on a pan-India basis for the commercial mobile applications is 

given in Table -2.1 of Appendix 2.1. 

In order to find out how the assigned spectrum for commercial mobile applications 

is utilized, the spectrum usage pattern was studied over a 24-hour period. This 

assessment was necessary from the point of view of the future deployment of 

wireless devices. A series of measurements were undertaken separately at a specific 

location in all the five cities mentioned above. For the purpose of measurements, 
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the V/UHF Mobile Monitoring System (V/UMMS) capable of monitoring of radio 

signal from 30-300 MHz, details of which are described in Appendix-1, was 

utilized. The measurements were taken in both the downlink (DL) and uplink (UL) 

of the commercial mobile systems operating in the 800 (2G CDMA), 900 (2G 

GSM), and 1800 (2G GSM) MHz frequency bands. Both the DL and UL frequency 

bands were scanned for the entire period of day/night long measurements. The radio 

signal measurements for all the frequency bands were recorded for both the average 

power level and the maximum power level during the entire period of observations. 

To evaluate, the spectrum utilization and possible deviations, the measurements 

were done as follows: 

(i) A single campaign consisted of five sets of measurements conducted 

subsequently at 2 pm, 5 pm, 8 pm, 11 pm and 2 am on the same day. This 

was done to avoid the impact in measurements due to changes in weather 

and other morphological variations;  

(ii) For each city, an exclusively commercial and an exclusively residential 

area were selected for the measurements for placing the measuring Mobile 

Vehicle (V/UMMS) at a given location. This was done to clearly 

understand the pattern of spectrum utilization in both commercial and 

residential areas; 

(iii) The times of measurements were chosen in such a way that these included 

most of the phases of the subscriber behaviour. 2pm was chosen as it is 

expected that subscribers are traversing the commercial vicinity. Around 5 

pm, subscribers are using transport vehicles to leave the commercial place 

to their other destination. This activity majorly takes place from 5 to 8 pm, 

and hence, the 8 pm measurement was performed. Around 11 pm, it is 

expected that most of the subscribers have reached their destinations, and 

around 2 am, most of the subscribers’ activities are on rest, leading to 

reduced spectrum utilization;      

(iv) For every set of measurements, the maximum and average values were 

measured starting from 30 MHz to 3000 MHz in step size of 1 MHz. Out 

of this entire bandwidth (2970 MHz), a small portion from 800-1800 MHz 

was studied in detail; and,   

(v) The observations drawn from these measurements have been utilized for 

further research work reported in this thesis.   

2.3.3. DESCRIPTION OF CITIES/LOCATION AND DETAILS ABOUT 
MEASUREMENTS AND THE ANALYSIS 

In this section, we present the measurements only for the cities of Delhi and 

Mumbai.    
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Details about cities [Source: www.google.com] in terms of population density (as 

of 2011 census), coordinates, and terrain conditions are given below. The 

measurements were carried out using the V/UHF Mobile Monitoring System 

(V/UMMS), which is capable of monitoring the radio signal from 30-300 MHz.       

A. City of Delhi (including the National Capital Region-NCR) 

The National Capital Region in India is the designation for the conurbation or 

metropolitan area which encompasses the entire National Capital Territory of Delhi, 

which includes New Delhi, as well as urban areas surrounding it in neighbouring 

states.  

 Population/Area: 47,000,000/1,483 sq. km 

 Co-ordinates: 28𝑜66′67" 𝑁, 77𝑜21′67"𝐸   
 Terrain: Flat, Bounded by the Indo-Gangetic alluvial plains in the North 

and East, by the Thar Desert in the West and by Aravalli. Hill ranges in the 

South.  

 Climate: Humid subtropical climate (Köppen Cwa) comprising a medium 

vegetation.  Weather varies with the different climatic conditions that are 

faced by this city.  

 Status and Man-made Structures: A very high dense population and a 

humid subtropical. High Dense Urban Very High to low rise Structures 

comprising of multiple scenarios. 

Measurements in Connaught Place Area 

Connaught Place (see, figure 2-3-1) is one of the largest financial, commercial and 

business centers in New Delhi, India. It is often abbreviated as CP (2838'0" N, 

7713' 0" E) and houses the headquarters of several Indian/Multi-National firms 

surrounded by large establishments of central government offices. For undertaking 

measurements, Mobile Monitoring System (MMS) was parked in the center of CP 

i.e. near Plaza Cinema Hall.  

 

Figure 2-3-1: Connaught Place (Delhi, India) 
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800 MHz Band 

 

Figure 2-3-2: Average Power Level Measurements in CP (Delhi) for CDMA 800MHz Band 

 

 

 

Figure 2-3-3: Maximum Power Level Measurements in CP (Delhi) for CDMA 800MHz Band 
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Radio Signal Level Measurements in Connaught Place (Delhi) for CDMA 800 MHz Band

 

 

Measurement Starting at 14:00 Hours 

Measurement Starting at 17:00 Hours 

Measurement Starting at 20:00 Hours 

Measurement Starting at 23:00 Hours 

Measurement Starting at 02:00 Hours 

820 830 840 850 860 870 880 890
0

20

40

60

80

100

120

140

Frequency(MHz)

M
a

x
im

u
m

 P
o

w
e

r 
L

e
v
e

l(
d

B
µ

V
)

Radio Signal Level Measurements in Connaught Place (Delhi) for CDMA 800 MHz Band

 

 

Maximum Power Level During Entire Period of Observation



CHAPTER: ANALYSIS OF RADIO SPECTRUM MANAGEMENT CRISIS, AND OCCUPANCY MEASUREMENTS 
__________________________________________________________________________________________________ 

55 

 

900 MHz Band 

 

Figure 2-3-4: Average Power Level Measurements in CP (Delhi) for GSM 900MHz Band 

 

 

 

Figure 2-3-5: Maximum Power Level Measurements in CP (Delhi) for GSM 900MHz Band 

890 900 910 920 930 940 950 960
0

20

40

60

80

100

120

Frequency(MHz)

A
v
e

ra
g

e
 P

o
w

e
r 

L
e

v
e

l(
d

B
µ

V
)

Radio Signal Level Measurements in Connaught Place (Delhi) for GSM 900 MHz Band
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1800 MHz Band 

 

Figure 2-3-6: Average Power Level Measurements in CP (Delhi) for GSM 1800MHz Band 

 

 

 

Figure 2-3-7: Maximum Power Level Measurements in CP (Delhi) for GSM 1800MHz Band 
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Analysis of Spectrum Figures 2-3-2 to 2-3-7 

The analysis of these figures for the selected frequency bands (800, 900 and 1800 

MHz) of CP, reveals that the average utilization of signals is strongly correlated 

with the subscriber behaviour (predominantly mobility). It can be seen that the 

growth and fall of the average signal power are followed by services of all the 

bands as a common trend. It can be seen from figures 2-3-2, 2-3-4, and, 2-3-6 that 2 

pm has lower average utilization than 5 pm. This is due to the fact that 5 pm is the 

start of closing times of workplaces in CP and people (the potential subscribers) 

start using these services for negotiating and fulfilling their personal commitments. 

Also, people do use applications based on these services, while transiting in their 

vehicles for their respective destinations. This generates a huge magnitude of 

temporal traffic between 5-8 pm, which has been shown in 8 pm measurements. By 

11 pm, most of the day-shift activities are closed and is very much reflected in 11 

pm curves. Further, around 2 am, only night-shift workplaces are active, and service 

utilization is lowest in the entire day. Figures 2-3-3, 2-3-5, and 2-3-7 show that 

despite various trends in average occupancies, the maximum signal level is 

significant in all carriers.  

Plots of Dwarka Location 

Dwarka (figure 2-3-8) is an affluent neighborhood; located about 11 Km from 

Indira Gandhi International Airport and about 25 Km from CP. Dwarka is a huge 

residential area with 23 sectors and counting with each sector consisting 50-100 ten 

to fifteen storied residential buildings with the commercial market at the center of 

each sector. It is an up-market and one of the most sought-after residential 

areas/sub-cities and is Asia's largest housing colony. 

 

Figure 2-3-8: Dwarka, 28𝑜59′21" 𝑁, 77𝑜04′60" 𝐸 

For carrying out detailed measurements, the V/UMMS was placed near sector-10 of 

Dwarka, which is the most active sector among all of them. 
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800 MHz Band 

 

Figure 2-3-9: Average Power Level Measurements in Dwarka (Delhi) for CDMA 800MHz 
Band 

 

 

Figure 2-3-10: Maximum Power Level Measurements in Dwarka (Delhi) for CDMA 800MHz 
Band 

820 830 840 850 860 870 880 890
-10

0

10

20

30

40

50

60

70

80

90

Frequency (MHz) 

A
v
e
ra

g
e
 P

o
w

e
r 

L
e
v
e
l 
(d

B
µ

V
)

Radio Signal Level Measurements in Dwarka (Delhi) for CDMA 800 MHz Band
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900 MHz Band 

 

Figure 2-3-11: Average Power Level Measurements in Dwarka (Delhi) for GSM 900MHz 
Band 

 

 

Figure 2-3-12: Maximum Power Level Measurements in Dwarka (Delhi) for GSM 900MHz 
Band 
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1800 MHz Band 

 

Figure 2-3-13: Average Power Level Measurements in Dwarka (Delhi) for GSM 1800MHz 
Band 

 

 

Figure 2-3-14: Maximum Power Level Measurements in Dwarka (Delhi) for GSM 1800MHz 
Band 
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Analysis of Spectrum Figures 2-3-9 to 2-3-14 

While analyzing the results for the selected frequency bands (800, 900 and 1800 

MHz), the following observations were made: 

(i) Figures 2-3-9 (800 MHz), 2-3-11 (900 MHz), and 2-3-13 (1800 MHz) 

show that 2 pm is the second least utilized hour. This is a bit obvious due 

to the fact that most of the people are away from their residences for their 

daily works and other outdoor commitments; 

(ii) 8 pm is the busiest hour among all of them. Most of the people, who have 

left their workplaces during 5-8 pm are gradually arriving their home. 

Also, most people prefer going for shopping during this period. Hence, this 

duration sees the mixture of traffic generated from entering subscribers 

and subscribers visiting markets. Therefore, 8 pm sees a lot of traffic 

generated from these activities; 

(iii) The period of 5 pm sees the transition from least activity to the most 

activity in a single area and while measuring at the same point. The values 

of the 5 pm measurements coincide with the situation; 

(iv) Figures 2-3-9 (800 MHz), 2-3-11 (900 MHz), and 2-3-13 (1800 MHz) also 

show that 11 pm has a very significant utilization pattern as compared to 

that of 8 pm. This is a bit surprising as subscribers are expected to cut 

down their activities as night progresses. However, it is not so surprising if 

the tariff plans of service providers are thoroughly investigated. Most of 

the service providers offer lower charges between 11 pm to 5 am, which 

they call as night plans. It may be seen that subscribers are using this 

facility to the fullest around 11 pm before closing for the day;  

(v) The 2 am period sees a significant drop in the power level of radio signals 

in all the frequency bands except for CDMA 800 MHz band. This is due to 

the fact that in CDMA technology the data rate increases when active 

subscribers are low. The CDMA subscribers use this opportunity for 

internet activities such scheduled downloads, blogging etc; and, 

(vi) Figures 2-3-10 (800 MHz), 2-3-12 (900 MHz), and 2-3-14 support the 

above observation by showing a significant maximum levels in the 

frequency bands of respective carriers. 

Comparing the results for the measurement sites of CP and Dwarka together, it can 

be seen that during the hours when workplaces have higher average utilization, the 

residential places have a lower average utilization and vice-versa. Therefore, it can 

be interpreted that there is a shift of quanta of capacity between these two locations 

at different times. Despite that the quantum of capacity has left the location, the 

carrier configurations of the base stations remain unchanged. As a base station may 

allocate a channel to the subscriber among the available configured carriers, 

therefore, the average utilization of the entire set of carriers drops in cooling time 

(when the capacity quanta have left the location). This is an example of wastage of 
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carriers when viewed from a broader perspective and combinatorial analysis of two 

areas. The comparison also shows that how two distinct areas of two distinct 

behaviours may influence each other in carrier utilization. The service providers 

plan sites of the configuration that would be needed to cater the local subscribers; 

however, this combinatorial analysis proves that a big chunk of capacity is not there 

during a considerable length of time even though the base stations have been 

configured for them. This is the effect of ‘Place-Time-Capacity (PTC)’ [24] that 

will be detailed in Chapter 3, section 3.6 of this thesis. As a conclusion, that is 

drawn from this analysis: 

(i) The service providers plan their base stations according to the maximum 

traffic generated in an area. However, the average utilization may be 

significantly poor in these areas; and 

(ii) It is possible that multiple base stations that are placed at various locations 

may be serving the same set of subscribers at different times. Therefore, a 

number of base stations may depend on the subscribers’ mobility as 

discussed in ‘Place-Time-Capacity (PTC)’ in chapter 3 of this thesis.   

The above analysis is an example when people (subscribers) move from one place 

to another at different times. The next analysis will elaborate a case when there is a 

net influx of huge subscribers. 

B. City of Mumbai 

The city of Mumbai is the commercial capital of India (see, figure 2-3-15). 

 

Figure 2-3-15: City of Mumbai 

 Population/Area: 12,479,608/603.4 sq. km 

 Co-ordinates: 19o04′22" N, 72o52′57" E 

 Terrain: Mumbai lies at the mouth of the Ulhas River on the western coast. 

Mumbai is bounded by the Arabian Sea to the west. Many parts of the city 
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lie just above sea level, with elevations ranging from 10 m to 15 m, and the 

city has an average elevation of 14 m. 

 Climate: Tropical climate, specifically a tropical wet and dry climate (AW) 

under the Köppen climate classification.  

 Demography:  Very high dense population and high humidity.  

 Morphology: Mostly high-rise buildings, it is the city with the 12th highest 

number of skyscrapers in the world.  

Motivation for conducting measurements: It is well known that a very famous 

carnival Lord Ganesh Visarjan (Visarjan means immersion) during September-

October month of every year takes place in Mumbai (including other parts of the 

State of Maharashtra, India). On this festive occasion, millions of people all over 

participate in the procession; go for immersion of Lord Ganesh Idol into the sea 

(see, figure 2-3-16). 

 

Figure 2-3-16: Crowd Gathering During Ganesh Immersion Festival 

This huge gathering, accumulation and congestion of mobile subscribers, throw a 

challenge to the service providers for ensuring cellular services ubiquitously. A 

location known as ‘Royal Opera House’, Charni Road (1895’42” N, 7281’15”E) 

close to the immersion place was selected for taking measurements. The 

measurements were taken by recording average and maximum power levels for 

both the DL and UL frequency bands, under the conditions of pre and post 

procession periods.   

It is important to note here that, in anticipation of huge subscriber influx, the service 

providers have installed many temporary base stations, which are known as “Cell 

on Wheels” (CoW) sites for the religious procession. A CoW site consists of a 

vehicle that has enough flat space to accommodate a base station, wireless backhaul 

unit, a mount for placing antennas (both serving and backhaul antennas), and, 

battery pack for powering the base station and backhaul units.  The CoW site is 

placed where there is a temporary requirement of coverage or capacity and 

backhauled to the nearest point of interconnecting through a microwave antenna. As 

the spectrum availability is very thin in Indian Cities, the addition of CoW sites 



SECTION: RADIO SPECTRUM MEASUREMENTS IN THE FREQUENCY BANDS OF 800, 900, AND 1800 MHZ AT 
DIFFERENT INDIAN CITIES/LOCATIONS 

__________________________________________________________________________________________________ 

64 

disrupts the frequency plan and increases Signal to Noise plus Interference Ratio 

(SINR). However, to accommodate the booming subscribers this tradeoff is 

accepted by many service providers.  

800 MHz Band (DL) 

 

Figure 2-3-17: Average Power Level Measurements in Mumbai for CDMA 800MHz Band 
(Downlink) 

 

Figure 2-3-18: Maximum Power Level Measurements in Mumbai for CDMA 800MHz Band 
(Downlink) 
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In figures 2-3-17 and 2-3-18, the measurements of the average and maximum signal 

respectively are shown for the DL sub-band of the 800 MHz band for both pre and 

during the procession. The analysis of these figures is as follows: 

(i) It may be observed that some portion of the entire downlink spectrum 

remains indifferent from the situations and remain insignificant during the 

measurements. The base stations were static during the entire course of 

measurement (including the CoW sites). Therefore, the carriers that were 

observed belonged to the service providers that have their base stations in 

the Area in Question (AiQ). It was found that this particular area has 

predominantly been served by a single service provider and it had a 

monopoly in this area and have many base station to cover this area. 

Hence, the sub-band that is allocated to this service provider shows the 

significant variations in the measurements whereas others remain quiet. 

 

(ii) Figure 2-3-17 shows that the average of the duration for which a base 

station would radiate carrier power is higher during the time of passing of 

the procession than before the procession taking place. As a huge number 

of subscribers accumulate in the common vicinity, as shown in figure 2-3-

16, the probability of a channel getting accessed is higher than any other 

normal time. This results in a higher utilization of the channel thereby 

increasing the average level of the signal which is clearly depicted in 

figure 2-3-17.  

 

(iii) During the procession, the number of subscriber per unit area increase is 

hundreds-fold wise.  Therefore, the higher the subscriber count, the higher 

is the chance of accessing a channel. This leads to poor SINR, and the base 

stations may have to transmit at higher power. These increased radiated 

powers were captured by the measurement apparatus that was installed in 

the V/UMMS and is presented in figure 2-3-18. 

Occupancy statistics in Mumbai in 800 MHz (DL): CDMA service in India uses a 

broader channel bandwidth than GSM 900 and 1800; the occupancy values are 

closely associated with each other. Before the procession, the average utilization of 

the downlink spectrum (869-889 MHz) is 77.2 %, whereas during the procession it 

is 98.8 %, highest being 100% (see, the discussion on spectrum occupancy in 

chapter 1, referring formulations in the equations 1.1 and 1.2). 

The normal occupancy in the measurement of 77.2% shows that the area in mostly 

busy and amply utilized by the users. It is to be mentioned here that CDMA 

subscribers are lesser than that of GSM in India and mostly are used for data 

services. 
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800 MHz Band (UL) 

 

Figure 2-3-19: Average Power Level Measurements in Mumbai for CDMA 800MHz Band 
(Uplink) 

 

 

Figure 2-3-20: Maximum Power Level Measurements in Mumbai for CDMA 800MHz Band 
(Uplink) 
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In figures 2-3-19 and 2-3-20, the measurements of average and maximum signal 

respectively are shown for the UL portion of the 800 MHz band for both the pre and 

during the procession time. It can be seen that both maximum and average levels 

show a significant jump from “before” to “during” measurements. The analysis of 

figures 2-3-19 and 2-3-20 is as follows:  

(i) The V/UMMS is stationary and observes the signal levels in its vicinity. 

Therefore, the subscribers who are moving closer to MMS may be 

subjected to ‘multipath’ and ‘shadowing’ fadings and thus, would generate 

higher maximum amplitudes of the particular carrier. Hence, the maximum 

amplitudes will be recorded higher for more subscribers. From figure 2-3-

16, it can be deduced that during the procession, the probability of finding 

an active subscriber (subscriber making a call) of a carrier is higher than 

any other normal time. Also, as the density of active subscribers increases, 

the SINR in that area decreases, which may force a mobile handset to 

perform at higher power. These effects are very much visible in the figure 

2-3-20,  which shows why the maximum signal levels of “during” 

measurement are higher than that of “before” measurements.  

(ii) Similarly, in a situation comparable to what is shown in figure 2-3-16, the 

probability of a UL channel to be used for a longer time is higher than any 

other normal situation. This is very much visible in figure 2-3-19, where 

the average utilization increases from “before” to “during” measurements. 

Occupancy statistics in CP in 800 MHz (UL): The uplink CDMA band (824 - 844 

MHz) is 72.6 % average utilized (see, discussion on spectrum occupancy in chapter 

1 referring formulations in equations 1.1 and 1.2) before the procession, highest 

being 81.1%. The occupancy during the period when a procession is taking place is 

measured to be 92.4%, the highest being 98.2%. This is not surprising as the 

accumulation instances lead to multiple call initiation for both data access and, 

data and voice calls. 

The explanations and analysis of figures 2-3-21 and 2-3-22 hold the same 

justifications as mentioned for the 800 MHz band except for few variations as 

discussed below: 

(i) Comparing figures 2-3-18 and 2-3-22, it can be seen that the maximum 

power of GSM base stations is higher than that of the CDMA base 

stations. This is because the GSM channels are narrow band channels and, 

therefore, have to operate at a higher level to overcome the noise. 

(ii)  CDMA is a wide band channel service, and can operate at lower power to 

sustain against the noise. Unlike that of CDMA, all GSM bands operate in 

AiQ, as seen by comparing figures 2-3-17, and 2-3-18 with 2-3-21 and 2-

3-22.  When the area was investigated, it was observed that the GSM 

service providers have installed more CoW sites than that of CDMA 
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service providers. This can be linked to the fact that the GSM subscribers 

are significantly higher than the CDMA ones. Also, because the CDMA 

technology can operate at lower power to sustain against noise than that of 

GSM; this has brought down the need for CoW sites for the CDMA 

service providers. The accumulation of all GSM carriers in the same area 

through CoW sites (and overloading base stations) may have affected the 

frequency reuse plan and reduced the SINR. 

900 MHz Band (DL) 

 

Figure 2-3-21: Average Power Level Measurements in Mumbai for GSM 900MHz Band 
(Downlink) 

 

Figure 2-3-22: Maximum Power Level Measurements in Mumbai for GSM 900MHz Band 
(Downlink) 
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Similarly, figures 2-3-23 to 2-3-28 can be explained with the above-mentioned 

reasoning. 

900 MHz Band (UL) 

 

Figure 2-3-23: Average Power Level Measurements in Mumbai for GSM 900MHz Band 
(Uplink) 

 

Figure 2-3-24: Maximum Power Level Measurements in Mumbai for GSM 900MHz Band 
(Uplink) 
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1800 MHz Band (DL) 

 

Figure 2-3-25: Average Power Level Measurements in Mumbai for GSM 1800MHz Band 
(Downlink) 

 

 

Figure 2-3-26: Maximum Power Level Measurements in Mumbai for GSM 1800MHz Band 
(Downlink) 
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1800 MHz Band (UL) 

 

Figure 2-3-27: Average Power Level Measurements in Mumbai for GSM 1800MHz Band 
(Uplink) 

 

Figure 2-3-28: Maximum Power Level Measurements in Mumbai for GSM 1800MHz Band 
(Uplink) 
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band is higher than that of CDMA. The average utilization of the GSM 900 

downlink band is measured to 89.7% and, highest being 96.6% before the 

procession and 100% during the procession. However, during the procession, the 

GSM 900 experienced higher call drops than that of CDMA. A detailed discussion 

of call success rates is also presented in chapter 6 of this thesis (in reference to 

figures 2-3-21 and 2-3-22).  

Occupancy statistics in Mumbai in 900 MHz (UL): The channel occupancy for 

GSM 900 uplink (890-915) was observed as 92.2% before the procession, highest 

being 98.2% being the highest and 100% during the procession (in reference to 

figures 2-3-23 and 2-3-24). 

Occupancy statistics in Mumbai in 1800 MHz (DL): Service providers in 1800 MHz 

face problems due to higher propagation loss and higher absorbtion. The number 

of sites per area is higher than GSM 900 whereas the carrier bandwidth still being 

200 KHz. The spectrum utilization is sharper than GSM 900 and average utilization 

is 86.2 %, highest being 97.8% before procession and 100% during procession (in 

reference to figures 2-3-25 and 2-3-26).   

Occupancy statistics in CP in 1800 MHz (UL): The average UL utilization for GSM 

1800 uplink is observed as 88.3%, highest being 92.7% before procession and 

100% during the procession (in reference to figures 2-3-27 and 2-3-28). 

Apart from the previous explanations that have been applied to figures 2-3-25 to 2-

28, it can also be seen that the deviation from “before” to “during” average values is 

higher than other technologies. This is because being a narrow band and higher 

carrier frequency service, the service provider utilizing the 1800 MHz band sees the 

quicker power dissipation as compared to 800 and 900 MHz bands. Therefore, the 

number sites needed to cover an area by an 1800 MHz service provider is higher 

than that of the lower bands. However, it was found that the 1800 MHz has fairly 

lesser sites than what is required; therefore, the existing base stations have to over 

perform to compensate the loss. This can be seen in the DL figures (2-3-25 and 2-3-

26) of the 1800 MHz band. 

2.4. PATH LOSS VARIATION IN AN INCREMENTAL GATHERING 
OF PEOPLE: A STUDY IN 1400 MHZ FREQUENCY BAND. 

In section 2.2 above, the status of the frequency band 470-698 MHz, recommended 

by ITU, as one of the potential candidate frequency bands for IMT applications was 

described.  Further, section 2.3 above, full details about the status with respect to 

measurements relating to occupancy and its analysis in the frequency bands 800, 

900 and1800 MHz currently being used for commercial mobile services (IMT 

applications) was given. Summing this, a detailed study was carried out for both the 

categories of IMT bands.  
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The analysis reveals that besides the 470-698 MHz, there is another frequency band 

namely the 1400 MHz that has also among others been recommended by ITU for 

IMT applications. As per the International Table of Frequency Allocations, out of 

about 90 MHz in this frequency band, a major portion stands earmarked only for 

FIXED (FX), and MOBILE (MO) services on primary basis globally. However, 

presently there are no commercial mobile services in this frequency band; there 

might be some point-to-point terrestrial fixed (FX) wireless links. The National 

Frequency Allocation Plan-2011 of India has made a provision in this band for 

experimental/trial/pilot-study purposes for indigenously developed technologies for 

point-to-point backhaul and point-to-multipoint access systems [see, IND 53, page 

155 of Reference 15]. Since there are no commercial mobile operations, hence no 

signal from any other BTSs is expected to be transmitted, for this reason, this band 

has been chosen for clean measurements and analysis regarding variation in path-

loss of radio signals due to huge crowd gathering. The results of these analyses 

shall be useful for endorsement of further work reported in this Thesis.  

This Section gives a detailed analysis about the impact of the accumulation of 

people in an open area, on the propagation of radio wave at 1400 MHz. A 

theoretical discussion relating to propagation loss due to the random accumulation 

of people is presented in Appendix 2.4. These accumulations of crowd occur in the 

event of any carnival or other similar events like sports meet in any stadium etc. In 

the present study, an advantage of a very famous Goa Carnival that takes place 

every year normally in the month of February, in selecting a suitable site for 

measurements was taken. This Carnival is attended by thousands and thousands of 

people, and they accumulate either for recreation or procession.   

 

Figure 2-4-1: Experiment setup 

For the path-loss measurements, an open area, far away from dwellings and water 

bodies, measuring 10,000 (200 meters x 50 meters) square meters, in Goa was 

selected, where it was ensured that there are no terrestrial wireless point-to-point 

links operating in the 1400 MHz frequency band active within 1000 meter radius to 
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create any interference. This location was divided into two portions, each one 

measuring 5000 (100 meters x 50 meters) square meters demarcated as ‘X’ and ‘Y’ 

respectively. A transmitter unit (TXU) is positioned at one corner of the location 

and receiving unit (RXU) is placed at another corner, as shown in figure 2-4-1. 

It may be mentioned that the free space loss was measured, when the TXU was 

placed at ‘A’ and RXU at ‘B’, in the area of ‘X’, which are separated by a distance 

of 100 meters. Thereafter, for the purpose of all the measurements, TXU remain at 

‘A’, whereas, RXU is shifted to ‘C’. Peoples were requested to enter through a gate 

‘G’, in another portion ‘Y’. After entering the area, they were expected to scatter 

and randomly move across the Area in Question (AiQ).      

2.4.1. MEASURING SETUP AND PROCEDURES 

The measuring setup consists of a Transmitting Unit (TXU) and a Receiving Unit 

(RXU). TXU consisting of a sweep oscillator, a microwave frequency counter and a 

source synchronizer for locking the desired frequency are assembled and installed 

on the base platform. The transmitting half-wave dipole antenna is attached, which 

is at a height of 8 meters from the ground level. The transmitter is tuned to radiate a 

power of 10 watts i.e. 40 dBm. A CW signal from the oscillator is fed to the 

transmitting antenna through the directional coupler, which provides directivity of 

typical 23 dB. RXU encompassing a Spectrum Analyzer (SA) capable of receiving 

radio signals from 30-3000 MHz and a Personal Computer were installed on a fixed 

platform attached to a receiving antenna of a total height of 1 meter above the 

ground level. The maximum gain for this frequency band is 13 dBi for both 

transmitting and receiving antennas. In the first instance, the transmitter was tuned 

to radiate a signal power of 10 Watts at 1400 MHz and the measurements were 

performed in the following steps: 

(i) The measurements were taken for each sample from 1 second to 1200 

seconds in steps of 100 seconds i.e. for a total of 20 minutes. 

(ii) Initially, the free space loss was measured at both positions ‘B’ and ‘C’ 

with no people on the ground. 

(iii) Then, a group of 10 people was allowed to enter the area, scatter and 

almost randomly move within the area. The measurements were taken for 

20 minutes while they were wandering in the area. 

(iv) Similarly, the measurements were taken for a group of 50 and 100 people 

respectively, each for 20 minutes. 

(v) Thereafter, the measurements were taken for each of the group of people 

counting from 100 to 1000 in steps of 100 in the similar fashion. 

The first set of measurements, recording receive signal levels, were taken each with 

group 0 people to 1000 people count for the time of sample from 1 to 1200 seconds. 

The results are depicted in figure 2-4-2. 
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Figure 2-4-2: Deviation in the Signal Level due to Incremental Accumulation of People 

Measurement Set-1 depicts the pattern of the received signal power (figure 2-4-3) 

when the people’s gathering range from 10 to 1000, scattered in 5000 square km 

area and time of samples was 100th second in all kinds of gathering. Similarly, 

Measurement Set-2 depicts the pattern of the received signal power (figure 2-4-4)  

when the people’s gathering range from 10 to 1000, scattered in 5000 square km 

area and time of samples was 200th second in all kinds of gathering. 

Measurement Set-3 depicts the pattern of the received signal power (figure 2-4-5) 

when people’s gathering range from 10 to 1000, scattered in 5000 square km area 

and time of samples was 300th seconds in all kinds of gathering. Similarly, 

Measurement Set-4 depicts the pattern of the received signal power (figure 2-4-6) 

when people’s gathering range from 10 to 1000, scattered in 5000 square km area 

and time of samples was 400th second in all kinds of gathering.  

Measurement Sets-5 and 6 depict the pattern of the received signal power (figures 

2-4-7 and 2-4-8) when the people’s gathering range from 10 to 1000, scattered in 

5000 square km area and time of samples were 500th and 600th second in all kinds 

of gathering. 

Measurement Sets-7 and 8 depict the pattern of received signal power (figures 2-4-9 

and 2-4-10)  when the people’s gathering range from 10 to 1000, scattered in 5000 

square km area and time of samples were 700th and 800th second in all kinds of 

gathering. 
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Figure 2-4-3: Measurement Set 1, Received Signal Level v/s People's Gathering 

 

 

Figure 2-4-4: Measurement Set 2, Received Signal Level v/s People's Gathering 
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Figure 2-4-5: Measurement Set 3, Received Signal Level v/s People's Gathering 

 

 

Figure 2-4-6: Measurement Set 4, Received Signal Level v/s People's Gathering 
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Figure 2-4-7: Measurement Set 5, Received Signal Level v/s People's Gathering 

 

 

Figure 2-4-8: Measurement Set 6, Received Signal Level v/s People's Gathering 
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Figure 2-4-9: Measurement Set 7, Received Signal Level v/s People's Gathering 

 

Figure 2-4-10: Measurement Set 8, Received Signal Level v/s People's Gathering 
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Figure 2-4-11: Measurement Set 9, Received Signal Level v/s People's Gathering 

 

Figure 2-4-12: Measurement Set 10, Received Signal Level v/s People's Gathering 

A summarized picture showing the signal level variation due to the accumulation of 

10 to 1000 people in 5000 square meter area is depicted in figure 2-4-13  
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Figure 2-4-13: Received Signal Level v/s People's Gathering, a summarized picture 

The mean value of the received power level v/s the number of people per unit area 

as evaluated is shown in figure 2-4-14.  

 

Figure 2-4-14: The mean value of Received Signal Level v/s Number of People per Unit Area 
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Figure 2-4-15: Mean and Standard Deviation 

2.4.2. RESULTS AND ANALYSIS 

It can be seen from the measurement results of Set 1 to Set 10, which had been 

taken at different samples of time that the pattern of signal power remained the 

same. However, the signal power varied with an increase in the number of people 

per unit area. It has been observed that when there are no people, the received 

signal power for all the sets (1 to 10) of measurements vary between -28 to -30 

dBm.  This signal level drops by -18 to -20 dBm when people per 5000 square 

meter are 0.2 i.e. 1000 people gathered and randomly moving in the area of 5000 

square meters. However, from the measurement Sets 1 to 10, it is evident that for 

any time of sample say from 100th to 1000th, variation in signal level remains 

constant. The analysis of the measurements taken, in a fixed area that is the position 

of transmitting and receiving units remaining unchanged, reveals that the value of 

‘path-loss exponent’ varies with people’s assembly. With the increase in a number 

of people, the value of ‘path-loss exponent’ increases and drift away from the ‘free 

space path-loss exponent of value- 2’. From figure 2-4-14, it can be seen that the 

mean signal level v/s people population density, lies in the range of -28 to -48 dBm. 

The figure 2-4-15, showing the maximum distance from the mean and standard 

deviation (SD) values of received power level v/s number of people per unit area, 

demonstrates that maximum value of ‘SD’ of the mean signal value is little over 1 

dBm. Further, the maximum distance from the mean value touches a value of 

approximately 3 dBm.      
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2.5. RESEARCH QUESTIONS (RQ) ADDRESSED IN CHAPTER 2 

For the future development of IMT for 2020 and beyond, the study shall be directed 

to evolve technical and operational characteristics including protection criteria in 

various deployment scenarios for use in sharing/interference studies in the 

frequency range  24.25-86 GHz. 

RQ 1- Efficient Use of Already Assigned Radio Spectrum for IMT 

Applications  

The measurement campaign in the frequency bands 800 MHz, 900 MHz 

and 1800 MHz as presented in this Chapter revealed that the assigned 

spectrum is not fully utilized at certain locations in a service area and time.  

 What technologies and methodologies should be deployed to potentially 

tap the unutilized portion in that geographical area?    

RQ 2- Sharing Studies and Protection Criteria in the additional frequency 

bands for IMT application allocated by WRC-15 

In this chapter, it was mentioned that to implement an Agenda item 1.1 of  

WRC-12, a Joint Task Group was formed to study and recommend 

additional frequency bands for IMT applications (see, 2.1.4 of Appendix 

2.1). The recommendations were considered by WRC-15, which 

earmarked few frequency bands starting from 470 MHz to below 6 GHz. 

Through experimental studies in the frequency band 470-698 MHz, it has 

been demonstrated that how the sharing parameters impact both operations 

of IMT and Broadcasting applications.  

 What are the detailed studies required relating to sharing and protection 

criteria in other similar additional frequency bands earmarked for IMT 

applications? 

RQ 3- Challenges in providing uninterrupted mobile services in a highly 

populated traffic areas 

It was presented that random and dynamic movement of people, in highly 

demanding areas namely a carnival, huge sports events or natural/man-

made disasters, pose a severe challenge to the service providers for 

meeting their demands. In such situations, the existing network 

deployment models to cater the static mobile users fail to predict and plan 

for such eventualities. In this chapter, detailed measurements were carried 

out for a carnival-like situation in the frequency band of 1400 MHz.  

 What simulation models should be developed in several existing and 

proposed frequency bands for IMT applications that shall take care of 

random and dynamic movement of people?  
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RQ 4- Deployment of the frequency bands 24.25 GHz -86 GHz for IMT-2020 

(5 G) 

a) What are the requirements of the potential users for the further 

development of IMT?  

b) What are the spectrum-related issues including its efficient usages for the 

further development of IMT that need to be provided within the time line 

of 2020? 

c) What studies are required in the modelling and simulation of IMT 

networks for use in analysis of sharing and protection criteria?  

RQ 5- Change in the path-loss exponent with subscriber density. 

With an objective to analyse the impact of the subscriber accumulation, the 

discussions in the section 2.5 covey that the subscriber’s accumulation significantly 

impacts the propagation losses measured at receiver ends. 

a) The granularity of the subscriber also results in multiple fluctuations of the 

decaying path-loss. 

b) The area planned according to certain model is thus likely to fail in 

providing services to the benchmark level. 

c) The path-loss regressing identified due to the accumulation of people is 

provided by an approximated equation: 

 y= -76x -28 (2.5.1) 

A detailed analysis in relation to the impact of the accumulation on the Path Loss 

Model is given in Chapter 3 of this thesis.  

2.6. CONCLUSIONS 

The performed measurements and their outcome, gave the incentive to propose an 

innovative architecture that could cater for the irregularities that are generated due 

to the random accumulation of the subscribers. India was chosen as a suitable 

scenario due to its richness in both ‘kind of services’, and ‘kind of user behaviours’. 

The spectrum issues require functionalities that must incorporate all kind of 

services; hence, an overall picture of the spectrum utilization was needed and 

performed as a detailed measurement campaign. To obtain the collective sense of 

the spectrum utilization by various services in a single area, a series of 

measurements were conducted for ensuring the actual utilization of the spectrum 

bands earmarked for IMT applications. The spectrum bands included those already 

assigned or proposed for future assignments. The spectrum utilization is not as per 

norms and tends to vary at different time slots. The issue of introducing IMT 

applications in the proposed bands is quite complex as these identified frequency 
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bands are shared by various radio services; hence co-existence of those services 

with IMT applications is a challenging task.  

During the measurements, it was observed that (i) channel occupancies increase 

significantly in all bands and kinds of services due to accumulations. Even in the 

busiest area, the variation in occupancies before and during occupancy is well 

around 5-15%. This means that either the Network Service Provider (NSP) may 

overplan the network for such issues or, the area faces severe call drops during the 

event. (ii) The receive signal level may drop by more than 10 dBm due to the 

accumulation of people in an area. This means that areas served with low powered 

radios or at cell edges may get levels below receive sensitivity just when people are 

accumulating in higher amounts. Further, the frequency band 470-698 MHz 

investigated to allow for the co-existence possibilities in an Indian scenario. In this 

frequency band, there are a large number of existing operations of broadcasting 

(TV) and other fixed wireless networks.  Hence, it is a challenging task before the 

planners to protect the existing operations and at the same time make room for the 

future commercial IMT applications. For the sake of understanding the vacancy and 

occupancy of the radio signals in this frequency band, extensive on-site field 

measurements were carried out in the City of Delhi (India). These measurements 

revealed that the 470-698 MHz band is fully occupied with the existing wireless 

operations. Therefore, with a view of opening this band for future IMT applications, 

either some of the existing usages need to be re-located to other frequency bands or 

enough room is made available for co-existence of radio services. Further, in order 

to find how the assigned spectrum for commercial mobile applications i.e. 2G 

(CDMA and GSM) is being utilized, a 24- hour spectrum usage pattern was studied. 

The cities/locations selected for the measurements were Delhi and Mumbai. This 

assessment was necessary from the point of view of their future deployment, where 

there are low or no active usages. It has been observed that the average utilization 

of these signals is strongly correlated with the subscriber behaviour. It has been 

established that the average utilization of the entire set of carriers drops in cooling 

time.  

It has been observed from the measurement plots that the spectrum occupancy of 

the UL and DL are not the same. On the UL, poor visibility of the occupancy was 

noticed. It was observed that for every case, there is a significant reduction in the 

average utilization of the carriers and the average utilization has fallen by more than 

40%. In an another study, measurements at 1400 MHz in a city of Goa, India  were 

performed to assess the pattern of received signal power due to the accumulation of 

a large number of people in an open area. The measurements were taken at different 

time intervals, but it has been observed that whatever time is chosen, it had no 

impact on the deviation of the signal power, however, it is only the number of 

people per unit area that impacted the received power levels.  In this situation, the 

‘Path Loss Exponent’ of the propagation path varied with an increase in people’s 

population even though the transmitter and receiver positions remained stationary in 
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an open area. With the increase in a number of people, the value of ‘path loss 

exponent’ increases and drifts away from the ‘free space path-loss exponent of 

value ‘2’. From the measurement studies, it could be concluded that when there are 

no people, the received signal power vary between -28 to -30 dBm. However, the 

mean signal level v/s people population density lies in the range of -28 to -48 dBm. 
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CHAPTER 3. PLACE-TIME COVERAGE 

AND CAPACITY 

In Chapter 2 we showed how the random accumulation of subscribers affects the 

network environment, which eventually poses a challenge to the network 

dimensioning. Network dimensioning is a consequence of judiciously placing and 

configuring the network equipment while, considering the predictions made by the 

Probability Density Functions (PDFs). However, the networks that are not able to 

handle such situations face three major challenges (i) PDFs are not apt enough, (ii) 

the network architecture is not competent enough and, (iii) accumulations are not 

appropriately evaluated.  This chapter investigates and analyzes  why the present 

form of the probability, which is termed here as Unostentatoius Probability or 

Simple Probability that contributes to  evaluating network dimensions, is not 

appurtenant. This chapter proposes the concept of Ostentatious Probability, as a 

means to redefine and formulate the coverage and capacity issues of a Mobile 

Wireless Communication Network (MWCN).  Actually, this can be seen as a study 

of the polymorphic nature of the probability, the results, of which are given in terms 

of   the Place Time Effect (PTE) and the Place-Time Repercussion (PTR). The 

ostentatious probability allows for studying and evaluating the phenomena of 

random accumulations as Ostentatious Events to show the impact of accumulation 

on the coverage and the capacity of the network. The coverage and the capacity are 

now place and time-dependent events, and are defined as Place Time Coverage 

(PTCo) and Place Time Capacity (PTC). The formulations of PTC and PTCo 

incorporate and extend the work towards PTC [1] and evaluation of the  impact of 

the subscriber accumulation on the Path Loss Model (Coverage)[2]. Through these 

deep investigations in this chapter, we can understand that the factors that the 

supporting network architecture must consider, in terms of PTE and PTR, so that 

it’s dimensioning is more pertinent to such challenges. This chapter investigates the 

conventional challenges of an MWCN with an unconventional approach 

encompassing the impact of Place and Time on network attributes such as 

Coverage and Capacity.  The term Place Time Capacity (PTC) was conceptualized  

in our previous work ([1]). Here, this phenomenon is elaborated further to surface 

the challenges that will be taken care of by the proposed solution as discussed in 

chapter 4 of this thesis. The impact of the environmental dynamics on the path-loss 

models was analysed in our another previous work (abovementioned), [2]. As the 

positions of the network sites depend on the path-loss models that are static 

(unostentatious) for most of the cases, severe changes may lead to eccentric site 

behaviour. This section elaborates these challenges envisaging the impact on the 

network dimensioning. The challenges described in this section will be pivotal to 

designing the proposed architecture in chapter 4.  
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This chapter formulates the challenges that arise due to ostentaniety in the MWCN 

arena. These formulations will be utilized to design and compare the solution that is 

proposed in Chapter 4. As a contribution, these investigations hold sumptuous 

importance by diverting the focus of a network design from location specific to 

event specific. This chapter shows that standard network designs based on standard 

path-loss models are not sufficient for modern and future MWCNs.  We redefine 

the network planning approach by reshaping the network attributes such as of 

HOTSPOTs, Coverage Holes, and Capacity Congestions.  

This chapter is organized into ten sections. Section 3.2 introduces the concept of 

place time independent or “UNOSTENTATIOUS” incidences. Section 3.3 

introduces the place and time dependent or “OSTENTATIOUS” events. It is shown 

how the outcomes of an experiment can be classified as place and time dependent 

events. Section 3.4 defines the relationship between the subscribers of NSPs and 

Place &Time Dependency.  Based on relationship, the concepts of Place Time 

Capacity and Place Time Coverage are defined in Section 3.5 and Section 3.6 

respectively.  In [3], it is discussed that various network parameters are the function 

of Probability Density Functions (PDFs). Section 3.7 takes a step ahead of [3] by 

analysing the ostentatiousness in a PDF formulating the ostentaneity through  

certain derivations. Section 3.8 analyzes the fallbacks in present the network 

dimensioning when facing ostentaniety. Section 3.9 discusses the scientific 

contributions of this chapter. Section 3.10 concludes the chapter. 

3.1.   INTRODUCTION 

This section is mainly dedicated to coining the unconventional form of probability 

that is defined here as Ostentatious Probability, which has been found to play a 

major role in redefining and formulating the coverage and capacity issues of a 

Mobile Wireless Communication Network (MWCN).   

3.1.1. THE NATURE OF THE PROBABLE EVENTS 

Constitutionally, it has been observed that Nature is a certain entity [4]. The natural 

behaviour and properties are predominantly intact and impassive, so profound that 

we recognize them as “laws”. However, within this resolute aura of certainty, there 

is an abstruse opulence of randomness and unpredictability about all the events 

encapsulated in the observable domain. This amalgamation of indeterminable 

certainty is the natality of the concept of the “probability”. With reference to 

probability, every action that is taking place is the “Event” or “Experiment” 

whereas the result of that action is “outcome”, “score”, or “causatum” [5] [6].  

In general, the probability of occurrence of an outcome ‘O’ is defined as, 
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 P(O) =
Number of desired outcomes

Total number of outcomes
  (3.1.1) 

Here, P(O) is the probability of occurrence of a set of outcomes [5]. The probability 

of occurrence of all outcomes of any event is unity [7]. This kind of probability is 

simple in nature, defined here as Unostentatious Probability and is unaffected by 

position and time of observations. A detailed discussion about nature of events can 

be found in Appendix 3.1 of this thesis. 

However, not all incidences are unostentatious. Certain experiments/events when 

viewed from wider and detailed perspective show obscurity in being an independent 

event. Such events are discussed here as Place and Time Dependent 

Incidences/Events or Resilient Events and the impact of Place and Time on any 

seemingly unostentatious even is called here as Place and Time effect. We postulate 

that the that the  Place and Time effects are not exclusive phenomena but a 

collective impact, therefore, we regard them  as Place-Time Incidence (PTI) and 

Place-Time Effect (PTE).  

3.1.2. PROBLEM DEFINITION: PLACE-TIME REPERCUSSIONS ON AN 
MWCN PLANNING 

 Any wireless communication technology revolves around the two basic axes of a 

network, the “Coverage” and the “Capacity” [8]. These two entities are the 

foundation of a successful wireless network design and depend on how well the 

sites of the network cover the area and how much capacity the covered area can 

provide. These two factors are inevitably a simultaneous and a persistent challenge 

for every MWCN at all times and at every network location [9] and are termed here 

as Network Parametric Duos (NPD). An NPD is associated with the cohesive 

demand of the subscriber of the MWCN and, therefore, it is not incorrect to say that 

this duo is actually the two sides of the challenges posed by the network 

subscribers. More subscribers mean more capacity demand and more scattered 

subscribers mean more coverage demand [10]. And, more data per subscriber 

means more capacity of the catering base stations [11]. All challenges of a mobile 

wireless network are sorted to answer the two categories of questions which are, (i) 

where to cover, and (ii) how much to cater, to deal with NPD challenge [12].  

While analysing these questions, it can be observed that often a unanimous 

approach is followed while planning and deploying a mobile wireless network. This 

approach considers that (i) an AoI can be subsequently divided into challenge based 

sub-sections, and, (ii) the network design and deployment ineluctably have strong 

belongingness to their respective sub-sections; the network solutions are inevitabley 

deterministic and location specific. Or simply, we can say that while planning a 

network, an NSP assumes that the network and the subscriber behaviour are subject 

to the location. The division and categorization of an AoI in terms of propagation 
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characteristics (Dense Urban, Urban, Suburban, and Rural, etc.) is based on the 

static nature of the network environment. This is a primary assumption to decide, 

which would be the coverage sites of the network. Similarly, the high capacities 

demands are assumed to be located in hotspots (Airports, train stations, cafe bars, 

etc.), commercial areas and office complexes [13].  

The network conditions are not static at all. Arcanely, the PTE has been impacting 

the network environment of any MWCN with subscriber mobility and were never 

taken as a challenge before this research [14]. This chapter postulates that it is 

inappropriate to consider the network environment as a static entity, and analyses 

the factors that lead the network to defy from its static nature and how PTE can be 

investigated in an MWCN. Also, in this chapter, we will see how certain events are 

place and time dependent, and, what are the implications for the network planning 

and operations of an NSP?  

3.2. UNOSTENTATIOUS EVENTS 

An unostentatious event can be defined as follows: 

Definition 1: Any event whose outcomes are the set of consequences of an action 

that is allowed to perform freely in nature has the capability to incur the same 

chance of occurrence to any particular outcome irrespective of when and where the 

action takes place.  

Where, the outcomes are a set of consequences, also known as Sample Space (SS). 

3.2.1. MULTIFARIOUSNESS IN UNOSTENTATIOUS PROBABILITY 

The condition of unostentatiousness is that an action is allowed to perform without 

any obstruction, suggesting that all outcomes are equally likely to happen, however, 

this is not the case. The freedom to generate outcomes is allowed only after the 

stimulant (i.e. the device on which the experiment is performed; see, Appendix 3.1) 

has stimulated the action and not before that. Therefore, the way the outcomes have 

likelihood to appear is also dependent on the initial and boundary condition of the 

stimulant. Further, the study of the outcome depends on the range of the sample 

space that is under consideration. Accordingly, an unpretentious event can be 

discrete and continuous with each of it being biased and unbiased. Appendix 3.2 

gives details of the various categories of unostentatious probability that are defined 

here in this chapter as follows: 

 Discrete and Unbiased (see, Sections 3.2.1 and 3.2.3 of Appendix 3.2), 

 Continuous and Unbiased, (see, Sections 3.2.2 and 3.2.3 of Appendix 

3.2), 
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 Discrete and Biased (see, Sections 3.2.3 and 3.2.4 of Appendix 3.2),and,  

 Continuous-biased (see, Sections 3.2.3 and 3.2.5 of Appendix 3.2).  

3.2.2. UNSOTENTIOUSNESS: PLACE & TIME INDEPENDENCY  

The experiments, pertaining to the probabilities that are discussed in section 3.2.1, 

are Simple Experiments. These are the “omni occurrent” events and are discussed in 

detail in Appendix 3.2. Before moving any further, it is important to mention here 

that the term “Omni” is being used strictly to refer to the physical dimensions of the 

time and location (see, figure 3-2-1). The experiments or events that are discussed 

till now produce the outcomes of the same probability of occurrence irrespective of 

the time and location and, therefore, are place and time independent and are termed 

here as “unostentatious” events. As an example, the rolling of a die will show the 

same probability of occurrence (see, Appendix 3.1) whether it is tossed now or a 

minute later and whether Copenhagen or Aalborg cities of Denmark. The nature of 

the probability expressed by these experiments is flat and unchangeable with place 

and time.  

 

Figure 3-2-1: An example of Unostentatious Probability; all outcomes are equally likely and 
are Omni Occurant [Source of dice: openclipart.org] 

Most of the probability studies are made under the constant “frame of reference” 

and, therefore, the probability does not change with time. However, when the 

perspective is widened, the independent outcomes of these experiments may turn 

out to be a partial projection of the wider phenomenon which incorporates the 

situational variance. In such cases, not only the experiments rely on the varying 

physical place and time conditions but also the stimulant itself. The place-time 

dependent behaviour of the stimulant may also impose the variant nature of the 

outcomes exhibited by the respective experiment. 

3.3. OSTENTATIOUS EVENTS: PLACE & TIME DEPENDENT 
EVENTS 

There are certain events that have the capability to act in exactly the same way in all 

places and at all times as was explained in the previous section. We have 

recognized such events as unostentatious event. However, the events, in reality, 

change their behaviours with place and time. This section discusses the 

ostentatiousness of an event.  
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3.3.1. PLACE-TIME PERPLEXITY 

Let us consider again (see, Appendix 3.2), the rolling of a dice, but this time, from 

an ostentatious point of view.  The outcomes of the experiment of rolling a dice are 

equally likely. This unostentatiousness is relevant to our consideration that “the 

experiment is absolutely fair”. However, the degree of unpretentiousness is 

somewhat abstruse. We can be honest to certain extent by obtaining a fair dice (all 

faces smooth, and center of gravity coinciding center of the cube of which dice is 

made of) or by not seeing the initial face of the dice while throwing it or by 

throwing the dice randomly, however, we cannot control how physical properties 

affect a dice.   

Ironically, although we know that an event is an action that generates some 

outcomes, we ignore the fact that the outcome itself appears when the action is 

impeded itself to form the outcome. As an example, the rolling of a dice generates 

outcome only when it comes to rest, and this rest is obtained because certain 

undesirable physical phenomena are acting on it such as friction due to the table on 

which it is rolled and viscosity of air in which it rotates.  Therefore, if somehow, a 

gambler comes to know the deceleration produced by an edge of the dice, then, 

knowing the initial upward face of the dice, he/she can estimate in how many 

rotations, a particular face will appear up. Therefore, although for a nascent 

observer, it will still be a blatant even, however, with the fact that the actor “knows” 

how to estimate the outcome makes it “ostentatious.” Hence, a simple looking 

event can become a conundrum when the nature of stimulant (dice) and the initial 

conditions are known.  This is an example where the actions complete in a very 

short duration and the displacement and deeper investigation is tedious and not 

within the present scope. In further sections, let us discuss this effect in more details 

in relation to its impact on an MWCN.  

Let us put the above example in relation to the Place-Time dependency.  While 

throwing a dice, the gambler knows with what force he/she should throw the dice, 

so that desired outcome is obtained every time. The applied force may change 

depending on the initial face of the dice.  However, this initial force is not 

perceivable unless it is expressed in tangible quantities such as position and time.  

A dice, therefore, will terminate its motion at a certain position and after a certain 

time to display the outcome and varying position and time with respect to the initial 

state will vary the outcome. 

This place-time dependency is just not limited to the “gambling” field. If we replace 

“rolling of dice” with “finding a user” or “finding a signal”, the degree of 

uncertainity remains the same. We have discussed the subject from “gambling” 

point of view as this is the first time when “degree of uncertainity” is introduced to 

show the challenges of commuication systems that are seemingly extrinsic to the 

system.  
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3.3.2. OBSERVING AN EVENT IN THE VIEW OF PLACE AND TIME   

An event that might look simple may show place time impact when viewed with a 

wider consideration. Figure 3-3-1 shows the extension of a simple event in the 

place-time domain. The outcome of any action will be varying when sampled in 

different time and/or place. Figure 3-3-1 also shows that place-time is considered as 

a composite entity and presumably, an event that varies with time must also vary 

with place simultaneously. However, there are certain incidences when each place 

and time should be considered separately. This can be understood by dissecting the 

previously considered example. Suppose that, before throwing the dice the gambler 

let the dice swirl in his palm for a certain time.  In such a case, while the position of 

the dice remains unchanged, it is the action taking place strictly in the time domain 

to produce variation in outcomes.  In such cases treating place and time separately 

and not as a single entity is required as shown in figure 3-3-2. 

 

Figure 3-3-1: Place-Time Projection of an Unostentatious Event 

 

Figure 3-3-2 shows that both place and time may impose an effect exclusively in 

certain events. In the above example, the duration in which only the time is the 

imperator and the contribution due to the position is null, is said to have a 

Positional Latency. As we can see, this place-time event is a multidimensional 

resolution of an observable event. This means that an event that is being observed 

in real-time is a superposition of its place and time projections.  
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Figure 3-3-2: Place and Time as Separate Entity in evaluating the Ostentatiousness 

In the following section and onwards it will be discussed the practical implication 

of place time effect on a usual network design and operations.   

3.4. DILEMMA IN MOBILE WIRELESS NETWORK PLANNING  

Referring to figure 3-4-1, let us consider that an NSP plans to set up a network in 

the Area of Interest (AoI), starting from green field to a mature network as 

discussed in Chapter 1, Section 1.2 of this thesis. Considering that the entire AoI 

has a uniform and constant morphology, let us also consider the assumptions in 

relation to the planning of the network as per below: 

 nth Base Transceiver Station (BTS) transmitter : Tnx 

 nth Receiver : Rnx 

 Transmit power of nth BTS :  Pntx 

 Receive Power of nth receiver antenna : Pnrx 

 Maximum capacity per subscriber : Csub_max 

 Subscriber density per unit area : σs 

 Area of the AoI : AAoI 

 Sensitivity of the Rnx : SRnx
 

For the present discussion, the BTS is considered as the generic name of the 

transmitter-receiver station and is not an exclusive term for any particular 

technology such as GSM. The BTS along with its infrastructure is termed here is 

site and will be used adequately as the building block of a network. 
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Figure 3-4-1: A Simple Network Deployment Scenario 

The usual network planning begins with the assumption that the subscribers are 

homogenously distributed across the AoI in continuums of evenly distributed 

chunks of subscribers. If we assume that all receiver units have the same sensitivity, 

which means that for all n, SRnx
= Sr and, the coverage plan must assure that the 

entire AoI   will be covered at least with a level above Sr. Presently we are ignoring 

the environmental variations of the network and therefore, the area covered by Tnx 

is constant for all n, say Ac.  

Therefore, considering the fact that the subscribers are uniformly distributed along 

the AoI, the number of subscribers served per Tx will be [15] [16]: 

 Nsub = σsAC (3.4.1) 

Hence, the capacity that is needed to be served by every site can be derived as, 

 CPB = NsubCsub_max  (3.4.2) 

Therefore, while planning the network, the NSP has to design a network in which 

each site has a BTS with serving capacity of CPB and a coverage area of Ac with the 

total number of sites as [15]: 
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NBTS = 

AAoI

Ac

 (3.4.3) 

This is the much-simplified illustration of a bit complex network design process. 

However, the present discussion is unabatedly valid even when most of the oddities 

of a network design are omitted here. For the present discussion, however, we also 

assume that according to the design of BTS, it has a limit to cater capacity. Let us 

assume this maximum serving capacity of BTS as CPB_max. Therefore, for all BTS 

present in the network, 

 CPB < CPB_max   (3.4.4) 

The strategy mentioned above is followed by most of the network designers to plan, 

design and deploy a network. However, what is important to notice here is that 

while designing, the network designer “considers the network as an unostentatious 

event”. This means that a designer assumes that (i) during any time of the network 

operation, there will not be a moment when the capacity demand of any site will 

never go above CPB_max, and, (ii) in whatever way the subscriber permute them in 

the AoI; the subscriber density σs shall always remain constant. This is somewhat 

an unostentatious event as the possibility of a subscriber served by any site always 

remains the same although the subscriber may change the permutation. Hence, the 

event is not affected by the time and position of the subscriber. This seems a very 

delightful situation as the AoI is presumed “catered” once all the sites are deployed 

and the network is made operational. Nonetheless, this comes out to be fairy tale 

when observed in the place-time domain. The next subsection discusses the 

frustration that an NSP may face post deploying a seemingly well-planned network. 

3.4.1. PLACE &TIME ENTRANCED NETWORK DYNAMICS 

Although, the network is assumed homogeneous, in reality, this is not the eternal 

situation and with time, the network grows and matures. In such situation, the 

density of subscribers per unit areas, the subscribers count per site Nsub, and the 

capacity served by the BTS CPB would vary from site to site and for the nth site can 

be written as: 

(i) The subscriber density per unit area under site n:  σn_s 

(ii) The subscriber count under site n: Nn_sub 

(iii) The capacity served by BTS of site n:  Cn_PB 

Therefore, for initial deployment scenario, equation (3.4.4) can be restated as: 

 Cn_PB < CPB_max  for all n  (3.4.5) 
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Thus, the site count is subject to the coverage requirement of the AoI which means 

that the required number of sites is limited by the area that is needed to be covered 

as obtained by equation (3.4.3). This kind of planning where the coverage is the 

driving factor of planning sites is known as Coverage Driven Network and the sites 

dedicated to providing coverage are the coverage sites of the network.  As, the 

subscriptions of a network grow, so do the subscribers. Thus, this seamless 

distribution tends to collapse under the uneven distribution of the subscriber 

density. This is mainly because the realistic subscription is more occurant in a 

densely populated area than otherwise. Then, the condition expressed by equation 

(3.4.6) turns around to: 

 Cn_PB > CPB_max  (3.4.6) 

Where, {n: nth site satisfies the condition of the expression 3.4.6} 

For all those areas, where the sites satisfy expression (3.4.6), the network planner 

adds more sites to abate the raised capacity demand. Ergo, the total site count of the 

network will be: 

 
NBTS_ADD =

∑ CnPB
− CPB_max  

NBTS
n=1

CPB_max 
 (3.4.7) 

This means that the site count is limited by the growing capacity of the network, 

and hence, the Coverage Driven Network turns into a Capacity Driven Network. 

These sites, that are deployed exclusively to cater for the raised capacity, are the 

Capacity Sites of the network. From here on, the network keeps growing and the 

total subscriber count keeps on increasing to the point, when the new subscribers 

are strictly marginal, and network gains Maturity. 

Such kind of planning considers the “STATIC” nature of the subscriber. This 

means that while configuring and deploying a site, the average traffic demand of the 

location is considered, and not the actual mobility of the subscribers. Nonetheless, 

the subscribers eventually are humans and are cognitive entities, and, are likely to 

mobilize from place to place. In networks where the subscriber count is in millions, 

as described in Table 3-1 referring to the subscriber count and growth in the past 

decade in Delhi, India, such dynamics may lead to a baffling situation for an 

otherwise well-planned network. Referring to figure 3-4-1, let us consider a state 

when the subscribers dynamics develop a condition where after a certain time ’t’, 

somehow they find themselves in distributed quantized form as shown in figure 3-

4-2. 
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Figure 3-4-2: Status of a dynamic network at a certain time’t’ 

From figure 3-4-2 we can see, that the value of  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝛔𝐬 increases the value 

of NSub. Therefore, equations (3.4.1) to (3.4.3) are now time dependent events. 

Therefore, for any particular site, the subscriber count, and total capacity demand 

can be expressed as: 

 Nsub(t) =  σs(t)AC   (3.4.8) 

and, CPB(t) =  Nsub(t)Csub_max (3.4.9) 

Referring to figure 3-4-2, let us consider that there are two sites A and B in the AoI 

and that the subscriber from site B has moved to A. This brings two simultaneous 

events, one being site A where the subscribers are accumulating and another site B 

from where the subscribers are churning out.  

For the first case, equation (3.4.8) can be rewritten as: 

 NA_sub(t) =  σA_s(t)AA_C (3.4.10) 

Also, the capacity expressed in equation (3.4.9) can be rewritten for site A as: 

 CA_PB(t)  =  NA_sub(t)Csub_max  (3.4.11) 
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Which means, for t1<t2,  

 NA_sub(t1) < NA_sub(t2)  (3.4.12) 

and, CA_PB(t1) < CA_PB(t2) (3.4.13) 

In case, the subscriber count is increasing for site A. 

Similarly, for the site B, the above equations can be written as: 

 NB_sub(t) =  σB_s(t)AB_C   (3.4.14) 

Also, the capacity for site B can be rewritten as: 

 CB_PB(t) =  NB_sub(t)Csub_max   (3.4.15) 

Which means, for t1<t2,  

 NB_sub(t1) > NB_sub(t2)   (3.4.16) 

and, CB_PB(t1) > CB_PB(t2)  (3.4.17) 

In case, the subscriber count is decreasing for site B moment by moment. 

However, NBTS_ADD_GATHER =
∑ 𝐶𝑛𝑃𝐵

− CPB_max  
𝑁𝐵𝑇𝑆
𝑛=1

CPB_max 
= 0 (3.4.18) 

Hence, as seen in equation (3.4.18) the net increment in the subscriber count in the 

entire network is zero. This means that the entire traffic variation is due to non-

uniform distribution of subscribers in the entire AoI and not due to net increment in 

subscriber growth. 

In a subscriber mobility environment, the subscribers are deemed to mobilize within 

the network area. Anticipating such situations, the BTSs are configured with higher 

capacity (traffic) also known as Busy Hour Traffic to cater for such dynamics. For 

certain known regions, where the subscriber density goes extreme on a regular 

basis, the area is planned with additional sites known as capacity sites. However, in 

a certain situation, this is a heartbreaking condition. The NSP is in ambivalence 

when the flux is intolerably high which is very much visible in densely populated 

areas such as metropolitan cities (e.g. Delhi and Mumbai in India, New York in the 

United States, Tokyo in Japan, and Copenhagen in Denmark, etc.). This often 

brings up a choking situation where the required capacity surpasses CPB_max  in 

multiple sites. On the other hand, there are sites that are underutilized due to the 
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churning of its subscribers to other sites. This is highly momentarily, and therefore, 

the usual solutions are not feasible. 

  

Figure 3-4-3: Momentary huge gathering of Potential Subscribers. Left: Procession of 
Immersion Ceremony of Lord Ganesh in Mumbai, India. More than 4 million city residents 
are involved in the celebration every year4. Right: 35rd Berlin Marathon Sunday, Sept. 28, 

2008, in Berlin, Germany. Around 40,000 runners from 100 countries took part in the event5   

Such accumulations are very much occurrent in the daily life in India as shown in 

figure 3-4-3. Although the problem has been taken up numerous times by the 

network planners, this research provides a novel view point for the analysis.  It sets 

up a platform for the “need of self-configurable systems”. 

3.5. THE PLACE TIME CAPACITY [1] 

 

Figure 3-5-1: A subscriber in place -time domain 

                                                           
4Resource: Lord Ganesha Immersion Ceremony, Indian Express, September 25, 2015 

5 Resource: www.berlin.de 
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Referring to figure 3-5-1, let us assume that at any arbitrary instantaneous time ‛t’: 

(i) There is a subscriber ‛i’. 

(ii) The position of a subscriber with respect to an arbitrary reference 

plane at instantaneous time ‛t’ is pi(t). 

(iii) The instantaneous throughput demand of the subscriber at the 

instantaneous time ‛t’ is bi(t). 

While the subscriber is in the coverage area, its demand is catered by the nth site of 

the network (see, figure 3-5-1).  

However, when the subscriber decides to move from a position p1 to p2, carrying 

the capacity demand along with, the network is bound to subside the need 

everywhere the subscriber traverses. Conventionally, it is deemed that the moving 

subscriber, while moving with the same coverage area, can be catered by the same 

site, yet, the subscriber may find some coverage holes against which the NSP may 

have to install additional coverage site to cater for the deficiency (see, figure 3-5-2) 

[17].  

 

 

Figure 3-5-2: Place Time Capacity generated by a moving subscriber 

Consequently, the subscriber creates the need for the capacity throughout the path it 

traverses, which is termed as the Place Time Capacity (PTC) [1]. The PTC is an 

eminent example of an ostentanious event and the ostentaneity is described in 

equation (3.5.2). 
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3.5.1. INSTANTANEOUS PLACE TIME CAPACITY  

Assuming that this ith subscriber has instantaneous velocity of vi(t), we have: 

 When vi(t) =0, then the demand for capacity at the position pi(t) is bi(t)           

(3.5.1). 

 And, when vi(t)≠0, which means that subscriber is changing the position, 

then the rate at which the subscriber generates the demand will be the 

instantaneous place time capacity. 

The rate of PTC is the velocity of the subscriber times the capacity demand of the 

subscriber. This rate is the Instantaneous Place Time Capacity (iPTC) and is given 

by: 

 PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗
i
i = 

d

dt
{pi(t)bi(t)}   

or, PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗
i
i = bi(t)

d

dt
p⃗ i(t) + p⃗ i(t)

d

dt
 bi(t) (3.5.2) 

From the definition of velocity,  v⃗ i(t) =  
d

dt
p⃗ i(t)                      

(3.5.3) 

Therefore, PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗
i
i = bi(t)

d

dt
v⃗ i(t) + p⃗ i(t)

d

dt
 bi(t) (3.5.4) 

Where, the superscript ‛i’ indicates that it is an instantaneous value, and, the 

subscript ‛i’ denotes that it belongs to the ‛ith ’subscriber. Also, it is important to 

note that iPTC is a vector quantity with direction pointing towards the direction of 

motion (velocity). 

The relation of PTC and iPTC can be understood as: 

 
PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗

i
i = 

d

dt
 (PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗

i) 
(3.5.5) 

Therefore, equations (3.5.4) and (3.5.5) when putting together, yields: 

 
PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗

i
i =

d

dt
(PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗

i) =  bi(t)vi⃗⃗⃗  (t) + p⃗ i(t)
d

dt
 bi(t) (3.5.6) 

Hence, we can say that the instantaneous PTC depends on the instantaneous 

velocity of the subscriber. Further, the second term also reveals that the varying 
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data rate bi(t) can also contribute to unprecedented capacity demand at any position 

pi(t). 

Planning a network for maximum throughput ‘b’ per user, we can consider bi(t) =b 

for all the time instants.  

Therefore, 
d

dt
(PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗

i) =  b
d

dt
p⃗ i(t) + p⃗ i(t)

d

dt
b (3.5.7) 

Being a constant,  
d

dt
b = 0 that reduces equation (3.5.5) to: 

 d

dt
(PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗

i) =  b
d

dt
p⃗ i(t) + 0 (3.5.8) 

Hence, d

dt
(PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗

i) =  bv⃗ i(t)                      (3.5.9) 

The iPTC for the ith  
 subscriber can be derived by integrating equation (3.5.9) to 

have, 

 
PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗

i =  b∫vi⃗⃗⃗  (t)dt (3.5.10) 

Again from 3.5.3, we have: 

 PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗
i =  b{p⃗ i(t) + li} = bp⃗ i(t) +  b. ll (3.5.11) 

Where li  is constant that we term as Length of Impact. 

To avoid the above equation to be understood only as the net displacement 

dependent process, equations (3.5.10) and (3.5.11) are rewritten as: 

 PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗
i

⃛ =  b∫⃛ vi⃗⃗⃗  (t)dt (3.5.12) 

and,   PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗
i

⃛ =  b{p⃗ i(t) + li} = bp⃗ i(t) +  b. ll  
(3.5.13) 

This signifies that the quantity is the forward integral of the displacements, and the 

reverse paths are omitted.  

Equation (3.5.11) conveys that when the data rate is considered constant, the 

instantaneous PTC has two terms. The first term imparts the amount of capacity 

demand imposed at every positional instance and throughout the path that is 

traversed by the user and the second term reveals the capacity demand imposed on 
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the system while the subscriber is stationary. Figure 3-5-3 pictorially shows the 

difference between the two terms and their contribution to the instantaneous PTC. 

 

Figure 3-5-3: Instantaneous Place Time Capacity 

The Length of Impact: Figures 3-5-1and 3-5-2, give an insight that the user 

(subscriber) may not be moving every time and will be static for some time. In such 

a situation, there would be no change in the position with time. Nonetheless, the 

need for a capacity catering is inevitable. In the case when the capacity demand is 

consumed (fully or partially) by a temporary site, also known as Cell on Wheels 

(CoW)  at the target position, the CoW site has to remain active until  the user 

becomes  static at the very position. Hence, the capacity demand is generated by the 

virtue of time and is with respect to the position of the user, hence the stimulant is 

termed here as the length of impact which is equivalent to the amount of PTC 

generated if the user would have moved to a certain additional length. 

The ‛bp⃗ i(t) ’: The first term is a place dependent entity; however, as everything that 

is changing is associated with time, it is a function of time. The dual dependency 

signifies that it is not only the duration of the event that signifies the capacity 

challenges but also the position of the stimulant. This means that for a user who has 

traversed a distance ‛d’ from point A to point B (see, figure 3-5-4) as a single event 

and then sometimes later travels from P to R with the same distance, the amount of 

PTC generated in the two events may be the same but the net PTC will be the 

accumulation of the PTCs by the two events. This is because the locus of the 

traversed path will be different. Hence, the same user can create enough 

disturbances in a network by placing capacity demands arbitrarily and unevenly. 

The present discussion is limited to a single user, however for an ample user 

density; such dynamics can strongly impact in a negative way the performance of a 

network.  

 Instantaneous PTCs due to varying position

b.li
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Figure 3-5-4: Cumulative Place Time Capacity illustration 

Both the iPTC and PTC, are dependent on the position and time, and can be 

represented as vector quantities.   

3.5.2. NET AND CUMULATIVE PLACE TIME CAPACITY 

The appended PTC generated during time interval (t1, t2), equation (3.5.10) is 

integrated over the period (t1, t2) to have: 

 

PTCi|t1
t2 = b ∫ vi⃗⃗⃗  (t)dt

t2

t1

  

 

or,   PTCi|t1
t2 = bpi(t)|t1

t2 +  bli |t1
t2   (3.5.14) 

The above equation can be solved for varying place and time separately. As the 

second term is time invariable, hence, for the itinerant user,  

 bli |t1
t2 = 0   (3.5.15) 

Therefore, PTCi|t1
t2 = bpi(t)|t1

t2      
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 = b{pi(t2) − pi(t1)}  

 = b∆p (3.5.16) 

Therefore, the change of PTC or Δ PTC is the capacity demand placed due to the 

mobility of the user and is defined here as: 

 ∆PTCi =  b∆p   (3.5.17) 

Net PTC: The net PTC or nPTC is, however, the cumulative PTC that incorporates 

the PTC due to motion and place latency (length of impact) and is defined here as: 

 n PTCi = ∆PTCi +  bli = b∇p +  bli (3.5.18) 

Sections 3.5.1 and 3.5.2 discussed the PTC situations for a single user. However, in 

any live network, there are huge magnitudes of the user. Section 3.5.3 shall discuss 

the PTC phenomena is a more realistic scenario, i.e. when the user count in the 

network is a huge number. 

3.5.3.  GROSS PLACE TIME CAPACITY 

 

Figure 3-5-5: Gross Place Time Capacity generated by an effective user 

In reference to figure 3-5-5, let the user ‛i’ has an instantaneous velocity of v i(t) 

then, within a certain progressive interval, the resultant velocity for all S=NBTS 

users can be determined as: 
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Vr
⃗⃗  ⃛⃗(t) = ∑vi(t)

S

i=1

 (3.5.19) 

The Vr(t) is the net instantaneous velocity of  the users of the AoI. This means that 

although the users can move randomly within the AoI, at any time instant when all 

the velocities are added together, it is possible to estimate how much a resultant 

drift of the subscribers would be. 

Therefore, when Vr(t) =0, this means that the subscriber distribution is unchanged 

since the last instance.  In the case when Vr(t) ≠0, this means that there is a huge 

resultant drift in the subscriber position. If we combine all the velocities as Vr(t), 

then we can consider this net change as the movement done by an effective user Ueff 

such that: 

 
bueff

(t) =  ∑ bi(t)

s

i=1

 
(3.5.20) 

 

or, bueff
(t) =  S. b (3.5.21) 

Considering bi(t) = b for all users. 

Hence, revisiting the concept of PTC from equation (3.5.14), the Gross PTC or 

GPTC during a time interval (t1, t2) is defined as: 

 
GPTC(t1, t2) =  S. b ∫ Vr(t)dt

t2

t1

 
(3.5.22) 

This is certainly an enormous amount of PTC generated with the subscriber count 

of the order of 106 (million).  

3.5.4. PLACE TIME CAPACITY AND NETWORK DIMENSIONING 

Let us assume a mature network in an AoI (see, figure 3-5-6), where, 

(i) AAoI is the area of the AoI,  

(ii) C is the capacity offered by each site, 

(iii) the total number of sites required to satisfy the capacity requirement 

of AoI at any time instant ‛t’ is n(t), 

(iv) the area served by the jth 
 site is aj, 

(v) total number of subscriber of the network is S, 

(vi) the capacity demand of the ith 
 subscriber  is bi bps, 
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and, 

(vii) the network under consideration is a Capacity Driven Network 

(CDN), which means that capacity site requirement is more than that 

of coverage sites. 

Then, the total number of capacity sites required to cater for the AoI is: 

 
n(t) =  

∑ bi(t)
S
i=1

C
 (3.5.23) 

Therefore, at any given time t = t1, the total capacity sites requirement will be: 

 
N = n(t1) =  

∑ bi(t1)
S
i=1

C
 (3.5.24) 

Considering, that the AoI is morphologically homogeneous meaning that the 

propagation loss of AoI is uniform at all points in the AoI, each site will serve the 

geographical area of the same size of value given as: 

 
{ aj : aj =

AAoI

N
= a, for 1 ≤ j ≤ S} (3.5.25) 

Hence, each site will confine its coverage to a value ‛a’ as mentioned in equation 

(3.5.25). Figure 3-5-6 describes this scenario where the AAoI is divided among N 

coverage areas where aj is a coverage area that belongs to a jth site. In this way, AAoI 

contains N subareas each of having magnitude of ’a’ and position of site j which are 

the squares marked sequentially from 1 to N. 

a1 a2 a3 a4 …. aj

aj+1 aj+2 ... ... ... a2j

... ... ak

aN

Kth place where m subscribers accumulate

Subscribers evenly distributed in the network area( static PTC, b.m.l)

Low or nil subscriber zone created due to subscriber drift

Under utilized site (Low Subscribers)

Site facing capacity congestion due to accumulation of subscribers

Site with optimum subscribers (operating normally)

aN Area with normal subscriber strength

ak

 

Figure 3-5-6: Accumulation of subscribers in a network 
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Now, as we can see from figure 3-5-6, a subscriber can choose to be in any area 

(from 1 to N), and chances are equally likely. Therefore, the probability of finding 

an ith subscriber at an arbitrary location ak is: 

 
Pi = 

1

N
 (3.5.26) 

As the event of choosing a position by any subscriber is mutually independent of 

any other subscriber, the probability that ‛m’ subscribers choose to visit an arbitrary 

location ak is given as: 

 
Pm = 

1

Nm
 (3.5.27) 

Therefore, the place time capacity generated in the duration (t1, t2), when m 

subscribers chose to move from their original location to an arbitrary location ak, 

can be defined as: 

 
PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗⃛

m(t1, t2; ai, ak) =  b ∑(∫ vi⃗⃗⃗  ⃛(t)dt
t2

t1

) + (bm) ∑l ⃛i

m

i=1

m

i=1

 (3.5.28) 

 

As all subscribers arrive at ak, therefore, li   for all subscribers is the unit vector 

pointing ak. Therefore, in this case, the amount of the new demand will be [1]: 

 
PTCm(t1, t2; ai, ak) =  b ∑pi(t)|t1

t2

m

i=1

+ bm (3.5.29) 

This is the PTC accumulated when each of the m subscribers decide to approach ak 

with a certain definite path which is unique in itself. Therefore, combining 

equations (3.5.27) and (3.5.29) the probability of accumulation is determined as [1]: 

 
P(PTCm) = Pm = 

1

Nm
 (3.5.30) 

This means that the growth of the PTC due to m subscribers accumulating at a 

single location is 1/Nm. This is certainly a very low probability when m is large, and 

it decreases with the growth of the subscribers. If such a situation occurs, the 

offered capacity of the site, which is serving the location ak will not be enough. 

Further, in equation (3.5.30), it is assumed that the network has ‛m’ subscribers. 
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Nonetheless, when the user count is larger than those who are visiting the location 

ak, the situation changes drastically. 

Let,  

(i) S be the total users of the network, 

(ii) m are the subscriber count visiting location ak such that m< S. 

Then, the probability of m subscribers visiting location ak will be as mentioned in 

equation (3.5.30). However, the number of ways in which these ‛m’ subscribers can 

be chosen out of S is given by the formula: 

 
C =  

S!

m! (S − m)!m
S  (3.5.31) 

Where the superscript denotes the total choices and the subscripts denote the 

number of choices that can be made. Therefore, combining equations (3.5.30) and 

(3.5.31), we can define the probability that the PTC generated by m subscribers out 

of S subscribers of the network is observed at a given instant of time as: 

 P(PTCm| S) = 𝐶 ×𝑚
𝑠 𝑃𝑚  

 
=

𝑆!

𝑚! (𝑆 − 𝑚)!
×

1

Nm
 (3.5.32) 

Therefore, there might be a case when, 

 S!

m! (S − m)!
×

1

Nm
> 1 (3.5.33) 

and the probability of accumulation is more than 100% ak, which means that at any 

instant of time, the site serving ak will always experience additional m subscribers 

and will always be congested. 

The complex individual behaviour of a user can have a big impact on the above-

discussed scenario.  Let us consider that; there are [1]: 

(i) S subscribers in the network are under consideration, 

(ii) categories of likings, to which users are inclined to, are numbered as 

{1, 2, 3, ..., q}. For example, category 1 being set of those users who 

like shopping and category 2 of those who like a marathon and so on, 

(iii) and, S1, S2, S3... Sq are user sets with a subscript indicating the 

category to which they belong. As an example, S1 are the users who 

like watching movies and, therefore, belong to category 1. 
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Further, let us assume a period such as “Black Friday” in the city of the AoI and the 

shops and malls declare a major discount. Such incidences often provide ample 

opportunities to people to accumulate in the destinations of common interest. In 

such incidences, whether willingly or unwillingly, users form groups that tend to 

remain together. Therefore, the users of common interest may accumulate at the 

mall at position ‛O’. Finally, they decide to ‛stick’ and move together along the 

paths OA, AB and BC to reach the final mall at the position C (or ak in relation to 

previous discussions, see, figure 3-5-7). 

 

Figure 3-5-7: Subscriber accumulation in a biased situation 

Then, S =  ∑|Si|

q

i=1

 (3.5.34) 

Where, |S1| is the number of elements in group S1. Considering that users have now 

formed a group and tend to be together throughout the exploration, we can say that 

the probability of this group visiting any location in the geographical area of AoI, as 

per equation (3.5.26) will be: 

 
PS1

= 
1

N
 (3.5.35) 

This is far greater than when m subscribers traverse the location in an unbiased 

manner as given in equation (3.5.30). The PTC generated by g1 is: 
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 |PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗⃛
S1

(t1, t2)| = ||S1|b(P⃗⃗ ⃛S1
(t)|t1

t2) +  |S1|b. 𝑙⃛|  (3.5.36) 

This is the additional, although temporal; demand that any NSP should take into 

consideration. This is an inevitable and frequent phenomenon in a densely occupied 

network where the users are amply available to create such collisions where the 

capacity demands boom up the serving capability of the ruling site. However, as a 

network contains an ample amount of site to fulfill the coverage and the capacity 

needs, the portion of the generated PTC is absorbed by the sites that have surplus 

capacities and may fall in the traversed path.  This is the fundamental objective of 

an MWCN to cater for the mobile subscribers and the surplus capacity is planned to 

serve this mobility when a subscriber traverses multiple zones served by different 

sites. 

 

Figure 3-5-8: Additional Capacity Planning[1] 

Figure 3-5-8 shows a case where a service provider may have to plan additional 

sites or add capacity radios in the serving sites to absorb the generated PTC. 

Therefore, to evaluate the network dimensioning to absorb the generated PTC, 

referring to figure 3-5-8, let us again assume that, 

 the network is covered by N sites,  

 initially, the subscribers are uniformly distributed across network so that 

every site has same static subscribers, 

 each site has a spare capacity of ∆C, 

 each site has capacity C,  

 and, each site has a coverage length L (for simplicity, linear mobility 

analysis).   
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While planning a network, there is always a tradeoff between the expenses and 

ARPU. Therefore, the coverage and the capacity are not 100 percent assured. If it is 

a question of a handful of wobbling, an NSP will ignore the event. Nonetheless, if 

the ample subscriber strength demands an additional need, the NPS is bound to 

cater the additional event even though the ARPU gain is negligible. 

 

Figure 3-5-9: An AoI that is subjected to a complex network environment where multiple 
iterations may lead to the cumulative PTC-generating need of additional coverage and/or 

capacity sites 

Let us suppose that a group g1 spends a time interval (t1, t2) and traverses a distance 

‛d’ in discrete steps of Δdt. Now, if in this duration, the group travels in an 

uncovered area of AoI, the additional ‛coverage’ sites needed to cater this path 

(shown as red curve in figure 3-5-9) [1]: 

 
Nadd =

∑ ∆dt
t2
t1

L
 (3.5.37) 

Extending the present scenario in equation (3.5.36), we have: 



CHAPTER: PLACE-TIME COVERAGE AND CAPACITY 
__________________________________________________________________________________________________ 

115 

 |PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗⃛
g1

(t1, t2)| = Bd +  |B. 𝑙⃛||   (3.5.38) 

Where B= |S1|b is the collective capacity of the subscribers in the group g1 and ‛d’ 

is the magnitude of the distance traversed by the group. 

The RHS of equation (3.5.38) has two terms which describe the nature of the sites 

deployed in this scenario. The first term represents the temporary sites or Short 

Sites that can remain for a short time and can be removed. The second term 

represents the Length of Impact site or Long Sites as we have termed it here that 

bounds the site to be active for a considerably prolonged period.  

The capacity demand of the moving subscribers can be absorbed by these additional 

Nadd only if there PTCs match.  Therefore, 

 |PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗⃛
g1

(t1, t2)| = Cnewd  

or, 

Cnew =
|PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗⃛

g1
(t1, t2)|

d
 

(3.5.39) 

Then, the absorbable PTC by a site while traversing the coverage length L of a site 

will be [1],  

 PTCabsorb = ∆CL  (3.5.40) 

Therefore, the additional PTC in the form of reconfiguring the existing sites or 

adding new capacity sites will be [1]: 

 

Cadd = 
|PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗⃛

g1
(t1, t2)|− ∆CL|S1|

d
 (3.5.41) 

In this section, we have discussed the impact on the capacity requirements due to 

the mobility of potentially high data demanding subscribers or groups. Such 

dynamics in capacity demand may compel an NSP to expand or update the present 

network to compensate the additional demand.  The next section will discuss the 

coverage impact due to place-time dynamics of the users. The goal is to provide the 

holistic overview of the place time impact on the network dimensioning. 

3.6. THE PLACE TIME COVERAGE [2] 

The Path Loss Model (PLM) plays a key role in the planning of a site for a chosen 

AoI. The Signal propagation characteristics define the limit of the extent, to which 

the signals can be received by a receiver above its respective sensitivity that we call 
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as Coverage Area or coverage radius of sites for a particular location in AoI. 

Needless to say that every location in AoI is different, therefore, may have a 

different radio propagation environment.  

3.6.1. CONVENTIONAL COVERAGE PLANNING OF A NETWORK 

 

Figure 3-6-1: City of Mumbai, India clutter class based on propagation environment [18] 

For the analysis, the City of Mumbai, India, was chosen for the coverage planning 

strategy of an AoI (Here in the City of Mumbai). Figure 3-6-1 shows the digital 

map of the City of Mumbai, which is resolved into areas based on the propagation 

environment, also known as clutter. This classification is based on the electric 

properties of the materials that come across when a signal traverses from a 

transmitter (Tx) to a receiver (Rx) flows. The denser the medium, the harder it is for 

the signal to maintain its strength (power), which leads to a drop in the power 

strength more quickly in a Dense Urban (DU) environment than in a Urban (U) or 

Sub Urban (SU). The rate of this drop with respect to the distance from the 

transmitter is known as Path Loss (PL). The minimum power required by a 

receiving unit to perceive a signal is often called as Receive Sensitivity (RS) and, 

based on the transmit power of a Tx, the maximum PL that can prevail in a 

communication system, corresponding to a propagation environment, without 

receiver failing to detect the signal, is known as Maximum Allowed Path Loss 

(MAPL). The value of MAPL decides the maximum inter-site distances in a 

particular area and varies area to area and is useful for a Coverage Driven Network. 

Table 3-1 shows the MAPL considerations for DU, U, SU and Rural (R) areas of 
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the City of Mumbai. For a tentative projection of coverage sites, this data is fed into 

a planning tool to run prediction based on the input parameters, some of these are 

mentioned in Table 3-1. As additional information, apart from the 1 to 14 clutter 

classes that are described here in figure 3-6-1, Class 0 means the site location and 

class/code 255 means no data (both are immaterial in the present discussion).  

Table 3-1: Network Design coverage considerations for various clutter types for the City of 
Mumbai 

 

Dense Urban (DU) 

 

Urban (U) 

 

Sub-Urban (SU) 

 

Rural (R) 

The network is to be designed in such a way that the user in an indoor location can 

receive the signal above the sensitivity level of the user device. It can be seen in 

Table 3-1 that the indoor penetration and shadowing margin are the main 

contributors to the loss. The MAPL value obtained here will decide the radius of a 

cell that belongs to a particular site. With these considerations, when the planning 

tool is operated on the given digital map, it generates the site predictions so that 

there are minimum coverage sites for the maximum area covered with a probability 

of 95% and above. Figure 3-6-2 shows the site predictions and their location with 

respect to the digital map data. As we can see, the site count is higher where the 

digital map data shows DU or U areas the lowest in the vegetation and rural areas. 

This is because the indoor loss in DU is higher than any other clutter. Although 

vegetation also contributes to the path-loss, however, as the subscriber expectancy 

is negligible and the indoor loss as well, the site counts are fairly low in these areas. 

It is important to mention that COST-231 propagation model is chosen here for 

evaluating the coverage sites of the given area.  
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Figure 3-6-2: Site Predictions based on assumptions in Table 3-16[15] 

Further, based on the estimated sites, the coverage prediction of the area is also 

analysed by the tool. Figure 3-6-3 shows the coverage of the predicted sites for the 

given area. To avoid irregularities and to narrow down the operation time of the 

planning tool, the coverage is categorized into four groups namely, based on the 

clutter types DU (Best Signal Level ≥ 60.3), U (Best Signal Level ≥ 70.2), SU (Best 

Signal Level ≥ 79.0) and R (Best Signal Level ≥ 83.0). The coverage prediction is 

done considering 95% coverage probability. This means that if an area is coloured 

with Best Signal Level >=60.3 dBm, for 95% of the time, a user within this area 

will receive a signal strength equal or above 60.3 dBm. This will ensure that a user 

in an indoor environment, as described by the indoor loss value for DU clutter in 

Table 3-1, will receive the signal level at least above the receiver sensitivity 95% of 

the total time.  

The network is planned to inscribe the subscriber mobility throughout the AoI 

notwithstanding, the planned network is essentially static in nature which means 

that once the sites are deployed, they are strictly dedicated to the area surrounding 

that particular location where the site is installed. Table 3-1 is an endorsement of 

this statement as the MAPL values are essentially global within the clutter area. 

Despite being the universal method of the network deployment strategy on the 

global scale, yet, as the MNC are progressing to the new futuristic paradigm, such 

approach shall not be a viable solution in future.  

                                                           
6 Predictions obtained from Atoll®   Planning Tool  
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Figure 3-6-3: Coverage plot of the site predictions for the City of Mumbai7 [18] 

PLMs are mathematical models that are used to predict the received signal strength 

at some distance D from a Tx based on some empirically obtained reference values 

at some reference distance D0. Based on environment type and the frequency of 

operation, certain predefined PLMs are developed. As an example and as already 

been discussed in this section, the PLM that was used by the planning tool to 

predict coverage sites in the City of Mumbai is COST 231. The next subsection 

describes problems associated with this static nature of PLMs.  

3.6.2. RELATED WORKS: STATIC PATH LOSS MODELS  

Generally, a path-loss is expressed as the ratio of transmitting power to the received 

power, that is [19]: 

 
PL(a, b) =  

Pt(a)

Pr(b)
 (3.6.1) 

Where, ‛a‛ and ‛b’ are transmit and receive geographical positions respectively, 

and, PL(a, b) represents the path-loss between them.  

                                                           
7 Predictions obtained from Atoll®   Planning Tool 



SECTION: THE PLACE TIME COVERAGE [2] 
__________________________________________________________________________________________________ 

120 

The above equation can be expressed in decibel form as below: 

 Pr(dB)(b) = Pt(dB)(a) − PL(dB)(a, b)  (3.6.2) 

 

Figure 3-6-4: Path-loss Contributors with respect to the path-loss coefficient 

Figure 3-6-4 shows the path-loss contributors that collectively define a clutter type. 

Each clutter type can be represented by the Path Loss Exponent (PLE) with its 

value increasing from 2 to 5 depending upon the combined properties of materials 

which a clutter is composed of.  

The least square regression PLM can be expressed in decibels (dB) as: 

 
PL(D) = PL(D0) +  10log10 (

D

D0

)
n 

 (3.6.3) 

Where, D0 is the distance from Tx where the reference received signal of Tx is 

measured, D is the distance from Tx where the signal needs to be predicted, and 

PL(D): Total Path-loss at a distance D from Tx. For the convenience of calculations, 

D0 is usually the unit distance from a Tx.  The PLE, being the clutter indicator, takes 

an appropriate value from the empirically obtained list. Usually, PLE takes values 

such as n=2 (free space) which increases to 3 for flat rural, 3.5 for rolling rural, 4 

for SU, 4.5 for U and, 5 for DU. Although PLE has a very limited domain varying 

from 2-5 or 6, yet being an exponent, the slight variation may lead to significant 

impact.   

Popular PLMs  

(i) Friis PLM [19]: 

This PLM considers the loss in the signal strength due to the dissipation of energy 

in the free space and is often formulated as: 
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 Pr

Pt

= GtGr (
λ

4πD
)

2

 
(3.6.4) 

Where, 

 λ: Operating Carrier Wavelength of the signal,  

 Tx : Antenna of the Transmitting Module, 

 Rx : Antenna of the Receiving Module, 

 Pt : Power Transmitted from a Tx, 

 Pr : Power Received by a Rx, 

 Gt : Gain of Tx, 

 Gr : Gain of Rx, 

 

Considering the antenna gains as unity, i.e. Gt=Gr=1, from equations (3.6.2) and 

(3.6.4), we have: 

 
PLfriis(D) = PLFS(D) = (

4πD

λ
)

 

2

 (3.6.5) 

This is a non-decibel form of the PLM equation, and the decibel form can be 

derived by using 10log10(.) operator on either side. The other PLMs discussed 

below are in decibel form. 

(ii) Okumura-Hata PLM [19]: 

This is a very popular model for most of the Terrestrial Mobile Communication 

planning, and its formula is as per given below: 

 
PLOH =  69.55 − 26.16log10(f) −  13.82log10 (

ht

h0

) − CH

+ [44.9 − 6.55log10 (
ht

h0

)] log10 (
D

D0

) + Aα  
(3.6.6) 

Where, CH = 0.8 + [1.1 log10(f) − 0.7]hmt − 1.56log10(f)  

For smaller cities, and,  

 CH = {
  3.2(log10(11.75hm))

2
−4.97,   if 200≤f≤1500

  8.29(log10(1.54hm))2−1.1,   if 150≤f≤200
  

For large cities  
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(iii) Cost-231 Hata PLM [19]: 

This is again a popular model and is well suited for 1.5-2 GHz and is as per below. 

 PLcost231 = 46.3 + 33.9log10(f) − 13.82log10(ht) − a(hr)
+ [44.9 − 6.55log10(ht)]log10(D) + C 

(3.6.7) 

Where, 𝑎(ℎ𝑟) = (1.1𝑙𝑜𝑔10(𝑓) − 0.7)ℎ𝑟−(1.56𝑙𝑜𝑔10𝑓 − 0.8)  

and, 

 Tx / Rx: Antenna of the Transmitting/ Receiving Module, 

 D: Distance between Tx and Rx, 

 Pt / Pr : Power Transmitted / Received from/by a Tx/Rx, 

 Gt/ Gr : Antenna gain of Tx/Rx, 

 Aα: Area adjustment factor, 

 CH: Receiver antenna height correction factor, 

and, the parameters in Table 3-2 below. 

Table 3-2: Common PLM parameters between Okumura-Hata and Cost 231with different 
values 

Parameter Okumura-

Hata 

Cost 231 

f : Operating Carrier frequency of the signal 150≤ f≤ 1500 1500 ≤f≤2000 

ht : Height of Tx (BS) with respect to ground 20-200 20-200 

hr : Height of Rx (MS) with respect to ground 1-1.5m 1-1.5m 

h0 :  BS antenna height (length)  1m 1m 

C: Receiver antenna height correction factor CH C = {3 for>𝑈
0 for SU 

 

These PLMs are commonly used by planning tools at an industrial level to predict 

the site count and positions of any geographical portion. It can be seen from all 

three examples that the factors that account for the dynamics in PLMs are the 

operational frequency f, the antenna heights of both the BS and the MS, ht and hr 

etc. It may be seen from Table 3-2, that ht is the height of Tx (BS) with respect to 

ground and hr is the height of Rx (MS) with respect to ground. These parameters are 

essentially uniform and predominantly unchangeable during the certain course of 

time. Therefore, the Place-Time events are unaccounted for, while planning a 

network. Of course, with a large coverage radius (> 250m to a few kilometers), high 

site counts, especially in a metro city like Mumbai (India), and with the current 

voice-oriented communication technologies, the Place-Time events are often 

insignificant. However, for a throughput sensitive demand, this can lead to a 
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scorching situation. The next subsection will discuss the dynamics in a PLM due in 

a Place-Time event. 

3.6.3.   DYNAMIC PATH LOSS MODEL [2] 

 

Figure 3-6-5: Dynamics in Path-loss Model (PLM) 

The dilemma of a Static Network Design: Let us assume the scenario as described 

in figure 3-6-5 where the Tx and Rx are separated by distance D1. Therefore, as 

discussed in section 3.6.2, an observer with a receiving antenna at O will obtain a 

signal level as per equation 3.6.1 as rewritten below [20] [21] [22] [23]: 

 
PL(D1) = PL(D0) +  10log10 (

D1

D0

)
n 

= PL(D0) +  10nlog10 (
D1

D0

)
 

 (3.6.8) 

Let us also assume that this observer is continuously observing the received signal 

for a considerable period of time, say during the interval (t1, t2). Therefore, any 

discrete change during this period in the observed signal levels can be expressed as: 

 
∆PL(D1)|t1

t2 = ∆PL(D0)|t1
t2 + ∆10nlog10 (

D1

D0

) |t1
t2

 

 (3.6.9) 

Where, ∆ signifies a discreet change in the observed values. 

In our previous discussion, we have considered the network environment to remain 

unchanged at every instance of time.  Extending this assumption to the present 

scenario, we may assume that all relevant physical parameters would remain 

unchanged for the present discussion. This means that there will be no change in the 

observed values and, Right Hand Side (RHS) of equation (3.6.9) reduces to zero 

and therefore: 
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 ∆PL(D0)|t1
t2 = 0  

and, 
∆10nlog10 (

D1

D0

) |t1
t2 = 0  (3.6.10) 

From equations (3.6.8), (3.6.9) and (3.6.10) we have: 

 ∆PL(D1)|t1
t2 = 0   (3.6.11) 

It can be seen from equation (3.6.11) that for the presumably static environment the 

observed values must be unchanged. Hence, as per assumptions, the observer (user) 

will not experience any change in path. Nonetheless, this is a hypothetical truth and, 

in reality, users do experience the variations in the signal levels. Although, long 

term and short term fadings are incorporated in evaluating the losses, yet, they are 

limited to the individual mobility of the user.  

Dynamic PLM: Assuming that the user is strictly static at a distance D from Tx, we 

can incorporate the variation by negating equation (3.6.11) as: 

 ∆PL(D1)|t1
t2 ≠ 0    (3.6.12) 

Rewriting equation (3.6.12) in its normal form, we have: 

 
PL̿̿̿̿ (D1) = PL̿̿̿̿ (D0) (

D1

D0

)
n 

 (3.6.13) 

Where, the accent indicates the path-loss in non-decibel format. From equation 

(3.6.5), we have the value of  PL̿̿̿̿ (D0) as mentioned in equation below where, 

 
PL̿̿̿̿ (D0) = (

4πD0

λ
)

 

2

 (3.6.14) 

As per assumption, this is a scenario when the received signal has traversed through 

the static environment as modeled by a static PLM mention in equation (3.6.13).  

Firstly, let us assume that the environmental conditions are stagnant during the 

period of observation which holds equation (3.6.11) true. As a next step, let the 

medium between Tx and Rx densify in small increments of a material m that is 

entering into the medium. This m can be any material or object including human 

beings. Therefore, the static path which previously had invariable environment will 

now react to the incremental change in the material property of the medium. As the 

medium densifies or rarifies in steps of m, the propagation behaviour will also 
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change. Hence, now, the static expression of the medium modifies to a place and 

time dependent entity and the path-loss behaviour of medium depends on the rate 

with which m changes and the position that it acquires in the AoI. 

This Place-Time dependency is incorporated here in this chapter by modifying 

equation (3.6.14) to a place and time varying entity shown in equation below as: 

 
PL̿̿̿̿

ω(D, p, t) =  PL̿̿̿̿ (D0) (
D

D0

)
n+NAR(m,p,t)

 (3.6.15) 

Where NAR is the Augmented Repercussive Exponent and is the function of time, 

position, and properties of the material of the changing medium. The constant n is 

not absorbed in NAR to indicate that the observation is made at a point D, and it is 

different from the reference point. As NAR is dependent on certain parameters, 

therefore, the variation of NAR w.r.t time can be written as: 

 d

dt
[NAR(m, p, t)] =  

d

dt
[NAR] [

d

dt
(m) + 

d

dt
(p)]   

Which yields, 

 d

dt
[NAR(m, p, t)] =  NAR̂ [p(t)

d

dt
(m) +  m(t)

d

dt
(p)]  (3.6.16) 

The second term in RHS of equation (3.6.16), p(t)
d

dt
(m), represents the change in 

the material properties with time for a position p(t). This means that if the property 

of the material changes with time rather than with the position, this term will be 

determining. Similarly, the third term m(t)
d

dt
(p) is considered when the change in 

the medium is due to a positional disturbance of a material.  

Let, 
d

dt
(m) = ρm  

and, 
d

dt
(p) = vm (3.6.17) 

Where m is the material property and vm is the velocity of the incremental m. For 

a three-dimensional space, it is possible that a material may show polymorphism. 

Therefore, equation (3.6.17) will transform into a Cartesian expression as per 

below: 

 d

dt
(m) = ρ

mx

dx

dt
+  ρ

my

dy

dt
+ ρ

mz

dz

dt
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and, similarly,  

 d

dt
(p) = vmx

dx

dt
+ vmy

dy

dt
+ vmz

dz

dt
 (3.6.18) 

From equation (3.6.15), we have: 

 
PL̿̿̿̿

ω(D, p, t) =  PL̿̿̿̿ (D0) (
D

D0

)
n+NAR(m,p,t)

  

or, PL̿̿̿̿
ω(D, p, t) =  PL̿̿̿̿ (D0) (

D

D0

)
n

(
D

D0

)
NAR(m,p,t)

  

or, and from equation (3.6.13), we have: 

 PL̿̿̿̿
ω(D, p, t) =  PL̿̿̿̿ (D) (

D

D0

)
NAR(m,p,t)

 (3.6.19) 

Therefore, 

 d

dt
PL̿̿̿̿

ω(D, p, t) =
d

dt
 PL̿̿̿̿ (D) (

D

D0

)
NAR(m,p,t)

  

or, d

dt
PL̿̿̿̿

ω(D, p, t) = PL̿̿̿̿ (D)
d

dt
 (

D

D0

)
NAR(m,p,t)

  

or, d

dt
PL̿̿̿̿

ω(D, p, t) = PL̿̿̿̿ (D)
d

dt
 (

D

D0

)
NAR

 (3.6.20) 

It is already known that: 

 d

dx
(ax) =

ax

loge(a)
 (3.6.21) 

and, d

dx
f(y) =

d

dy
f(y)

dy

dx
 (3.6.22) 

Therefore, joining equations (3.6.20), (3.6.21) and (3.6.22), would give: 
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d

dt
PL̿̿̿̿

ω =
PL̿̿̿̿ (D) (

D
D0

)
NAR

loge (
D
D0

)

d

dt
(NAR)  

or, and from equation (3.6.16), we have: 

 
d

dt
PL̿̿̿̿

ω =
PL̿̿̿̿ (D) (

D
D0

)
NAR

loge (
D
D0

)
NAR̂ [p(t)

d

dt
(m) +  m(t)

d

dt
(p)]  (3.6.23) 

Replacing (3.6.17) in (3.6.23) we have: 

 
d

dt
PL̿̿̿̿

ω =
PL̿̿̿̿ (D) (

D
D0

)
NAR

loge (
D
D0

)
NAR̂[p(t)ρ

m
+  m(t)vm]   

or,  PL̿̿̿̿
ω

̂ =
PL̿̿̿̿ (D) (

D
D0

)
NAR

loge (
D
D0

)
NAR̂[p(t)ρ

m
+  m(t)vm] (3.6.24) 

Or, when expressed in dB, equation (3.6.24) yields: 

PLω̂ = PL̃(D) +  10 NARlog10 (
D

D0

) + 10log10NAR̂[p(t)ρ
m

+  m(t)vm] (3.6.25) 

 

Where the reference power ratio PL̃ =
𝑃𝐿(𝐷)

loge(
D

D0
)
 ; and, similarly, the decibel 

expression of equation (3.6.15) yields: 

PLω(D, p, t) =  PL(D0) + 10 nlog10 (
D

D0

) + 10 NARlog10 (
D

D0

)   

or,  PLω(D, p, t) =  PL(D) + 10 NARlog10 (
D

D0

)  (3.6.26) 

 

Equation (3.6.24) is the time differential form of equation (3.6.26). 



SECTION: OSTENTATIOUS PROBABILITY DENSITY FUNCTION 
__________________________________________________________________________________________________ 

128 

Both equations, (3.6.25) and (3.6.26) can be understood as: the PLM of a radio 

environment contains two factors, one (which are the first terms in both equations) 

that represents the loss due to composition, although static, of the medium and 

another (which are the terms other than the first term) represent the change in the 

environmental behaviour due to dynamics of some or all composition within the 

environment.   

Hence, it can be seen that the Position and Time of a material can impact the 

propagation characteristics of a seemingly static environment. Although, some 

cushion is provided to compensate the real-time variations in the network but that is 

not optimal, and it will be discussed in the next section. As, the path-loss of an 

environment decides the coverage radius of a cell, this kind of phenomenon where 

the radio environment of a channel is affected with time and position of the type of 

material (dielectric compositions) in the propagation path is termed here as Place 

Time Coverage (PTCo).  

3.7. OSTENTATIOUS PROBABILITY DENSITY FUNCTION 

In section 3.2.5 of Appendix 3.2, provides details about the Gaussian probability 

distribution function for the unostentatious events. In this section, the 

ostentatiousness in the PDF that may alter the smooth bell-shaped curve of a PDF 

into a time-based pattern is discussed. The PDF, as discussed in section 3.2.5 

predicts the probability of an output (such as the arrival of a signal value) of a 

biased probability in which the output inclines towards a median value (such as the 

center of an antenna lobe). Therefore, in this section, the change in the 

predictability of an event with time is endorsed to elaborate the PDF in a time and 

place domain. 

Let us assume that an experiment is sampled at a point P which is inclined to a 

median value μ with deviation σ, as shown in figure 3-7-1. The experiment may be 

an arrival of a signal or an arrow that was slinged from a bow. For all such 

unsotetatious experiments, the PDF can be described as (see, equation 3.2.8): 

 
fR(r) =

1

√2π σ
e

[−
(r−μ)2

2σ2 ]
 (3.7.1) 

Where ‛r’ is the domain of a Random Variable R. This equation describes the 

probability of finding a sample at a certain distance and inclining to a certain value. 

Plotting all the probabilities will generate a bell-shaped PDF as shown in figure 3-

7-1. 
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Figure 3-7-1: Sampling an outcome at a point A 

Let, in equation (3.7.1), f(r) be the probability of finding a user at a point P with the 

median at a point ‛O’ which describes the point of interest, say an idol of Lord 

Ganpati, of all the users in that area.  However, this event is not flat in the time 

domain and the subscribers, being an itinerant entity, tend to move closer or away 

from the point of interest. Also, for every time instant, the location of a subscriber 

may be at the different position for the same time instant. Similarly, the point of 

interest that is situated at ‛O’ may also change its position with time and may attain 

different positions for same time stamps. Therefore, both standard deviation ‘σ’ and 

mean ‘μ’ are the time and place dependent functions. 

This means that the same PDF f(r) would have appeared differently in the present 

time under different circumstances. Therefore, having a PDF for an experiment 

itself is a matter of chance. The same thing is applicable for any future moment. 

Nonetheless, if this would have been an unostentatious event, then the PDF in 

equation 3.7.1 would yield: 

 d

dt
 fR(r) =  0 (3.7.2) 

However, for f(r) behaving ostentatiously, we have: 

 

fR(r, p, t) =  
1

σ(p, t)√2π
e

[−
(r−μ(p,t))

2

2σ(p,t)2
]

 (3.7.3) 
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or, fR(r, p, t) =  
1

σ⃛√2π
e
[−

(r−μ⃛)2

2σ⃛2 ]
 (3.7.4) 

Where,  σ⃛ and μ⃛ represents the Place-Time format of and respectively. 

Differentiating equation (3.7.4) in place and time: 

 d

dt
(

d

dp
 fR) =  

d

dt
(

d

dp
[

1

σ⃛√2π
e
[−

(r−μ⃛)2

2σ⃛
2 ]

]) (3.7.5) 

Let,  A(p) =  
1

σ⃛√2π
e

[−
(r−μ⃛)2

2σ⃛2 ]
,  σ⃛ = w, and, μ⃛ = v  

Then, A(p) =  
1

w√2π
e
[−

(r−v)2

2w2 ]
  (3.7.6) 

Therefore, 

 
d

dt
A(p) =  

d

dt
[

1

w√2π
e

[−
(r−v)2

2w2 ]
]  

or, A′(p) =  
1

w√2π

d

dt
[e

[−
(r−v)2

2w2 ]
] + e

[−
(r−v)2

2w2 ] d

dt
[

1

w√2π
 ] 

or, A′(p) =  
1

w√2π
e

[−
(r−v)2

2w2 ] d

dt
[−

(r − v)2

2w2
] + e

[−
(r−v)2

2w2 ] d

dt
[

−w′

w2√2π
 ] 

or,  A′(p) =  −
1

w√2π
e

[−
(r−v)2

2w2 ]
[
d

dt
{
(r − v)2

2w2
} +

w′

w
] 

or, A′(p) =  −
1

w√2π
e

[−
(r−v)2

2w2 ]
[
2(r − v)(−v′)w2 − (r − v)2(2w)w′

2w4
+

w′

w
] 

or, A′(p) =  −
1

w√2π
e

[−
(r−v)2

2w2 ]
[
(r − v)(−v′)w2 − (r − v)2(w)w′

w4
+

w′

w
] 

 

 

or, 
A′(p) =  

(r − v)

w√2π
e

[−
(r−v)2

2w2 ]
[
(v′)(w2) + (r − v)(w)(w′)

w3
+

w′

w
] 

(3.7.7) 
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Substituting (3.7.6) in (3.7.7), we have: 

 A′(p) =  A(p)(r − v) [
(v′)(w2) + (r − v)(w)(w′)

w3
+

w′

w
] (3.7.8) 

 

Now let, 

 B =  A′ (3.7.9) 

Therefore,  

 d

dt
B =  

d

dt
A′ (3.7.10) 

Substituting A’ from (3.7.8) in (3.7.10), we have: 

 d

dt
B =  

d

dt
{A(t)(r − v) [

(v′)(w2) + (r − v)(w)(w′)

w3
+

w′

w
]}  

or, 
B′ = 

d

dt
{A(t)(r − v) [

(v′)(w2) + (r − v)(w)(w′)

w3
+

w′

w
]} (3.7.11) 

Let, 

 
G(t) = (r − v) [

(v′)(w2) + (r − v)(w)(w′)

w3
+

w′

w
] (3.7.12) 

When differentiated with position and, 

 
H(t) = (r − v) [

(v∗)(w2) + (r − v)(w)(w∗)

w3
+

w∗

w
] (3.7.13) 

When differentiated with time.  

Therefore, from equations (3.7.11) and (3.7.12), we have: 

 
B′ =  

d

dt
{A(t)G(t)}  

or,  
B′ =  G(t)

d

dt
A(t) + A(t)

d

dt
G(t) 
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or,  B′ =  G(t)A′(t) + A(t)G′(t)  (3.7.14) 

 

Interpreting (3.7.7) in terms of time, and substituting with (3.7.13), we have: 

 A′(t) =  A(t)H(t) (3.7.15) 

Therefore, from (3.7.14) and (3.7.15), we have: 

 B′ =  G(t)A(t)H(t) + A(t)G′(t)  

or, B′ =  A(t){G(t)H(t) + G′(t) } (3.7.16) 

From equations (3.7.16) in (3.7.5), we have: 

 d

dt
(

d

dp
 fR) = A{GH + G′(t) }   

or,  𝑈(𝑓𝑅) = A{GH + G′(t) }  (3.7.17) 

When place and time are independent parameters, then equation (3.7.8) is the rate at 

which the PDF varies with either place or time, that is: 

  
Q(fR) =

d

dp
fR = AG 

 
(3.7.18) 

for a change due to the position, and, 

  
T(fR) =

d

dt
fR = AH 

 
(3.7.19) 

for a change due to time, and, equation (3.7.17) is the influence of one parameter on 

the rate with respect to another.  In case, these two parameters are related (as for 

most of the cases), equations are complemented with the derivatives of other entity 

such as: 

  
T(fR) = AH

dp

dt
= AHϑ 

 
(3.7.20) 

 

and,  
U(fR) = A{GH + G′(t) }  

dp

dt
= A{GH + G′(t) }ϑ 

 (3.7.21) 
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Where, ϑ is the velocity with which the stimulant is moving in space (place). 

3.8. ANALYSIS OF PTC IN THE NETWORK DEPLOYMENT 

Referring to figure 3-8-1, let us consider that a network has to be planned where, 

(i) there is only one subscriber in the network, 

(ii) the subscriber needs carriers/ Subcarriers to satisfy its capacity demand, 

(iii) the subscriber transit from point A to B and vice versa (considering A as 

home and B as the workplace) through various paths and, APB, AQB, and 

ARB are three of them, 

(iv) each site has a cell radius of   

(v)  is the total carriers required by the network to satisfy subscriber needs. 

 

Figure 3-8-1: A conventional deployment scenario 

Then, with conventional strategy, the network will be planned as follows: 

(A) Phase 1: Initially, the sites are deployed where the subscriber spends a 

considerable duration of time. This initial deployment is what is discussed 

in section 1.1 of this thesis as Green Phase. 

(i) In this case, Point A and B are such locations and the sites are 

deployed at both locations.   

(ii) Then, these sites are allocated with carriers grouped as (carrier 

group A) CG-A and CG-B. Such that, | CG-A| = |CG-B| = . Where, |.| 

operator denotes the number of elements of a set. 
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Ideally, to avoid co-channel interference, {CG-A} and {CG-B} should be distinct 

or orthogonally separated[15]. For the present discussion, let us consider the prior 

condition, that is: 

 {CG-A} ∩ {CG-B} =  (3.8.1) 

Therefore,  = 2 (3.8.2) 

(B) Phase 2: The intermediate paths that are traversed by the subscriber are 

now addressed. 

(i) There is a need for a new site the moment subscriber crosses the 

distance  from the center of serving the site. The new site is deployed 

in such a way that inter-site distance is 2.  

(ii) Starting from point A, the next site position is either of p1, q1 or r1 if 

subscriber follows either of AQB, APB or ARB respectively.   

(iii) Step (A-ii) is followed to allocate carriers to this new site and 

therefore, from equations (3.8.1) and (3.8.2), we have: 

 {CG-A} ∩ {CG-p1} =  (3.8.3) 

and,  = 3 (3.8.4) 

(iv) As, sites at position p1, q1 and r1 are neighbours to A and, to each 

other as well therefore, the condition of (B-iii) also applies here. 

Hence, 

  {CG-A} ∩ {CG-p1}∩ {CG-q1}∩ {CG-r1}   =  (3.8.5) 

and,  = 5 (3.8.6) 

(v) Assuming that the service provider is extremely pessimist about the 

spectrum, the next sites can be planned by allocating the same CGs 

among the sites such that no CG of same carrier sets is an immediate 

neighbour to each other. Such as: 

   {CG-q2} = {CG-A}; {CG-r2} = {CG-q1};  

 {CG-q2} = {CG-r1} (3.8.7) 

and,  = 5 (3.8.8) 

(vi) Steps (B-iv) and (B-v) can be repeated for covering all the paths 

where the service provider ever needs to deploy a site to cater the 

subscriber mobility.  
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(vii) While performing step (B-vi), in case the permutations of CGs are 

exhausted, then more spectrum demand is raised. Thus, for a 

completely  planned network,  

Let,  = C (3.8.9) 

 Ru= √C, (3.8.10) 

and, =
𝐴𝐴𝑜𝐼

𝜆
 (3.8.11) 

Where, C is the cluster size of the network that is repeated across the 

entire network to form a Honey Comb-like cellular structure, Ru is the 

reuse distance[24], and,  is the number of sites in the network of area 

AAoI. 

Such sites, as discussed in Chapter 1 of this thesis, are the Coverage Sites and are 

intended to provide mobility to the subscriber.  

(C) Phase 3: The above two steps involve only single subscriber. Now 

considering that one more subscriber adds up in the network, depending 

upon the condition, two situations arise: 

(i) BSs of each site still have the capacity to add  more carriers, then, 

equation (3.8.9), would yield: 

  = 2Cfor 2 subscribers  

or,  = SCfor  Ssubscribers (3.8.12) 

while, Ru= √C  (3.8.13) 

and, =
𝐴𝐴𝑜𝐼

𝜆
 (3.8.14) 

(ii) One or more sites of the network are saturated, and BSs cannot 

accommodate more carriers. Therefore, more sites are required to 

compensate the demand. Hence, extending the equations from (3.8.12) 

to (3.8.14) to incorporate more subscribers, we have: 

  = SCfor  Ssubscribers (3.8.15) 

while, Ru= √C  (3.8.16) 

and, =  (3.8.17) 
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Where,  is the maximum BS capacity, Cis the cluster size in the capacity 

scenario and, is the total sites in the capacity network. It is quite inevitable that 

the cluster size may change due to the intrusion of more sites within the 2inter-

site) distance and number of sites in the network now depend on the capacity of the 

network; and hence,this is the capacity phase of the network. 

3.8.1. OSTENTATIONS CARRIER UTILISATION: A MARKOV PROCESS 

Now, we analyze the carrier utilization in an ostentanious network. This section 

highlights the problem of underutilization of channels due to the PTC impact.  

 

Figure 3-8-2: State transition diagram for Phase 1 

Referring to the discussion in (A) of this subsection let, at any instant of time,  

(i) The probability that the single subscriber stays at home or point A is 

(ii) The probability that the single subscriber stays at workplace or point B is 

Then, considering that the subscriber initially traverses only these two 

locations, and that 

(iii) The probabilities of the subscriber transiting from A to B and from B to A 

will be 1- and 1-  respectively [25]. 

Let us describe the above scenario with state transition diagram as shown in figure 

3-8-2. The transition probability matrix notation is ( Using Markov Process) [26] 

[27]: 

 
PΨ(S = 1) [

μ 1 − μ
1 − φ φ

] (3.8.18) 

Therefore, to obtain the Eigen values, let, 

 det( P - (3.8.19) 

BA

PTC (a, b)


1-

1-


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That yields, -1--1 = 0  

or, 1and-1 (3.8.20) 

Roots of  are the Eigen values of P (for a single subscriber) that are 1 and 

-1Hence, using similarity transformation, Pcan be written as [28] [27]: 

 PΨ(S = 1) = M [
1 0
0 μ + φ − 1

]M−1 (3.8.21) 

Where, M is the Eigen vector matrix. 

And therefore, for the probability of a subscriber staying at point A after n iterations 

can be written as[25] [29] [30]:  

 Pn
ΨAA(S = 1) = α +  β(μ + φ − 1)n (3.8.22) 

Where  and are arbitrary values

From our assumptions, we know that,  

(i) Pn=0
=1; as there is no transition, so it is still an absorbing state. 

(ii) Pn=1
=; the probability of subscriber staying at A after the first iteration 

(see, figure 3-5-2). 

Putting these value sets of n and Pn
Y in equation (3.8.22), we have 

 α +  β(μ + φ − 1)n=0=1; or, α +  β = 1 (3.8.23) 

and, α +  β(μ + φ − 1)n=1= ;   

or,  α +  β(μ + φ − 1)=  (3.8.24) 

Solving equations (3.8.23) and (3.8.24), for and , we have: 

 
α =  

φ − 1

μ + φ − 2
 (3.8.25) 

and, 
β =  

μ − 1

μ + φ − 2
 (3.8.26) 

And therefore, substituting (3.8.25) and (3.8.26) in (3.8.22), we have: 
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Pn
ΨAA(S = 1) =

φ − 1

μ + φ − 2
+ 

μ − 1

μ + φ − 2
(μ + φ − 1)n (3.8.27) 

Similarly, the other state transitions can be calculated to obtain:  

Pn
Ψ(S = 1) =

[
 
 
 

φ − 1

μ + φ − 2
+ 

μ − 1

μ + φ − 2
Λn

μ − 1

μ + φ − 2
−

μ − 1

μ + φ − 2
Λn

φ − 1

μ + φ − 2
− 

φ − 1

μ + φ − 2
Λn

μ − 1

μ + φ − 2
+

φ − 1

μ + φ − 2
Λn

]
 
 
 

 (3.8.28) 

Where, -1

Extracting the matrix in (3.8.28) according to transitions, we have: 

Pn
ΨAA(S = 1) =

φ − 1

μ + φ − 2
+ 

μ − 1

μ + φ − 2
(μ + φ − 1)n (3.8.29) 

Pn
ΨBB(S = 1) =

μ − 1

μ + φ − 2
+

φ − 1

μ + φ − 2
(μ + φ − 1)n (3.8.30) 

Pn
ΨAB(S = 1) =

μ − 1

μ + φ − 2
−

μ − 1

μ + φ − 2
(μ + φ − 1)n (3.8.31) 

Pn
ΨBA(S = 1) =

φ − 1

μ + φ − 2
− 

φ − 1

μ + φ − 2
(μ + φ − 1)n (3.8.32) 

Pn
AA and Pn

BB, as in equations (3.8.29) and (3.8.30) respectively, are the 

probabilities of the subscriber retaining the same position (A and B) and similarly, 

Pn
AB and Pn

BA are the probabilities of the subscriber transiting from A to B and B 

to A respectively, as in equations (3.8.31) and (3.8.32).  

Referring to section 3.5, we can say that, equations (3.8.29) and (3.8.30) are the 

probabilities that a subscriber would demand capacity due to the time that the 

subscriber has spent at a point, and similarly, equations (3.8.31) and (3.8.32) 

describe the probabilities of PTC due to the transit in positions and time. Revisiting 

figure 3-8-2, we can say that the probability of the subscriber acquiring any state is 

always 1, as ultimately, the subscriber will choose whether to say at the same point 

of the move. Therefore, according to equation (3.5.36) and replacing b with  the 

PTC ratio, after n iterations, can be formulated as: 

PTC⏞
S (tA1, tA2) =  
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Sξ(P⃗⃗ ⃛S(t)|tA1

tA2) [
μ−1

μ+φ−2
−

μ−1

μ+φ−2
(μ + φ − 1)n] +  Sξ [

φ−1

μ+φ−2
+ 

μ−1

μ+φ−2
(μ + φ − 1)n] 

For the position A and, (3.8.33) 

PTC⏞
S (tB1, tB2) =  

Sξ(P⃗⃗ ⃛S(t)|tB1

tB2) [
φ−1

μ+φ−2
− 

φ−1

μ+φ−2
(μ + φ − 1)n] +  Sξ [

μ−1

μ+φ−2
+

φ−1

μ+φ−2
(μ + φ − 1)n] 

For the Position B, where accent shows the weighted PTC. (3.8.34) 

Being probabilities, both 0 ≤ and  ≤ 1 

Therefore, considering both and are non-absorbing states, -11, then, for 

a large n (iteration), we can say that  

lim
𝑛→∞

(𝜇 + 𝜑 − 1)𝑛 ≅ 0 (3.8.35) 

Also, as we have assumed that the subscriber transits linearly and smoothly from A 

to B or B to A, therefore, 

 |P⃗⃗  ⃛⃗S(t)|tA1

tA2| = 𝑑 = distance between A and B (3.8.36) 

Accommodating (3.8.35) and (3.8.36) in (3.8.33) and (3.8.34), we have, for large 

number of steps (iterations), 

 PTC⏞
S (A) =  Sξd [

μ−1

μ+φ−2
] +  Sξ [

φ−1

μ+φ−2
 ] (3.8.37) 

 PTC⏞
S (B) =  Sξd [

φ−1

μ+φ−2
] +  Sξ [

μ−1

μ+φ−2
] (3.8.38) 

 

For the single subscriber, S=1; hence, the above equations reduce to:  

 PTC⏞
1 (A) =  ξd [

μ−1

μ+φ−2
] +  ξ [

φ−1

μ+φ−2
 ] (3.8.39) 

 PTC⏞
1 (B) =  ξd [

φ−1

μ+φ−2
] +  ξ [

μ−1

μ+φ−2
] (3.8.40) 

Assuming that the subscriber likes to stay more at the native position, and tend to 

transit less, then, when subscriber is at position A, we can say that, 1
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So, for equation (3.8.39), we can say that, 

 PTC⏞
1 (A) =  ξd [

μ−1≅0

μ+φ−2
] +  ξ [

φ−1

μ−1≅0+φ−1
≅

φ−1

φ−1
]  

or, PTC⏞
1 (A) =  ξd [≅ 0] +  ξ[≅ 1 ]; for a single subscriber  

or, PTC⏞
S (A) =  Sξd [≅ 0] +  𝑆ξ[≅ 1 ]; for S>>1 subscribers (3.8.41) 

Equation (3.8.36) points out that in the case, when the subscriber tends to spend 

more time at destinations rather than traveling, then, during a course of time, the 

effective capacity demand converges to the point A and B than the transit path. 

Therefore, referring to figure 3-8-1, we can say that all sites that are deployed to 

cater for the subscriber mobility, i.e. sites at p1, p2, p3, till r5 (excluding A or B, 

depending on the place of retention), have very less contribution in capacity 

absorption. This situation is deeper when the subscribers accumulate in groups. 

Therefore, from equations (3.8.15) and (3.8.41), we can say that the percentage 

carrier utilization dedicated for states other than self-retention at position A is 

u(A)*100, where u(A) is: 

 u (A) = [
μ−1

μ+φ−2
 ] (3.8.42) 

And similarly, u (B) = [
φ−1

μ+φ−2
 ] (3.8.43) 

Figures 3-8-3 and 3-8-4 describe the resource utilization pattern as formulated in 

equations (3.8.39) and (3.8.40). Referring to points 1, 2, and 3 in figure 3-8-4, we 

can see that with a high value of , the resource utilization is fairly low even with 

the increase in the value of . Therefore, the resource abundance with respect to 

the subscriber priority will be the probability of subscriber NOT retaining the 

position A, and is formulated as: 

 UR (A) = ( -[
φ−1

μ+φ−2
 ] (3.8.44) 
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Figure 3-8-3: Resource utilisation pattern by a subscriber with position 'A' as homing 
location 

 

 

Figure 3-8-4: Resource utilisation pattern with some values of mu ( and phi (

Where, UR(.) is defined as the resource abundance ratio with respect to the 

position A and  is the total spectrum demand in deploying the network (see, figure 

3-8-1). As subscriber at point A is using  channels, hence they are subtracted from 

the total carrier count in equation (3.8.39). Therefore, the percentage utilization ‘u’, 
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as mentioned in (3.8.39), is negligible and, assuming that >> , spectrum 

utilization per subscriber is very low. 

3.8.2. OSTENTATIOUS CARRIER UTILISATION IN THE EFFECT OF PTC  

Section 3.8.1 may be a seemingly conflicting discussion as the argument may be 

that while the network is serving the subscriber at point A, it also serves another 

subscriber at point B. In that case, the network utilization is much larger than what 

is expressed by equation (3.8.41). This is valid while the subscribers are separated 

by either place and time or, both. So, when there are two subscribers having 

affinities to positions A and B respectively, then, when both subscribers are not 

moving, the resource utilization in the above case will be much higher (ideally, 100 

percent).  

However, as discussed in sections 3.5.3 and 3.5.4, the severity arises when the 

subscribers meet at common interests (locations serving the specific needs). From 

section 3.8.1, we have, for a long succession, the respective transition matrix for 

both subscribers will be (see, equation 3.8.28): 

Pn
Ψ(X, A) =

[
 
 
 

φX − 1

μX + φX − 2
(𝐴𝐴)

μX − 1

μX + φX − 2
(𝐴𝐵)

φX − 1

μX + φX − 2
(𝐵𝐴)

μX − 1

μX + φX − 2
(𝐵𝐵)

]
 
 
 

 (3.8.45) 

Pn
Ψ(Y, A) =

[
 
 
 

φY − 1

μY + φY − 2
(AA)

μY − 1

μY + φY − 2
(AB)

φY − 1

μY + φY − 2
(BA)

μY − 1

μY + φY − 2
(BB)

]
 
 
 

 (3.8.46) 

In equation (3.8.28), there was only one stimulant; therefore, probabilities of A and 

B were independent. However, in present case, there are two stimulants and both 

can exist either at A or B, Hence, being at A and B are now not exclusive and the 

new sample space for X will be the product of outcomes given below as [31]: 

SS(X,Y|S=2) =∑ Xij
i,j,k,l=2
i,j,k,l=1  Ykl 

= 4(φX − 1)(φY − 1) + 4(φX − 1)(μY − 1) + 4(φY − 1)(μX − 1) 

+4(μX − 1)(μY − 1) (3.8.47) 

Where, the bar above X and Y indicates the numerator of the vector value. The 

probability of such two variables (subscribers), X and Y at position A, creating a 

wobble can be formulated as: 
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When X and Y gather at A, 

P(X, Y| A) = P(X|A)* P(Y|B’) + P(Y| A)* P(X| B’) + P(X| A)* P(Y| A)   

Or simply, = {P(X|A)+ P(X|B’)}* {P(Y|A)+ P(Y|B’)}- P(X|B’)* P(Y|B’) 

And, when subs transit together, 

P(X, Y| A’) = P(X| A’) * P(Y| B’)+ P(Y| A’)* P(X| B’)+ P(X| A’) *{P(Y| A’) 

Or simply, = {P(X|A’)+ P(X|B’)}* {P(Y|A’)+ P(Y|B’)}- P(X|B’)* P(Y|B’) 

Where, 

 P(is the probability when subscriber  is at ,

 P(’is the probability when the subscriber  is not at , 

 P(is the probability when subscriber  and is at ,

 P(’is the probability when subscriber  and is not at , and, 

 Variables and  can be X or Y and  can be A or B. 

So, P(X,Y| A) =  

φX − 1

SS(X, Y)
∗

φY − 1

SS(X, Y)
+

φY − 1

SS(X, Y)
∗

φX − 1

S(X, Y)
+

φX − 1

S(X, Y)
∗

φY − 1

S(X, Y)
 (3.8.48) 

and, P(X,Y| A') =  

μX − 1

SS(X, Y)
∗

μY − 1

SS(X, Y)
+

μY − 1

SS(X, Y)
∗

μX − 1

SS(X, Y)
+

μX − 1

SS(X, Y)
∗

μY − 1

SS(X, Y)
 (3.8.49) 

For simplicity, if we assume that both X and Y has the same affinity towards 

positions A and B, we have X =Y= and, X =Y=. We have from equation 

(3.8.47): 

SS(X,Y|S=2) =∑ Xij
i,j,k,l=2
i,j,k,l=1  Ykl = {2(φ − 1) + 2(μ − 1)}2 = {2(φ + μ − 1)}2 

or, SS(X,Y|S=2) = {2(φ + μ − 2)}2 (3.8.50) 

Then, solving equations (3.8.48) and (3.8.49), we have: 

 
P(X, Y| A) =

3(𝜑 − 1)2

{2(φ + μ − 2)}2
 (3.8.51) 



SECTION: ANALYSIS OF PTC IN THE NETWORK DEPLOYMENT 
__________________________________________________________________________________________________ 

144 

and, P(X, Y| A′) =
3(𝜇 − 1)2

{2(φ + μ − 2)}2
 (3.8.52) 

And similarly, P(X, Y| B) =
3(𝜇 − 1)2

{2(φ + μ − 2)}2
 (3.8.53) 

 
P(X, Y| B′) =

3(𝜑 − 1)2

{2(φ + μ − 2)}2
 (3.8.54) 

 

 

Equations (3.4.51) to (3.4.54) are for two subscribers transiting in groups between 

two locations. Generalizing above terms for ‛S’ subscribers with respect to two 

locations (A and B), we have for S >1: 

Ps(X, Y| A)              =  
(2𝑆 − 1)(𝜑1 − 1)(𝜑2 − 1)… (𝜑𝑆 − 1)

2𝑆(φ + μ − 2)𝑆
  

 
=

(2𝑆 − 1)(φ − 1)𝑆

2𝑆(φ + μ − 2)𝑆
 (3.8.55) 

and ,   

Ps(X, Y| A′)              =  
(2𝑆 − 1)(𝜇1 − 1)(𝜇2 − 1)… (𝜇𝑆 − 1)

2𝑆(φ + μ − 2)𝑆
  

 
=

(2𝑆 − 1)(μ − 1)𝑆

2𝑆(φ + μ − 2)𝑆
 (3.8.56) 

And similarly,   

Ps(X, Y| B)              =  
(2𝑆 − 1)(μ − 1)𝑆

2𝑆(φ + μ − 2)𝑆
 (3.8.57) 

Ps(X, Y| B′)              =  
(2𝑆 − 1)(φ − 1)𝑆

2𝑆(φ + μ − 2)𝑆
 (3.8.58) 

Now, putting the values from above equations in equations (3.8.39) and (3.8.40), 

we have, for S, subscribers: 

 PTC⏞
S (A) =  Sξd [

(2𝑆−1)(μ−1)𝑆

2𝑆(φ+μ−2)𝑆
]+  Sξ [

(2𝑆−1)(φ−1)𝑆

2𝑆(φ+μ−2)𝑆
] (3.8.58) 
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 PTC⏞
S (B) =  Sξd [

(2𝑆−1)(φ−1)𝑆

2𝑆(φ+μ−2)𝑆
]+  Sξ [

(2𝑆−1)(μ−1)𝑆

2𝑆(φ+μ−2)𝑆
] (3.8.59) 

   

 

Figure 3-8-5: Utilization pattern with two subscribers forming a group 

 

 

 

Figure 3-8-6: Utilization pattern with three subscribers forming a group 
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Figure 3-8-7: Utilization pattern with ten subscribers forming a group 

 

 

 

Figure 3-8-8: Utilization pattern with a hundred subscribers forming a group 
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Figures 3-8-5 to 3-8-8 clearly show that with an increase in the subscriber count, 

the probability that a channel is utilized converges to blue colour, which as per 

colour bar is less than 0.3 (or 30 percent).  

3.9. RESEARCH QUESTIONS ADDRESSED IN CHAPTER 3 

This section highlights the Research Questions (RQs) that are addressed in this 

chapter (Chapter 3) of this thesis. The RQs highlighted here are the summary of the 

formulations derived and discussed in this chapter and will play a prime role in 

defining the working of the innovative architecture conceived in Chapter 4. 

3.9.1. RQ 1:  LOCUS OF CAPACITY DEMANDS CREATED DUE TO 
MOVING HUGE GROUPS OF SUBSCRIBERS (PLACE TIME 

CAPACITY) 

When the subscribers accumulate at random locations and traverse a path, the 

capacity demand generated throughout their journey can be given by the Place Time 

Capacity as derived in equation (3.5.36) and written again below as: 

 |PTC⃗⃗ ⃗⃗ ⃗⃗  ⃗⃛
S1

(t1, t2)| = ||S1|b(P⃗⃗ ⃛S1
(t)|t1

t2) +  |S1|b. 𝑙⃛|  (3.9.1) 

 

The conventional network deployment approach usually does not incorporate such 

dynamics and often fail to cater these conditions. The imbalance in the resource 

utilization created due to such accumulation is discussed in section 3.8 and derived 

in equations (3.8.58) and (3.8.59) written below again as: 

 PTC⏞
S (A) =  Sξd [

(2𝑆−1)(μ−1)𝑆

2𝑆(φ+μ−2)𝑆
]+  Sξ [

(2𝑆−1)(φ−1)𝑆

2𝑆(φ+μ−2)𝑆
] (3.9.2) 

 PTC⏞
S (B) =  Sξd [

(2𝑆−1)(φ−1)𝑆

2𝑆(φ+μ−2)𝑆
]+  Sξ [

(2𝑆−1)(μ−1)𝑆

2𝑆(φ+μ−2)𝑆
] (3.9.3) 

 

For any two points of inclinations A and B. 

These equations will be used by an intelligent system to mitigate the wobble and 

run the network smoother than the conventional network approach. 
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3.9.2. RQ 2: DIP AND RISE IN SIGNAL STRENGTHS AT MACRO, 
MICRO AND PICO LEVEL AREAS IN A DYNAMIC NETWORK  

A network dynamics involves densification or rarefication of medium modifiers 

such as dielectrics, reflectors, diffractors, etc. that affect the path-loss of the 

propagation medium. Accumulation of people and vehicles in traffic jams are such 

phenomena that cause such effects. This variation is due to the fact that in the path 

of a traveling signal, reflections, diffractions, and absorption from these modifiers 

are additive as interferers that affect the median path-loss to get  modified as given 

below [3]: 

 PLmod(d) = PLmedian(d) +  G(σ)  (3.9.4) 

Where PLmedian(d) is the median path-loss at a distance ‘d’, G is the zero mean 

Gaussian distributed random variable and is expressed in dB, and PLmod  is the 

modified path-loss. This equation incorporates the variations in the propagation 

environment due to refractions and diffractions also known as shadowing effect.  

In section 3.6, we have derived the Place and Time dependent path-loss model, 

given in equation (3.6.26) and written again below as: 

 
PLω(d, p, t) =  PL(d) + 10 NARlog10 (

d

D0

)  
(3.9.5) 

where, PL(d) = PL(D0) + 10 nlog10 (
d

D0

) 
(3.9.6) 

Considering PLPLmedian to accommodate PTR in equation (3.9.4), we have: 

 PLmod(d) = PLω(d) +  G(σ) (3.9.7) 

In section 3.7, it is discussed how the PDF function varies when median and 

variance of the PDf function fR are ostentatious. The expression (3.7.21) describes 

the relation and is written again as:  

 U(fR) = A{GH + G′(t) }ϑ (3.9.8) 

Therefore, referring to section 3.7, we can say that, 

 
fR = ∬ A{GH + G′(t) }ϑ dpdt 

(3.9.9) 
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In equation (3.9.7), the random variable G(distributes with variance  and 

median=0. With median point and  are under place time influence, equation 

(3.9.7) should further be modified as per equation (3.9.9), expressed below as: 

 PLPT−DIS(d) = PLω(d) + fG (3.9.10) 

 

Where PLPT-DIS indicates the path-loss modified for shadowing and under place and 

time influence. The two RQs that are discussed in this section generate multiple 

other phenomena that pose a challenge to conventional networks. In the next 

chapter, we will discuss some of them and our innovative approach to catering 

them.  

3.10. CONCLUSIONS 

Today, the network dimensioning is done based on the probability of arrival of the 

signals at various locations in the AoI. However, while dimensioning the network, 

for the portion of the AoI with a probability of an event, the common irregularities 

that happen in the network during its actual implementation and operation are 

neglected. The change in the nature of the probability of outcomes, as described by 

a probability density function (PDF), from time to time and place to place due to 

random nature of stimulant, is defined here as Ostentaneity and the event generating 

such outcomes are Ostentaneous Events. In this chapter, the irregularities due to 

hefty and random accumulations of subscribers within the AoI, and their impact on 

normal operation of a network are deeply investigated. This random dynamics in 

the network is defined here as Place Time Event. The random accumulation of 

subscribers, causing the random rise in capacity demands and random coverage 

jitters are defined individually as the Place Time Capacity (PTC) and the Place 

Time Coverage (PTCo) and collectively as PTC2. Further, the impact of PTC2 on the 

coverage and capacity dimensioning is mathematically analysed and expressed as 

Ostentanoues Coverage and Capacity. Lastly, this chapter discusses the PTC2 

challenges and defines it as contributions through Research Questions (RQs) that 

can be a concern to any present and future network dimensioning. This chapter lays 

a platform for the innovative architecture to be discussed in the upcoming chapter. 
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CHAPTER 4. SELF CONFIGURABLE 

INTELLIGENT DISTRIBUTED 

ANTENNA SYSTEM (SCIDAS) 

ARCHITECTURE  

In Chapter 3, we discussed how simple looking random variables can produce 

different outcomes when it becomes a place and time dependent event. We also 

discussed the impact of place-time phenomenon on the coverage and capacity 

dimensioning of an ergodic network. This chapter proposes an innovative and open 

framework, based on the conventional Distributed Antenna System (DAS) 

architecture that twines around the place time variabilities. Further, we propose a 

mechanism that operates on this framework to mitigate the PTC2 challenge (see, 

Chapter 3, and [1] [2]). The findings of this chapter have been partially published 

in [3], where we introduced it as Self Configurable Intelligent Distributed Antenna 

System (SCIDAS). This chapter also highlights the major limitations of the state-of-

the-art concepts such as the Cloud-Radio Access Network (C-RAN) and the Self 

Organising Networks (SON). SCIDAS surmounts the challenges associated with the 

present state-of-the-art by separating the technology from its infrastructure and 

permeating intelligence as a separate layer in the architecture. The immense 

reachability of a DAS has motivated us to base SCIDAS on the DAS architecture. 

In this chapter, we have explained PTC2 motivation for an intelligent and responsive 

architecture, in order to track the place-time variations. This chapter discusses the 

architectural components of  SCIDAS.  The logical functionalities  are examined in 

Chapter 5. 

4.1. INTRODUCTION 

Initially, the Mobile Wireless Communication Networks (MWCNs) were based on 

a localized radio access architecture where the BTS was closely collocated to the 

radiating elements. Therefore, with every newer technology upgrades or change of 

vendors, the entire infrastructure needed to be sanitized, and the processes were 

called ‘revamping’ or ‘swapping’.  The major challenges related to the MWCN 

architecture were identified in Chapter 1. Here, these are summarized again for 

clarity.  

 The transportation of the BTS equipment to different destinations can be 

more expensive than the deployment cost of the site.  
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 The repair and replacement process demand a lot of time, money and 

manpower (more for difficult terrains and reachability).   

 The architecture is granule or independent in nature, and therefore, a 

complete overhauling is needed at every location separately for even minor 

changes. As an example, if there are some carrier upgrades in one site, the 

carrier reuse groups of all neighbouring sites would be required to be 

changed. Hence, a lot of time would be consumed for one single 

adjustment to be completely accommodated in the network system. 

 The need to indulge infrastructure for revamping or swapping the network 

is always there. This means that the trade-off of cost versus effort versus 

revenues is high. 

 It could be difficult to place “everything” at every desired location 

(reachability). 

 Some equipment (such as an antenna) would be sturdier than other 

(electronics and battery banks etc.). 

Pertaining to the above challenges, this research adopts the distributed network 

approach. 

4.1.1. THE DISTRIBUTED ANTENNA SYSTEM ARCHITECTURE 

If one could separate the antennas from the BS so that only the radiating elements 

could be placed at the point of demand, then the above problems can be mitigated. 

DAS emerged as a compelling technology to revolutionize the network architecture, 

and boosts its ability and efficiency [4] [5]. Technically speaking, “DAS is a 

network of spatially separated antenna buds, connected to a common source via a 

transport medium that provides wireless service within a geographic area or 

structure” [6] [7]. Future generations such as 5G [8] are looking forward to resilient 

architectures that could support these data-centric technologies. Network 

architectures with DASs have emerged as promising solutions that have shown 

commensurateness towards upcoming challenges. In the recent years, DASs have 

gained a lot of attention worldwide owing to the latest advancements in 

communication technologies.  

DAS architecture: 

Presently, most of the DAS networks prefer optical medium for data transport 

(backhauling). The Master Optical Unit (MoU) and the Remote Optical Unit (RoU) 

follow Boss and the Subordinate hierarchy, which is one of the primary reasons for 

the success of adaptation of fiber optics in DAS network layer [6]. The modulation 

and demodulation of RF-to-Optical and Optical-to-RF (RF/Optical/RF) are the 

fundamental principles behind the working of MoU-RoU system. A Wideband 

Optical Carrier (WOC) is linearly modulated corresponding to the RF signals with 

No-Phase-distortion method [5]. The WOC can travel considerably long distances 
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through an optical medium, such as glass fiber cables where, at the remote end, it 

can be demodulated back to RF signal. The optical medium can be sliced and 

spliced for both converged and distributed signal transport (see, figure 4-1-1). 

 

Figure 4-1-1: RF over Optical  

MoU is an RF-to-optical and vice-versa converter with two main participating units 

i.e. the Antenna Interface Unit (AIU) and the Optical Interface Unit (OIU) (see, 

figure 4-1- 2). RoU has a reverse role, and its architecture is almost similar to that 

of the MoU with a Low-Noise-Amplifier (LNA) in the uplink direction as an extra 

module (see, figure 4-1-2). 

 

Figure 4-1-2: Diagram showing  MoU(Left) and RoU (Right) and their connectivity [9] 

By virtue of its innovative architecture, a DAS network allows several base stations 

to be connected to its MoU, which allows service providers to collocate their 

equipment at a convenient location. From this site, known as BTS hub or BTS 

Hotel, the RF signals, which are modulated over an optical carrier, are distributed 

across the network and terminate at various RoUs. At the RoU end, these RF 

signals are retrieved and fed to a duplexer of an antenna to be radiated in the radio 

environment [6] [5] [10]. The duplexer separates downlink and uplink paths, and an 

LNA amplifies the uplink signal. The enhanced uplink signal is modulated over the 

optical carrier to get transported over optical medium back to MoU, where it is 

retrieved back to RF signal to be fed to the BS (see, figure 4-1-2). 

A traditional DAS [11] can be utilized rigorously to extend the network without 

additional spectrum resources [12][13]. In a traditional DAS network, firstly, the 

locations of the serving sites (BTS/Nodes/Buds and the Antenna System combined 

together is referred as a network site) in a target area are calculated [14]. Then, as 
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shown in figure 4-1-3, instead of placing BTS/Nodes/Buds at the site locations, they 

are collectively placed in an enclosure known as the BTS Hub. This saves space, is 

easy to manage, and easy to maintain yielding a lower operational expenses 

(OpEx). Here, in the BTS Hub, the RF output from each BTS is fed into an MoU 

that converts the RF input into Optical output. The optical output of the MoU is fed 

into a fiber cable that eventually joins the main FON network. As shown in figure 

4-1-4, the main fiber of this FON is spliced with fiber threads at multiple locations. 

These fiber threads, also known as optical feeder cables, carry the optical signal 

from the main FON to the various remote equipment or RoUs. These RoUs convert 

the optical signal into RF signal and feed the RF signal into respective antennas. 

Hence, the RF signals that are fed into an MoU at the BTS Hub are distributed in 

the entire region through all the antennas that are connected to this MoU via 

respective RoUs. 

 

Figure 4-1-3: BS hotel and antenna array on public utility (Streetlight Poles) 

A DAS network distributes the radio frequency signals from a central location to 

remote antennas. This simplifies the design of the remote antennas by concentrating 

the BS at a centralized BS. Because, at the site end, only the antennas are the major 

equipment, they can be mounted in any convenient place such as public utility, 

building structures, and, even street-light poles. These antennas can be connected 

with BSs by fiber optic cables. DAS is an efficient way to utilize the carrier usage 

either by spreading the same carriers at different locations or by increasing the 

carrier footprint by feeding the same carrier in adjacent antennas. Multiple BSs may 

be connected to the single MoU that can send the signals by multiplexing the 

signals from various BSs as a separate Wave Channel for each BS. Such kind of 

multiplexing is known as Wave Division Multiplexing (WDM) (see, Section 4.1.2). 

The WDM is considered very important for the proposed SCIDAS architecture 

because it can bring in a new layer of sub-architecture, carrying intelligence over 

the conventional architecture through a separate wave channel. Both WDM and 
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DAS are well-known concepts that have been in use for a long time in various 

telecommunication applications. 

 

Figure 4-1-4: Inside a BS Hotel/ Hub/Pool 

Later in this chapter, we will see how we have utilized the combination of WDM 

over a DAS as an opportunity to influence a control on the entire network by 

disseminating the intelligence as a separate layer that propagates through a WDM 

channel. In the next subsection, it is explained how the WDM multiplexes multiple 

BSs on a common Fiber Optic Network (FON) enabling a DAS network in 

distributing carriers of a multiple BSs. 

4.1.2. WAVE DIVISION MULTIPLEXING FOR PARALLEL 
COMMUNICATION 

The SCIDAS architecture discussed in this chapter involves intelligence and data to 

flow and distribute parallerly. A popular method to enable this uses the property of 

light splitting into its components when passed through a prism and can be 

recombined to form the white light as shown in figure 4-1-5. The prism, in this 

case, is both a filter and a combiner when used for different purpose. This allows 

multiple waves to traverse the same path (with a slight phase difference), thereby, 
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densifying the rate of information. This method of multiplexing the data over waves 

(primarily optical) is well known as Wave Division Multiplexing (WDM) [15]. 

 

Figure 4-1-5: The idea of WDM-based communication system 

The architecture of the DAS can take the advantage of combining and splitting of a 

white or mixed coloured light using a simple prism as shown in Figure 4-1-5. The 

simple phenomenon shown in figure 4-1-5 can be utilized to create WDM-based 

communication as shown in figure 4-1-6 as the transmitting side and figure 4-1-7 as 

the receiving side [16]. Here, each optical wavelength is a carrier that propagates 

through fiber optic medium with enough band gap so as not to interfere 

significantly with its colleagues as shown in figures 4-1-5 and 4-1-6 [17]. WDM 

technique helps in densification of bits over an FON. 

In figure 4-1-7, it is shown that a signal from a certain input source (channels) is fed 

to an optical modulator such as Laser LED which modulates the electrical signal 

over a particular colour of the visible spectrum (including infrared). Similarly, 

signals from other sources are collected and are combined and fed to an FON for it 

to propagate to a destination. Figure 4-1-7 shows that the mixture is collected at a 

destination from the FON and is systematically filtered to get back the original 

components. In order to extract information, this mixture of optical components is 

allowed to fall on Thin Film Filters (TFF) [18] in a systematic manner that reflects 

a particular wavelength and passes others through it. The passed on optical mixture 

has now one component less than what was before TFF and so on, till all the 

components are sequentially separated. The reflected optical component is collected 

by a corresponding matched photodetector that converts optical signal to an 

electrical signal that can be received by electrical receivers. By the systematic 

collection of the optical components, the information of all the sources can be 

obtained by optical channel receivers [19] [20]. This kind of arrangement has been 

used for over a decade for increasing the efficiency and capacity of a Fiber Optic 

(FO) based network. Such system allows the parallel propagation of the optical 

signal over the same FON that enhances the system scalability with more 

redundancy and without upgrading the FO network. Many of the FO based DAS 

networks use a similar arrangement to establish communication between 

BSs/Nodes/Buds and the far located remote units.  
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Figure 4-1-6: Transmitting end of the WDM-based communication system 

 

Figure 4-1-7: Receiving end of the WDM-based communication system 

The structuring of the various modules in the DAS architecture empowers it to 

accommodate any RF technology making it an open architecture as mentioned in 

[5] and [21]. In this chapter, this property of DAS is extended to accommodate 

intelligence and self-healing capabilities in the communication system. The open 

architecture enables it to perform in a multi-technology environment and the 

distributed nature capacitates system to be controlled and managed centrally. 

Through this chapter, we will see how this conventional and proven architecture 

model is used to for a more resilient and futuristic conception.  

This chapter is further organized as follows.  Section 4.2 discusses the state of the 

art and relevant works in the area of distributed and self-organizing networks. 

Section 4.3 proposes the WDM and the DAS integration and evolution of SCIDAS 

architecture along with its various modules and their coordinated functioning. 
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Section 4.4 discusses a set of mechanisms defined as Amoebic PTC2 Response 

(APR) to serve PTC2 challenge. The APR mechanism, in this section, is discussed 

from the point of view of the superiority of the SCIDAS architecture, in terms of its 

flexibility and dexterity to handle multitude of variations in the Area of Interest 

(AoI). This section also complements Chapter 5 of this thesis, in which the APR is 

discussed from the algorithmic point of view, and Chapter 6 of this thesis, in which 

the SCIDAS deployment analysis in a hotspot region is discussed to study the 

interference management in the dense urban area. Section 4.5 concludes the 

chapter. 

4.2. RELEVANT WORKS AND STATE-OF-THE-ART  

The major attributes of the proposed architecture are Intelligence, 

Reconfigurability, and Distribution. The reconfigurability is also associated with 

dynamic cell management to reduce the SINR and increase data rates. [22] 

discusses the importance of DAS in today’s fast growing data demand, pointing the 

main advantage as the minimum access distance from the users. This paper argued 

about  the need of a scalable signal processing framework to incorporate the 

computational cost and channel measurement overhead in the line of rate gains in 

data rate due to the massive amount of distributed antennas in an area. The authors 

have assumed the concept of a user virtual cell, by choosing neighboring base 

stations. The investigation focussed on studying the effect on virtual cell size on the 

average user rate with respect to the downlink direction of  DAS with a large 

number of users and uniformly distributed BSs in the AoI. It was shown  that by 

increasing the virtual cell size and grouping the users with overlapped virtual cells, 

the average user rate can be improved considerably. However, this may lead to 

higher signal processing complexity. The limitations of using ZFBF is addressed in 

this chapter. We have proposed an algorithm that creats virual cell as per the PTC2 

behaviour. Therefore, it was necessary to understand the limitations of cell 

virtualisation, as provided in this paper. 

[23] investigated  the possibility to improve  the performance of space shift keying 

(SSK)  with reconfigurable antenna (RAs). The authors have attempted to use the 

reconfigurability in attracting a higher degree of freedom in enhancing the 

performance of SSK in terms of throughput, system complexity, and error 

performance. The authors proposed several SSK-RA schemes, taking advantage of 

the effect of RAs on the multipath channel, that considered correlated and 

nonidentically distributed Rician fading channels with the antenna-state selection. 

The performance of the proposed SSK-RA schemes was evaluated over Rician 

fading channels in terms of average spectral efficiency (ASE) and bit error rate 

(BER). 

 In [24], the authors investigated the interference management through multi-

antenna cell constellation in dense urban areas. The paper proposed a multi-antenna 
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cell concept to provide a uniform signal-to-noise plus interference ratio (SINR) 

distribution over the entire cell coverage area. To keep the cell size small, the 

antenna height was reduced to street lamp post level. At such antenna height, 

propagation behaviours are severely affected by the surrounding environment like 

building, electric wire, and traffic, etc. The waves are highly sensitive towards 

reflection, diffraction, scattering, etc. from the surrounding walls at such height. 

Such situation is known as ‘Urban street canyon effect’. This is similar to line of 

sight (LoS) propagation. The interference effect can be controlled by strategically 

placing the transmitter antennas and using small horizontal half-power beam width 

antennas. The simulation was carried out at 2100 MHz with a system bandwidth of 

20 MHz and 10 dBm transmit power. After computing the signal strength of 

individual cells at each receiver location, the dominant cell can easily be found. The 

SINR can be computed by using the formula: 

 SINR = 10log10 (
P_ri

∑ P_rjN
j=1

) (4.2.1) 

Where, P_ri is the received signal strength from the dominant cell, and P_rj is the 

received signal strength from the other cells, which considered as an interfering 

signal, N is the total number of the first-tier interfering cell. 

The findings suggest that the line of sight effect can be generated, while lowering 

the receiver antenna height at street lamp level but with a high amount of 

interference due to reflection, diffraction and scattering effect from the walls and 

other objects present within the cell area. However, this interference effect and 

almost constant SINR in most of the cell area can be achieved using the multi-

antenna system with at least more than 8 receivers in a cell.  

Another method to minimize interference is discussed in [25] that presented a 

sectorized distributed antenna to minimize the “inter-cell interference”. Under the 

proposed method, power adjusted beam switching has been introduced to support 

the various transmission modes based on UE geographic locations and channel 

conditions including blanket and selection transmission via dynamic power 

allocation. The idea of power adjusted beam is that a fixed beam pattern is designed 

for each transmitter along with its remote units. This beam pattern could be more 

than one for a cell. With multiple beam patterns, the entire cell area including cell 

edge is covered and can thus be extended for entire AoI. When users enter in the 

cell, all terminals listen to user-specific reference signal and report signal strength 

to BS to decide the best beam combination. The paper also suggested dynamic 

power allocation to all receiver and base transmitter using the maximum ratio 

transmitter (MRT) principle to optimize the diversity gain. The power adjustment is 

based on channel strength. The entire concept was simulated with the typical LTE 

parameters for conventional DAS (C-DAS) and sectorized DAS (S-DAS) together 
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with centralized antenna system. The result showed that the SINR improved mainly 

in certain close areas to the remote antennas. The capacity is slightly lower for high 

SINR due to limited transmit power and at low SINR inter-cell interference 

increases. On the other hand, optimal power allocation provides better SINR across 

the cell, which results in a better capacity. However, inter-cell interference is still an 

issue at low SINR at the cell edge. While investigating our novel SCIDAS 

architecture, we observed that it already considers C-DAS and S-DAS concepts. 

We have mentioned this paper to highlight the advantage of our architecture over 

the state-of-the-art.  

While proposing a suitable architecture for PTC2, an overview of downlink 

performance and capacity of a DAS network was obtained from [26] where the 

authors had analyzed the realistic potential gains of a downlink DAS in a multi-cell 

environment. As a result, DAS can achieve lower symbol error probability and 

higher capacity than conventional cellular systems. The authors also quantified that 

DAS can reduce the cost of the installing system and simplify maintenance because 

DAS can reduce the required number of base stations within a target service area.  

This paper endorses our choice of DAS paradigm as base concept of the SCIDAS. 

A capacity analysis, using cooperative transmission schemes, was reported in [27]. 

A scenario  of a  full frequency reuse operation leading  to  severe signal quality 

degradation near the antenna coverage boundaries was  shown to occur when  more 

users are to be served simultaneously; similar to the “cell-edge problem” of 

conventional cellular systems. If the signal transmission would be performed 

cooperatively among the remote antenna units, both the alleviation of the problem 

and further capacity enhancement could be achieved by an appropriate transmission 

mode selection according to the location and channel condition of the receiver. The 

authors observed that cooperation is not always beneficial; that is, for geographical 

user positions close to one of the RoUs it is better to use non-cooperative 

transmission (serve the user with only one RoU), and for cell coverage boundaries 

cooperation is beneficial. Based on those results, the authors propose to adaptively 

optimize the network operation mode (i.e., the number of cooperative RoUs) to 

combine the advantages of cooperative and non-cooperative schemes to maximize 

the system throughput. Results show that adaptive cooperation becomes more 

significant when shadowing effects increase, with more than 20 percent cell-

average gain for up to three RoUs’ cooperation. The mechanism to manage PTC2 

challenge, which we proposed in this chapter, incorporates adaptive cooperation, 

although with a different approach.  

In [28], it was identified that selecting a cluster of antennas from all the distributed 

antennas is a key problem in DAS and proposed an uncomplicated antenna 

selection algorithm based on the upper bound of multi-users sum rate to achieve 

comparable uplink throughput. The proposed algorithm provides better signal 

strength for both the users as compared to conventional antenna selection method. 
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Energy efficient gains may also be an outlook of a new approach in architecture. 

Authors, in [29], explained that user distribution within the cell coverage area is 

rarely uniform. About 50% of network traffic is carried by 10% of BTS, and these 

places are known as a hotspot. The author investigated the energy efficiency gains 

of DAS in the case of non-uniform user distributions for outdoor hotspot scenarios 

and compared that performance with the case of macrocell deployment. 

An Efficient Uplink User Selection algorithm is discussed in [30] where, authors 

proposed a dominant-antenna-least-correlation (DALC) algorithm which utilizes 

the channel characteristics of DAS and set simulation environment considering a 

single cell with one base station (BS) with several numbers of mobile stations 

(MSs) which are randomly distributed in the cell. The authors introduced three 

basic user selection algorithms, which are exhaustive search algorithm (ESA), 

incremental selection algorithm (ISA) and greedy selection algorithm (GSA). 

Simulation results show that the DALC algorithm reaches more than 98.5 % of the 

spectral efficiency of optimal cases, i.e. ESA, ISA, and always outperforms GSA. 

The algorithm is very simple and suboptimal since the interferences between users 

are not considered; the performance is severely degraded in a multiuser 

environment. A scenario of a full frequency reuse operation leading to severe signal 

quality degradation near the antenna coverage boundaries was shown to occur when 

more users are to be served simultaneously; similar to the “cell-edge problem” of 

conventional cellular systems. If the signal transmission would be performed 

cooperatively among the remote antenna units, both the alleviation of the problem 

and further capacity enhancement could be achieved by an appropriate transmission 

mode selection according to the location and channel condition of the receiver 

[29] and [30] are utilised as benchmarks for evaluating the working of SCIDAS 

architecture. 

 

Figure 4-2-1: Evolution of C-RAN from Traditional DAS Architecture 
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Apart from the related works discussed above, here we discuss two major industrial 

state-of-the-art works that hold a close relevance to the present chapter. 

C-RAN: Latest technologies such as LTE [31] are the promising step in next 

generation of mobile communication and can boost the carrier utilisation like never 

before [32] [33]. However, they are not just sufficient for efficient spectrum 

utilisation, but the how the dissemination of the resources is performed is equally 

important. Figure 4-2-1shows the evolution of Cloud-RAN (C-RAN) [34][35] that 

form the conventional DAS architecture. Where the conventional DAS architecture 

involves multiple BSs to reside at the BTS Hotel, the C-RAN is primarily for LTE 

systems and multiple BSs are collectively functional and are called as BS Pool. 

Associating distributive property in the existing LTE technology, a C-RAN can thus 

enhance resource utilization significantly.    

SON: Another LTE-oriented innovative Self Organizing Network (SON) [36] [37] 

[38] architecture is conceived by Nokia Siemens Networks (NSN). As per NSN, 

SON is leapfrog to a higher level of automated operations in Mobile Networks [39], 

and the SON architecture manages the major network operations at the core level.  

The description of the architecture is taken from the NSN online white paper that 

says “SON has potential ability to tune and adjust parameters in real time can cope 

with problems on the fly, acting fast before performance suffers. Human response, 

entailing site visits and drive testing, is slower and costlier. SON can minimize and, 

in many cases, eliminate both. For example, it detects handover failures, prompting 

the BTS to adjust HO parameters on its own while preventing ping-pong 

oscillations. Congested and overloaded cells invite complaints because users get 

less bandwidth than they expect. Promising results with the current SON 

implementation suggest that this will soon change owing to its load-balancing 

powers. SON monitors the BTS, and when one cell is overloaded, hands over users 

at the cell’s edge to a neighboring cell. This resolves the traffic problem and, under 

typical cell load conditions, decreases the number of dissatisfied users from about 

10 to 2 percent.” This shows that they are targeting similar concerns that are picked 

up in this thesis.  

The state-of-the-art has several limitations that are addressed with our novel 

SCIDAS architecture. Some of them are as follows: (a) state-of-the-art architectures 

are convolved around the respective technology,and therefore, cannot accommodate 

future technologies, such as 5G, (b) they tightly bind the technology to their 

infrastructures, and therefore, less flexibility in upgrading either of them while 

other is undisturbed, (c) intelligence is more oriented in managing the network than 

managing users, (d) heterogeneous networks are not true heterogeneous as all 

macro, micro, and pico cells belong to same technology, and for true heterogeneous 

environment, multiple Base Stations (BSs) of various technologies needs to be co-

located, and (e) present state-of-the-art architectures have a limited control at site 

ends. 
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The SCIDAS is an intelligent network system that has the following capabilities: 

 to understand the varying physical conditions that impact the 

communication network environment in both optimistic and 

pessimistic ways and to identify the epicenter of problems in case 

network conditions deteriorate, and  

 to plan and decide the changes, whether mechanical or electrical, 

which should be implemented across the network to cope up with the 

deteriorating conditions so that the network performs at or above a 

certain health benchmark in every condition and at every time, 

and, by Self-Configurable, we mean, the capability to adapt and behave as per the 

decisions made by network intelligence.  

4.3. THE SCIDAS ARCHITECTURE MODEL 

Future communications will be voracious for data [8]. A lot of research has been 

ongoing for improving the data rates. Several studies have been performed in recent 

times considering the distributed nature of the system models.  

In [40], a comparison of asymptotic user rates between standard co-located antenna 

(CA) and distributed antenna (DA) models is performed assuming that the ratio of 

the number of antennas and users tend to a definite value. The paper showed that 

for a large number of antennas, the DA’s performance is much better than CA.  

In a newsletter published by Bell Labs  [41], authors assumed a system model 

where the antennas were presumed to coordinate for enhanced spectral efficiency. 

Recent researchers have considered Poisson Point Process (PPP) models for their 

investigations.  

The network topology is obtained through stochastic geometry. In [42], authors 

consider a system model where the locations of BSs, comprising N antennas are 

installed according to a homogeneous PPP model to evaluate the spectral efficiency 

of Dynamic Coordinated Beamforming. The C-RAN architecture in considered for 

investigating the optimizing antenna selection and achieve combined power from 

these antennas.  

A Large-Scale DAS is investigated for its energy efficiency in [43] where authors 

assume the numbers of  DAs are larger than users and, energy efficiency in multiple 

user scenarios is investigated.  However, the architectural description is limited to 

the radio access with connectivity to their respective BS serves/ Pool.  
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Figure 4-3-1: the SCIDAS: two step Architecture [1] 

In this section a holistic architecture is proposed that may accommodate many of, if 

not all, presumptions made for various investigations. This architecture is based  on 

the DAS concept and has been designed to support Cell Virtualization [22], 

Coordination [44], Cooperative Transmissions [27], Reconfigurability [23], 

Random and organized clustering[45] [46], and multi-cell environment [47]. The 

architecture can accommodate PPP and Stochastic Geometry topologies of cell 

formations through its simple design model. The initial SCIDAS concept was 

conceived in our previously reported work in [1] and is elaborated here in terms of 

its architectural attributes, making it superior to presently existing architectures. 

The SCIDAS architecture is in line with the traditional DAS and C-RAN paradigm. 

However, it is provided with intelligence and other functional modules layered 

above the DAS architecture for it to be responsive to variations in a network 

environment. The following subsection discusses the salient features of the 

proposed SCIDAS architecture. 

4.3.1. SALIENT FEATURE 1: TWO TIER FORMAT 

Referring to figure 4-3-1, the following are the architectural details of SCIDAS. 

(i) Boss and Subordinate Hierarchy:  

 

SCIDAS focuses on simplifying the deployment of a network, and therefore, is 

proposed to be in two tiers, namely BOSS and SUBORDINATE defined in [1]. It is 

similar to the mother (Boss) and daughter (Subordinate) analogy with the condition 

that daughter can inherit all properties of the mother in certain duration of time. An 

SCIDAS network can have a maximum of one Boss, however, may have more than 

one Subordinate. Each Boss and Subordinate is an independent network. However, 
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the Subordinate must inherit the parameters from the Boss and also, the Subordinate 

must rely on and “obey” for inter-subordinates management. A network can be 

deployed with Boss at a central/ strategic location and Subordinates covering the 

rest of the AoI. It seems similar to conventional network planning where the core 

resides at the center, and the BS subsystem spreads across the area, however, 

technically, the approach is quite different in the case of SCIDAS. Figure 4-3-2 

shows the hierarchical deployment structure of an SCIDAS network. We have 

defined this architecture as two-tier system, as the SCIDAS network has two tiers of 

deployments, namely, BOSS and SUBORDINATE. The architectural hierarchy is 

maintained so that the intelligence, which begins with BOSS, is properly 

disseminated across all the SUBORDINATES of the network. As, mentioned 

earlier, a SUBORDINATE can only be a sub-set of BOSS, hence all controls 

remains at with BOSS, though, depending upon the situation, a temporary “power 

of attorney” may be granted to one or more SUBORDINATES to avoid 

unnecessary protocol delays (in seeking access, authentications, and handovers, 

etc.) while managing PTC2. 

 

 
Figure 4-3-2: SCIDAS Two tier deployment strategy 

(ii) The SCIDAS Node (SCIN):  

 

Just like conventional DAS/C-RAN, a container is needed to encapsulate the 

working system of the SCIDAS network. However, SCIDAS has two categories of 

these containers. Hence, categorically, the SCIDAS’s BSP or BTS Hub (as in DAS) 

system is proposed to be in two forms each belonging to the Boss and Subordinate 

respectively. The container can be a logical node in a computer system or a physical 

structure such as room to hold necessary equipment. The SCIDAS Nodes are 

termed here as SCIN-S (or simply SCIN), and the node that is dedicated for Boss is 

termed as SCIN-B. 
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(iii) Location Based Equipment Hierarchy:  

 

Both the Boss and the Subordinates are the containers, logical and/or physical, that 

contains GUBH, Neuron Network Gateway for Boss/Subordinate (NNG-B/S), 

Spine Network Gateway fo Boss/Subordinate (SNG-B/S), Security and 

Authentication Module (SAM), Active Probing Management System (APMS), 

Global/Regional Server for Service Provider Database (G/RSSD), etc. handling the 

mobility management, authentication and security roles of the network. In most 

ways, both the Boss and Subordinate are similar to a conventional network core 

except for one “major” difference, the Network Intelligence Unit. From the 

hierarchical point of view, the components of the Boss’sub-architecture have more 

privilages than to the ones of the the Subordinates. 

(iv) Neuron Network:  

 

Similar to the conventional DAS networks, the sites in SCIDAS are connected to 

the network core (Boss or Subordinate) through Optical Fiber Backhaul Network 

(OFBN).  Notwithstanding with the usual DAS/C-RAN backhaul network, the 

SCIDAS backhaul is in two scales, a local and a global one. The convenience of the 

deployment decides whether a site would belong to a Core, SCIN-B or SCIN-S. 

The connectivity of sites grouped for a particular core is managed through a certain 

set of OFBN defined here as Neuron Network (NN) and shown in figure 4-3-1. The 

sites, therefore, are first grouped at the Boss level and then, when the geographical 

separation between the sites and the Core are significantly large enough, the next 

core is chosen.  

(v) Spine Network:  

 

For a complete network interconnection, it is important that all Subordinate Cores 

are connected to the Boss. This is proposed here by connecting cores to a high 

capacity backhaul network that is defined as SPINE. For complete network 

operations, it is important that eventually, all the network cores must be connected 

to the Boss. This can be done in star, ring, and/or distributed kind of deployments as 

shown in figure 4-3-3. 

(vi) Neuron and Spine Network Gateways:  

 

The port through which the Core connects to the NN is the Neuron Network 

Gateway (NNG). At the Boss/ Subordinate level, it is defined as the Neuron 

Network Gateway for Boss/ Subordinate (NNG-B/S). Similarly, the Spine network 

connects to a Core through the Spine Network Gateway for the Boss/ Subordinate 

SNG-B/S. 
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(vii) SCIWAN: 

 

All sites (SRUs) that are connected to a specific SCIN through NNG are the part of 

a common network termed here as SCIDAS Wireless Access Network (SCIWAN). 

Hence, in a geographic sense, an SCIWAN is the area covered by a single SCIN. 

 

(viii) SCICELL: 

 

The SCIWAN sites disseminate the carriers of the common BSs or UBH, hence, all 

sites with its SCIN are termed here as SCICELL. It is the SCICELL ‘block’ that 

repeats in the entire AoI for complete services. 

 

Figure 4-3-3: Spine Network Connectivity Types 
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. 

4.3.2. SALIENT FEATURE 2: INTELLIGENT SUB-ARCHITECTURE  

This subsection discusses the most important feature of the proposed architecture, 

namely, the intelligence. We call this layer of intelligence the Intelligent Sub-

Architecture (ISa). The Components of ISa are as follows: 

(i) Network Intelligence Unit (NIU):  

 

An NIU is the intelligent unit of the SCIDAS system that handles all the intelligent 

activities in the network management, such as gathering, prediction, scheduling, 

coordination, etc. The NIU is located at the SCIN-B. The NIU obtains the network 

information from the Active Probing Management System (APMS) and all Smart 

Remote Units (SRUs), processes the information, send the decision over a reserved 

channel to be followed at the remote end by SRU, MCP, and VLC (discussed later). 

This process is iterative and the time period of the iterations depends on the 

dynamics of the network environment. This intelligent unit makes the SCIDAS 

architecture more robust and efficient than contemporary network architectures 

because of the following capabilities: 

 NIU works independently to the underneath technology. Hence it can 

manage the multi-technology environment more efficiently than the LTE 

dedicated technology; 

 The decisions are based on the dynamics of the subscribers and 

propagation of EM waves. Hence, SCIDAS is more resource efficient; 

  The two-tier architecture can be extended more flexibly than the C-RAN 

or similar architectures; and, 

 The NIU is an imminently independent intelligent unit and therefore is a 

programmable, upgradeable and expandable unit. This makes SCIDAS 

superior to SON and similar technologies. 

 

(ii) Smart Master Unit:  

 

The SMU is the upgraded version of the standard traditional MU and resides in the 

NNGB or NNGS. Besides the standard RF/Optical conversion as its predecessors 

are doing, an SMU has the additional features that enable it to assist and follow the 

NIU. As shown in figure 4-3-4, the BSs of the service providers connect to the RF 

stage of the SMU. The RF stage provides a dedicated circuit channel for both the 

Transmission (Tx) and the Reception (Rx), separately and, further, all BSs are 

grouped in separate Tx and Rx modules. Each circuit channel of the RF stage is 

interfaced with the Tx and Rx modules of the Optical Stage where the circuit 

channel is converted to the optical channel for further stages. Each optical channel 

of the Optical Stage is modulated over separate wavelengths by the WDM module 
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that is cascaded to the Optical stage of the SMU so that the Tx output of the Optical 

Stage drives the WDM optical transmitters and similarly, the WDM optical 

receivers drive the Rx module of the Optical Stage. 

 

In figure 4-3-4, it is shown that the NIU resides in the SCIN and directly connects 

to the Optical Stage of the SMU. This is due to the fact that, firstly, the NIU is not 

providing services over the air interface, secondly, unlike the BSs, the NIU is not to 

be a variable component of the system and, therefore, can communicate over a 

fixed circuit channel that is dedicated to it permanently  as shown by the deep red 

arrow flow in figure 4-3-4. Also, both RF and Optical stages are controlled by the 

NIU (as shown as control bus in figure 4-3-4) for improvising the efficiency of both 

network and electronics. 

 

Figure 4-3-4: Smart Master Unit (SMU) 

(iii) Smart Remote Unit (SRU): 

 

Similar to the SMU, the SRU is the upgraded version of the traditional standard 

remote unit. The SRU along with its remote site infrastructure is defined here as 

BUD to differentiate with usual Nodes/BSs.  Although, the function of the SRU 

should be reverse to that of the SMU, the internal architecture of the SRU is not a 

mirror image of the SMU. Figure 4-3-5 shows that the optical stage is cascaded to 

the WDM Module where the output of the Tx module of the Optical stage drives the 

WDM optical transmitters and Rx module of the SRU is driven by the optical 

receivers of the WDM module. 

 

Here, we can see that the instructions from the NIU that have reached a particular 

SRU via the FON network over dedicated optical wavelength are sent to the 

Follower Unit (FU) of the SRU where the instructions are decoded to be followed 

by other modules of the SRU. At the Optical Stage, there is a conversion of 
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Optical/Digital and Digital/Optical and each optical wavelength has a dedicated 

circuit channel. 

  

 

Figure 4-3-5: SRU (supporting RF and VLC Ports) with MCP at the bud 

The digital interface of the optical stage is connected to a controllable sub-module 

that we call as Carrier Gate (CG) and is controlled by FU. This CG will send the 

digital signals to the two separate output modules (i) The RF Stage that converts the 

digital signal to an RF signal that is fed to the RF antennas and (ii) The VLC Stage 

that converts the digital signal into the visible light pattern as discussed in [48]. The 

FU also interacts with the MCP Module of ISa that will modify the physical 

parameters of the antenna by performing three-dimensional (3D) motions. The 

working of the RF stage is the reverse of what has been discussed for the SMU. 

Hence, the SMU-SRU setup will act as a bridge between the NIU-MCP, NIU-VLC 

STAGE and NIU-RF STAGE for controlling the configuration of SCIDAS for 

efficient resource management. 

(iv) Active Probing Management System (APMS) 

 

Active Probing is the process of observing a system by measuring the variation in 

the observed state of the system, which is created by injecting a stimulant, in such 

way that the system is least deviated from its present state. In SCIDAS, this is 

achieved by impinging tiny signal bursts from one bud and then sensing the 

variations by various buds to obtain the holistic view of the network. The APMS 

belongs to ISa and is controlled by the NIU via an intelligent layer, and is intended 

to monitor the entire SCIDAS network activity. Through APMS, the NIU can 
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gather information about the network and take necessary decision. APMS is 

discussed in detail in Chapter 5. 

 

(v) User Bit Handlers 

 

The SCIDAS architecture endorses that when the access technology is accessed by 

the user, the information should be modulated at the user end. Hence at the SCIN, 

we have placed a generic BS that we call the User Bit Handler (UBH), which is a 

type of BS/eNB with its access technology separated out from the module. Thus, a 

UBH will process the user/subscriber bits in terms of handling the user packets 

(such as addressing, sending and receiving, etc.) and the security/parity coding. 

Here, the SRU plays an important role in modulating the right access technology on 

the user bits. This enables SCIDAS to function on various technologies (such as RF 

and VLC) simultaneously without compromising the processing power. Figure 4-3-

5 shows the SMU when each service provider proposes their own BS. The same can 

be modified with one single UBH with multiple channels for parallel transmission. 

UBH at SCIN-B rules all other UBHs and thus is defined as Global UBH or GUBH. 

The unique property of GUBH is that they can share modify or delete the user 

properties among each other thereby making the resource management more 

efficient. 

 

4.3.3. SALIENT FEATURE 3: ENACT SUB-ARCHITECTURE  

Following are the components of the sub-architecture which is responsible for all 

actions of the SCIDAS network.  

 

(i) Follower Unit (FU):  

 

As shown in figure 4-3-5 and discussed in the SRU section, the FU resides in the 

SRU to (a) convert the optical information into the desired access technology 

carrier, and, (b) to optimize the antenna system with MCP. Unlike the conventional 

Remote Radio Head (RRH) [32], the FU has two lines of information to deal with, 

data and intelligence, both flowing through same connectivity route. Data line 

mainly contains user bits exchange between GUBH and user equipment and the 

intelligent line contains address and control. FU deciphers the information streams 

and deals accordingly.  

(ii) Maneuverable and Controllable Platform (MCP): 

 

Out of all the components of SCIDAS, MCP shall be the part that will support 

motions and displacements. An MCP resides at the remote end (bud) and provides a 

support system for the mounting antennas.  Figure 4-3-6 shows one of the many 

ways in which the MCP can be designed; however, the most important is its 

capability to enable the changing of the orientations and tilts of the antennas to 
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confine or expand, and to follow/track the target within the vicinity of the site.The 

MCP, proposed in the present architecture can play a significant role in clustering, 

cell virtualisation and managing SINR. Apart from the physical orientations, the 

MCP can also accommodate electrical supplements such as electrical tilts, physical 

and electrical diversities, etc. 

 

 

Figure 4-3-6: A closer look of Remote MCP and SRU integrated together. 

. 

4.3.4. SALIENT FEATURE 4: PLUG AND PLAY SUPPORT  

A DAS network can distribute any resource that can be impregnated at the BS Hub 

of the network. SCIDAS is based on a plug and play principle. In SCIDAS the users 

reside at the access end, therefore, we consider the wireless technology only from 

the point of view of access. We propose SCIN to be a generic hub, and various 

technologies may be accommodated through plug and play provisions. 

(i) Multi-Technology Ports:  

 

In [48], we discussed the importance of VLC  for Ambient Assisted Living (AAL) 

and the advantages of using visible light (VL) for indoor data services. We also 

proposed a unique architecture that can work hand-in-hand with the present systems 

for environments where VLC is more preferable. Figure 4-3-7 shows the VLC 

working in parallel and in distributed mode along with the International Mobile 
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Telecommunications (IMT) carriers. As mentioned, the SRU can accommodate 

multiple technologies to modulate the user bits from the UBHs simultaneously. 

Therefore, a VLC unit, which connects to the SRU by the VLC port, is proposed 

here; it can easily blend in the SCIDAS system with the SRU module. As proposed 

earlier in [48], the VLC system has a Visible Light Transceiver (VLTRX) System 

that resides at both, the user and the base ends. It uses Visible Light (VL) portion of 

the EM spectrum as an air interface. The VLCTRXs can be activated by the 

instructions sent from the NIU that can work in parallel or as a complementary unit 

for any network environment. Figure 4-3-8 shows the working of VLC along with 

the IMT services with an intelligent network layer managing the VLC network 

system. This intelligent network layer can be taken over by NIU of SCIDAS when 

plugged into the system. 

 
 

Figure 4-3-7: VLC in parallel (Left ) and Distributed (Right ) Mode [48] 

 

 

Figure 4-3- 8: M2M Communication in different scenarios of multilayered network [48] 
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(ii) QUICKNET: 

 

QUICKNET is sub-architecture that is an SRU without NN. The NNGB or NNGS 

connects with the SRU through a wireless access port or QUICKNET Access Port 

(QAP). This is used for the case where the deployment is difficult, laying the 

optical cable is not feasible, or, the deployment needs are quick and temporary. The 

QUICKNET is also introduced here to accommodate the densification and 

clustering of the cellular architecture. It can be quickly deployed in the areas to 

enforce a stochastic approach. 

 

4.3.5. DEPLOYMENT LAYOUT: PRESENT AND FUTURISTIC 

Figure 4-3-9 shows a deployment layout of an SCIDAS model. The type of 

architectural layout shown in figure 4-3-9 is what was partially implemented in a 

hotspot area and is discussed in Chapter 6 of this thesis. Here, the SCIN/ SCIN-B 

contain discrete BSs (in contrary to the GUBH) to show the multifarious possibility 

in deployment. The intelligent layer, containing NIU, SMU, SRU and APMS is 

shown to work parallelly on the existing DAS network by replacing the Master and 

Remote modules with SMU and SRU respectively. SCIDAS can thus be 

implemented with the present DAS based network architectures and can make them 

intelligent. 

 

Figure 4-3-9: SCIDAS Architecture in compatible with present DAS /CRAN Architecture 

Figure 4-3-9 is a deplyoment example of SCIDAS in a real scenario.  It  shows the 

APMS antennas and QUICKNET in an AoI. Figure 4-3-10 shows the location of 

the equipment in the SCIDAS architecture in more details.  

SCIDAS NODE or SCIN (Boss or Subordinate)

SCIDAS REMOTE UNIT (SRU)

Active Probing Antenna 

Service Antennas 

QUICKNET

Overhead Optical Fiber

SRU

NIU

Inside a SCIN

Base 
Station

SMU
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Figure 4-3-10: SCIDAS Network Architecture –closer view 

Similarly, figure 4-3-11 shows a typical SCIDAS deployment in a HOTSPOT 

area.This deployment scenario is considered for our discussion in Section 4.4, 

Chapter 5, and Chapter 6 to analyse the working of the algorithms and their 

performance. The buds (remote units) are deployed on the street poles to form a 

square patted deployment. This kind of deployment is considered to represent the 

SRU in an (x,y) positioning system and for the ease of discussions.  

 

Figure 4-3-11: SCIDAS Deployment Scenario 

Figure 4-3-11 is a typical example of an experiment performed in Okhla, Delhi, 

India where the basic model of SCIDAS was installed to sense the network. The 

details about this experiment is discussed in Chapter 6 of this thesis.  

FUTURE APPLICABILITY OF THE SCIDAS ARCHITECTURE 

The radio spectrum is assigned to the Telecom Service Providers (TSPs) through 

market driven pricing method (may be auction), for providing the mobile services 

to the subscribers in a service-area.  The service-area (AoI) is not uniform from the 

traffic density point of view. It is normally divided into three categories i.e., Most 
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Dense Traffic Area (MDA), Dense Traffic Area (DTA) and Normal Traffic Area 

(NTA). The traffic density is also dependent on the hour of operation, i.e., busy 

hour, normal hour and light hour. To cater for the subscribers in an MDA and 

during a busy time is a challenging task. The TSPs face a further challenge to 

service some special occasion like New Year’s Eve, any major festival, major 

accidents, natural calamity, etc. During such incidences, the call demand, as well as 

the call duration, increase sharply and can be attributed to location, time, and event. 

The increase in demand leads to a heavy call congestion demanding additional 

spectrum. The demand for additional spectrum for a short duration to tackle the 

heavy traffic requirements and the call congestion, a different approach to spectrum 

management is needed. In the previously published research in  [49], proposed an 

innovative auction method that can allow temporary spectrum allocation on  

demand. However, such a process still cannot solve the wobbling as discussed in 

Chapter 3.   

The SCIDAS architecture, defined and discussed in this chapter can aptly cater for 

the on-demand requirement by shifting the network resources to the place of 

requirement. Further, the architecture allows various technologies to operate in 

different layers. Also, a separate sensing sub-architecture is accommodated in the 

SCIDAS to offload the unnecessary paging and beaconing during mobility. Because 

it is based on the traditional DAS architecture, SCIDAS can easily adapt to the 

existing FONs with a provision of QUICKNET for difficult areas. This makes 

SCIDAS a suitable candidate for the future network architecture.  The novelty of 

the architecture is in the logical functionalities that are detailed in Chapter 5. 

In 4.3.4, we discussed the plug and play property of  SCIDAS  allowing it to 

accommodate future technologies, such as the most recent upcoming technology, 

Light Fidelity or Li-Fi [50]. In this sub-section, we discussed how SCIDAS can 

support a VLC system by plugging in the access module to the SRU. The VLC, 

when applied for data access, becomes Li-Fi. Hence, the architecture has immediate 

relevance to the Li-Fi based operations. 

4.4. SCIDAS FUNCTIONING: AMOEBIC PTC2 RESPONSE 
MECHANISM (APR) 

In section 4.2, it was discussed that the SCIDAS architecture has an intelligent core, 

defined earlier as the NIU that resides in BOSS, and has the ample capability to 

control each and every bud in the network. This attribute allows SCIDAS to 

breakdown the Fixed-Cellular paradigm of the present networks’ frequency resue 

pattern. Here, we elaborate the functioning of this new paradigm, defined as 

TISSUE structured reuse pattern by using the architectural attributes of SCIDAS. 

This section discusses the set of algorithms, defined here as Amoebic PTC2 

Response (APR) mechanism, through which an SCIDAS network manages and 

mitigates the PTC2 challenge. The mechanism is termed as Amoebic because the 
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processes resemble the amoeba life cycle and, just like amoeba tames the food, 

APR never leaves PTC wobble untreated. APR has five processes as per below: 

a) Prompt 

b) Ingestion, 

c) Digestion & Absorption, 

d) Fission and Assimilation, and, 

e) Egestion. 

Presently, the APR mechanism is discussed in terms of the architectural flexibility 

of SCIDAS. It will be shown how the SCIDAS intelligence can control various 

buds of the network to form an individual cell or need-based group of cells, or 

TISSUES, to create a network environment that harmonizes with the PTC2 

dynamics. The APR’s iterative management enables SCIDAS to follow the 

accumulations by grouping the cells (buds) to form Tissues or disintegrating from 

tissues to cells as per demand till they dissipate.  

4.4.1. DESCRIPTION OF THE APR PROCESS 

Here, we describe the six processes that collectively define the APR mechanism. 

The processes appear in the description in the same sequence they are expected to 

perform in the PTC2 situation. 

A. Prompt Mechanism 

Figure 4-4-1 shows an SCIWAN area where the SRUs have divided the area into a 

Honeycomb pattern. We have already discussed that the NIU can choose the 

specific carriers/ sub-carriers that can be radiated by a sector antenna by enabling 

SRU of the specific sector.  Therefore, among the total spectrum allocated to the 

service provider, NIU selects which of them should be radiating through a specific 

SRU. Hence, each SRU can enable its own sets of carriers as individual Carrier 

Groups (CGs). Each dot in figure 4-4-1 refers to an SRU with location (i, j) and k is 

the sector as shown by three colours of the dense pattern. The CGs can thus be 

allocated in three ways, (i) continuous pattern, where a same CG is shared by 

adjacent SRUs till a condition is met, (ii) alternate pattern, where, two sets of CGs 

are allocated alternately to adjacent SRUs and repeated till a condition is met, and, 

(iii) dense pattern, where the sectors of SRU are allocated with different set of CGs 

to fulfill certain conditions.   
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Figure 4-4-1: A typical Prompt State 

We propose a novel algorithm, called PROMPT that iteratively monitors the 

network to keep track of wobbles in the network. The intensity of wobbling can be 

in two ways, one when the crowd moves from one place to another and, another 

when people come closer to each other in the same subject area. This is calculated 

by iteratively scanning the network in the position and time domains (see, Chapter 5 

for position and time-based scanning). There is always some tolerance limit that all 

networks offer to cater for such dynamics. Here, the limits are fed to the algorithm 

as the time and position base tolerances. As the PROMPT algorithm takes the 

assistance of APMS, it can proactively identify the approaching wobble, as shown 

in figure 4-4-2, without involving the real network resources. 

 

Figure 4-4-2: A typical PTC2 situation 
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B. Ingestion Mechanism 

Figure 4-4-3 shows the proposed INGESTION process when a wobble is welcomed 

in the SCIDAS network. Ingestion follows PROMPT. As the wobble approaches a 

SCIDAS network, the SRU iteratively allocates the carriers to cells (Sub-bud area) 

that are affected by the accumulation. Figure 4-4-3 shows two wobbles approaching 

a network from two different directions. The intelligence of SCIDAS is encashed in 

this process when the carrier allocations are significantly localized. Hence, when 

distance apart, the same Carrier Group (CG) can cater for different accumulations, 

until they collide at a common point. At the point of collision, the smaller user 

group is allocated a new CG as shown in figure 4-4-3 with distinct colours. As 

shown in figure 4-4-3, the process of ingesting a wobble is accomplished by series 

of algorithms discussed in section 5.2 of Chapter 5. As we can see in figure 4-4-3, 

PTC2 is a dynamic network and tends to collide at a common place, and a new CG 

is assigned to the smaller group.  This is part of a process when a limited set of 

carriers are dynamically allocated to accommodate more and more wobbles. This 

process is defined here as DIGESTION and ABSORPTION mechanism. 

  

 
 

Figure 4-4-3: Ingestion Process 

C. Digestion and Absorption Mechanism 
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Figure 4-4-4: Digestion and Absorption Mechanism 

In the DIGESTION and ABSORPTION mechanisms, are shown in figure 4-4-4. 

The bigger groups are broken into smaller groups (in terms of CGs) in such a way 

that the frequencies belonging to various CGs must not decrease the SINR beyond a 

tolerance limit (receive sensitivity). The smaller groups are also formed based on 

the tendency of the departing or dissolving (this process is monitored by algorithm 

discussed in section 4.5.2).  

D. Fission and Assimilation Mechanism 

  

  

Figure 4-4-5: Fission & Assimilation Mechanism 
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As accumulations are dynamic (PTC2), it is very much possible that users from a 

common place depart with different density and strengths than to what it was when 

they accumulated at the time of arrival. This challenge is abated with the FISSION 

and ASSIMILATION mechanism, which distributes the accumulation by 

disintegrating tissues into smaller chunks of cells, catering of sub-groups, and 

treating individual sub-groups as a separate PTC2 challenge. This can be viewed as 

multiple iterations of the DIGESTION and ABSORPTION mechanism. 

Figure 4-4-5 shows the FISSION & ASSIMILATION mechanism where the top 

two figures show the Fission Process and the lower two figures are the Assimilation 

Process. As we can see in the Assimilation Process, only three sets of CGs are 

intelligently used to dynamically cater the PTC2. Once the ranges of neighboring 

cells that can accommodate the common carriers are evaluated, the configuration 

floats on the network architecture by iteratively allocating the subsequent cells.  

E. Egestion Mechanism 

This mechanism is shown in figure 4-4-6.  The process can be seen as the reverse of 

the INGESTION mechanism. However, SCIDAS must keep serving the departing 

accumulations till the forthcoming network welcomes them. The EGESTION 

Mechanism is also important for the mutual coordination among the various SCINS 

of the network. Suppose, the group leaves one SCIWAN to another SCIWAN, then 

the two SCINS can coordinate for a smooth handover of the wobble. For the new 

SCIN, these five processes follow till the wobble departs from that SCIWAN and so 

on. It is also important to note that, in the case, when the service provider reserves 

some carriers for catering the additional wobbles, the grouped formed with such 

carriers can be passed on to other SCIWANS iteratively to till the accumulations 

are below the tolerance limit. Thus, a CG can thus be repeated in neighbor SRUs till 

it reaches some limits. 

 

 

Figure 4-4-6: Egestion Mechanism 
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The mechanisms discussed in this section is to show the capability of an SCIDAS 

architecture. With these mechanisms, the SCIDAS can make accumulations float 

above the base network till it dissipates or exists. The algorithmic formation and 

evaluation of these mechanisms are discussed in detail in the next chapter (Chapter 

5) of this thesis. 

4.5. CONCLUSIONS 

Chapter 4 defined and detailed  the  SCIDAS architecture in terms of its flexibility, 

adaptability, heterogeneity, expandability, and deployability. All these attributes are  

possible due to the  proposed independent, intelligent module that was  defined as 

the Network Intelligence Unit (NIU) that uses underlayed Distributed Antenna 

System (DAS) to disseminate both intelligence and service in accordance with the 

PTC2 distribution, discussed in Chapter 3 of this thesis. The responses to the PTC2 

challenge, which we expect from  SCIDAS,  are performed through collaborative 

coordination of three more modules introduced here as Smart Master Unit (SMU), 

Smart Remote Unit (SRU) and, Maneuverable and Controllable Platform (MCP). 

We also introduced Active Probing Management System (APMS) that is the sensory 

part of the intelligent system.The proposed architecture is supported by several 

algorithms that also we introduced in this chapter. These algorithms bring in 

intelligence within the SCIDAS architecture that spreads parallerly along with the 

carriers, as an independent layer, through the inherited distributed network. To 

summarise, in this chapter, we proposed (i) in what way intelligence can be 

mounted over a communication system to produce situation-based responses for the 

better management of resources, (ii) once mounted, how its reachability can be 

extended to every operational site, (iii) how this system will work to mitigate PTC2 

challenge, (iv) what are other advantages of this architecture as a future scope, and 

(v) how a set of procedures can be executed with ease in the SCIDAS to cater the 

seemingly diffuclt PTC2 challenge. 
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CHAPTER 5. ACTIVE PROBING AND 

SELF CONFIGURABILITY IN SCIDAS  

This chapter elaborates the  SCIDAS functionalities.  This chapter complements 

Chapter 4 and proposes a holistic approach for solving the PTC2 challenge. The 

research contributions are  a continuation of the initially published findings in [1]. 

This shifts the network architecture paradigm from a conjectural approach to a 

definite approach. As we know from Chapter 4  the intelligent module, defined as 

Network Intelligence Unit (NIU), senses the network dynamics through the sensing 

layer of the SCIDAS architecture, defined as Active Probing Management System 

(APMS) [1]. This chapter elaborates the APMS architecture as a sub-architecture, 

its role in SCIDAS, and its functioning. In Chapter 4, we also introduced a set of 

mechanism, defined as Amoebic PTC2 Response (APR) that can be executed by 

NIU to cater for the PTC2  problem from its formation to dissipation. Here, we 

focus on the supporting algorithms of these mechanisms that, when executed by 

SCIDAS, would make it a Self Configurable network. We have shown a scenario of 

sensing the user accumulations, and execute apt procedures to manage them. 

Therefore, all algorithms are designed to work with the assistance of the APMS and 

are discussed as APMS-oriented procedures. This chapter complements Chapter 4 

to have a holistic SCIDAS model to resolve the challenges that occur due to random 

and hefty accumulations. 

5.1. INTRODUCTION 

In [2] authors discuss diagnosing a large distributed networks in terms of 

interference localization by using a combination of online and offline active 

probing. [3] discusses active probing in Wireless Sensor Networks (WSNs), where, 

authors propose a strategy, using Genetic Algorithm (GA), to identify the right bud 

that could participate in monitoring the environment of the subject in the WSN. 

Usually, the active probing is understood as a ‘live’ monitoring of the system. 

However, in this chapter, by Active Probing (AcPro) we mean, a technique to 

monitor a system by sending a small signal and observe the variations produced in 

the system. Usually, the active probing is used to detect faults in the networks or 

estimation of the errors. In this chapter we use AcPro in the same way, what is 

being followed for space observation. Figure 5-1-1 shows an example of active 

probing, when environmental irregularities (error correction factor) are identified 

from the relected components of the prob signal that are collected by observing 

antennas. This is similar to imaging a distance star that needs to be observed by a 

ground-based observatory. To accommodate the blurredness caused due to 

scatterers, such as dust and clouds, in the intermediate path between star and 

aperture, a laser beam, as a probe signal, is sent in the sky to estimate the dust and 
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cloud density. Once, the ‘scatterers’ are known, the error is subtracted from the 

received image to have a clean picture of the distant subject. Later, in this chapter, 

we will see that the same strategy is used to monitor and estimate PTC2 values at 

various locations of the SCIDAS network.     

 

Figure 5-1-1: Active Probing technique 

We will also discuss in this chapter that how SCIDAS will use its attributes to 

accommodate the wobbling, once we know the accumulations, in terms of both 

position and strength. 

This Chapter is further organized as follows. Section 5.2 elaborates the sensing 

attribute of the SCIDAS architecture, the Active Probing Technique, in terms of 

why we chose this technique, where it is accommodated in SCIDAS and how it 

performs the sensing. Section 5.3 elaborates “how” by introducing some algorithms 

and explaining the way  they are are executed. To support this aninnovative 

algorithm that enables SCIDAS to self-reconfigure and respond is proposed. 

Section 5.4 proposes the algorithm Amoebic PTC2 Response mechanism. Section 

5.5 concludes the chapter. 

5.2. ACTIVE PROBING TECHNIQUE IN THE SCIDAS 

The innovative SCIDAS architecture can impose extremely localised iterations 

based on the commands of a central controller, the NIU. We propose a sub-

architecture of SCIDAS, namely, the Active Probing Management System (APMS) 

that is the core of the intelligent layer to identify the PTC2 dynamics. In this section, 

first we discuss why, then what, and then, how, this intelligent  sub-architecture acts 

in the SCIDAS system. 
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5.2.1. WHY: NEED FOR SENSING THE DYNAMICS  

Let us consider a system, as shown in figure 5-2-1 that has an output Y(t) for an 

input X(t). We say that it as a responsive system since it gives an output for every 

input.  Therefore, we can say that,  

 Y(t) =  Φ[X(t)] (5.2.1) 

Where Φ[. ] is the response function of the system for an input X(t) [44]. Observing 

this system in discrete time steps is the same as imposing the system with discrete 

input values of X(t) such that: 

 X(t) = {X(n): n ∈ N} (5.2.2) 

X(n), as a sample of an input signal, can be defined as: 

 
X(n) =  ∫ X(n − τ)δ(τ)dτ

+∞

−∞

  

or X(n) = ( X ∗ δ)(t = n) (5.2.3) 

Where, δ(τ) is the impulse function at time τ and * is the convolution operator. 

If this system is Linear Time Invariant (LTI), with an impulse response h(t), then, 

corresponding to the discrete inputs as mentioned in equation (5.2.3), the output 

Y(n) can be expressed as: 

 
Y(n) =  ∫ X(n − τ)h(τ)dτ

+∞

−∞

  

or Y(n) = ( X ∗ h)(n) (5.2.4) 

 

Figure 5-2-1: A responsive system with input, output and transfer function 

Equation (5.2.4) is the standard way of expressing the output of an LTI system. 

This system ought to behave according to the above equation due to the linear and 
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time invariant nature of the impulse response. This somehow reflects the internal 

nature of the system, which, as per observation, is either an inevitably invariant 

system or conducively dynamic to produce favourable output. In either case, h(t) is 

a convenient impulse response to accompanying the input function. 

 

Figure 5-2-2: State diagram of impulse responses in Place-Time influence 

Now, for the sake of the present discussion, if we assume that this responsive 

system is internally subjected to some unfavourable actions so that the LTI 

behaviour turns into a random nature, the impulse response h(t) will not be 

consistent. Hence, the response of the system at time t1 will not be same at time t2 

for the same input sequence. Therefore, 

 h(n)|t1 ≠ h(nk)|t2 (5.2.5) 

Therefore, equation (5.2.4) will not be a valid statement for such situations. It is 

important to mention here that equation (5.2.5) does not mean that the system 

intrinsically is a non-LTI system; rather the system is pseudo-invariant when the 

stimulant is absent. Therefore, h(t), depending upon the stimulant’s nature, can 

choose a state of invariability till the nature of stimulant varies. Figure 5-2-2 shows 

this hopping nature of h(t) from one state to another, where h(t) may transit from 

one state to another (as represented by black arrowhead lines) or can remain in the 

same state (as represented by red arrowhead curves). The arrowhead represents the 

next state, and the tail represents the present state. For a set of discrete observations, 

h(t) can be represented as a time and sample based transition matrix as below, 

where rows represent time stamp and column represents a sample. 
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ℎ(𝑛, 𝑡) =

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ𝑚1 ℎ𝑚2 ℎ𝑚3

   

… ℎ1𝑛

… ℎ2𝑛

… ℎ𝑚𝑛

 

An MWCN, with all of its components, can be viewed as an LTI system as shown 

in figure 5-2-1. Therefore, the variations in the response function of such systems 

from time to time, show ostentaniety in the network behaviour. 

Let, X(t) be the function of calls generated at a time ‛t’ and Y(t) is the network 

health status at the same time. The health status corresponds to one or multiple of 

parameters of the following: 

(i) Total call fails (call did not initiate) of the network 

(ii) Total call drops in the network (call initiated but dropped) 

(iii) SINR status with respect to all BSs in the network 

(i) and (ii) are the parameters that correspond mainly to the Network Congestion 

meaning that all the channels of a BS are occupied in various services in which a 

subscriber is making a call. The parameter (ii) above corresponds to cases when 

either subscriber is in motion and tries to handover in a congested BS or the signal 

strength of the serving BS is dropped below Rx sensitivity. The parameter (iii) 

above corresponds to the interference status of a network and reflects the signal 

strength ratios of the dominant server to its neighbours. Such measurements will not 

be consistent due to the dynamic nature of the subscribers. Sometimes the huge 

accumulation beneath a serving cluster of the BSs can congest these BSs quite 

significantly, and deteriorate the overall network health report. Hence, equation 

(5.2.4) cannot describe the network in a broader scope. Although, the total capacity 

demand and coverage demand of the system as a whole may be consistent 

throughout these variations, but the way the system challenges are permutated, is 

the cause that most systems would behave inefficiently, thereby, increasing the 

computational cost and lowering the system efficiency. The demands, in such 

conditions, are served with some delay or never served at all.  Therefore,  an 

independent layer to detect the PTEs is required to be a part of the SCIDAS 

architecture. The concept of APMS sub-architecture is proposed to fulfill this 

requirement. As discussed in Chapter 4, the proposed SCIDAS architecture is 

deliberately designed in layered form. This means that each of the attributes of 

SCIDAS, namely, infrastructure, service, intelligence, and probing coexist as 

independent layers. This enables SCIDAS to modify any of its layers without 

affecting others, unlike present state-of-the-art where even the civil infrastructures 

are impacted during technological upgrades. Further, by the virtue of WDM, the 

intelligence (NIU) and sensing (APMS) can disseminate parallelly and 

simultaneously across the network without utilising the network resources (such as 

paging and broadcasting). The independent feature APMS, under the control of 
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NIU, allows for monitoring the entire PTC2 related activity continuously without 

imposing any burden on the service layer(network resources). 

5.2.2. WHAT: THE SYSTEM MODEL 

Figure 5-2-3 shows the time ustilised at the various stages of the APMS sub-

architecture, residing within SCIDAS architecture. APMS can use either normal 

service antenna or separate series of top mounted omnidirectional antennas to 

monitor and triangulate the PTC2 wobbels, as shown in figure 5-2-3. 

 

Figure 5-2-3: APMS System Model 

In figure 5-2-3, the time consumed during the APMS process is also shown. 

Conventionally, the signal flow from the NIU to APA is considered as a forward 

path and, similarly,  the reverse path for vice versa. 

(i) meas :Time needed for a signal tap (single set of measurement),  

(ii) rpsru/fpsru : Processing time of SRU for the reverse/ forward path, 

(iii) rwsru/ fwsru : Time consumed in converting and sending the RF signal 

to Optical by the Wavelength Division Demodulator & Modulator 

(WDDMod) for the reverse/ forward path at SRU end, 

(iv) pd : Path delay during signal flow between a distant SRU to SCIN, 

(v) rwsmu / fwsmu : Time consumed the Wavelength Division Demodulator 

& Modulator (WDDMod) for the reverse/ forward path at SMU end, 

(vi) rpsmu / fpsmu : Processing time of SMU for the reverse/ forward path, 
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(vii) rpnsm / fpnsm : Delay between SMU and NIU  due to system architecture 

(included to accommodate the limit of the processing time) for the 

reverse/ forward path, and, 

(viii) niu : Processing time of NIU. 

Hence,  the iteration time, trepeat, must be larger than the sum of all the latent times 

needed for the information flow and the processing, given in equation (5.2.6). 

trepeat ≥ meas + rpsru + rwsru +2pd +rwsmu +rpsmu + rpnsm + niu+   

 fpnsm+ fpsmu + fwsmufwsru + fpsru  (5.2.6) 

This system model is considered while describing the working of the system, 

discussed in section 5.2.3. 

5.2.3. HOW: WORKING OF THE APMS ARCHITECTURE 

The purpose of APMS is to sense the PTC2 and Spectrum Occupancy ‛’. This is 

done by two methods defined here as SILENT PROBING and, WHISPER & 

LISTEN PROBING. In this subsection, it will be discussed how the knowledge of  

 helps to generate the Carrier Pool ‛’ and to pull off the unutilised spectrum 

from the system. The SRU with the MCP system at the remote ends are termed as 

Remote Buds (RBs), and each sector in an SRU, that participates in the APMS is 

termed as probes. Figure 5-2-4 shows a SCIDAS network provisioned with an 

APMS sub-architecture having ‛S’ subscriber mobile equipment (ME), ‛M’ SRUs, 

and ‛N’ probes with an APMS antenna, such that, N= M ×number of sectors in each 

SRU.   

 

Figure 5-2-4: Listening by APMS Sub-Architecture in an SCIDAS Network. 

(i) SILENT PROBING METHOD (SPM): In SPM, the APMS listens to the 

received signals from the users analysis by tapping the signal samples at 

each APMS Antenna (AAN). The spectrum scanning is done at each 

APMS bud (antenna) starting from the least frequency carrier to the 
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highest frequency carrier. The measurement can start simultaneously or 

sequentially at all APMS buds depending on the need. [5] described the  

APMS system in a realistic scenario, which is also detailed in Chapter 6 of 

this thesis. As APMS only listens to the arriving signals, the method is 

defined here as SILENT PROBING METHOD.  Through  SPM, a holistic 

view of the subscriber distribution is attained by recording the arriving 

signal periodically at each AAN.  

 

(ii) WHISPER AND LISTEN METHOD (WHISLME): In this method, the 

APMS sends a short duration signal burst from each AAN, which creates a 

disturbance in the existing network condition. The response of the network 

environment is then observed by each AAN. This method is performed 

when the SPM method is not efficient enough. The capability of the APMS 

to analyse the environment by impinging the disturbance in the subject 

itself is the reason of nomenclaturing this method as ACTIVE PROBING. 

By the virtue of SCIDAS’s intelligent architecture, the intelligent selection 

can be performed conveniently, and the APMS would perform 

measurements both actively and passively in a simultaneous, sequenced 

and scheduled manner. For the WHISLME process, the service antennas 

can also be used to utilise the directivity advantage for exclusivity of the 

measurements.  

It is important to mention here that the APMS system can perform all CME 

measurements in the frequencies that may or may not belong to the licensed or 

unlicensed bands. Therefore, a lot of network resources can be saved by shifting the 

PTC2 estimation to the out-of-band domain. This is one of the biggest advantages of 

using a separate system for catreing the environmental irregularities. 

Through APMS, the sequential and targetted measurements leads to creating a 

holistic picture of the network environment. The biggest advantage of APMS 

system is that  it provides a global view of the variations at all locations of the 

network without utilising the real network resources (such as paging and piloting). 

The next section will elaboratly describe the proposed supporting algorithms. 

5.3. ALGORITHMS: PROCEDURAL APPROACH IN MANAGING 
PTC2  

This section discusses the SCIDAS approach, in terms of algorithms, to cater for 

the PTC2 challenges. We will see how SCIDAS identifies the wobble and then 

iteratively re-configures the resource distribution for smooth transition of the 

accumulations. Arranging these algorithms in a systematic way, as discussed in the 

next section, leads to the complete APR mechanism that is discussed in section 5.4 

of this thesis. 
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 The APMS capitalises the channel impulse response of a network environment. If a 

signal burst is injected into a channel medium, the channel impulse response is the 

summation of the signals arriving through multiple paths, and can be written as: 

 

ℎ𝑖𝑗(𝑡𝑖𝑗 , 𝑇) =  ∑ 𝐴𝑖𝑗𝑔𝛿(𝑡𝑖𝑗 − 𝑇𝑔)𝑒−𝑗𝜃𝑔

𝑁𝑖𝑗

𝑔=1

 (5.3.1) 

Where hij is the response function between ith  initiator probe and jth receptor Probes, 

Aijg is the amplitude of gth component of the signal generated by ith probe and 

received by jth probe at time Tg [6] (see, figure 5-3-1).   

 

Figure 5-3-1: Active Probing in an SCIDAS: Time Domain 

The signal burst, initiated by the ith probe can be received by all probes with some 

delay, as shown in figure 5-3-2. As these components would arrive after dealing 

with the network environment, they would contain information about the network 

composition. For the present discussion, the first two components of the signals, 

denoted by t and ,  are considered to be recorded by all probes. In the SCIDAS 

architecture, the RNs are normally low-powered and are closer to than in the usual 

network sites. Hence, it is assumed that each probe antenna can “see” its 

neighbours, and, therefore, the first component that arrives after a delay of tij 

seconds is considered as a direct signal and the next tap that arrives after a delay of  

ij seconds is the reflection from the subject. 

Through MCP, the AANs can be maneuvered and re-oriented in both horizontal and 

vertical azimuths, therefore, as shown in figure 5-3-2, a subject of interest can be 

illuminated by any probing antenna (AAN) through minor adjustments. This is 

required when the PTC2  needs to be followed, and only a specific portion the 

covered area is the subject of interest. 



CHAPTER: ACTIVE PROBING AND SELF CONFIGURABILITY IN SCIDAS 
__________________________________________________________________________________________________ 

197 

 

Figure 5-3-2: Channel Response of a signal burst 

As mentioned earlier, the prime purpose of the APMS is to estimate the PTC2 in an 

SCIDAS network. Both SPM and WHISLME generate a channel matrix, mentioned 

in (5.3.2) as (see, figure 5-2-4): 

 

  (5.3.2) 

and, can be translated in equation form as mentioned in (5.3.1) given below [7]: 

  (5.3.3) 

Where is the receive vector,  is the transmit vector and, H=[hij] is the channel 

matrix and is the  noise vector such that: 

 R is the number of receiving probes, 

 T is the number of transmitting probes, 

 is the received signal vector (values measured by APMS),   

 [hij]R×T is the complex channel matrix, 

  is the transmit signal vector (transmit signals), 
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 hij is the channel coefficient between ith base station and jth ME, and, 

 is the additive Gaussian noise with covariance of I
 

In a varying condition, however, the channel matrix-vector H is also a varying 

entity. Hence, it is almost impossible to solve equation (5.3.3) in a PTC2  condition. 

Hence, the first step towards solving equation (5.3.3) is to find H.  

5.3.1. WHISPER AND LISTEN METHOD (WHISLME) 

In the WHISLME procedure, the APMS uses the intelligence of SCIDAS for its 

antennas to perform in all modes such as MIMO, MISO, SIMO, and SISO by 

selecting single or multiple antennas to participate during the operation. To identify 

the fading between ith transmitter and jth receiver, the SCIDAS allows APMS to 

operate in SISO mode where the ith activity is heard by all other probes one-by-one 

at distinct times. The data can be obtained through WHISLME algorithm given 

below as: 

Steps Function Description 

BEGIN WHISLME(T,R,D,)  // T is the set of Transmitters (Tx), R is the set of 

Receivers (Rx), neighbours distance D, and stamp 

type ‘’ 

1 i, j1;  // variables are initialised 

2  While ( i ≤ |T| ) do // perform till i reaches number of Tx elements in T 

3  Whisper (Ti) = i ; // ith probe of set T sends a burst i ; use eq. (5.3.1) 

4   While ( j ≤ |R| ) do // perform till j reaches number of Rx elements in R 

5    If (TDOij= True) then // limiting the number of neighbors; see, (5.3.22) 

6    Listen(Rij) = ij ; // jth  probe records the Rx signal from ith
 probe 

7    [mij]T×R = ij /i  ; // calculating the  loss between i and j 

8    Else goto next step // jump when the number of neighbours exceed 

9   jj+1; Else Step 8 // condition of terminating  While j ≤ |R| 

1

0 

 Wait ( trepeat ); // Wait before next iteration (see, figure 5-2-3) 

1

1 

 j1; // initialize the Rx probe count 

1

2 

 ii+1; Else Step 11 // preparing next probe to whisper 

1

3 

i, j1;  // reset variables ( to avoid conflicts in multiple use 

of same variables) 

END WHISLME([M] T×R) // output matrix ; Algorithm terminates 

  (5.3.4) 
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The matrix M obtained through (5.3.4) can be in two domains, time, and position. 

The time –domain decomposition is expressed by M= and the iterations are in the 

time domain and, therefore mij(t) = i,j,t. 

The i,j,t represents the measurement performed in terms j /i  where i  is the 

transmitted signal from the ith probe, and j is the signal received at the jth probe at 

any time t. Therefore measuring  at various time intervals shall provide datapoints 

as given below:

 (𝜆𝑖1,𝑗1,𝑡1 , 𝑡1), (𝜆𝑖2,𝑗2,𝑡2 , 𝑡2), (𝜆𝑖3,𝑗3,𝑡3 , 𝑡3),, (𝜆𝑖𝜏,𝑗𝜏,𝑡𝜏 , 𝑡𝜏)  

or, (𝜆1, 𝑡1), (𝜆2, 𝑡2), (𝜆3, 𝑡3), … , (𝜆𝜏 , 𝑡𝜏) (5.3.5) 

Considering the incidences happening in the time domain, the dynamics can be 

expressed as a -1 degree polynomial function mentioned below [8] [9]: 

 𝜆𝑖,𝑗,𝑡 = 𝑎𝑖𝑗𝜏𝑡
𝜏−1 + 𝑎𝑖𝑗𝜏−1𝑡

𝜏−2 + … +  𝑎𝑖𝑗1𝑡
0 (5.3.6) 

To obtain the function out of measured values, the coefficient ‘a’ is needed to be 

obtained. The matrix equation for the expression (5.3.6) describes the channel 

matrix as a time-dependent entity  and correspondingly the coefficients are 

obtained. Later the same will be derived for the position-dependent channel matrix.  

The two components shall be used to describe both position and time dependent 

variations in the system. The time variant channel matrix can thus be described as: 

 (5.3.7) 

The coefficient can thus be  determined as per below [10] [11]:  

 (5.3.8) 
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Equation (5.3.8) says that the coefficients are obtainable for a given set of 

observations, and so a generic equation representing z observations can be 

formulated as: 

 𝜆𝑖,𝑗(𝑡, 𝑧) =  𝑎𝑖𝑗𝑧𝑡
𝑧−1 + 𝑎𝑖𝑗𝑧−1𝑡

𝑧−2 + …+  𝑎𝑖𝑗1𝑡
0 (5.3.9) 

The complete matrix of time-variant channel matrix  can be described as: 

 
[𝜆𝑖𝑗]𝑇×𝑅 (𝑡, 𝑧) =  ∑ 𝑎𝑖𝑗𝑘

𝑧

𝑘=1

𝑡𝑘−1 
 (5.3.10) 

Where, z is the variable on which  is evaluated and, t is the variable of which the  

is a function matrix. As mentioned earlier, it is assumed that these variations in  

are due to variations in the user position casing variations in long term fading of the 

channel. Hence,  

 
 
𝑑

𝑑𝑡
[𝜆𝑖𝑗]𝑁 ×𝑁 (𝑡, 𝑧) =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 (5.3.11) 

Similarly, the position domain decomposition can be achieved by relating the 

matrix with measurements performed in the position domain rather than the time 

domain. Therefore, setting M=, =p,1=N, and mi,j,t = i,j,t.. To avoid the 

complexity in 2-dimensional coordinates to a single dimension, the position is 

expressed in terms of bud position (total buds =N). The position variant channel 

matrix can thus be described as: 

 𝜎𝑖,𝑗(𝑝, 𝑁) =  𝑏𝑖𝑗𝑁𝑝𝑁−1 + 𝑏𝑖𝑗𝑁−1𝑝
𝑁−2 + … +  𝑏𝑖𝑗1𝑝

0 (5.3.12) 

The complete matrix of the position-variant channel matrix  can be described as: 

 
[𝜎𝑖𝑗]𝑁 ×𝑁 (𝑝, 𝑁) = ∑ 𝑏𝑖𝑗𝑘

𝑁

𝑘=1

𝑝𝑘−1  
 

(5.3.13) 

Where, t and z are the variables on which  is evaluated. As mentioned earlier, it is 

assumed that these variations in  are due to the variations in the user position 

casing variations in fading of the channel.  

 
 
𝑑

𝑑𝑡
[𝜎𝑖𝑗]𝑁 ×𝑁(𝑝, 𝑁) =  𝑟𝑎𝑡𝑒 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑑𝑜𝑚𝑎𝑖𝑛 (5.3.14) 

As mentioned in the 3.5.19 (see, section 3.5.3 of Chapter 3 of this thesis), the place 

time depended must accommodate both the place and time dependent variations. 

Therefore, place time variant matrix H can thus be defined as: 
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 𝐻𝑒𝑠𝑡 = (𝑈 𝜆)(𝑊 𝜎);  ℎ𝑖𝑗 = (𝑢𝑖𝑗𝜆𝑖𝑗(𝑤𝑖𝑗  𝜎𝑖𝑗)    (5.3.15) 

 

 

 

5.3.2. CHANNEL MATRIX ESTIMATOR (CME) 

Here, we define an algorithm Channel Matrix Estimator (CME)  that uses 

WHISLME to identify the elements of H. The CME thus, can be described as 

compound algorithm containing two steps, the first one obtaining the data and the 

second one estimating the matrix.  

This algorithm uses WHISLME to observe the channel matrix at various stamps of 

the observation. The stamps can be regular or irregular time instances or positions 

within the AoI. The CME algorithm is described in algorithm 5.3.16 and generates 

the estimated channel matrix for a given set of Transmitters (Txs) T, set of 

Receivers(Rxs) R, set a total number of stamp C.



 

Figure 5-3-3: Active Probing in an SCIDAS: Position Domain 
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Steps 

L1  

 

Function Description 

BEGIN CME(R,T,D,C,)// Set of Rxs & Txs R ,T, Distance D, Stamp domain C, stamp type  

1 BEGIN: ACTIVE PROBING TECHNIQUE STARTING APT Sub-Algorithm 

2 A1 u, v1;   1   // variables initialised 

3 A2 While ( ≤ C ) do //condition for stamps (time or position)  

4 A3  WHISLME(T,R,D,M) //create measured Matrix at a stamp  

5 A4  While (u ≤ |T| ) do //do for all elements in set of Txs ‘T’ 

6 A5   While ( v ≤ |R| ) do //do for all elements in set of Rxs ‘R’ 

7 A6    k (u-1)R +v //2-Dim R×T vector→ 1-Dim vector ‘K’ 

8 A7    kC×(T×R)  [muv]T ×R ; //Matrix with measurement v/s stamps 

9 A8   vv+1; Else Next Step (M9) // next Rx; looping condition for A5 

10 A9  Wait (trepeat); //breathing period (see, section 5.2.2) 

11 A10  v1; // Intitailising Rx count for next iteration 

12 A11  uu+1; Else Next Step (A12) // Next Tx; looping condition for A4 

13 A12  j 1; // initialization for stamp matrix 

14 A13  While ( j ≤ C ) do // for creating ‘t’ matrix(see, eq. 5.3.8)  

15 A14   [TTj ]C ×C C-j ; // assigning values to each element of ‘t’ 

16 A15  jj+1; Else Next Step (A16) // looping condition for A13 

17 A16 u1; // Intitailising Tx count for next iteration 

18 A17   +1; Else END APT // Next Stamp; looping condition for A2 

19 END: ACTIVE PROBING TECHNIQUE ENDING APT Sub-Algorithm 

20 BEGIN: MATRIX EVALUATION STARTING ME Sub-Algorithm 

21 C1 , i, j, k 0; // variables initialised 

22 C2 While (i ≤ |T|) do //considering all Transmitters 

23 C3  While (j ≤|R|) do // considering all Receivers 

24 C4  k (i-1)R +j; // representing T-R in single dimension 

25 C5  While (k ≤ T×R) do // representing T-R in single dimension 

26 C6   While ( ≤ C ) do // considering all stamps 

27 C7    k [k]; // assigning measurements to estimator 

28 C8     +1; Else Next Step (C9) // next stamp 

29 C9   [ak]C ×(T ×R) = TT-1 [k] C×(T ×R); // evaluating coefficients (eq. 5.3.8) 

30 C10   [Πij(tt)]T ×R = 
∑azk tt

C−ω
C

z=1

 
// evaluating Channel Matrix (eq. 5.3.9) 

elements. 

31 C11  j j+1; Else Next Step (C12) // next Rx is selected for evaluation 

32 C12 i i+1; Else END ME // next Tx is selected for evaluation 

33 END: MATRIX EVALUATION ENDING ME Sub-Algorithm 

END CME( tt) // ouput matrix with stamp type variable ‘tt’ 
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(5.3.16) 

Table 5-3-1: list of symbols used in CME algorithm. 

1 T : the set of those probes (or sector-buds if the service antenna is chosen as 

AAN)  that are chosen by SCIN through logical addressing to perform transmit 

function. It is important to note that, to avoid unnecessary calculations, only 

specific transmitters can be chosen where the probability of wobbling is likely 

to happen. T includes all such transmitters. 

2 u : the variable that counts until the number of elements in T (count of elements) 

denoted here as |T|  

3 R : the set of those probes (or sector-buds if the service antenna is chosen as 

AAN)  that are chosen by SCIN through logical addressing to perform receive 

function. All transmitters may not perform receive functions and vice-versa, 

hence receiving probes may be different from those who are chosen in T. Thus, 

a different set R is chosen to incorporate receivers.  

4 v : the variable that counts until the number of elements in R (count of elements) 

denoted here as |R| 

5  addressing : the logical address that is used by SCIDAS intelligence to choose a 

particular SRU. This is an essential and imminent feature of SCIDAS where a 

simple DAS network becomes a selective network.  

6 k : the variable that denotes a pair of ith transmitter and jth receiver. As the 

measurement’s belongingness is the with the T-R pair, it will be appropriate if 

this pairing is numbered sequentially  as it is easier to deal with a two-

dimensional matrix by reducing i-j plane to a single dimensional counting. 

Transforming the i-j plane to a linear numbering is done is similar to counting 

squares on the chess board with i and j representing row and column 

respectively using the formula in A6 of (5.3.16).  

7  (Stamp type) is a dimension in which the iterations of measurements are 

performed. If the stamp type is time, then the measurement is performed at 

certain time intervals. Like t=1,2,3 seconds and if it is of type ‘position’, then 

measurements in performed in certain iterative positions like position1,2, 3 etc.  

8  : the variable that represents stamp type.  

9 C : the number of iterations needs to be performed to accomplish measurements.  

10  : the variable that counts until a number of iterations, ‘C’, is complete. 

11 M, 

mij 

: the output of a matrix containing measurement performed with a single set of 

active probing by WHISLME. mij
 is an element of M that has measurement 

when i has transmitted, and j has received the probing signal. 
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12 k] : the matrix that holds the information obtained by all WHISLME 

iterations. k is the element of the matrix that holds information 

obtained at th iteration and between kth i-j pair (see, 6 in this list of 

symbols). 

13 TT : the stamp-type matrix as in equations (5.3.7) and (5.3.8). The 

purpose is to estimate the degree of function which represents the 

wobbling pattern between any k pair. 

14 TTj  : the element of [TTj ] or TT, that that presents nth degree for the 

variable type see, A14 of (5.3.16). TT only depends on iteration 

parameters C and  

15 k : the element of [k] that holds the value of [k]. This is a copy of 

[k] and protects the precious measurement set [k] from getting 

altered accidently. Moreover, a different variable is chosen to match 

with equations from (5.3.2) to (5.3.11). 

16 ak : the coefficient matrix for th  iteration and kth i-j pair. To satisfy 

equation (5.3.8), both ak and k are evaluated column-wise in such a 

way that each column of both [ak] and [k] holds common k, and 

therefore, evaluates for all iterations of a particular i-j pair ‘k’.  

17 [Πij(tt)]T ×R : the output matrix with each element Πij(tt) representing the 

variations in the subject area between i-j pair in the form of a function 

of stamp type tt. Each element Πij(tt) is obtained as in equation 

(5.3.10). It is important to note that equation (5.3.10) is for one T-R 

pair and [Πij(tt)] is obtained by performing the process for all T-R 

pairs measurements, and therefore, the size of [Πij(tt)] is T× R. 

 

The CME algorithm generates an estimated matrix with respect to the type of 

stamps used for obtaining the measurements. This relates the channel matrix as a 

function of the stamp, the time-stamp, and the position stamp. The time domain 

estimation is shown in figure 5-3-1. Figure 5-3-3 shows the position domain 

measurements. In the time domain, a time interval is chosen for a set of transmitters 

and receivers to perform another set of observations, similarly, in the position 

domain measurement, a position or subject is chosen to perform one set of 

observation. The sequence of these observations will create a position-dependent 

channel matrix that eventually will imitate the subscriber distribution in the locus of 

the path created by integrating the discrete positions. The position based 

measurement is essential in the case when the users do not move from one place to 

another and rather come closer thereby, creating an additional loss in the 

measurement values. This will not be noticed by the time-based iterations when the 

measurements are done in a short interval.  
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In figure 5-3-3, we can see that the position based measurements can be used to 

follow the accumulation path. For analysing the locus of the positions, a distribution 

of the gathering can be generated. Therefore, while in the time-domain a single 

location is measured iteratively multiple times to obtain a time-based function, the 

position domain measurement is generated by observing positions in a process to 

obtain a position based function of distributions. Next, we analyse the efficiency of 

the CME algorithm regarding its response time and its utility in network 

dimensioning. 

CME Efficiency Analysis: The CME algorithm is an essential process of 

understanding the network environment for the intelligent system to deal with. This 

algorithm can present the environment behaviour at various spot (number of spots 

defining the complexity in calculations) as a function of the place and time. The Hest 

may not present the exact environmental conditions, however; the rate of change in 

Hest definitely gives an estimation of an influx or outflux to/ from the spot. 

Undoubtedly, this is an initial stage of evolving any such response algorithm and 

has an ample scope of redefining and improvising the efficiency, accuracy, and 

applicability in future works. Figures 5-3-4 to 5-3-11 show the efficiency of the 

CME algorithm for a network with 500 buds. For the calculation, the buds were 

deployed as shown in figure 5-3-13 and the inter-bud distance was set to be 200m. 

The performance is judged on the machine having Intel Core i7-4960X processor, 

with Nvidia GTX 970 graphics card (248 frames per second), Crucial M4 128GB 

drive ( max speed 316 MB/s) and Random Access Memory (RAM) with 44.9 GB/s 

speed. These specifications are important as the time of the calculations depends 

hugely on the processor at the NIU. 

 

Figure 5-3-4: CME response time for the complexity of 1 Transmitters pairing with all 500 
Receiver buds 
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Figure 5-3-5: CME response time for the complexity of 10 Transmitters pairing with all 500 
Receiver buds (1to 500) 

 

Figure 5-3-6: CME response time for the complexity of 20 Transmitters pairing with all 500 
Receiver buds (1to 500) 
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Figure 5-3-7: CME response time for the complexity of 10 Transmitters pairing with all 500 
Receiver buds (1to 500) 

 

 

Figure 5-3-8: CME response time for the complexity of 200 Transmitters pairing with all 500 
Receiver buds (1to 500) 
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Figure 5-3-9: CME response time for the complexity of 500 Transmitters pairing with all 500 
Receiver buds (1to 500) 

 

Figure 5-3-10: CME response time for the complexity of 500 Transmitters (1to 500) pairing 
with all 500 Receiver buds (1to 500) 
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 Figure 5-3-11: Zooming in figure 5-3-9 for insight of response pattern for a single 
transmitter pairing with growing number of receivers 
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Figure 5-3-12: Probability of finding accumulation at a random place impacts CME 
performance 

From the above discussion, it is very clear that the complexity of the  CME 

algorthim may not be very suitable for SCIDAS for a  large number of antennas. 

With 500 buds, the processing time may be in the order of 1016, which is practically 

impossible for any network performance. Hence, to assist CME in maintaining the 

quality of the performance, another algorithm is proposed that is defined here as a 

T-R Distance Optimiser (see, sub-section 5.3.3), where, the distance is in terms of 

neighbours of a particular Tx. By choosing the right neighbours as Rx probes, a huge 

amount of calculations can be avoided. Sub-section 5.3.3 explains how the right 

neighbours can be obtained. In sub-section 5.3.3, we define the TDO algorithm that 

can be applied for both the position and time domains and is indicated by the 

stamp-type variable gamma. When =1, the algorithm performs in the time-

domain else in the position domain. For the position domain, only those neighbors 

are chosen that are serving the desired position and the condition is given in 

equations (5.3.17) and (5.3.18) whereas in the time domain measurements only 

those neighbours, that can receive a signal level above a certain value Pcriteria would 

be served. Normally, Pcriteria is the Rx sensitivity of the system. 

5.3.3. T-R DISTANCE OPTIMISER (TDO) 

Let (xi, yi) and (xj, yj) be the position coordinates of the transmitter and the 

receiver probes respectively, and, (xp, yp) be the position of accumulation. For the 

position-domain observations, the TDO, defined in (5.3.22), chooses the receivers 

that satisfy the following equations: 
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 𝑦 = (

𝑦𝑗 − 𝑦𝑖

𝑥𝑗 − 𝑥𝑖
)  𝑥 + 𝐶 

Standard line equation between ith 

transmitter and jth receiver. 
(5.3.17) 

and, 𝑥2 + 𝑦2 ≤ 𝑅2 Limiting the observation span 

within the observation zone 
(5.3.18) 

 

Figure 5-3-13: Position domain measurements: estimating the set of observers 

Where, the observation zone is the circular area of radius R that encapsulates the 

subject area as shown in figure 5-3-13, and ‘m’ is the rate of line in equation 

(5.3.17). The condition of observing the probes with x and y as coordinates is 

identified as: 

 
 𝑥 ≤  

−𝑚𝐶 ± √(𝑚𝑅)2 + 𝑅2 − 𝐶2

𝑚2 +  1
 

Standard line equation between ith transmitter and jth receiver. 

(5.3.19) 

and, 
𝑦 ≤  

𝐶 ±  𝑚√(𝑚𝑅)2 + 𝑅2 − 𝐶2

𝑚2 +  1
 

 

(5.3.20) 

The condition set ‘D’ in WHISPER and CME algorithms for the position-domain 

observation satisfies equations (5.3.17) and (5.3.18) and is described in the TDO 

algorithm as discussed in (5.3.22). Similarly, for the time-domain observation, if 

(xi, yi) and (xj, yj) are the position coordinates of the transmitter and receiver 

probes respectively, then the neighbour distance is approximated by the following 

equation. 

 
𝑃 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 ≤ 𝑃𝑡 [

𝜆

4𝜋√(𝑦𝑗 − 𝑦𝑖)2 + (𝑥𝑗 − 𝑥𝑖)2 
]

2

 

Standard line equation between ith transmitter and jth receiver. 

(5.3.21) 

Where Pt is the power of the probing signal and is constant through the observation 

for all probes, and is the wavelength under consideration. This evaluates the 

i 

j: 

j2

j...

JD

2r
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extent of neighbours to transmitter probes that observe the transmitted AAN. The 

process can be described in an algorithm as below in (5.3.22): 

Steps Function Description 

BEGIN: T-R Distance Optimisation (xi, yi, xj, yj,Pcriteria,)  

 // (i,j) coordinates, Power Criteria and stamp-type ‘’ 

1 i,j 1 // initializing variables 

2 While i≤ N // all buds are as transmitters 

3  While j≤ N // all buds are as receivers 

4  If  is time-domain (=1) // valid neighbours in time-domain 

5   If (i,j) satisfy condition in(5.3.21) then // if (i,j) pair are valid neighbours 

6   Dij True; Else Dij False; // if yes then true else false 

7  Else  // If  is position-domain (=2) 

8   If (i,j) satisfy condition in (5.3.19) and (5.3.20) then 

9   Dij True; Else Dij False; // for position domain 

10  j j+1 // next receiving probe 

11 i i+1 // next transmitting probe 

12 END: T-R Distance Optimisation (D, ) // return Distance-matrix and stamptype ‘’ 

(5.3.22) 

 

Figure 5-3-14: TDO implementation on CME for controlled sensing 
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The TDO algorithm limits the receiver probes thereby, reducing the time of 

observation per probing process. With a large number of probing antennas, TDO 

can reduce a considerable amount of time by rejecting the non-significant 

measurements. While performing the position domain measurement, TDO users 

MCP to perform orientations between Tx and Rx. 

Figure 5-3-14 shows how TDO controls the increase in complexity and the 

performance dampening. The upper graph in figure 5-3-14 shows when the sensing 

is performed without the TDO, which means that it only depends on the choices of 

the T and R sets. The result, in this case, is a steep rise in the time latency with an 

increase in T-R sets (also mentioned earlier). Conclusively, the graph shoots up 

exponentially with the increase in complexity, so much, that the time to observe  

SCIDAS network with 500 sites raises to the order of 1015. The same graph also 

contains results with the TDO implementation, to show that for a TDO 

implementation, the time consumption is low enough (high performance) to be 

barely visible in the upper graph. This is compensated in the lower graph with a 

time scale of the order of 100. As we can see in the lower graph, depending upon the 

Pcriteria, the TDO would assign a different but very limited set of neighbours to its 

respective transmitters. This reduces the complexity of the matrix and the latent 

time in the calculations. The graph shows that with TDO, the SCIDAS can be 

scaled to any number of buds without contributing any further delays in processing 

time. As the number of neighbours of a transmitter is limited, the delay in 

propagation of information from a farther bud is also reduced to very intimate 

neighbour groups.  

Utilisation of the CME-TDO algorithm (Example: the City of Pune, India): 

Every year, during the popular festival of Lord Ganesha (Ganpati), processions in 

chunks of groups move across the city for the immersion of an idol of Lord 

Ganesha at specific destinations. This is a critical cause for network congestion in 

the areas of accumulations. It is difficult for NSP to estimate the additional sites 

that can satisfy the situation because of the uncertainty of the exact location of the 

expected network congestion. CME-TDO algorithm was used to predict the 

locations of additional sites (see, figure 5-3-15) to cater the huge PTC2 problem. As 

there was no APMS, the data obtained from Radio Resource Management (RRM) 

was considered as equivalent information to that of what may be obtained from 

APMS and was used to predict the point of accumulations as shown in figures 5-3-

15 and 5-3-16. This information was used for a case study that is discussed in 

Chapter 6.  

The CME-TDO algorithm can be used to identify the time and position based 

variations in the network environment. As most of the entities of the network 

environment are static and, it is the human intervention that creates most of the 

itinerance in the environment, the outputs of the CME algorithm can be used to 

identify the accumulations and movements of these accumulating groups in the AoI. 
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The advantage of the CME-TDO algorithm is that it can provide a holistic view of 

the variations in the entire AoI at the same instant and hence, the network 

optimization, initiated by NIU and executed by other modules of SCIDAS 

architecture SMU, SRU, and MCP), is more effective and realistic. 

 

Figure 5-3-15: Prediction of locations of high accumulations in the city of Pune 

 

 

Figure 5-3-16: Locations of accumulations in 10 × 10 sq. km area in the city of Pune 

 

5.3.4. PTC2 ENVIRONMENT ESTIMATOR (PTC2 EE) 

Both the time and the position based CMEs are assigned to t and p 

respectively, to give Hest. This procedure can be expressed in an algorithm that is 

defined here as PTC2 Environment Estimator (PTC2 EE), as in (5.3.23), given 

below:   
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BEGIN: PTC2 EE (R,T, Ct, Cp, t, p, )  

1 t  CME (R,T,Ct, (=1) );  // obtain time-dependent Channel Matrix 

using CME as in (5.3.16) 

2 p CME (R,T,Cp, (=2) ); //obtain position-dependent Channel Matrix 

using CME as in (5.3.16) 

3 Hest(t,p,n) (𝑼𝝀𝒕)(𝐖𝛌𝐩); // obtain Place-Time Matrix from equation 

(5.3.15) 

4 𝛆𝐢𝐣𝑓(𝑯𝒆𝒔𝒕) // Calculate 𝛆𝐢𝐣 using equation (5.3.35) 

END: PTC2 EE (t, p, 𝛆𝐢𝐣  )  

(5.3.23) 

Both t and p are the accumulation dependent matrices. Hence, the accumulation in 

a subject location is a function of Hest. t represents the subscriber accumulation 

with time (see, figure 5-3-1), and p represents the subscriber accumulations with 

position (see, figure 5-3-12). Thus, as discussed in section 3.6 of Chapter 3, 

equation (5.3.3) thus transforms into an accumulation dependent set of equations as: 

 t, pest
(t,p) (5.3.24) 

Where, 𝐻𝑒𝑠𝑡(𝑡, 𝑝) = 𝐴(𝑈𝜆𝑡)(𝑊𝜆𝑝) ; A is correction factor (5.3.25) 

Figure 5-3-1 shows that the wave from a transmitter travels some free space 

distance before interacting with the user distribution, the absorptions by the ground 

and other medium entities (human, metals, cement, etc.). Hence, removing the loss 

due to the free space dispersion will provide an approximate loss from the subject to 

the receiver. Hence, the coefficients U and W, as mentioned in the equations 

(5.3.24) and (5.3.25) would  accommodate these adjustments as is  described below: 

 
𝑢𝑖𝑗 =

1

𝑃𝐿(𝐷𝑜,𝑖𝑗)
 

(5.3.26) 

and 
𝑤𝑖𝑗 =

1

[𝑃𝐿(𝐷𝑜,𝑖𝑝)]𝑖𝑗

 
(5.3.27) 

Estimation of the PTC2 components: The dynamic path-loss PL, given in equation 

3.6.19, between the  ith transmitter and the jth receiver  can be expressed as: 

 𝐏𝐋𝛚,𝐢𝐣 = PL̿̿̿̿ (D0ij  +  dij) (
D0ij  +  dij

D0

)

NAR(εij)

 (5.3.28) 
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Where εij is the user density within the i-j pair (see, figure 5-3-1 and equation 

3.6.19, Chapter 3). 

From the above discussions, we have, the net fading in the i-j pair, which can be 

approximately expressed as 

 𝐏𝐋𝛚,𝐩,𝐢𝐣(t) =  𝜆𝑡,𝑖𝑗𝜆𝑝(𝑖𝑗) (5.3.29) 

As discussed in section 3.5, of Chapter 3, equation (5.3.29) is the coverage needed 

at any point of interest (or subject) at any time ‛t’ and is the Place Time Coverage 

representation obtained through APMS measurements. The PTCo
  scenario in the 

network can thus be expressed as: 

 [PTCo,ij](𝐭, 𝐩)𝑇 ×𝑅 = [𝐏𝐋𝛚,𝐢𝐣](𝐭, 𝐩)𝑇 ×𝑅 = [𝜆𝑡,𝑖𝑗]𝑇 ×𝑅
 [𝜆𝑝]𝑇 ×𝑅

 (5.3.30) 

Similarly, the Place Time Capacity is obtained by equating, (5.3.28) and (5.3.29), 

which yields: 

 𝐍𝐀𝐑(𝛆𝐢𝐣(t, p)) = log
(
D0ij + dij

D0
)

( 
𝜆𝑡,𝑖𝑗 𝜆𝑝(𝑖𝑗)

PL̿̿ ̿̿ (D0ij + dij)
)

  

or 𝐍𝐀𝐑(𝛆𝐢𝐣(t, p)) =

log (
𝜆𝑡,𝑖𝑗  𝜆𝑝(𝑖𝑗)

PL̿̿̿̿ (D0ij  +  dij)
)

log (
D0ij  +  dij

D0
)

 (5.3.31) 

For the experiment performed as discussed in Chapter 2, the relation of dynamic 

path-loss exponent with the subscriber density, as mentioned in equation (2.5.1),  

can be estimated as (40+78 εij) × 3.32. Hence, for the purpose of the discussion, 

equation 5.3.31 can be generalised here as: 

 

[𝛆𝐢𝐣(t, p)]
𝑇 ×𝑅

= [
 
 
 
 log (

𝜆𝑡,𝑖𝑗  𝜆𝑝(𝑖𝑗)

PL̿̿̿̿ (D0ij  +  dij)
)

(3.32)log (
D0ij  +  dij

D0
)
]
 
 
 
 

− 40

78
 

(5.3.32) 

Assuming that each user is entitled to a maximum capacity of ‛’, the capacity 

requirement matrix between T-R (i-j) pair thus can be expressed as: 
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 [PTCij](t, p)𝑇 ×𝑅 = ρ[εij(t, p)]
𝑇 ×𝑅

 (5.3.33) 

Knowing the coordinates of the probes, equations (5.3.30) and (5.3.33) can also be 

expressed in the coordinate system instead of the i-j format. The Hest can be very 

useful in the signal estimation in extremely dynamic conditions. Equation (5.3.24) 

can be used for the signal estimations in MIMO operations in a varying 

environment. As shown in figure 5-3-1, and discussed in section 3.6 of Chapter 3, 

the varying channel matrix equation (5.3.24) can therefore, be used for estimating 

the signals in MIMO operations, which is given below as: 

 𝒚 = 𝓗𝒙 + 𝒏 (5.3.34) 

Where n is the system noise or the Gaussian additive noise vector with covariance 

I. With respect to the measure values y,  the transmit signal can thus be estimated 

by the zero forcing method [12]: 

 𝒙 = (𝓗𝑻𝓗)−𝟏𝓗𝑻𝒚 (5.3.35) 

Where H is the channel matrix for I set of transmitters and J set of receivers and 

hence,  𝓗𝑻 ⊂ 𝑯𝒆𝒔𝒕. Each I and J can be either a probe or user with each T-R pair 

having atleast a single probe.  

 

Figure 5-3-17: Estimation of the strength of accumulation at various locations in the City of 
Pune using PTC2EE algorithm. 

Utilisation of PTC2 EE algorithm (Example: the City of Pune, India): We have 

already discussed how the CME-TDO algorithm predicted the wobbles in the 

network. Locations with higher variations were marked as the high wobbling 
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locations as shown in figures 5-3-15 and 5-3-16. However, besides the location, it is 

also required to know the strength at those locations for capacity dimensioning. The 

PTC2EE algorithm is used to predict the strength of the wobbles in terms of a 

number of people and the density of their accumulations. Figure 5-3-17 shows the 

strength of the user accumulation at various locations in the network area (AoI). It 

is important to note that there are always some users beneath every site and across 

every position in the network area. This is the “floor user density” and is shown as 

the blue floor in the graph, which is the people density less than 120 per 200 × 200 

sq. meter area. 

5.3.5. SILENT PROBING METHOD (SPM) 

While WHISLME is an active mode of APMS’s probing process, this algorithm 

silently observes the network by reading the uplink and downlink signals at each 

bud of the SCIDAS network without any probe signal. However, unlike WHISLME 

me where the uplink and downlink were the same side of the network, the nature of 

the transmit signal is complex as it is the actual signal that is transmitted from 

various users. Therefore, instead of utilising this active observation for the 

accumulation estimation, the SPM algorithm is used to read the spectrum utilisation 

at every bud of the network.  

Let the system model, in equation (5.3.34), having ‛N’ SCIDAS sub-buds (sectors, 

each behaving as separate remote unit) and S users is re-written as : 

 [𝒚]𝑵 = 𝓗[𝒙]𝑺 + 𝒏 (5.3.36) 

Where n is the system noise or Gaussian additive noise vector with covariance I. 

Also, let [CGi]N be the group of  ‛ik’ frequencies (carriers) such that: 

 [𝑪𝑮𝒊]𝑵 = {𝒇𝒊𝒌} 𝑘=1
𝓕𝒊  (5.3.37) 

Where {𝒇𝒊𝒌} is the number of carriers allocated to the ith sub-bud of the SCIDAS 

network. If pik is the transmit power of the ith sub-bud antenna and kth carrier, then 

the signal-to-noise-plus-interference ratio (SINR) experienced at the Jth receiver due 

to Ith transmitter antenna for Kth carrier can be described as: 

 
𝑺𝑰𝑵𝑹𝒊𝒌,𝒋 =

𝒑𝑰𝑲|𝒉𝑰𝑱|
𝟐

∑ ∑𝒑𝒊𝒌|𝒉𝒊𝒋|
𝟐
+ 𝝈𝟐𝑵

𝒊≠𝑰

  
(5.3.38) 

While performing Silent Probing, the recorded information contains the Carrier 

Group ‛CG’, interfering carrier group (ICG) and SINR at each bud for all carriers. 

The ICGi is the list of interferers that are experienced significantly. The process can 

be described as below: 
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 BEGIN SPM(t,L)  

1 i,j1; t  t1     // indices set to 1 at any time ‘t1’ 

2  For j ≤  // Measuring the frequency fj at all probes 

3   For i ≤ N // condition for probes 

4    if Power of fj, pj ≥ Receive sensitivity and 𝑺𝑰𝑵𝑹𝒊𝒌,𝒋 > ∀ then,  

5    Kijpj when  = 1 or Kij1 when   =2;  

6    else Kij 0;  

7     // Recording values for every probe  

8    if  i= N then END For loop; // condition for probes exhaust; i=N 

9    i i+1; // else next probe 

10   if  j =  then END For loop; // condition for all carrier measured;  j= 

11   jj+1; // else next carrier 

12  END SPM(t)  

  (5.3.39) 

Where  is the measurement type. And,   =1 when the signal power level 

information is needed and  =2 when the carrier occupancy information needed.The 

SPM is defined here as the function of time to accommodate the trepeat  in equation 

(5.2.6). When  the matrix [Kij] recorded in this process is the “logical” matrix 

having only zeros and ones to indicate if the frequency fj is observed by ith
 probe 

above Rx sensitivity level or not. Which means that all signal powers below the Rx 

sensitivity at a probe ‛i’ would be ignored. The scalar form of frequencies will 

transform  to the bandwidth representation consumed at all buds of SCIDAS.  

The carrier group thus, can be described as, 

 = KF     (5.3.40) 

Where is the carrier set and  [i]N × 1  is the group of carriers at the ith probe of the 

mth SRU out of a total of M SRUs. K is the matrix of the observed values such that 

[kij]×  represents the power above or below of the received sensitivity at ith probe 

and the jth
 frequency. For simplicity, the serving antenna of each sector is referred 

as a probe and therefore, each SRU can have multiple Probes to form an SCIBUD, 

which is equivalent to RRH. All discussions will thus be performed at the probe 

level. F is the set of carriers, and [fj] × 1 is the jth measured at a probe. 

5.3.6. PROACTIVE PLACE-TIME PREDICTOR (POPP) 

Figure 5-3-18 shows a typical SCIDAS deployment with SRU buds deployed on the 

street poles. This is a good way of saving ample CAPEX (Capital Expenditure) on 

the new infrastructure. In figure 5-3-18, people (users) accumulate and walk in 
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groups and eventually may accumulate at some point P. The entire AoI is observed 

by a series of AANs which are denoted by the blue coloured numbering on the top 

of alternate street poles, as shown in figure 5-3-18. 

 

Figure 5-3-18: Place Time Event: Subscriber Movement 

For the instantaneous resource allocation, the PTC2 needs to be followed, and 

therefore, needs to be constantly observed by the system. The CME-TDO algorithm 

can be used iteratively to monitor the wobble at various locations, however, to 

predict future states, the Kalman Filter Process[13] [14] is used here to estimate the 

sites that need to be densified to fulfill the accumulations and to predict the place 

time event, as shown in figure 5-3-3. This impinges proactiveness in the system and 

thus smoothens the flow of accumulation. This algorithm is defined here as 

Proactive Place-Time Simulator (PoPP) which predicts the future states to closely 

follow the accumulation movements. 

If an accumulation of subscribers is in motion, the state prediction model for the 

can be expressed as: 

 ₱ = A ₱ -1 + B ₱ (5.3.41) 

Where ₱t is the state variable representing the PTC2  state at any time t. Therefore, 

 
₱= [

Position
Velocity

] =  [
P
V
] (5.3.42) 

We know, 

 P(t) =  P(t − 1) +  v(t) +  
1

2
at2 (5.3.43) 

Where P is the position, v is the velocity, and a is the acceleration. In an SCIDAS 

system, as the variations are observed by the APMS, both velocity and position can 

be defined as the function of PTC2EE algorithm. Thus, denoting PTC2EE by ₦, we 

can say from equation (5.3.43) that, 
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₦(𝑡) =  ₦(t − 1) + 

d

dt
₦(t) +  

1

2
{
d2

dt2
₦(t)} t2  

or, ₦(𝑡) =  ₦(t − 1) +  ₦′(t) +  
1

2
₦′′(t) t2 (5.3.44) 

Replacing the time domain with the generic domain , we have:  

 
₦(𝛾) =  ₦(γ − 1) +  ₦′(γ) + 

1

2
₦′′(γ)γ2 (5.3.45) 

Similarly, the velocity component can be expressed as: 

 V(t) =  V(t − 1) + at (5.3.46) 

or ₦′(γ) =  ₦′(γ − 1) +  
1

2
₦′′(γ) γ (5.3.47) 

Similarly, the sensing prediction can be modeled as: 

 χ(t)̅̅ ̅̅ ̅ =  C₱t + ηχ (5.3.48) 

Where  χ(t)̅̅ ̅̅ ̅ is the predicted measurement of the actual measurement χ(t). 

Hence, the estimate stare can be expressed as: 

 ₱est = ₱γ +  K (t) {χ(t) − χ(t)̅̅ ̅̅ ̅} (5.3.49) 

Solving for A, B and C in equations (5.3.41) and (5.3.48), we have: 

 
𝑨 = [

1 1
0 1

 ] ; 𝑩 =  [
𝛾2

2
⁄

𝛾
 ]  𝑎𝑛𝑑 𝐶 = [1 0] (5.3.50) 

Therefore,  

 
₱𝛾  =  [

1 1
0 1

 ] ₱𝛾−1   + [
𝛾2

2
⁄

𝛾
 ] ₦′′ + η₱ (5.3.51) 

and, χ̅(γ) =  [1 0]₱t + ηχ (5.3.52) 

The Kalman gain in such a case is given by: 
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 K(γ) = χ̅(t)CT {Cη̅₱C
T + η₱ }

−1 (5.3.53) 

and, η₱ = {I − K(γ)}η̅₱  

Where I is the identity matrix. 

Solving for above equations will predict the locations under which accumulations 

will form ahead of time. This creates a proactiveness in the SCIDAS model and 

accordingly the resource distributions can be planned. We define this algorithm as 

Proactive Place-Time Predictor (PoPP). Presently this algorithm follows only one 

accumulation at a time. As a future work, we can increase complexity to 

accommodate several accumulations. 

5.4. ALGORITHMIC REPRESENTATION OF AMOEBIC PTC2 
RESPONSE MECHANISM (APR) 

In Chapter 4, we discussed the Amoebic PTC2 Response (APR) Mechanism as the 

collection of five sub-processes namely, 

a) Prompt, 

b) Ingestion, 

c) Digestion & Absorption, 

d) Fission and Assimilation, and, 

e) Egestion. 

The purpose of the APR algorithm is to observe these movements, allocate the 

suitable amount of additional carriers among the closest server buds, and, iteratively 

itinerate the process following the movements. Right now, the algorithm is 

designed to follow a single group, however, can be extrapolated for multiple groups 

at various locations. The APR algorithms are the composite algorithm that 

combines all algorithms discussed so far. The procedures involved in this algorithm 

are given below.  

A. APR- Preparatory (APR-Prep): This algorithm sets up the stage for other 

processes to follow on. The two sub-algorithms (APR1 and APR 2) use 

CME-TDO and SPM to read the coverage and capacity wobbling in the 

SCIDAS network. APR1 uses CME-TDO to understand the wobbeling 

under each bud of the SCIDAS network, and APR 2 performs the carrier 

aggregation at each bud by reallocating the resources as per the estimated 

accumulations by APR1. Both algorithms are repeatedly needed to 

estimate the network dynamics. This is considered as a prerequisite for any 

intelligent network to understand the dynamics of its network 

environment. 
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1 BEGIN APR-Prep 𝑥, 𝑦, 𝑧 1; // initializing variables 

2 BEGIN APR:1 // Estimating variations 

3 Call CME-TDO // Read the accumulation related variations 

4 ΖTOT =  ∑εij ; //Calculating total accumulation in the SCIDAS 

network; see, equation (5.3.32) for εij 

5 𝑊ℎ𝑖𝑙𝑒 (𝑖 ≤  𝑁) 𝑑𝑜 // for all buds that transmitted 

6  𝑊ℎ𝑖𝑙𝑒 (𝑖 ≤ 𝑗 ≤  𝑁) 𝑑𝑜 // for all buds that received 

7   

Ζi=xi,yi,zi
⟵ 

1

6
∑ ∑ εij

yj+1

yj−1

xj+1

xj−1

; 
// Calculating total accumulation under each bud, 

considering each i-j pair shares half of 

accumulation;  See, equation (5.3.32) for εij 

8  𝑗 𝑗 + 1; // next receiver bud 

9 𝑖 𝑖 + 1; // next transmitter bud 

10 𝐶𝑁𝑒𝑒𝑑,𝑖  𝑍𝑖 × Γmax //Capacity need at ith bud 

11 END: APR 1 //Ending Algorithm APR1 

12 BEGIN: APR 2 //Begin Algorithm APR2 

13 𝑊ℎ𝑖𝑙𝑒 {𝑂𝐶𝐴𝑃{𝐶𝐺𝑗} ≠ Cneedxj,yj,zj
+ C∆j} do //perform till number of carriers 

satisfies the accumulation at jth bud.  

14  While (j≤ N) do  //when jth receiver is under 

observation 

15  𝑊ℎ𝑖𝑙𝑒 (𝑗 ≤ 𝑖 ≤  𝑁) 𝑑𝑜 //For all transmitters 

16  𝑊ℎ𝑖𝑙𝑒 (𝑘 ≤  𝐵𝐴) 𝑑𝑜 // Considering all carriers in a Band 

17  𝑺𝑷𝑴(𝒊, 𝒋, 𝒌); // call SPM for periodic reading 

18 𝐼𝑓 𝑂𝐶𝐴𝑃{𝐶𝐺𝑗} ≤ Cneedxj,yj,zj
+ C∆j}  // until carries are deficient to cater 

19  𝐼𝑓 𝑘 < 𝐵𝐴 // condition when all carriers are 

considered but still deficient 

20  𝐼𝑓 𝑆𝐼𝑁𝑅𝑖𝑗𝑘 ≥ 𝐻𝐼𝑗 // till a carrier k doesn’t spoil SINR 

21  {𝐶𝐺𝑗} ← 𝑓𝑘; // Add to the carrier group of jth bud 

22 𝑘 ← 𝑘 + 1; // evaluate for next carrier 

23 𝐸𝑙𝑠𝑒  {𝐶𝐺𝑗} → 𝑓𝑘;  // else remove carrier from jth  group 

24 𝐸𝑙𝑠𝑒   

25  𝐻𝐼𝑗 ← 𝐻𝐼𝑗 − ∃𝑗 ;   // reduced the SINR margin to 

accommodate more carriers 

26 𝑘 ← 𝑘 + 1; // next carrier 

27 𝐸𝑙𝑠𝑒  {𝐶𝑗} → 𝑓𝑘; // when carriers are larger than required, remove from the group 

28  𝑖 ← 𝑖 + 1; // next transmitter 

29 𝑗 ← 𝑗 + 1; // considering next receiver 

30 END: APR 2; END APR-Prep  
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(5.4.1) 

Where, 

1 ΖTOT  is the total accumulation in the AoI. It is the accumulation of people 

irrespective of whether they are identified by network service or not.  

The accumulation is measured by the variations in the received signal 

strength of the probing signal.   

2 Ζi=xi,yi,zi
 is the accumulation at  the ith bud or in terms of coordinates, it is the zi 

th sector of the SRU bud that is positioned at the xi 
th latitude and yi

th 

longitude (or any reference coordinate system). The accumulation is 

obtained by summing up the ij with respect to each neighbour.The 

neighbors are represented in coordinate form (x,y pairs) than sequential 

form. Referring to figure 5-3-12, the neighbours of any bud at (x,y) 

will be(x-1,y-1), (x-1,y), (x-1,y+1), (x, y-1), (x, y+1), (x+1,y-1), (x+1, 

y), (x+1,y+1). As the distribution under an SRU bud is considered 

uniform, each bud, although may have its own unique concentration, 

therefore, each i-j pair will share the accumulation that eventually is 

shared by the 3 sectors of SRU. Hence, each Zi is the concentration 

under 1 sector, which is 1/6 of the total accumulations around bud ‘I’. 

3 𝐶𝑁𝑒𝑒𝑑,𝑖 and 

Γmax 

we have assumed that each subscriber can demand Γmax of capacity, 

and therefore, the total capacity demand created due to Zi amount of 

people under bud ‘i' is given by 𝐶𝑁𝑒𝑒𝑑,𝑖. 

4 𝑁 is the number of SRU buds in a SCIWAN (access network under a 

single SCIN-B or SCIN). The counting 1,2,3 .. N follows the same rule 

as a usual number system   

5 𝐻𝐼 is the health indicator or the tolerance of the system. Here, this 

parameter only accounts for SINR acceptable to the system; however, 

in future, many other constraints may be accompanied. 

6 ∃𝑗  The least possible value that must be reduced from HI to accommodate 

more carriers in a system. 

7 𝑂𝐶𝐴𝑃{𝐶𝐺𝑗} is a function that relates the capacity that can be offered by a BS with a 

given set of carrier groups (configured with the BS) 

 

B. APR: The APR algorithm is the combination of above mentioned 

algorithms in a certain order to carry out accumulation management. The 

brief form of algorithm is mentioned below: 
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 Steps Function Description 

 BEGIN: APR(t, Halt Status,) // Halt status, time and density tolerances 

1 t0; P P0; i,j1; NIUNIU(0); // initailise iteration count  

2 𝑊ℎ𝑖𝑙𝑒 {(𝑡 ≤ 𝑇𝑚𝑎𝑥)𝑎𝑛𝑑 (𝐻𝑎𝑙𝑡 = 𝐹𝑎𝑙𝑠𝑒)} 𝑑𝑜 // Promp observation till any time 

3  𝑅𝑢𝑛 𝐏𝐓𝐂𝟐𝐄𝐄 𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 𝑯𝒆𝒔𝒕;  𝓗 ⊂ 𝑯𝒆𝒔𝒕; // Prerequisite (see, algo 5.3.23) 

4  [𝒀(𝒕)]𝑁 = 𝓗[𝑿]𝑁 + 𝒏; // Monitor network with APMS; see, 

eq. 5.3.36 

5  
𝑖𝑓 {( 

d

dt
[𝑌(𝑡)]𝑁 ≤  𝛀) ⨂ (

d

dp
[𝑌(𝑡)]𝑁 ≤  𝛒)} // if change is below tolerance 𝛀 and 

𝛒 

6   𝐶𝑎𝑙𝑙 𝑨𝑷𝑹 − 𝟐 ; // APR-2 updates network 

7  𝐸𝑙𝑠𝑒 𝑖𝑓 {𝑑/𝑑𝑡(𝑍𝑇𝑂𝑇) ≠ 0} // see, 5.4.1 for ZTOT 

8   𝐶𝑎𝑙𝑙 𝑺𝑷𝑴 ; GOTO 13; // SPM allocates new carriers  

9  𝐶𝑎𝑙𝑙 APR-Prep; GOTO 13; // Ingestion algorithm 

10 𝑊𝑎𝑖𝑡 (𝑡𝑟𝑒𝑝𝑒𝑎𝑡); // Breathing period (see, 5.2) 

11 𝑡𝑡 + 1; GOTO 2; // Next iteration 

12 Else; GOTO 1; // End Prompt Mechanism 

13 𝑊ℎ𝑖𝑙𝑒 {( 
d

dt
[𝑌(𝑡)]𝑁 ≥  𝛀) ⨁(

d

dp
[𝑌(𝑡)]𝑁 ≥  𝛒)} do // CME-TDO functions 

14  𝑓𝑜𝑟 𝑖 ≤  𝑁 // Considering N rows 

15   𝑓𝑜𝑟 𝑗 ≤  𝑁 // Considering N columns 

16    
𝑖𝑓 {(

𝑑𝑌𝑖𝑗

𝑑𝑡
≠ 0)⨁(

𝑑𝑌𝑖𝑗

𝑑𝑝
≠ 0)} 

// Wobbling at (i,j) is not zero; any 

other tolerance can be assigned 

17    𝑖𝑓 (𝐻𝐼𝑖𝑗 ≥ 𝑆𝐼𝑁𝑅𝑙𝑜𝑤𝑒𝑠𝑡_𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒) // Health at location (i,j)>min(SINR) 

18    𝑖𝑓 {𝐶𝐺(𝑖𝑗) ≤ 𝜑(𝑖, 𝑗)} // reuse factor 

19     𝑆𝑅𝑈𝑖(𝐶𝑜(𝑡)) ← 𝑁𝐼𝑈{𝐶𝑁𝑒𝑒𝑑,𝑖(𝑡)} // NIU allocated carriers to SRU 

20    Else  

21     

CGij =  ∑∑ ∑ CGij(k)

φ

k=1

j+1

j−1

i+1

i−1

 ;  
//Fission and Assimilation; splitting 

allocated carriers;  

22    𝑆𝑅𝑈𝑖𝑗(𝐶𝑜(𝑡)) ← 𝑁𝐼𝑈(𝐶𝑖𝑗);  // NIU allocated carriers to SRU 

23    Goto 5 and 𝐶𝑎𝑙𝑙 𝑷𝒐𝑷𝑷 ;(Parallel) 

 

//Run the assessment again. inflate 

new cells; Digestion & Absorption 

24    Else APR-2 (i,j); Goto 5; // Reallocate Carriers 

25    Else Update NIU; Goto 1; //Network has no wobble 

26   
run until 

d

dt
 𝑷𝒐𝑷𝑷 = 𝟎 

//Egestion 

27  𝑗𝑗 + 1; (𝐸𝑁𝐷 𝑗 𝐿𝑜𝑜𝑝 𝑓𝑖𝑟𝑠𝑡)𝑖𝑖 + 1; // All locations are covered 

 𝑡𝑡 + 1; GOTO 2; END: APR // END of APR 

algorithm 
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(5.4.2) 

PERFORMANCE OF THE APR ALGORITHM 

5.4.1. ANALYSIS OF THE APR ALGORITHM 

 

Figure 5-4-1: SCIDAS Following PTC 

  

Figure 5-4-1: SCIDAS Following PTC (a) Left: users group approaching North and (b) 
Right: users group approaching South 

Figures 5-4-1 and 5-4-2 show, how SCIDAS would follow the various 

accumulations from the point of entry until they exit from a SCIN’s SCIWAN. This 

enables SCIDAS to cater for users with limited spectrum to much larger scale than 

the traditional architectures. By integrating the SRU cells in larger groups, a wider 

mobility area is offered to a user, thereby, reducing the overheads in handovers, etc. 
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And, by disintegrating bigger cells into smaller (tradeoff with SINR), a higher 

spectrum reuse can be offered. 

5.5. CONCLUSIONS 

We have introduced an architecture in Chapter 4  that can be developed by utilising 

the incumbent technologies such as DAS, WDM, and Active probing, and 

innovatively combining them to form a sturdy platform which, eventually, is 

utilised to support additional modules such as NIU and MCP that can coordinate 

efficiently to  disseminate network resources intelligently and efficiently, especially 

during the extreme PTC2 conditions This chapter complements Chapter 4 and takes 

care of elaborating the sensing and the intelligence of the SCIDAS. The sensing of 

SCIDAS in performed by the APMS architecture which resides parallely in the 

SCIDAS as an intelligent sub-architecture. This chapter explains in detail why the 

choice implementing active probing, how it is accommodated in the SCIDAS 

architecture and how it works, in terms of mechanisms, to sense the accumulations. 

We have also proposed a  Self Configurability attribute  that utilises severals 

mechanisms to dynamically respond to the ever-changing network environment. 

These mechanisms are expressed in the proposed algorithms.  The mechanisms 

proposed are the  CME, TDO, PTC2EE and PoPP as the base mechanisms, which 

are systematically utilised by the primary mechanism that we defined in this chapter 

as Amoebic PTC2 Response (APR) to support  a dynamic environment. We have 

classified the process of accepting, managing, splitting and settling of the PTC2 

wobble as an amoebic life-cycle process. Another major contribution of this chapter 

was purposed to propose an innovative approach  to understanding the network 

dynamics. This is achieved by  creating a dynamics channel matrix  through 

systematically stimulating some of the APMS probes and recording the channel 

response. We showed that by doing so repeatedly, we can estimate the variations 

between any two Transmitter-Receiver pair. This process is  described in the CME 

algorithm. We have also used Kalman Filter method to follow the moving 

accumulations and  this part  of the PoPP algorithm..   
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CHAPTER 6. EMPIRICAL ANALYSIS  

This chapter presents the empirical realization of the research work discussed so 

far. In the initial sections of this chapter, we analyse the impact of the Place Time 

Events (PTEs) on the network dimensioning. Here, the influences of the 

accumulations, on both the coverage [1] and the capacity [2] of a network 

dimensioning, are empirically investigated. The solution to these problems, 

regarding a basic working model, is presented and discussed as an elaboration of 

our work published in [3].  

6.1. INTRODUCTION 

As a part of the research work, I was targeting a basic working model of the 

SCIDAS system. However, in addition to the practical problems and time 

constraints (see, Chapter1 and Chapter 2), another main constraint was persuading a 

network service provider to allow performing some tests on a live network. I could 

manage to get the permission of an Indian service provider; however, the process of 

finding a suitable time period when the tests could be performed with a minimum 

loss in the network performance was beyond the research time plan. Meanwhile, 

during this time, a basic model was developed and an extensive analysis, based on 

this basic model, was obtained. This chapter gives the empirical analysis of the 

investigations done so far, as discussed in the previous chapters. As the thesis 

targets the architectural inefficiency of the present networks to cope with the 

practical issues, it is important to present an empirical analysis relevant to the 

practical issues. This chapter presents all the empirical analysis and investigations 

that were conducted during the research period to endorse the relevance during real-

life encounters in relation to network performance.  

This chapter is organized as follows. Section 6.2 describes the experiments 

performed in the city of Pune and in a suburb of Delhi real-time deployed  NSPs. 

The cost of the solution to cater for the PTC2 in these places was evaluated and then 

compared to the SCIDAS deployment hypothesis. Section 6.3 presents the 

advantages of having an Active Probing Management System (APMS) by analyzing 

a model that senses the spectrum with the help of multiple spectrum analysers 

coordinated and supervised by a common computer. The experiment was performed 

in a mixed morphology in the Okhla area of Delhi. The results of this research 

experiment have been published in [3]. Section 6.4 gives a practical evaluation of 

the SCIDAS deployment hypothesis in a hotspot area of Delhi, known as 

Connaught Place. Section 6.5 concludes the chapter. 
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6.2. EMPIRICAL ANALYSIS OF PTC2: SCIDAS APPROACH IN 
SOLVING THE CASE OF THE CITY OF PUNE 

  

Ganpati Immersion Procession in Pune, India8. Ganpati Immersion Procession in Mumbai, India9. 

Figure 6-2-1: Prime elements responsible for PTC and PTCo "Crowd".Huge gathering and 
collective movements in Pune (Left) and Mumbai (Right) during Ganpati Procession 

To analyse the impact of the PTC and PTCo (or jointly PTC2), some experiments 

were performed on the live network operational at some places in India. The cities 

of Pune, Maharashtra, and Panaji, Goa, India were chosen for the PTC and PTCo 

analysis respectively. To analyse this impact, a live network of service providers in 

the City of Pune was chosen during the Ganpati Festival. In this festival, the people 

of Maharashtra (a state of India) to which the City of Pune belongs, worship the 

newly establish idol of Lord Ganesha (Ganpati) at their home or any sacred place 

for some days, and eventually immerse them in the Ocean (for Mumbai) or a holy 

river. During the immersion procession, there is a huge crowd gathering at different 

places that move collectively along a certain defined route until the immersion takes 

place (see, figure 6-2-1). Similarly, the City of Panaji, Goa, India was chosen 

during the occasion of Goa Carnival Festival. In this festival, people from various 

parts of the world gather in Goa for tourist interests and to participate in the 

carnival. This gives an opportunity of finding groups of crowd itinerating randomly 

in the crowd. These joint movements induce large PTC2 impact in the network 

environment and are discussed in following and final subsections of this section.  

Let us discuss the impact of a capacity component of the PTC2 challenge. The Pune 

city was chosen due to practical convenience. Similar analysis was also conducted 

for other cities such as Ajmer, Bangalore, Jaipur, etc., however, only results from 

Pune city is presented here due to the long range of obtained data that suits the 

nature of this research. 

                                                           
8 Source: Times of India : http://timesofindia.indiatimes.com/defaultinterstitial.cms/ Pune 

9 Source: Times of India : http://timesofindia.indiatimes.com/defaultinterstitial.cms/ Mumbai 
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6.2.1. PTC ANALYSIS IN THE CITY OF PUNE  

 

Figure 6-2-2: the city of Pune10 

 

Figure 6-2-3: Clutter distribution of the City of Pune11 

                                                           
10 Source Google®  Maps  

11 Clutter details generated by Atoll ® Planning tool 
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Figure 6-2-2 shows the city of Pune which is chosen to discuss the Place Time 

Capacity (PTC) impact on a fully operational network. The clutter classification of 

the city is shown in figure 6-2-3, and Table 6-2-1 shows the values of these 

categories. It is to be noted that the clutter class NC means “Not Considered” and 

are the areas that were not part of the network planning and where the service 

provider is not “keen” to provide any guarantee of the service in these areas. 

Therefore, the cluttered marked with NC does not contain any network sites, which 

are expected to be served by the spillages of surrounding sites.  

 

Table-6-2-1: Clutter classification details 

Based on the clutter and capacity characteristics, the network sites for an operator in 

the city of Pune have been planned and deployed. The network could have been 

considered an Unostentatious type, if the network site planning remained intact 

(count and positions) until no additional subscriber base or area is incorporated in 

the network. However, although the subscriber and the AoI conditions remained 

constant during the period of the observation, the network showed ostentatious 

behaviour during the event of the immersion procession of Lord Ganesha in the 

city. 

One such path and the respective serving sites (marked orange in the figures 6-2-4 

and 6-2-6) were taken into consideration for observing the deviation in the planned 

network due to substantial PTC challenge. This path is shown as ‛blue’ curve from 

an arbitrary initial point A to the point B, which is a  ‛Tank’ that is constructed for 

immersing the idol of  Lord Ganesha (Site near the Tank is marked green in the 

figure 6-2-4 and figure 6-2-6). As per experiment, the people’s gathering and 

Clutter Type      Surface (km²) Percentage Class

Urban_High_Density     10.246 2.14 DU

Urban_Medium_Density   54.618144 11.4 MU

Airport                4.067856 0.85 MU

Urban_Low_Density      56.8146 11.85 SU

Industrial_High_Density 9.518572 1.99 SU

Suburban               7.31268 1.53 SU

Industrial_Low_Density 2.055424 0.43 SU

Quasi_Land             125.984496 26.28 RU

Open_Barren_Land       75.94092 15.84 RU

Agriculture_Land       30.322308 6.33 RU

Fallow_Land            15.300548 3.19 RU

Major_Road             8.30792 1.73 RU

National_Highway       3.008376 0.63 RU

Railway_Line           2.555888 0.53 RU

Park_Golf_Course       1.547588 0.32 RU

State_Highway          0.9407 0.2 RU

Settlement_Village     0.53958 0.11 RU

Vegetation_Low_Density 60.68304 12.66 NC

River_Canal            4.2182 0.88 NC

Seasonal_Water_Body    2.825984 0.59 NC

Vegetation_High_Density 1.243816 0.26 NC

Pond_Reservoir         0.667644 0.14 NC

Inland_Water_Body      0.56882 0.12 NC

Marshy_Land            0.02 0 NC
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movement are observed from point ‘A’ till point ‘B’ where the idols were to be 

immersed. 

 

Figure 6-2-4: Operational Sites of a Service Provider in the City of Pune 

 

  

Figure 6-2-5: Cell on wheels [Source: (a) Left: General Dynamics Mission Systems, weblink: 
https://gdmissionsystems.com/lte/cell-on-wheels/; (b)Right:  Advanced Communications and 
Electronics Systems Co. Ltd., weblink: http://www.aces-co.com/civil_cellonwheels_rd.html]  
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Figure 6-2-6: One of many paths in Pune chosen to observe the procession [Source: google 
maps] 

The parametric values considered for the planning of the network are as follows: 

 Maximum traffic per subscriber (Tsub): 40mE/ subscriber, 

 Erlang Capacity of a BTS (CBTS): 16 E, 

 Average loading per sector (Cload): 11.2 E, 

 Number of sector (BTS) per site (Average): 3. 

Where, E is the traffic unit ‛Erlangs’. 

From these assumptions, we have: 

(i) Total Subscriber  catered per sector = SPS=  
𝐶𝐵𝑇𝑆

𝑇𝑠𝑢𝑏
=

16000

40
 = 400, 

(ii) Average spare capacity per sector: Cavg = CBTS- Cload = 4.8 E, and, 

(iii) Additional subscriber catered per sector: Sadd=  
𝐶𝑎𝑣𝑔

𝑇𝑠𝑢𝑏
= 

4800

40
 =120. 
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Figure 6-2-7: Statistical data of accumulation of People beneath sites 1-6 during the 
immersion ceremony in the City of Pune 

 

 

Figure 6-2-8: Variation in Network Dimensioning under the influence of PTC 
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When a subscriber traverses a cell and makes a call, the additional demand is 

created in the serving site, and if this additional demand surpasses the serving 

capacity of a cell, the subscriber experiences a blocking or bottleneck experience 

that is known as Cell Congestion. Hence, the subscribers attempting to make a call 

beyond CBTS will face the ‛call drops’ in voice calls or decreasing throughputs for 

data services. Figure 6-2-7 shows the accumulation of severe PTC at sites 1 to 6 

(see, figure 6-2-6). The variations in the network dimensioning, corresponding to 

these accumulations, is shown in figure 6-2-8. 

It can be observed that Site 6 is facing humongous accumulation as it is the 

destination location and people wish to stay there for a longer duration whereas 

other groups would be joining at the same time. It is to be noted that the beginning 

and end of a chunk of the crowd is marked by a start and stop flags as shown in 

figure 6-2-9. The measurements start at the beginning of a start flag and ends with a 

stop flag for a chunk to keep congruency in the measurement window as shown in 

figure 6-2-7 and to exclude the time delay in traversing between two sites.  

 

Figure 6-2-9: Flags of measurements 

Assuming that only 10 percent of the accumulated subscribers are busy in making 

calls, the 1/10 of the accumulation was considered responsible for the actual PTC. 

While examining the network, it was found that some locations were poorly 

covered due to the blocking of a site service by a building or other significant 

structures. Then, using the equations (3.5.37) and (3.5.40), the Nadd and Cadd were 

calculated and the sites needed to absorb this additional PTC with respect to 

existing serving site are given in figure 6-2-8. As per the definition of iPTC 

discussed in section 3.5, the instantaneous site demands at individual locations are 

described with colored and bold curves. The black dotted curve, however, shows 

the net iPTC which is the total demand of the AoI. It is important to note that the 

curves in both plots are steps which are due to the cumulative impact of the 

subscribers in groups as described by equation (3.5.22). Therefore, when a huge 

group moves from one serving site to another, the demand in the later site shoots up 

in a very short duration thereby creating a “staircase effect”. Figure 6-2-10 shows 

the location and type of the suggested additional sites to cater the PTC burst in the 

entire city which also shows the PTC sites for the area under examination. 
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Figure 6-2-10: Network Redimensioning in PTC context 

The CME-TDO algorithm, as discussed in sections 5.3.2 and 5.3.3, was used to 

identify the location of the sites. The example mentioned in the section 5.3.3 

describes the process of identifying the location of the sites for the current problem. 

The sites suggested were temporarily deployed by Cell on Wheels (CoW, see figure 

6-2-5) that were later converted to permanent sites. The deployment cost of the 

CoW site is very low as compared to the actual site deployment. However, the long 

term placement at public places may lead to high rentals and management costs. 

It is important to note that although, new sites that are proposed to cater for the 

additional PTC may solve the problem, there will be no ARPU growth for the 

service provider. This is because these additional sites are not proposed to cater for 

new opportunities or subscriber base. Hence, the service provider has to bear the 

additional CAPital EXpenses (CAPEX) for a new site installation and a recurring 

OPerational EXpenses (OPEX) to operate these sites (rentals, maintenance, etc.). 

Therefore, highly dynamic and frequent PTCs may lead to humongous CAPEX and 

OPEX for the same network. Figure 6-2-11 shows the additional cumulative 

expense that the service provider may have done for installing and maintaining the 

additional sites for a period of 10 years. The graph in figure 6-2-11 is calculated on 

the basis of realistic round figures obtained from the service provider such as: 

 ARPU in the AoI: $4.0 per month. 
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 Cost of installation of a site (Average): $ 80,000 (including equipment’s 

cost etc.). 

It can be seen that the impact of the accumulation has plunged 19 additional sites in 

the network which will remain underutilized for the rest of the time. However, 

understanding the pressure of losing users, the service provider agreed to spend 

$1,520,000 as CAPEX amount for the installation of these sites. 

 

Figure 6-2-11: Expense graph of the PTC affected network 

SCIDAS APPROACH IN  SOLVING PTC 

SCIDAS uses equations (3.5.28) and (3.6.26) to understand the network 

environment. For simplicity, equation (2.5.1) is used instead of (3.6.26)  to evaluate 

coverage predictions.  The following considerations were identified for this process: 

(i) APMS observations: In Chapter 5 (Section 5.2), the working of APMS is 

explicitly discussed. APMS can replicate the observations mentioned in 

the figures 6-2-7 and 6-2-8 and are as below: 

a.  Maximum accumulation is during 30-40 samples. 

b. In sample 34, the total accumulation at all buds was about 62000 

people with a maximum of about 30,000 at site 6 and 15000, 8000, 

4000, 3000, 2000 at buds 5,4,3,2 and 1 respectively. 

c. The total length of the path under consideration is 5.7 km (see figure 

6-2-12). 
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d.  The maximum step size of accumulation is 6000 (see, figure 6-2-7, 

sample 32). 

 

(ii) Network Considerations: Following are the network consideration 

followed by NSP while dimensioning the network. 

a.  Maximum traffic per subscriber 40mE, 

b. Original network was planned with 4/4/4 TRXs per site, and, 

c. Cluster size 4 as there are 48 channels (excluding guards) allocated to 

the NSP in that service area. Hence, two sites out of 6 reuse the 

carries. 

 

(iii) SCIDAS considerations: Before applying the CME mechanism (see, 

Chapter 5, section 5.3), SCIDAS has the following considerations: 

a. Maximum TRX that an SRU sector can support is 24 (practical design 

limit identified for RU during the development phase, can be 

increased in future). Hence, total equipped erlang per SRU, with 2% 

blocking probability and 10 timeslots reserved for paging, is 168 E 

[4],  

b. The maximum subscriber catered with one SRU is 168 ÷ 40 mE = 

4200 subscribers at a time, 

c. Each SRU is 60% ustilised in services every time (2520 users are 

catered everytime, 67.2E spare), and, 

d. 50% of the gathering are using the network. 

 

 

Figure 6-2-12: Path length of the chosen route [Source: google maps] 
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The SCIDAS approach to this challenge is discussed below: 

 

Figure 6-2-13: SCIDAS Deployment hypothesis; SRU-buds distributed across a network 

Figure 6-2-13 shows the smearing of the coverage across the area through various 

SRU-buds. The deployment is independent of the technology and only considers 

propagational aspects.  In this figure, the deployment is uniform for the ease of 

understanding. It is important to mention here that the number of SRU-buds is 

higher than the actual number of NSP sites in this area, however, it is less than the 

additional sites deployed in the network as discussed previously. 

From Chapter 3, it is understood that the accumulation wobble can be solved if the 

PTC2 is known. First, we consider the PTC part; equation (3.5.28) tells that the 

accumulations can be broken down into two parts, static and dynamic. Figure 6-2-7 

reveals that between the sample numbers 26-32, the accumulation at site 6 (site 9 in 

SCIDAS) has gone up from 24,000 to 30,000 people. Assuming this extra wobble 

started from site 1, we can say, 

 The group of 6,000 people took 30 minutes to travel 5700m or 190m per 

minute. 
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 During this time, the region around site 12 is facing an accumulation of 

24,000  people. 

 Only 50% of the accumulations is using the network. 

 Each user can put the maximum demand of 40mE. 

Therefore, applying equation (3.5.28) on above, we have:  

 The iPTC generated due to movement of 3000 effective users= 120 × 

190=22800 Em/s . 

 The static PTC (length of imapct) due to 24,000 people = 480E. 

Hence, SCIDAS in this situation (a) must hop the resources from site 1 to site 9 with 

22800 Em/s and (b) must cater capacity of 480E (12000 × 0.004) throughout the 

time. As each SRU sector has 67.2 E spare, hence either it can borrow the additional 

52.8 Erlangs (equivalent to 9 TRXs) or share the traffic between two neighbours. At 

present, only 24 TRXs are supported, therefore, the capability to choose neighbours 

to share the traffic has been implemented. Figure 6-2-13 shows the sharing of 

subscribers between neighbors and the share is marked as A & B. This sharing hop 

between the various paired sites is shown in figure 6-2-13 with the speed of 190m/s 

to match 22800Em/s requirement without disturbing the usual operations 

(represented by magenta ovals in figure 6-2-13). While SCIDAS is catering the 

moving subs, the static traffic near site 9 can be shared by extending the coverages 

of the neighbouring sites using Maneuverable and Controllable Platform (MCP, see, 

Chapter 4) and, sharing the traffic between 7 sites to compensate 67.2 × 7 = 430.4 

Erlangs as shown in figure 6-2-1.  

Achievements with SCIDAS Approach -A: 

(i) Only 12 sites of SCIDAS could cater the challenge compared to the 25 

(19+6) of the conventional approach. The net saving of the equipment, 

in this case, was 52%. 

(ii)  Spectrum Utilization Efficiency (SUE) [5]: In the conventional 

approach, an NSP can only use a portion of the spectrum which is 

governed by the cluster size and sectors (see, Appendix 4.1). Here, it 

is 4 carriers per sector out of 48 allocated effective carriers that could 

be planned to maintain cluster size of 4. Hence, the SUE, in this case, 

will be 4/48 = 1/12 ≈ 8.3%. With the SCIDAS solution, however, by 

the virtue of DAS, it is possible to use all carriers in each sector.  For 

the present SCIDAS deployment, each sector can support 24 TRXs 

and therefore, SUE is 24/48 =50%. Hence, the spectrum utilization 

can be increased from 8.3% to 50% per sector with the SCIDAS 

deployment. 

(iii) Previously, 25 sites were planned to be used to cater the additional 

accumulation. With 4/4/4/ configuration, these sites could cater 47000 
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users. However, the maximum effective accumulation during the 

event was 30,000 users. Hence, the over-planning is approximately 

56%. 

(iv) 19 additional sites were planned to be deployed to cater the flux. With 

SCIDAS, no additional sites are needed to be deployed.  

This subsection discussed how the PTC has impacted the dimensioning of a 

capacity driven area. In the next subsection, the Place Time Coverage (PTCo) will 

be analysed for a coverage driven network. 

6.2.2. PTCO ANALYSIS  

The coverage analysis of the challenge mentioned in the previous section refers to 

the experiment already discussed in Chapter 2, section 2.4 and, here, the extracts of 

this sub-section are discussed due to its extreme relevance in the present discussion.  

This experiment was performed in a slightly secluded location where the signal 

values from the nearby transmitters (point to point) are fairly rare. The frequency 

band of 1400 MHz was chosen to conduct the measurement as this AoI do not have 

any terrestrial mobile services in the1400MHz band which could provide decent 

isolation from interfering signals. Rewriting equation (3.6.19) we have: 

 
PL̿̿̿̿

ω(D, p, t) =  PL̿̿̿̿ (D) (
D

D0

)
NAR(m,p,t)

 (6.2.1) 

or, in decibels,  

 
PLω(D, p, t) =  PL(D) + NAR(m, p, t)log10 (

D

D0

) (6.2.2) 

As, D, D0, D/ D0 and, PL(D) are constants, the equation (6.2.2) is comparable to the 

below equation (equation of a line curve): 

 𝑦 = 𝑚𝑥 + 𝐶 (6.2.3) 

Where,  m = log10 (
D

D0
) and, C = PL(D). 

Hence, in the logarithmic scale, the path-loss will experience a linear drop in its 

value with increase in the material concentration in the environment. To verify this 

mathematical expression, an experiment was conducted in the city of Panaji, Goa. 

The idea was to observe the received signal level at some distance while the 

properties of environmental elements change.  The setup consists of a far off land of 

about 200 × 100 square-meters in dimension, as shown in the figure 6-2-10. As 
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mentioned earlier, the results and other details are already mentioned in section 2.4 

of Chapter 2 and rewritten below as: 

 y= -76x -28 (6.2.4) 

Where, x is the density of people per unit area. 

D0

P1 P2

D

NAR

P0

 

Figure 6-2-14:  Experiment Setup 

The field measurement details clearly show the fall in signal level on the decibel 

scale with the density per sq. m of people. 

It was found that the 3 Km × 3 Km area could be covered by 12 (13th site is a 

neighbour) sites with 52 dBm of transmit power (40 dBm EIRP + 12 dBm antenna 

gain) to achieve an outdoor level of -85 dBm received signal strength and 95% 

probability. The area where 30,000 people accumulated for the immersion is about 

500 × 500 sq.m.  From equation (6.2.4), we can say that the density of the 

accumulation is 30,000 ÷ 250,000 ≈ 0.1 and, therefore, the fall in signal strength 

due to this accumulation density is -78 ×0.1 ≈ 8 dB. In a conventional approach this 

can be adjusted with power control, however, in an extreme congestion scenario, it 

may happen that all the 6 sites of the NSP may have to radiate 48 dBm (63 W) than 

40 dBm (10 W).  While APMS is monitoring the groups, the rise in power value is 

chosen more precisely and therefore, only sites 6,8,9,11,12, and 13 have to raise 

their power.  

Achievements with SCIDAS Approach -B: 

(i) With a conventional approach, 6 × 3 site sectors may have to compensate 

the raise in path-loss by raising the power from 10 W to 63 W, and, 19 

smaller sites have to radiate at least 10 W. Therefore, for one hour of 

operation, the extra energy consumed will be 53 × 6 × 3 × 3600(= 3434 

KJ) + 10 × 19 × 3 × 3600 (= 2052 KJ) = 5486 KJ. With the SCIDAS 
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approach, as shown in figure 6-2-13, only 4 site sectors at a time need to 

radiate higher power that hops along with the group (considering only a 

group of 6000 people is moving across a network) meaning that power 

consumed during the event of one hour will be 763.2 KJ and 7 site sectors 

to cater static PTC shall consume 1335.6 KJ. Hence, power saving with 

this approach will be 75.6% under normal circumstances. 

(ii) It can be seen here that when accumulations happen, the signal level drops, 

however, SCIDAS can encash that absence of users (when they have left 

the place of event) as a gain of 8dB. Hence, rarefaction can be utilized by 

SCIDAS in network sanitization. 

6.2.3. ACCOMPLISHMENTS OF SECTION 6.2 

The experimental results can be summarized as follows:  

(i) The subscribers’ accumulations DO impact the network performance. 

Both the capacity and the propagations are impacted severely. This is 

in compliance with the theoretical investigations made in Chapter 3 

of this thesis. 

(ii) In the absence of any defined technique, tackling such aberrances is 

the uneconomical, haphazard, bedraggled and calamitous approach. 

This corresponds to the alternate architectural approach that we 

proposed in Chapter 4.  

(iii) The new capacity sites that were deployed that followed (i) identifying 

those locations affected by PTC, (ii) sharing the problem among 

various sites, (iii) absorbing excessive PTC by installing additional 

sites such that the new sites MUST only use the allocated carriers and 

MUST not deteriorate the SINR below an acceptable limit. 

Investigating this process deeply, the advantage of Amoebic PTC2 

Response (APR) algorithm, is discussed in Chapter 5 of this thesis is 

observed. 

6.3. SPECTRUM SENSING AND MANAGEMENT OF A LIVE 
NETWORK BY A BASIC SCIDAS SETUP  

The purpose of this experiment was to (i) demonstrate the working of the APMS 

system by mimicking it with the dedicated measuring devices that are described in 

details in the Chapter 1 of this thesis, and, (ii) The second measurement is the drive 

test measurement with drive test tool equipment provided by Agilent®. Drive tests 

were done to analyse the impact of the SCIDAS implementation on the AoI. A part 

of the results has been published in [6] [3].  
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The experiment mentioned in this section is already investigated in our work in [3]. 

Based on the findings of [3], a new series of research and investigations were 

carried out. The prime objective of this section is to discuss these new studies and 

research activities. Therefore, keeping the broad principles intact, and for the sake 

of clarity, without losing the original design/location of the test bed setup, analysis 

of results, the extracts of [3] are originally incorporated in quotes. 

With a view to verifying the working of the architecture in Chapter 4, the 

measurement of the test carriers at a 900 MHz band of a service provider operating 

in the city of Delhi, India was planned. For this, a test DAS network was made, and 

a micro base station was configured with these test carriers. The test carriers were 

connected to the test DAS network. For the purpose of measurements, in the DAS 

network, the measuring facility was placed at each of 4 corners.   

“It may be mentioned that for an efficient wireless network, it is important that the 

Network Management System (NMS) should know the spectrum information at 

every corner of the network for what it is designed to do in an efficient way [7] [8]. 

In a heterogeneous traditional cellular network, it is possible as the BTS/Node/Bud 

itself sends the local information to NMS and when all such information is 

collectively received from all such BTS/Nodes/Buds, the NMS is able to know the 

network scenario at any time instant.  In a traditional DAS network, this may be a 

tedious task to achieve. However, if we can make a DAS network that along with 

its DAS capabilities has the features to extract the information from each of its 

nodes/buds, then this may prove to be highly preferable infrastructure system for 

the future networks. This network configuration may provide network information 

at each of its nodes/buds that may have a serving area of less than 50m radius in the 

extremely dense area or may be more than 500m in lower suburban areas.”[3]. The 

spectrum sensing campaign was undertaken in the Okhla Region (Delhi, India), 

which are the medium urban locations of the metropolitan city of Delhi (India). 

6.3.1. THE SETUP FOR THE EXPERIMENT 

 

Figure 6-3-1: Graphical Representation of the deployment and the measurement setup 
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The test-bed setup in Okhla, Delhi was as follows [3]: “ 

 An approximately 200m x 200m medium to the dense urban area of Delhi 

was chosen that was considered as the target area. The cellular service of 

a cellular service provider in that area was chosen as a test-bed for the 

network improvisation. Figure-6-3-1 shows the setup that was made for 

the measurement. 

 Three  micro base stations of  service provider ‘S’ in were connected to a 

Master Optical Unit (MoU) that eventually connected the Remote Optical 

Units (RoUs) whose antennas were installed at 4 corners of A. The RoUs 

are places at remote sites in figure 6-3-112 such that an individual RoU has 

3 antennas and RoU unit on temporary ground fixed pole [9].  

 The micro base stations belong to serving a three-sector site and the site is 

referred to here as the DONOR SITE. The RF feed cables from the base 

stations are connected to the MoU of the cascaded DAS network and the 

carriers that are smeared. These micro BTS (BS) were connected to the 

management center through a backhauled network. 

 Near each of these 4 antennas, a dedicated spectrum scanning system is 

placed 50m away from each site. All 4 portable computers are 

synchronised to start and stop the measurements simultaneously through a 

remote access that can be done by connecting computers to wireless 

dongles.  

 The setup emulates the APMS system that was proposed for the SCIDAS 

architecture, and   it would be referred to as Proxy APMS. 

 The GSM-900 downlink band was chosen for the spectrum analysis as the 

target area was primarily served by this band only by various operators. 

 All distances of the positions were measured using the GPS positioning 

system.” [3]. 

The portable infrastructure, as shown in figure 6-3-2 is used to place the RU 

equipment and as a temporary but stable system and the same system can be used 

for omnidirectional antennas (as shown in the figure 6-3-2) and for directional 

antennas. 

6.3.2. MEASUREMENTS, RESULTS, AND, ANALYSIS BEFORE 
OPTIMISATION 

(A) Prerequisites: “ 

 

                                                           
12 The sectored antenna are connected to the base equipment provided by “Vihaan Networks 

Limited (VNL®), Gurgaon (Gurugram), India” 
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 The donor cell site already had some carrier groups that were distributed 

among its three sectors. 

 As S is an active service provider the donor cell has its neighbouring cell 

that followed certain frequency reuse plan. 

 In the target area and its surroundings the service provider had adapted 

S(4, 4, 3) frequency reuse plan where S means a sector of any cell site and 

4, 4, 3 are the numbers of carriers allocated to sectors 1, 2 and 3 

respectively.  

 Except for the donor cell site, none of the other cell sites were disturbed to 

avoid inferring high costs to the service provider and loss of revenues.” 

[3]. 

 

Figure 6-3-2: The Portable ODAS Deployment System used for testbed [9]13 

 

(B) The methodology of the measurement is as follows: “ 

 The measurement process had two parts. First, a set of measurements 

were measured by the dedicated units. The equipment used to perform the 

measurements is detailed in Appendix 1 of this thesis. 

 The second set of measurements involved the drive tests that were 

performed in the locality. The drive test equipment was standard Agilent® 

drive test tool. 

 The measurements started simultaneously at all 4 locations in sync and 

with negligible delay. The locations were named as node 1-4 respectively. 

 The measurements started with the scanning of 935.0 MHz as the centre 

frequency at all 4 locations.  

                                                           
13 Test equipment provided by “VNL, India” 
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 The maximum level of the received signal of the centre frequency at that 

time instant was recorded on all 4 computers. 

 The scanning was then moved to the next step with a step size of 25 KHz at 

all 4 locations and data of maximum level was recorded on all 4 

computers. 

 The above steps are repeated till the centre frequency reaches to 960.0 

MHz. 

 The collected data were arranged to their time-stamp and made ready for 

analysis.” [3]. 

 

(C) Analysis of the measured data 

The post processing results of the measured data are as follows: 

 

Figure 6-3-3: Measurements at Bud-1 (position 1) 

 

Figure 6-3-4: Measurements at Bud-2 (position 2) 
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Figure 6-3-5: Measurements at Bud-3 (position 3). 

 

 

Figure 6-3-6: Measurements at Bud-4 (position 4). 

“The outcomes of the measured data are discussed below: 

a) As mentioned earlier, figures 6-3-3 to 6-3-6 corresponds to four bud 

locations respectively. 

b) As the first carrier of the GSM900 band is 935.2 MHz with 200 KHz as the 

bandwidth, the first observation point started with 935.2 MHz. 

c) The outcomes of the data analysis were as follows:     
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(i) The frequencies from 935.2 to 950 MHz were carriers of other service 

providers, and the peaks belonged to sites installed nearby or 

collocated with the donor site and are those of other service 

providers. 

(ii) The frequencies from 950.2 to 953.2 MHz had a mix of high peaks, 

low peaks, and troughs of the received values. It is observed that (a) 

the high peaks belong to the donor site carriers (b) the low peaks 

belong to the neighbors of the donor site that are a macro cell in 

nature, and (c) troughs contain carriers of the neighbours of the 

donor site that are a micro cell in nature. 

(iii) The measurements of the frequencies from 953.2 to 956.8 MHz show 

very low values implying that the sites belonging to frequencies in this 

range are fairly isolated from the point of observation. 

(iv) However, it was seen that the frequencies from 954.2 to 954.4 MHz 

show significant high values, as shown in figures 6-3-5 and 6-3-6, 

which are the adjacent carriers that illuminate the area around node 

3 and 4. On a physical observation, it was found that a six-storey 

building had been blocking node 1 and 2 from the sources of these 

carriers.” [3]. 

 

d) “The results are further split into further divisions according to the 

received level. These divisions are as below: 

(i) Received Level < 2 dBµV that is considered as too low to sustain the 

cellular operations. 

(ii) 2 ≤ Received Level < 12 dBµV that is considered as on-road level. 

(iii) 12≤ Received Level <22 dBµV that is considered as in-car level. 

(iv) 22 dBµV ≤ Received Level that is considered as indoor level.”[3]. 

 

Figure 6-3-7: Obtained readings at Bud 3 for which Bud 1 readings are <7dBm 
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Expanding the above data for the values for which bud 1 has values less than 7 

dBµV, the following plots are obtained for bud 3 and 4 to confirm the observation 

in sub-section 6-2-1. “ 

a) It was observed that 950.2 MHz and 950.4 MHz carrier bands have high 

values of the received level, out of which 950.2 belong to a neighbouring 

cell site, hence, this needs to be cured. Also, this service provider wants to 

enhance its capacity by adding some more carriers in system carrier 

group. 

b) Now, if the current service provider wants to enhance its capacity, it would 

select a carrier from low values of the received signals, and if it wants to 

reduce the interference it would remove those carriers from the carrier 

group that is adjacent to the neighbouring cells. The practical 

implementation of this example has been shown in the next section.” [3]. 

 

Figure 6-3-8: Obtained readings at Bud 4 for which Bud 1 readings are <7dBm 

 

Figure 6-3-9: Drive test tool set [Source: Agilent® Technologies] 
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(D) Drive test: During the period when the signals were measured at the spectrum 

receivers at the four buds, the drive tests were also performed in the area 

during both, the pre and the post-optimization process. These drive-tests were 

performed by installing the measurement equipment in a V/UHF MMS van 

and mounting the receiving antenna on the roof of the vehicle. As the van 

moved around the area, the received signals from the receiver were recorded 

in a computer. Figure 6-3-9 shows the example of a drive test tool that was 

used for these measurements. Figures 6-3-9 and 6-3-10 show the 

Carrier/Interference ratio (C/I) and the signal strength measurements for pre-

optimization, and, figure 6-3-15 is the C/I measurement post optimization. 

  

Figure 6-3-10: Carrier to Interference Ratio(C/I) in AoI before optimisation 

  

Figure 6-3-11: Signal Power Measurement in AoI 

Investigating figures 6-3-10 and 6-3-11, it can be observed that although the signal 

levels are fairly decent in the AoI (see, figure 6-3-11), the C/I ratio is badly 

affected. This means that the interferers are having fairly high power levels too. 

Hence, the measurements obtained from the proxy APMS coincides with the drive 

test performed in the AoI. 
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6.3.3. NETWORK SANITIZATION THROUGH ACTIVE PROBING 
SYSTEM OF THE SCIDAS ARCHITECTURE 

As per the SCIDAS architecture, the measurements obtained through APMS will be 

analysed, and the respective channels will be enabled or disabled as per needs. 

However, in the absence of an actual Network Intelligence Unit (NIU, see, Chapter 

4), the replication of this process was performed manually. In spite of this 

limitation, there was a significant time saving in identifying and correcting the 

problem. 

“After analysing the data above, some modifications were implemented as follows: 

a) The TRXs of carriers 950.2 and 950.4 were turned off to avoid channel 

interference. 

b) Instead of that, the spare TRXs in any micro BS were configured with 

955.2 and 955.8 as new carriers, in DAS carrier group, to enhance 

capacity.” [3]. 

 

(A) Post optimization measurements by Proxy APMS are as follows in figures 

6-3-12  to 6-3-14: 

 

 

Figure 6-3-12: Post implementation measurement at Bud 1 
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Figure 6-3-13: Post implementation measurement at Bud 2 

 

 

Figure 6-3-14: Post implementation measurement at Bud 3 

The post-implementation measurement at the bud 4 is omitted in the present 

discussion as the post optimisation drive test (discussed sub-section ‛B’) was 

difficult in the area served by the bud 4 due to an extremely busy road passing 

through the area. 

(B) Post optimization drive test  
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Figure 6-3-15: Carrier to Interference Ratio(C/I) in AoI after optimisation 

Figure 6-3-15 shows a significant improvement in C/I ratio. This definitely provides 

a lot of relief to the users in this area. Figure 6-3-16 shows C/I graphs before and 

after optimization.  It is evident that network is now more sanitized and is reflected 

by the C/I improvements.  The net gain is extremely good; C/I samples is (518-

389)/1000 =12.9%. The average Call Success Rate (CSR) is improvised from 54.5 

% to 76.02%. The minimum call success rate was also improved from 20% to 32% 

(see, figure 6-3-17).  

 

Figure 6-3-16: C/I Improvement with SCIDAS Implementation 

Advantages of APMS 

Apart from the sensing application, the APMS system can additionally benefit any 

network system, discussed as below: 

1) Capacity Enhancement: Usually, the C/I measurements are performed by 

the user equipment. For this reason, several timeslots are reserved for the 
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paging of information. In GSM technology, 2-5 timeslots are reserved for 

paging, etc. [10]. Similar reservations are provided in other technologies 

also. Assuming that a three sectored site has 4/4/4 TRXs there will be 32 

time-slots available (8 × 4) per sector. Reserving 5 for paging and SDCCH 

etc., we have 27 available time-slots for traffic. From the Erlang B Table 

in [4] we can see that, with 2% blocking probability, the equipped capacity 

in such case is 19.3 Erlang. Appendix 4.2 shows the relevant portion of 

the Erlang B Table used for the present discussion.  

 

The APMS can reduce the need of excessive paging, and some of the 

channels can be freed from paging and can be involved for capacity. 

Assuming, that in the influence of APMS two timeslots are freed for the 

traffic, again from the Erlang B Table, we have, and with 2% blocking 

probability the equipped capacity for 29 timeslots is 21.0 Erlangs. This 

means that there is 8.8% gain in offered Erlang per sector of 4 TRXs. It is 

important to be mentioned that with maximum subscriber traffic of 40mE, 

42 additional subscribers per sector can be served just by introducing 

APMS System. 

 

2) Time and Revenue Saving: The APMS is expected to respond quickly to 

the system dynamics. Hence, the 12.9% gain in C/I should be done 

promptly with least delay in response.  Assuming that an application needs 

C/I> 15 everytime while a subscriber is moving in this area and the 

problem is detected, then, until the time the problem would be corrected, 

the NSP would lose 12.9% of revenue. 

 

Figure 6-3-17: Call Success Rate analysis in pre and post optimisation 
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Let us assume that an NSP makes $100 per second from the data usage of the 

subscribers in that area. Then, while the subscribers are roaming in that area, it is 

very much probable that during 1 hour of movement, 12.9% of access time is lost. 

Therefore, the net loss in revenue, in this case will be 100 with a delay of 1 hour 

will be $ 46,440 and with a delay of 1 day, it can cost $1,114,560.  

6.4. SCIDAS COVERAGE DYNAMICS IN A HOTSPOT REGION: A 
CASE STUDY 

In this section, we analyze a case study representative of the SCIDAS dynamics and 

how it ought to convolve around the varying network environment. For the 

background scenario we have chosen the Connaught Place (CP) of Delhi as one of 

the areas whose morphology and demography are of high dense nature (see, figures 

6-4-1 and 6-4-2). For the analysis, Agilent E6482A Wizard Wireless Network 

Planning and Design Tool14 was used to plan and predict the coverage.   

  

Figure 6-4-1: CP subscriber density(left[11]) and building environment( right [12]) 

The Site Acquisition activity is difficult in this area, and being the political hub of 

the country, getting permission to construct towers is this area is very difficult. 

Also, once the government realizes the negative effects of the towers, and starts 

professing a no-tower policy for urban locations, this area will be the first to get rid 

of towers. This will make the business case for deploying the SCIDAS. 

 Three roads are chosen for the initial deployment, namely: 

 Inner circle Road, 

 Middle circle Road, 

 Outer circle Road, and, 

 Radial roads. 

                                                           
14 Reference: http://www.agilent.com/home 
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Figure 6-4-2: Overview of the CP area; inner, middle and, outer zones separated by ring 
roads 

Methodology   

The network planning is done keeping in mind the following assumptions: 

(i) Antenna location: Antenna will be deployed near the lamp posts along the 

median of the road. On stretches not having lamp posts along the median, 

the lamp posts along the sides are chosen.  

(ii) Antenna: Omni or Directional antenna with 11-15.5dBi gain will be 

mounted near the lamp post at 6m Height of 7.5m Electric Pole. The 

antenna will be painted in the same colour as that of the pole. 

(iii) SRU: +30dBm SRU is chosen for deployment. This will provide 15 dBm 

PPC (power per carrier) at 32 carriers. 

The following points should be noted here: 

 BSs (Operators): The operators who plan to share the infrastructure shall 

bring in their BSs, and connect the same to the PoI. The specifications of 

the BS will be as per the equipment they use. However, the maximum RF 

output power of the BS shall not exceed +10 dBm. The typical power 

consumption of the BS should be specified at this RF output power. 

 SMU (see, Chapter 4): The Smart Master Unit (SMU), which feeds optical 

power to all remotely located SRUs. SMU takes RF input from the PoI 

(which is a combined output of all BS sharing this infrastructure) and 

converts the signal to optical. This optical output should be distributed to 

the SRUs using a fiber pair (see, Chapter 4 for details on SMU). 

 SRU (see, Chapter 4): The Smart Remote Units (SRUs) are selected based 

on the composite output power and the maximum carriers that they can 

support. The power consumption of the SRU to be specified (see, Chapter 
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4 for details on SRU) based on the number of carriers that are required to 

be supported, as shown in Tables 6-4-1 to 6-4-3.  

 The sole purpose of this design is to provide seamless coverage and 

capacity across the entire Connaught Place and up to 100m along the radial 

roads with all operators sharing the same network eventually saving their 

CAPEX, OPEX and reducing their security and maintenance related 

issues. 

 

Figure 6-4-3: Planning SCIDAS network; site positions in CP inner, middle and, outer zones 

Discussions: The purpose of this work was to demonstrate the working of SCIDAS 

in a hotspot environment under the PTC influence. A conventional DAS was 

planned to be utilised above which some automated system had to be laid to control 

the remote units. Due to practical limitations and security reasons related to a real 

life time deployment model, only the prediction model has been proposed and 

evaluated here. The power control and carrier inclusion were automated using 

scripts that were used by the prediction tool.  

The challenge posed on the system is the following (presently GSM technology is 

investigated, see, Chapter 1 for explanation): 

 Stage1: Initially 5000 (at 40 mE per subs traffic) users are in the CP area. 

 Stage 2: A group of 5000 more users densely packed in the area of 100m 

×100m walks in the groups in the circular roads of CP (see, figure 6-4-3). 

 Stage 3: Another group of 5000 users enters the central park see figure 6-

4-3).  

640m
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SCIDAS must respond appropriately based on with the dynamics of the system. 

Based on the Amoebic Place Time Response (APR) algorithm, proposed in Chapter 

4, SCIDAS, through APMS must tradeoff between the SINR, the power, and the 

capacity, the latter  being the most desirable parameter. Assuming that there are 

eight NSPs in the area; the capacity dimensioning under different situations is given 

in Tables 6-4-1, 6-4-2 and 6-4-3. We have considered that the receiver must receive 

signal level above -95dBm to maintain C/I of 25 dBm. 

Table 6-4-1: Configuration 1 for stage 1 

 

Table 6-4-2: Configuration 2 for stage 2 

 

Assuming that the users are evenly distributed among the NSPs, for the first stage, 

APR chooses configuration 1 to accommodate 5000 users. The prediction for this 

configuration (see, Table 6-4-1) is shown in figure 6-4-5. The power per carrier, in 
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this case, is 25 dBm with an SRU of 40dBm EIRP. When the influx of the 

additional 5000 users arrives in the area, configuration 2 (see, Table 6-4-2) was 

chosen by the APR; as a result, the power per carrier (PPC) configured for the 64 

TRXs is bound to be chosen and a loss of 10 dB is imposed in the system. Further, 

the density of the users incurs additional 4 dBm loss (see, equation 2.5.1). To 

compensate this, an electrical down-tilt of 2 degrees is added in the system to 

compensate the loss at the bottom sites.  This shrinks the coverage considerably as 

shown in figure 6-4-6. The drop in signal level spoils (deteriorates) the SINR by 14 

dB at the central park area of CP. 

Table 6-4-3: Configuration 3 for stage3 

 

In Chapter 4, we discussed that the SCIDAS has the MCP that can manage the 

antenna azimuths, heights, and orientations both physically and electrically at 

individual SRU location as per need as per the NIU instructions. Now,  here, when 

another group of 5000 subs accumulates at the central park area, SCIDAS has to 

play a tradeoff, and, to solve this challenge, when the subscriber concentration is 

dense, we simulated that the SCIDAS has raised the antenna height (using MCP 

modules), and the SRUs have increased the power from 30dBm to 40 dBm at each 

bud individually. The coverage, in this case, was enhanced sufficiently to cater for 

the central park as shown in figure 6-4-7 (see, legends in figure 6-4-4 to identify the 

received signal level). To provide the required capacity, 8 TRXs of each NSP were 

selected (configuration 3).  However, this deteriorates the SINR because the signal 

of one bud would yield interference to the neighbours due to the higher power per 

bud. In Chapter 5, we discussed how APR algorithm maintains the SINR health at 

each and every bud by scanning and re-allocating the antenna configuration through 

MCP, iteratively. In the present case, while producing coverage plot, the APR 

algorithm plunged several iterations to maintain SINR > 15 dB. The seventh and 

sixteenth iterations are presented in figures 6-4-8 and 6-4-9 respectively. Figure 6-
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4-9 also shows the final prediction incorporating 10,000 additional users and 

SINR> 15dB. 

 

Figure 6-4-4: Legends showing the colour codes for the respective signal levels 

 

Figure 6-4-5: Coverage of CP with 5000 users (Configuration 1) 

 

Figure 6-4-6: Coverage after accommodating 5000 additional users (Configuration 2) 
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Figure 6-4-7: Coverage prediction with 5000 subs at central park (configuration 3) 

 

Figure 6-4-8: Coverage prediction after 7 iterations; SINR gain 4dB 
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Figure 6-4-9: Coverage prediction after 16 iterations; SINR gain 10 dB 

6.5. CONCLUSIONS 

This chapter analyzed the concept of PTC2 within practical and real-life scenarios. 

We showed how SCIDAS can be incorporated to improve the performance and 

provide for the required capacity at the point of time and place where this would be 

required.  The empirical analyses discussed here are performed in three areas, city 

of Pune; Okhla, Delhi; and Connaught Place, Delhi. In the city of Pune, a live 

network was chosen to estimate the cost of PTC2 on an NSP and compare with that 

of having the SCIDAS solution. It was observed that, to cater an accumulation of 

about 60,000 people, the NSP is planned to deploy 19 additional sites with CAPEX 

costing around $1,520,000. With the SCIDAS solution, it was observed that to cater 

the accumulations in that area of Pune; there is no need of additional sites saving 

52% on equipment. The spectrum utilization per sector can be increased from 8.3% 

to 50% during the peak activity time; 56% of over-planning can be saved in this 

particular investigation. These values can vary from situation to situations.  In the 

experiment performed in the Okhla region, it is investigated that by deploying 

AMPS, a gain of 12.9% in C/I ratio could be achieved in a short duration of time. 

The advantage of this promptness is also investigated. Lastly, the experiment in the 

Connaught Place was performed. The SCIDAS deployment simulation results are 

presented and discussed here. It was shown that with SCIDAS 17.3% resources 

could be saved.  
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CHAPTER 7. CONCLUSIONS AND 

FUTURE WORK  

This chapter presents the conclusions and intended future scope of the research 

expressed through this thesis.  

7.1. CONCLUSIONS 

The PhD research targeted solutions to problems to an MWCN that may arise due 

to unprecedented and random user movements in the network environment. An 

MWCN gives freedom to it’s users to access services while roaming and being 

anywhere within the network. Roaming, cannot be planned, is unexpected and 

unpredictable, and this poses an extra burden on the network to account for such 

situations. Usually, all MWCNs have some extra margins or ‘cushions’ to cater for 

the user mobilities, however, the problem begins when such random movements 

lead to abrupt accumulations at random locations causing deterioration in the 

offered capacity and poor SINR in the affected area, which we referred to as the 

‘eccentricity of the network’. Hence, as the eccentricity depends on the time and 

location of the accumulations, a novel concept of Place and Time-dependent 

Coverage and Capacity was proposed and analysed to discover the aggregated 

models/ formulations of these challenges. Initially, it was contemplated to have a 

primitive working model of a network system that could show some intelligence in 

handling such issues. The Distributed Antenna System (DAS) was found to be a 

convenient architecture to mount an intelligence module on top of it. In a quest to 

find a suitable location of deploying a test-architecture, several on-site field 

measurements were performed in various locations of various cities across India. 

These measurements include (i) Spectrum occupancy measurements, (ii) Received 

signal level measurements, and (iii) Capacity measurements (in terms of call 

success rate, etc.). All the measurements were performed under the influence of 

user dynamics and accumulations, i.e., gradual or rapid change in the user density 

per unit area. Indian cities were chosen for such measurements as (i) Government of 

India provided the desired facilities (such as measurement vehicle etc.) to conduct 

these experiments, (ii) Service Provider’s nod in using it’s live network to perform 

some tests, (iii) Being a multi-cultured country, Indian cities show lots of dynamics 

during a course of time with different flavours and patterns which makes it easier to 

find suitable locations fulfilling needs of the experiment. The measurements 

campaigns were based on the ITU recommendations in this regard. However, due to 

some practical limitations and time constraints, the primitive model could not be 

completely developed in the given time schedule. Nonetheless, the measurements 

performed during the mentioned course of time hold enormous significance in this 

research. The measurement analyses contribute to the deeper insight in the behavior 
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of the network environment with users changing their positions within the network. 

The measurements also revealed that there was a pattern in the changing of the 

environmental behavior, which was the motivation for defining these occurrences 

as phenomena and, envisaging and formulating them.  

Chapter 2 of this thesis presented these measurements in line with the 

recommendations of ITU and, an analysis was performed to identify  such patterns.  

It was found that the user accumulations significantly affect the network 

dimensioning. The measurements performed in the city of Mumbai during the 

immersion ceremony of Lord Ganesha revealed that as the crowd would move from 

one point to another, the spectrum occupancy in the sites where the crowd is, rose  

rapidly, whereas the point from which the crowd has moved away showed a 

significant drop in spectrum utilization. This created an imbalance and a wobble of 

need throughout the path traversed by the crowd that compelled NSP to install 

temporary solutions such as CoW sites.  Further, the measurements performed in 

Goa conceded that the influx of people between Tx and Rx systems may lead to 

additional losses and may transform the network environment from rural to dense 

urban. Similar measurements had already been performed during various occasions 

and by various researchers, however, finding the patterns between the signal level 

and concentration of people, shown as the regression line in the measurement plots, 

is the uniqueness of this research.  The measurements presented and discussed were 

only a few among many similar campaigns, and others had been excluded for lack 

of space and to allow room for other discussions. Chapter 2 also sets up a platform 

for further investigations and explorations. 

Chapter 3 elaborately discussed that a network must not be dimensioned based only 

upon land morphology and subscriber count in a service area or AoI and, that the 

dimensioning must incorporate the dynamics and random accumulations of users. 

This chapter identified the consequences of the entwining of the place and time 

phenomena on simple looking events, including the network dimensioning. This 

tangling of Place and Time with the Network Coverage and Capacity was uniquely 

defined, for the first time, in this chapter as the Place Time Coverage (PTCo) and 

Place time Capacity (PTC) or collectively as Place Time Capacity & Coverage 

(PTC2). From an NSP’s point of view, the PTC2 is a perpetual challenge that would 

be faced endlessly in catering for its subscribers. This chapter defined the 

formulations of PTC2 so that any network, which is looking for an alternate 

approach, can evaluate PTC and PTCo and predict the possible eccentricities. The 

magnitude of these phenomena is the motion of the subscribers either individually 

or in groups due to any arbitrary triggers, which may impede the proper absorption 

by the network. Unless and until the place and time repercussions are not 

incorporated during the capacity and coverage dimensioning of a network, as given 

by the PTC and PTCo formulations, the present, and future networks would be in 

ambivalence in handling such situations. 
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While Chapter 3 defined and formulised the problem of the subscriber 

accumulations, Chapter 4 attempted  to tackle the PTC2 by proposing an innovative, 

intelligent and prompt architecture that follows the normative framework of a DAS, 

which is a well established technique of distributing the resources over an AoI, and 

utilizing its capabilities to tackle such issues. As to manage the resources, the 

network must be iterative at every corner of its reach emphasizing the need of 

approachability of the intelligent module till the last destination (terminal) of the 

network. Therefore, the system needs to operate in such a way that the resource and 

intelligence may propagate parallelly in layers. This chapter proposed an innovative 

architecture to cater for the PTC2. This architecture was defined as Self 

Configurable Intelligent Distributed Antenna Systems (SCIDAS) architecture. It 

hosts many attributes, holistically conceptualized for the first time in this thesis, 

which enhances its dexterity in accommodating future technologies. Active probing 

is one of its many features which is especially discussed due to its sheer importance 

in realizing the network environment in real-time thereby reducing the complexities 

in predictions and forecasting of network behaviours.  

Chapter 5 evaluates the SCIDAS’s performance and its ability to sense and manage 

the PTC2 challenge. Here, the Active Probing (AcPro) Technique was proposed and 

evaluated as the sensing sub-architecture of the SCIDAS’s intelligent module. The 

AcPro mechanism was enhanced to an APMS. Two algorithms, which were 

developed to be executed by APMS to sense the PTC2 wobbles in the network, were 

proposed and evaluated. This chapter gave a mathematical and algorthim 

expression of the PTC2 management approach. To manage the accumulations, 

identified by APMS, this chapter proposed and evaluated  four primary algorithms 

that collectively work in coordination to form a holistic algorithm, defined as 

Amoebic Place-Time Response (APR) that works like amoebic life processes. 

Chapter 6 endorsed  the research work through (a) empirical analysis of the PTC 

proposed in Chapter 2, (ii) Presenting the working of the basic SCIDAS prototype 

though the relevant measurements and, (iii) evaluating the case study of Connaught 

Place, a suitable location in Delhi, that was chosen for deployment of SCIDAS test-

bed which, however, was halted due to practical issues. The case study, however, 

holds good contributions in terms of the future possibility of SCIDAS deployment. 

Overall this thesis concludes its research by conceiving, formulating and measuring 

a holistic approach aiming to resolve the issues that occur due to subscribers in 

motion. The holistic approach involves identifying and formulating challenges 

incurred due to such randomness in user motions and then suggesting a suitable 

method to counteract these challenges step by step. Successful conceptions and 

formulations of the challenges and architecture are presented in this thesis that is 

profoundly acknowledged by various measurement campaigns.  
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7.2. FUTURE SCOPE  

This thesis opens ample opportunities for future research.  Chapter 2 stressed on the 

occupancy measurements in line with the ITU recommendations.  The detailed and 

iterative examinations of such occupancies may provide a decent structure of 

spectrum utilization which can be used for the evaluation of the scope and outturns 

of any communication technology (future or incumbent) from both, business and 

technological point of views. 

The  proposed SCIDAS architecture opens the research towards investigation of 

how the  Universal Base Stations, Plug & Play Transceivers that can be attached to 

remote units, QUIKNETS for replacing CoW approaches, being some of them. 

Another planned research is on how to integrate the future wireless technologies 

such as Li-Fi and 5G for a smooth transition within the technological generations. 

Chapter 5 gives ample scope of developments in algorithms that can work on an 

SCIDAS-like intelligent architecture. This chapter, for the first time, integrated the 

network with a separate and independent intelligent module. This sets up an avenue 

for the amalgamation of Artificial Intelligence and futuristic intelligence such as 

Quantum Computing to work as an independent module in managing the network 

resource. 
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Appendix 1 
 

Appendices of this series  cover Chapter 1 of the Thesis 
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The measurement setup, procedures, and system settings belong to our work in [1]. 

For the sake of clarity and ready reference, the extracts of these descriptions have 

been referred and incorporated in quotes in this Appendix. The contributions of [1] 

are also utilised in chapters 3,5, and 6 of this thesis where they have different 

referce numbers.  

Radio Frequency Spectrum Measurements- Systems and Procedures: A 

Photograph of the V/UHF Mobile Monitoring System deployed for carrying out 

spectrum occupancy measurements in frequency range 30-300 MHz is shown in 

figure 1-1.  

 

 

Figure 1-1: Measurement Vehicles 

 

Figure 1-2 : Receiving Antenna 

The receiving antenna system, receiving system, procedure and desired parameters 

of the measurements including the operation are described in the following sub-

sections.   

 

1.1 Receiving Antenna System 

 

“The short monopole antennas, half-wave dipoles and high-gain antennas for 

reception of the radio signals are most appropriate for the measurements. For 

carrying out the measurements, two Omni-directional antenna systems as 

monitoring antenna covering the frequency bands of interest were used.” [1]. The 

antennas are located at a height of 10 m above the ground.  The measurements are 

taken at several adjacent locations (cluster of observation points) using the resultant 

average value, or by conducting continuously recorded measurements while 

moving. A typical antenna system deployed for taking measurements is depicted in 

the following figure 1-2. 
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1.2  Receiving System 

 

The measuring receiver having inherent stability with respect to gain, frequency, 

bandwidth and attenuation is deployed for the measurements. Particular attention is 

drawn to the reference frequency to limit drifting effects on the overall accuracy of 

field-strength measurements. A spectrum analyser is used as a receiver, when set to 

zero-span, maximum hold on each frequency and the trace allowed to build up over 

a number of scans. A number of such measurements taken at regular intervals are 

then averaged to produce the field-strength reading. The measuring receiver or the 

spectrum analyser, when computer controlled, has been used to automate 

measurements and needed subsequently for data storage and analysis. “An RF cable 

of 15-meter length (total loss of about 3-4 dB) is connected between antenna and 

receiver as shown in figure 1-3. The detailed diagram of V/U MMS is described in 

figure 1-4. A typical block diagram of a 2 channel receiving unit installed in V/U 

MMs is depicted at figure 1-5. Spectrum occupancy measurement efforts for broad 

spectral ranges always involve a fundamental trade-off between spectral resolution, 

time resolution, and spectrum coverage.  Band ranges are selected to match data 

collection and analysis needs. High-frequency resolution requires long sweep times 

resulting in low time resolution. The time resolution of the measurements is in the 

range of 5-10s, which is not small enough for detailed time-domain characterization 

of dynamic signals; but, it is suitable for average occupancy measurement.”[1]. The 

sensitivity of the measurement setup is almost in the same range as the sensitivity of 

the user equipment in the frequency band, in which measurement are performed.  It 

will satisfy that signals being detected for user equipment has sufficient signal to 

noise ratio (S/N) in the measurement, in order to separate them from the noise floor. 

 

 

Figure 1-3: Modular diagram of the Receiver System 
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Figure 1-4 : Very/Ultra High Frequency channel-receiving system 

 

Figure 1-5: A block diagram of a 2-channel receiving unit 
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1.3 Procedure and desired Parameters for Measurements 

 

Once the complete measuring setup is in position at the location of measurements, 

the following parameters are tuned before the start of each measurement. 

1.3.1 System Settings 

The dynamic range is an important parameter of the measuring system that plays 

two roles i.e. (i) should be sensitive enough to detect the weak signals, and (ii) need 

to cope with very strong signals from nearby transmitting stations. Adequate care is 

required for preventing overloading of the receiver during the measurement while 

determining the suitable RF attenuation and selecting measurement locations. The 

operating dynamic range of the measuring receiver should be ≥60 dB, and the 

receiver bandwidth should be wide enough to receive the signal including the 

essential parts of the modulation spectrum. It is a common practice to calibrate 

measuring receivers, antennas and antenna cables separately, using nationally or 

internationally accepted calibration procedures. But for maximum precision, the 

antenna, feeder, and receiver are calibrated as a single entity. “The following 

system settings have been made during the measurements: a) noise figure of the 

receiver at 7 dB, b) Step Size/Detection Filter = 500/300 kHz, c) Start Frequency = 

30 MHz, Stop Frequency=3000MHz, and d) Equipment Noise floor with 300 kHz 

detection is about 0 dBµV” [1]. Further, the following selected factors have been 

used for calculating different parameters of measurements: 

 Peak factor- The peak factor is used to calculate the Mean Square Values 

(MSV) relative to the modulation rate, frequency deviation, and phase 

deviation. The Peak factor is kept at 1.414 during entire V/UHF scanning. 

 

 β Ratio- Measuring an emission bandwidth using the beta method consists 

in measuring the frequency bandwidth such as, below its lower limit 

frequency and above its upper limit frequency, each mean power 

transmitted is lower than or equal to a given percentage   (β/2) of the total 

mean power of the transmission. β Ratio is kept at 1 during VHF/UHF 

scanning.  

 

 Acquisition time (N * nominal duration) – is selected as 273.1 ms for the 

measurement. 

For each sweep of a spectrum region by the receiver, the spectral occupancy 

(unoccupied/occupied, or 0/100%) at each measured frequency point was estimated 

by comparing the measured power level to a threshold. From this, the average 

occupancy in a given frequency range of a sweep was calculated. Repeating this 
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calculation for every sweep of data resulted in occupancy (%) over the period of 

measurements by frequency band. The thresholds used to determine occupancy are 

intended to be set at a fixed offset above the noise floor of the measurement system. 

Typically the value chosen of 10 dB was set above the noise floor. Due care was 

taken in choosing the occupancy threshold to avoid system induced inaccuracies in 

the occupancy calculations. “This system is best suited to carry out measurements 

close to transmitting set up. This flexibility is characterized by (a) type of vehicle 

(heavy duty or light), (b) spectrum analyser (s) and related accessories fitted inside 

the vehicle, and (c) antenna with rotator systems fitted outside vehicle, etc. With 

this mobile system set up, measurements have been taken in urban, semi-urban and 

high radio density areas. The mobile monitoring setup automatically uses the data 

collected relating to licensed or un-licensed information by the monitoring system. 

The mobile monitoring set up is equipped with a communication receiver, 

monitoring antennas, GPS, interconnecting cables, batteries and power supplies, 

etc.” [1]. Once the above-mentioned parameters are set, the data displayed in ITU 

Measurement window are: 

 Central frequency of measurements, 

 Deviation between central frequency of measurement and frequency 

specified in the fixed frequency monitoring grid, 

 values related to the antenna level measured according to different 

availability criteria (mean, max, square), 

 values related to modulation depth, frequency deviation and phase 

deviation, 

 Calculated bandwidth values using the X dB method on two thresholds,  

 Noise measurement (spectral density, power, and noise-to-signal ratio). 

1.3.2 Operation- The operation is divided into two sub-bands i.e. 20 to 700 MHz 

and 700-3000 MHz.  The 20/700 MHz selector receives the VHF antenna signals of 

two sub-ranges (20/160 MHz and 160/700 MHz). There are five “antenna sub-range 

selectors”, which select between the two ranges from control signals. Whereas, the 

700/3000 MHz selector receives the UHF antenna signals by selecting the pair of 

dipole required in this sub-range. The spectrum analysis consists of processing 

samples of the real time signal to obtain results representing the signal amplitude 

and phase for each channel 
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Appendices of this series  cover Chapter 2 of the Thesis 
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Appendix 2.1. 
 

2.1.1 Spectrum Allocations for IMT applications- An Indian Scenario 

The radio spectrum assignments, for serving the mobile subscribers, to the service 

providers differ in a ‘Service Area’ from country to country because of legacy and 

other constraints. The availability of radio spectrum also depends on the number of 

service providers in that ‘service area’. To illustrate, in many parts of the world, 

GSM 900 operates in the frequency band 880-915 MHz paired with 925-960 MHz, 

whereas in India the band is 890-915 MHz paired with 935-960 MHz.  In India, the 

mobile subscribers are served in a service area by many operators providing 2G 

(GSM & CDMA) and 3G applications. At present, in India for providing mobile 

telecommunications services, 800 MHz (CDMA), 900 MHz (GSM), 1800 MHz 

(GSM) and 2100 MHz (3G) frequency bands are used. In these frequency bands, a 

total of 130 MHz has been earmarked for such applications. Besides the above, a 

total of 80 MHz is earmarked for 4G (LTE) applications. In India, an operator has 

been assigned a maximum of 10+10 MHz in a service area for GSM-based and, 5+5 

MHz for CDMA-based applications. In so far as 3G and 4G applications are 

concerned, 5+5 MHz and 20 MHz (TDD mode) have been assigned respectively to 

an operator in a service area. A status of allocation and the actual amount of 

spectrum bandwidths assigned for IMT applications, in India [Source: 

www.wpc.dot.gov.in],is given in Table 2-1. 

Appendix Table 2- 1: Status of spectrum allocation for IMT applications in India 

Frequency Band 

(MHz) 

Uplink (UL) 

Frequency 

Band (MHz) 

Downlink 

Frequency 

(DL) Band 

(MHz) 

Amount of Spectrum Stand 

Assigned to the Service 

Providers on Pan India Basis 

800 (2G 

CDMA) 

824-844 869-889 Entire 20+20 MHz. 

900 (2G GSM) 890-915 935-960 Upto 25+25 MHz. 

1800 (2G GSM) 1710-1785 1805-1880 Upto 55+55 MHz. 

2100 (3 G) 1920-1980 2110-2170 Upto 35+35 MHz 

2300 (BWA) 2300-2400 ---- 40 MHz (TDD mode) 
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It may be noted that the above-mentioned assignments are far less as compared to 

other countries worldwide. Hence, in India, there is an acute scarcity of radio 

spectrum for mobile telecommunication applications. Realizing this, for ensuring 

adequate availability of spectrum and its allocation in a transparent manner through 

market-related processes, the National Telecom Policy (2012) of the Government of 

India has mandated to make available additional 300 MHz spectrum for IMT 

services by the year 2017 and another 200 MHz by 2020 [7]. In this context, it may 

be mentioned that, as per the ITU-R Report No. M.2290-0 (01/2014), the estimated 

future radio spectrum requirements for terrestrial IMT in the year 2020 would be 

1960 MHz [8]. 

2.1.2 Role of International Telecommunications Union in Radio 

Spectrum Management 

The International Telecommunications Union (ITU), besides other functions inter-

alia, includes allocation of global radio spectrum and satellite orbits for a variety of 

radio services. In a nutshell, ITU is the global regulator of the radio spectrum and 

functions through its Radiocommunications (R) Sector in developing frequency 

plans for meeting existing and future radio spectrum requirements for all the radio 

services. It is to mention hat for the sake of clarity and not losing the original 

definitions and concepts, the extract and quotes, whenever required have been taken 

from http://www.itu.int/en/ITU-R/. For the purpose of the allocation of frequencies, 

, ITU has divided the world into three Regions [9] as shown in figure 2-1. 

 

Figure 2- 1: ITU Regions 

Region 1 includes the whole Europe, Africa, MiddleEast and northern part of Asia. 

http://www.itu.int/en/ITU-R/
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Region 2 covers the America.  

Region 3 includes the southern part of Asia including India and Ocenia.  

2.1.3 Radio Spectrum Bands 

It may be mentioned that currently, UHF (300 MHz-3 GHz) and SHF (3-30 GHz), 

bands are the most suitable for providing commercial mobile (IMT) applications. 

The deployment and usages of radio spectrum for variety of radio services 

including for IMT applications depend on the broad principles namely: 

 propagation characteristics;  

 availability of technology and equipment;  

 the suitability of frequency bands for specific applications; 

 the Radio frequency spectrum is used  efficiently, optimally and 

economically in conformity with the provisions of national and 

international laws; 

 several frequency bands shall be required in order to meet both the 

capacity and coverage requirements; and   

 high capacity and high-speed data rates are achievable in the presence of 

contiguous bandwidths in a single band etc. 

The allocation of radio frequency spectrum for all the 41 radio services is 

periodically reviewed by the World Radiocommunication Conferences (WRC), 

normally held after every 3-4 years. The mobile (MO) service is among the radio 

services and each frequency band is shared among different services. The Radio 

Regulations (RR) is periodically revised, complementing the Constitution and the 

convention of ITU, and incorporating the decisions of WRC. WRC takes input from 

the various study groups, which perform an executive role, including the planning, 

scheduling, and drawing a plan for its work at least for a period of four years in 

advance. Each study group (SG) works through different working parties (WPs), 

which impart studies including on various questions. A working party prepares draft 

recommendations and other texts for consideration by the concerned study group 

including liaison statement for other interconnected study groups. If the study group 

finds that the urgent time-bound issues cannot be reasonably carried out by a 

working party, it may constitute a special Task Group (s) and ask for urgent 

recommendations. The radio regulations as an outcome of WRC are in the form of 

an international treaty, and all the member administrations are signatory to this. 

India is also the member administration. RRs are extremely complex with several 

footnotes and give a detailed picture of the distribution of spectrum for different 

services in all the three regions. The regional and national frequency plans can be 

different from the international plan by ensuring that there are no potential 

international interference situations.  
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2.1.4 Roadmap of Identification of Various Frequency Bands of IMT 

Applications 

In the mid-1980’s work began by ITU for defining the next “generation” of mobile 

radio standards/mobile networks on a global basis, which led to the allocations of 

the new globally available frequency bands. The World Administrative 

Radiocommunications Conference (WARC)-1992 identified 1885-2025 MHz and 

2110-2200 MHz making a total of 230 MHz for the terrestrial component of the 

then ‘Future Public Land Mobile Telecommunication Systems” (FPLMTS).  At the 

WRC-2000, all the major existing cellular bands were added, increasing the 

potential IMT-2000 spectrum availability by approximately three times and also 

identified the frequency bands namely 806-960 MHz, 1710-1885 MHz and 2500-

2690 MHz for the International Mobile Telecommunications (IMT) applications. 

The earmarking of these frequency bands led to the completion of ITU standards 

for the third generation of mobile radio technologies and its economically attractive 

commercial usages of IMT-2000 (3G) in the year 2000.  

 Further, the new services shall be provided through enhancements of 3G and IMT-

Advanced (4G and beyond i.e. 5 G) in the future. The deployment of IMT shall be 

in accordance with the RRs. Additionally, the frequency bands (i)  450–470 MHz, 

(ii) 790–960 MHz, (iii) 1710–2025 MHz, (iv) 2110–2200 MHz, (v) 2300-2400 

MHz, (vi) 2500-2690 MHz, and (vii) 3400-3600 MHz stand currently allocated for 

IMT applications.   

The demand for another set of additional spectrum for capacity and coverage 

requirements for IMT applications was considered by WRC-12, which 

recommended to the ITU Council to include an Agenda item 1.1 in the agenda of 

WRC-15. Afterwards, a Joint Task Group (JTG) 4-5-6-7 was established for 

recommending additional spectrum allocations to MO services on a primary basis.  

This Joint Task Group had several meetings since July 2012 until July 2014 and 

according to its Chairman’s Report [10] had recommended more than 20 additional 

frequency bands for IMT applications.  

The World Radio Conference (WRC)-2015 held during November 2-27, considered 

the recommendations of this JTG.  After detailed deliberations, WRC-15 identified 

[Final Acts WRC 15, Geneva (Edition 2016)- http://www.itu.int/pub/R-ACT-

WRC.12-2015/en]; among others the frequency bands namely 470-694/698 MHz, 

1427-1518 MHz, 1885-2025 MHz, 2110-2200 MHz and 3300-3400 MHz or 

portions thereof for IMT applications in different Regions.  

Incidentally, it may be mentioned that the recently concluded WRC-15 among other 

issues has also requested ITU-R to study the potential use of additional spectrum 

above 6 GHz for IMT, and the results of those studies will be considered at the next 
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WRC-19. The detailed work plan shall be on technical and operational 

characteristics within the frequency range between 24.25 and 86 GHz for the future 

development of IMT for 2020 (5 G) and beyond. Additionally, the studies are 

planned towards sharing and protection criteria in the aforesaid frequency bands for 

IMT-2020 and beyond.   

Appendix 2.2. 
 

2.2.1 A Case Study: Sharing And Compatibility Studies Of Radio 

Services, In The Frequency Band 470-698 Mhz 

It may  be mentioned that the frequency bands recommended  by JTG and identified 

by WRC-15 as potential candidate bands for IMT applications (within the scope of 

MO services) are also shared with a variety of services could be fixed (FX), Mobile 

(MO), Satellite, Aeronautical, radio navigation and Broadcasting (BC) etc. 

Therefore, it is a must that detailed studies are required to be carried out for 

establishing in the band and out band compatibility between IMT and wireless links 

of other services. These studies are also dependent on local terrain/clutter shielding 

in an operational area of interest. Such studies would be desirable before 

deployment of IMT system in a frequency band. It may also be mentioned that 

shairing and compatibility studies should be appropriately conducted. These studies 

shall take into account the technical and operational characteristics of IMT systems, 

with that of the existing frequency bands for IMT and other services/application, 

including the optimization of these bands targeting to increase spectrum efficiency.   

2.2.2 Interference issues and coexistence of Radio Services- Broad 

Principles 

It is well established that while considering and analysing any interference issues, it 

is required to examine the technical parameters of existing and proposed 

assignments in the co-frequency and adjacent frequency bands.  Broadly, the 

technical parameters, namely frequency and geographical separations and antenna 

orientation, which play a dominant role, are required to be evaluated for different 

scenarios of interference. With a view to studying sharing/co-existence of radio 

services within the band and out of band scenarios, the simulation models of 

different parts namely (i) transmitter, (ii) receiver, (iii) antennas, and, (iv) 

propagation paths need to be developed.  

This sub-section highlights various issues needed for the studies and also reports 

sharing studies in a frequency band using propagation models, which in turn 

determine the geographical separation distances between different services 

operating in that  frequency band. The geographical separation is normally 
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dependent on propagation conditions. The free space propagation conditions 

determine the worst level of separation distance sometimes larger distances. For any 

assessment of interferences, the propagation loss between a transmitting and 

receiving locations needs to be determined by using the propagation model (s) using 

terrain database of that location. Under this scenario, the Recommendations ITU-R 

P.452 [11] and ITU-R F.758-5 (03/2012) [12] are generally used for calculating the 

propagation loss, by considering the analytical approach of the propagation 

conditions.  

However, this sub-section only considers interference scenario in terrestrial wireless 

links operating in a UHF band i.e. 470-698 MHz, which is one of the potential 

candidate bands for IMT applications. It is to mention that the frequency separation 

i.e. Guard Band and geographical separation are two key parameters in co-existence 

scenarios. As per the Recommendation ITU-R F.1191 [13], GB is defined as the 

frequency separation between the center frequencies of the outermost radio-

frequency channels and the edge of the frequency band. GB ensures 

services/applications with no interference or tolerable/minimum interference. The 

frequency separation can be defined as [14]:  

 
∆f =

(2.5 − BTX)

2
+

BRX60

2
 

(2.1) 

Where, BTX is the Emission bandwidth and, BRX60 is the 60 dB receiver inter-

frequency bandwidth. 

Another important parameter that tackles interference issues is the antenna 

orientation, that impacts reduction in cell size even with lower transmitted power.  

Several studies reveal that in a particular urban environment, the geographical 

separation distance decreases considerably for different interference criteria when 

the antenna angle is appropriately oriented. Further, possible types of interference 

from IMT system that have been identified  impacting Fixed (FX) radio services 

are:-   

(i) Unwanted emissions from IMT in adjacent channels; 

(ii) (ii) Adjacent channel interference from unwanted emissions generated 

by IMT system to Fixed Radio system; and, 

(iii) (iii) Co-channel interference between IMT system and Fixed Radio 

system etc.  

 It may be worth mentioning that no single frequency range satisfies all the criteria 

required to deploy IMT systems, particularly in countries with diverse geography 

and population density. Therefore, in order to meet the capacity and coverage 

requirements, multiple frequency ranges would be needed. However, in operational 
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areas, where large contiguous bandwidths are available within a single band, high 

capacity and high-speed data rates can be achieved.   

2.2.3 Sharing Study in 470-698 MHz Band 

In this sub-section, a sharing/compatibility study between the proposed IMT system 

and existing Broadcasting (BC) service in 470-698 MHz is presented. The 

allocation of various services in the frequency band 470-698 MHz for three Regions 

is shown in Table 2-2:- 

Appendix Table 2- 2: Allocation of Services 

Region 1 Region 2 Region 3 

470-790 

BROADCASTING  

470-512 

BROADCASTING, 

Fixed, Mobile 

470-585 

FIXED, MOBILE, 

BROADCASTING 

   512-608 

BROADCASTING  

585-610 

FIXED, MOBILE 

BROADCASTING 

RADIONAVIGATION  

   608-614 

RADIO  ASTRONOMY 

Mobile-satellite except 

Aeronautical, Mobile-

Satellite (earth-to-space) 

610-890 

FIXED, MOBILE, 

BROADCASTING, 

RADIONAVIGATION 

Fixed, Mobile 

 614-698 

BROADCASTING, 

Fixed, Mobile,  

 

  

As per the above Table, the frequency band 470-698 MHz stands allocated only for 

Broadcasting (BC) Services in Region 1. In Region 2,  470-512 MHz for BC as a 

‘primary service’, 512-608 MHz only for BC service, 608-614 MHz for Astronomy 

as a ‘primary service’, and 614-698 MHz for BC as a ‘primary service’. As regards, 

Region 3, 470-890 MHz is allocated for Fixed (FX), Mobile (MO) and BC as 

‘primary services’ except for Radionavigation in the band 585-610 MHz. Table 2-3 

presents a status of 470-698 MHz band in India. It may be seen from the Table, that 

as per the current Indian National Frequency Allocation Plan (NFAP) 2011 [15], 

the broadcasting services in 470-698 MHz share with fixed, mobile, radio 

navigation, and radio astronomy services.  In India, Television (TV) transmitters 

also operate in this frequency band.  
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Appendix Table 2- 3: Status of Frequency Band 470-698 MHz 

Band Services Remarks  

470-585 MHz 

 

 

BROADCASTING, 

FIXED, MOBILE 
The requirement of Fixed and mobile 

services will be considered in the 

frequency band 470-520 MHz and 

520-585 MHz on a case-by-case 

basis. 

585-698 MHz FIXED MOBILE 

BROADCASTING 

RADIONAVIGATION 

RADIO 

ASTRONOMY  

The requirement of Digital 

Broadcasting Services including 

Mobile TV may be considered in the 

frequency band 585-698 MHz 

subject to coordination on a case-by-

case basis. 

 

While considering, sharing studies between the proposed IMT applications and the 

existing Broadcasting Services in 470-698 MHz, an important parameter,  the ‘no-

talk radius’ is calculated. This parameter is the distance from the TV transmitter up 

to which no proposed IMT transmission shall take place. The separation distance is 

calculated  between a proposed IMT transmitting station and TV receive station for 

a rural environment by calculating propagation loss deploying the modified Hata 

model as given in the Recommendation ITU-R SM.2028 [16]. For the calculation 

purposes, it has been assumed that the Indian Broadcaster has digitized their TV 

operations and is using two channels each of 6 MHz. With a view to allow  co-

existence of IMT and TV systems, an option could also be to earmark some 20 

MHz for TV  systems in one corner of the frequency band i.e. 470-698 MHz and 

also by providing sufficient GB for allowing IMT systems to operate.  

Typically, a TV tower radiates power of 10 KW from an antenna height of 100 m 

and services several TV receivers in that coverage area.  The technical parameters 

namely (i) tower’s latitude, longitude; (ii) frequency of operation; and (iii) terrain 

information of the area surrounded by the TV tower are required to be known. For 

the purpose of calculation of ‘protection separation’ with a view to guaranteeing no 

interference to TV receivers, it may be assumed that the proposed IMT system is a 

radiating power of 36 dBm from an antenna height of 30 m. With these parameters 

of BC stations and proposed IMT systems, a ‘no talk radius’ and ‘separation 

distance’ have been arrived at 30 km and 100 km respectively. Hence, for safe 

protection, a total distance of approximately 130 km shall need to be avoided by the 
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IMT base stations implying that IMT system providing their service in this zone 

shall use the channel not used by TV transmitter.   

Appendix 2.3. 
Classification of Service Areas on the Basis of Mobile Traffic Handling 

Capacity   

2.3.1 The service areas are broadly identified as under:- 

a) Dense Urban (DU): DU is the area covered by sites having cells of 

percentile better than 90 in respect of peak traffic and traffic density. Sites, 

which don’t have a maximum possible configuration, may not be 

considered.  

b) Urban (U): U is the area covered by sites having cells of percentile 

between 70 and 90 in respect of peak traffic and traffic density. Sites, 

which don’t have a maximum possible configuration, may not be 

considered.  

c) Semi-Urban (SU): SU is the area covered by sites having cells of 

percentile between 70 and 30 in respect of peak traffic and traffic density.  

d) Rural (R): R is the area covered by sites having cells of percentile between 

5 and 30 in respect of peak traffic and traffic density.  

e) Un-Inhabited Area (UIA): UIA is the rest of area covered by sites, not part 

of above DU, U, SU and R categories. 

According to a definition, an extremely DU area is defined having more than 10, 

00000 population and specifically, under this, the scenario includes (i) Business 

sites (offices of enterprises, businesses, hotels, hospitals, university campuses and 

similar sites), (ii) Outdoor/indoor public environments (airports, railway stations, 

harbours, malls, central squares of metropolitan cities and similar sites), and (iii) 

heavy vehicular environments etc. While urban/semi-urban areas are 

little/moderately populated and scarcely/sufficiently networked areas, which are 

mostly environments of “indoor” nature. This scenario includes (i) Small office – 

small to medium sized branches of offices, classrooms, small hotels, (ii) private 

residential establishments- houses, flats etc., and (iii) lesser density of vehicular 

movements.  The area(s) that have (1) less scattering behaviour, (2) vacant and 

clean band, (3) less interference and (4) varying but predictable conditions may 

serve as initial deployment locations. In other words, areas that have good network 

conditions can be used as primary deployment locations. In order to summarize the 

various categories of geographical/service areas along with its typical loss values 

are characterized in the following Table 2.4 
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Appendix Table 2.4: Propagation Loss and Service Area Catagory 

Category Typical Loss 

Values 

Area Features 

Dense 

Urban 

40 dB 

The loss is mainly 

due to thick 

concrete and 

metallic structures. 

The extensive concentration of building materials 

like busy airports,   high-rise buildings of height 

>30 meters, walkover bridges, metallic 

commodities like cars, buses, with a huge 

population of people. (Manhattan (US), Connaught 

Place (New Delhi, India)). The area covered by 

sites having cells of percentile better than 90 in 

respect of peak traffic and traffic density. 

Urban 30 dB 

The loss is mainly 

due to building 

materials and thick 

concentration of 

population. 

Market Places, offices, cafeterias, residential 

complex, Railway stations, buildings with height < 

30 meters.   

The urban category also considers decently 

occupied stadiums and car parking. The area 

covered by sites having cells of percentile between 

70 and 90 in respect of peak traffic and traffic 

density.  

Sub-Urban 20 dB Residential areas, individual houses, Industry, and 

Power Plants, etc. The area covered by sites 

having cells of percentile between 70 and 30 in 

respect of peak traffic and traffic density. 

Rural 15 dB Farmhouses, Agricultural and Dairy Industries. 

The area covered by sites having cells of percentile 

between 5 and 30 in respect of peak traffic and 

traffic density. 

Open with 

dense low 

vegetation 

10 dB Countryside, Golf Course, Shooting Range, etc 

 

The propagation area in a wider perspective is categorized in such a manner that 

each category represents a certain range of propagation loss. The salient 

challengingissues, encountered while providing an uninterrupted good quality of 

commercial mobile services, are: 
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(i) an imbalance distribution of the subscribers; 

(ii) accumulation of subscribers in emergency situations like a carnival, 

sports/cultural events, and man-made/natural disasters; 

(iii) demand for additional spectrum bandwidth; 

(iv) improper utilization of assigned spectrum during day and night time; and, 

(v) poor utilization of spectrum at various locations of a service area. 

It is important to mention here that geography of the concerned target area is not 

homogeneous throughout its span and inevitably varies from point to point. The 

propagation loss depends on the morphology of the concerned location (foliage, 

concrete structures, water bodies, etc.). Therefore, the propagation loss in the entire 

area is not uniform and is liable to vary from point to point. 

Appendix 2.4. 
 

2.4.1 Path loss variation due to random accumulation of people -

Theoretical Discussion 

The outdoor channels that are stationary in time experience multipath dispersions 

caused by a large number of physical obstacles and can be described using the same 

simple path loss model.  The effect, of movement of people in outdoors, on path 

loss, has not been studied in much detail. However, in the case of indoors, (channel, 

a non-stationary and is highly dynamic, due to movement of people), the effect of 

people movement and equipment on path loss has been studied in detail [25-27]. 

The gatherings of people, around a low antenna height, over short distances, 

appreciably vary the received signal level. This is characterized by large path losses 

and sharper changes in the mean signal level. It may be mentioned that any realistic 

channel model, besides other parameters, is characterized by the propagation path 

loss. In the free space, Non-Line of Sight (N-LOS) and Non-Obstructed 

propagation path, the received signal power Pr (dB), is expressed as: 

Pr(dBm)  =  Pt(dBm) + Gr(dB) + Gt(dB) –  20 log10 (4πd/λ) (dB) (2.2) 

Wherein, Pt is the transmitter power, Gr is the receiver antenna gain, Gt is the 

transmitter antenna gain, d is the separation between transmitter and receiver T-R), 

and λ is the wavelength of the radio signal. In the presence of obstructions, the 

received signal will suffer additional attenuation due to movement of people, which 

can be accounted in the following formula:
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Pr(dBm) =  Pt(dBm) + Gr(dB) + Gt(dB)–  20 log10  (
4πd

λ
) (dB) − PL 

(2.3) 

Where, PL is path loss due to obstructions i.e. people’s accumulation, coming in the 

way of the propagation path. A simple distance to power relationship, to estimate 

the path loss of transmitted radio signal, is used. According to this model, when the 

transmitter and receiver both are located in the same place and seeing each other, 

the path loss attenuation (dB) is given as: 

PL =  P0   +  10 n log10 x  (2.4) 

Where,  ‘x’ is the  separation  between  transmitter and receiver (T-R), ‘n’ is the  

path loss exponent (an important  indoor channel parameter), which is equal  to a 

value of ‘2’  in case of free space path loss and its value varies in NLOS  obstructed 

path situations, ‘n’ may  be >  2 and P0 is the path loss at distance of 100 meters. 

The gathering of a large number of people and their movement around the receiving 

antenna appreciably impacts on signal level that leads to the increase in path loss. 

Mathematically, it can be modeled with the complex impulse response function ‘h 

(t, x) or H (ω, x)’. The rays leaving from the transmitter and arriving at the receiver 

location are first determined under LOS condition via specular reflections, 

penetrations, diffractions and combinations of these phenomena. The additional 

losses due to the reflection of transmitted ray by human bodies are added to the 

propagation loss.    

The movement of people in the area of the measurement has been assumed to be 

scattered randomly. In shadowing events, when a group of person comes in the way 

of a radio signal are assumed to be independent. The propagation loss of a ray 

subject to multiple shadowing events on the radio signal increases by an additional 

loss denoted as Lsh (dB). In a situation, when ‘N’ rays are reaching the receiver, 

there can be 2N combination of shadowing events. The local average propagation 

loss of each of event is separately calculated, which is the power sum of the losses 

of individual shadowed incoming rays at the receiving location. The parameter Lsh, 

the additional shadowing loss depends on a carrier frequency, polarization, 

individual differences among shadowing persons, the direction of the shadowing 

person relating to the ray, heights of transmitting and receiving antennas, nearness 

of shadowing position from the transmitting or receiving location and the number of 

people shadowing on a radio signal. 
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Appendix 3.1. 

Instances as a matter of chance 

The concept of probability is enigmatically attached to almost everything in our 

life. The growth or cells in our body, the landing of  Apollo-11 and Chandrayan on 

the Moon, Winning a lottery, getting a movie ticket, medicine curing a disease and 

perhaps the most talked about event, the wave pulse reaching receiver antenna, are 

the successful outcomes out of many alternate possibilities. There were certainly 

chances that we were still struggling to reach the moon [1], the first communication 

device was never built, and Columbus never landed in America [2] [3], etc. As 

everything is a mere matter of chance, one has to deal with any event cognitively 

for maximum advantage. As an example, winning a lottery on a specific number is 

just winning or losing which can be detestable; however, a scheme of “weighted” 

win may bring a bit of smile on every buyer’s face. Similarly, relying on the 

information received from pulses of the wave from an AM transmitting antenna can 

be catastrophic than receiving them through multiple OFDM channels from array 

transmitters [4] [5] [6].  

STIMULANT 

Whatever the experiment it may be, and whatsoever the outcomes are, there is 

always a “thing”   that participates in the experiment. This thing may be a die, 

cards, missile, currency, etc. and are responsible for generating outcomes [7]. Such 

things are defined as Stimulant in this document and are considered as self- 

initiators of the experiment and any other actor (such as us) performing the 

experiment is ignored in the present discussion.  

As this is a fact that, attaining a particular desired outcome out of experiment is a 

matter of chance, but the obvious incidences are not so obvious. As an example, 

anything that is tossed up must come down due to the effect of gravity is 

axiomatized and accepted as universal truth. However, the probability of any object 

falling due to gravity, howsoever large it is, is always less than one. This enigma is 

being created due to the definition of probability is given by: 

 P(O) =
Number of desired outcomes

Total number of outcomes
  (3.1.1) 

Here, P(O) is the probability of occurrence of a set of outcomes [8]. The probability 

of occurrence of all outcomes of any event is unity [9]. This means that the 

probability of occurrence of a set of outcomes depends on the total possible 
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outcomes of the event, and therefore, this unity is shared by all possible outcomes 

of that event. Hence, the total probability is distributed among all the possible 

outcomes based on their chance of occurrence with maximum possible chance 

being a unity[9] [10]. Representing the event in terms of all possible outcomes with 

their respective probabilities is the probability distribution (see, section, subsections 

of 3.2 for the respective distribution). 

As we still don’t know if there exists any another possibility than falling due the 

effect of gravity, this probability is not deterministic [11]. However, since there 

have been uncountable experiments, in purpose or casual, and not a single shown 

any other outcome, it is deemed that all “objects” fall down. And not only that they 

certainly fall down, but also every time and anywhere in the Universe [12] [13]. 

Such kind of similar incidence/s, whose outcomes are unlikely to change with time 

and position is cognominated here as an Unostentatious Event or Unostentatious 

Incidence / Experiment.   

Unostentatiousness is strictly in relevance to the place and time and not in terms of 

outcomes. This means that although it is accepted that everything must fall in a 

gravitational field irrespective of what time it is and at what position event is 

happening in the universe, but “where” is still driven by the probability. 

Nonetheless, for an unostentatious experiment, the contingency of an outcome 

depends on the way the experiment is performed. While in a game of cards, all 

cards have the same chance of getting drawn out of the deck in a single deal, the 

chance of a person visiting a supermarket is higher than visiting a single shop (as 

the person has more choices in a supermarket). The former is a case where the 

probability is flat and is an example of the “Unbiased Unostentatious Event” 

whereas the latter is a case of a biased event where the bait converges the 

probability to bias the occurrence of certain outcomes. As mentioned earlier, the 

probability of occurrences of these events is independent of position and time.  
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Appendix 3.2. 

Unostentatious Events and Probabilities 

The unostentatious event is defined here as: 

Any event whose outcomes are the set of consequences of an action that is allowed 

to perform freely in nature has the capability to incur the same chance of 

occurrence to any particular outcome irrespective of when and where the action 

takes place.  

This simply means that outcomes of an experiment remain unchanged irrespective 

of when and where they are performed. The detail discussion of Unostentaniety 

and, its various forms are discussed in details below: 

3.2.1. Discrete Unostentatious Probability Distribution 

Stimulant 

Action

Outcome / Sample Space  

Figure 3-2- 2: A simple stimulant device, a dice, and possible outcomes 

Here, we discuss an example from the basic probability study, rolling a dice (see, 

figure 3-2-1). Let us consider that a dice is rolled. Conventionally, in an absolute 

random and unbiased situation, it produces six outputs with each having the 

probability of 1/6 as given in equation (3.1.1) [8] [14]. Hence, it is said that 

“probability of occurrence of any number (output) in rolling a dice is 1/6”, as 

shown in Table 3-2-1. This is a statistical experiment where the upward face of the 

dice is regarded as the output/ outcome and the value printed on the face is recorded 

(or sampled). As there is no such way which can let us know the exact output of a 

single experiment, this is often regarded as the Random Variable [9].    



 

294 

Appendix Table 3-2- 1: Conventional Probability outputs in an event of tossing a dice[15] 

Output Type Output Value Probability of Occurrence 

Outcome 1 Face 1:1 1/6 

Outcome 2 Face 2: 2 1/6 

Outcome 3 Face 3: 3 1/6 

Outcome 4 Face 4: 4 1/6 

Outcome 5 Face 5: 5 1/6 

Outcome 6 Face 6: 6 1/6 

 

As the probability of occurrence of any number is equally likely and is independent 

of its position and time, this is clearly an unostentatious event as discussed before. 

Nonetheless, this is also a case where the sample space is granulated (quantized) in 

countable outcomes. This means that whatever times the experiment is performed, 

the outcomes shall always convolve around the certain specific values. Therefore, 

this and similar simple examples like tossing a coin, drawing a card from the deck 

etc. are all invariably discrete events. These kinds of outcomes are discrete in nature 

and are countable in whole numbers. However, not all outcomes are the result of 

discrete steps and, therefore, may be continuous in nature. 

3.2.2. Continuous Unostentatious Probability Distribution 

In discrete probability, the values of outcome are quantifiable and measurable in 

discrete steps. Such values can be obtained by sampling an experiment at certain 

intervals. As another example (apart from section 3.2.1), measuring the height and 

weight of people passing through the main entrance of gym can provide Body Mass 

Index (BMI) of a person entering and exiting the gym. This can provide the 

business analytics a probability of a person continue to gym even after achieving 

the target body weight [16]. This kind of data is discrete in nature as the people 

visiting a particular gym are limited. However, if the same experiment is carried out 

in a massive flux environment, such as airports or commercial area, the data points 

are fairly dense and are quasi-continuous. Higher the samples, more values are 

obtained between any intervals. In such cases, the outcome values are continuous in 

nature, and the probability of occurrence is normally obtained in terms of range 

rather than specific values. These continuous forms of occurrences are termed as 

distributed probability, and the function that describes this continuous probability is 

termed as the Probability Distribution/Density Function (PDF) [16]. 

It is important to mention here that the distributive and discrete nature of an event is 

highly dependent on the nature of the stimulant. As an example, if the dice that is 

being rolled is spherical instead of a cube, the outcomes shall be continuous than 

six discreet values. This will also lower the probability of occurrence of any 

specific value as ideally, any point on the surface of the spherical dice shall have 
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the equal chance of being at the top and a total number of such points shall be close 

to infinity. Therefore, this will need infinite attempts to anticipate any specific 

outcome. To avoid that, a normal dice is made to be a cube than any other shape so 

that the probability confines to certain specific and countable orientations of the 

stimulant (dice) with same possibility of occurrence for each outcome [16] [17]. 

3.2.3. Unbiased and Biased Unostentatious Probability Distribution 

In this research, an experiment is being classified into two categories depending 

upon its objective namely, unbiased and biased. Rolling a dice, shuffling a deck of 

cards, doping of an atom in a semiconductor, falling off a rain drop on window 

pane etc. are some incidences where the possibility of any particular outcome is 

equally likely. This means that every possible outcome has fair and uniform 

possibility of occurrence as mentioned in equation (3.1.1). Such kind of experiment 

is being termed in this here as an unbiased experiment and the probability of 

outcomes as an unbiased probability. Table 3-1 shows the probability of all possible 

outcomes of an unbiased experiment, i.e. rolling a dice. In an unbiased event, the 

stimulant is allowed to operate in an unbounded state. The outcomes of such an 

experiment are not entangled to any prejudice or conditions. There are many 

incidences where outcomes are incorporated unconditionally, and the stimulants are 

allowed to perform in a uniform sample space. However, not all experiments 

exhibit equally and likely outcomes. Shooting missiles on enemy spots, bowler 

targeting wicket in the game of cricket, business projections for a fiscal year, etc. 

are the example where the outcomes tend to converge towards a target value and 

outcomes of such experiments convolve around specific conditions. Such outcomes 

have denser probability closer to the target value and rarer otherwise. 

The role of the stimulant device is also essential in making the experiment biased or 

unbiased. For example, if one face of the dice is heavier than others or the corner if 

defective, the result will not be as even as shown in Table 3-1. Therefore, the 

sanctity of the stimulant is also essential while evaluating the outcomes. It is 

deliberate to make this detoured discussion about probability and stimulant. This is 

to set an Athena for further sections where the play of the “situational probability” 

will be discussed.    

3.2.4. BIASED OR NON-UNIFORM DISCRETE UNOSTENTATIOUS 

PROBABILITY DISTRIBUTION 

This is yet another form of unostentatious probability that latently creeps in our 

activities and severely affects the consequences or outcomes. This is the most 

common form of probability as it is non-idealistic and therefore does not spare the 

granular impacts of the natural substances. 
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Biased Probable outcomes 

Stimulant

Receptor

Actor

Gold

 

Figure 3-2-3: Archer Aiming at Bull's eye, a biased event[17] [18]. 

Let us consider the case of an archer (figure 3-2-1) who wants to shoot an arrow at 

a specific point (bull’s eye or Gold). The very fact that the archer makes a 

deliberate attempt to shoot at a specific point makes the whole situation biased 

which is unlike the rolling of a fair dice where the outcomes cannot be bent to a 

specific number. In this case, therefore, the probability of shooting an arrow in a 

particular direction is not equally and unbiased and, although, the probability of an 

arrow hitting at a specific point is negligible, however, the possibility of finding 

arrow around bull’s eye area is higher than in any other direction. Such events/ 

experiments do not have specific output but the range of outputs. If we record the 

distances of the hits from the “Gold” in millimeters, we get a tabular data (sample) 

as shown below: 

Appendix Table 3-2-2:  Sample Archery Data for 1000 hits, [19] 

Attempt Count Distance from Center 

in Millimeters 

Angle in 

Degrees 

1 367.1 92 

2 242.4 111.4 

3 143.5 212.6 

: :  

k 14.3 271.5 

:   

1000 63.2 93.3 
 

Plotting this dataset on the archery target board with axes markings and concentric 

circles (points), we can see this biased representation of the experiment. From the 
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plot shown in figure 3-2-3, it can be seen that outcomes are biased and the 

distribution of “number of occurrences” is more concentrated at the Gold and 

gradually decreases outwardly. This forms a “Bell Shaped” distribution also known 

as Gaussian Probability Density Function. A PDF is any function that describes the 

continuous/ continual probability distribution. 

This is just not the case of archery. In fact, any experiment whose outcome is 

inclined towards a specific value/ condition/ situation is bound to produce a bell-

shaped PDF provided that the stimulant device is not bounded in producing certain 

outcomes. For example in the case of archery, the stretchability and elasticity of the 

bow string should not be the limit in providing the initial thrust to an arrow.  

 

Figure 3-2- 4: Plot showing the attempted hit spots of an Archer who is targeting Gold (0, 0) 

3.2.5. Biased Continuous Unostentatious Probability Distribution 

 

Figure 3-2-5: Normalized Probability Density Function 

As the probability of occurrence of all possible outcome is unity and therefore, a 

PDF represents the normalized values of the true outcomes and said to be normally 

distributed. Figure 3-2-4 shows a normalized biased probability density function 

f(x) where ’x’ is an argument variable that describes the possible outcomes. Such 

function can be described by equation (3.2.1) as below[20] [21]: 
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∫ f(x)dx = 1

∞

−∞

 
(3.2.1) 

This means that total area under the curve is a unity that corresponds to the fact that 

the probability of occurrence of all possible outcomes is a unity. Further, the 

probability that x lies between the boundaries ’a’ and ’b’ or P (a>x>b) will be the 

area shown as the shaded region in figure 3-2-4 which is as per equation below [22] 

[23]: 

 
P(a < 𝑥 < 𝑏) =  ∫ f(x)dx

b

a

 (3.2.2) 

Finding the mean of a collection of values is actually identifying the value about 

which the values weigh even. It is the Origin which is shifted from the original axes 

origin to some value about which the probability is equally distributed on either 

side. Usually, the mean of ’n’ samples is given by [23]: 

 
M =

Total value of n outcomes

n
=

∑ i ∗ ki
n
i=1

n
 (3.2.3) 

In the case of discrete probability, the ratio i/n is the probability of occurrence of 

the sample ’i’ and k is the value of the ith sample. Therefore, referring to figure 3-5, 

the mean of a PDF f(x) can be calculated as: 

 E(X) =  ∑xP(x) (3.2.4) 

This is same as dividing the area under the f(x) curve into small strips of intervals 

(see, figure 3-2-5) and then multiplying each strip (or range) with the corresponding 

value of ’x’ and then summing all such values. For continuous PDF, equations 

(3.2.1) and (3.2.4) can be combined to give mean of a distribution given below as: 

 
μ = E(X) =  ∫ xf(x)dx

+∞

−∞

 
(3.2.5) 

Where ’x’ is the domain or the samples of a Random Variable ’X’ of a continuous 

distribution. The Variance of such a distribution measures how far the values are 

from the mean as below [22] [23]: 

 V(X) =  E(X2) − μ2  
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or, V(X) =  ∫ x2f(x)dx
+∞

−∞

− μ2  

or, V(X) =  ∫ x2f(x)dx − μ2 (3.2.6) 

The variance is also the square of the Standard Deviation (SD) as mentioned below: 

 σ2 = V(x)  (3.2.7) 

A normal of Gaussian PDF of a random variable X is represented by, 

 
fX(x) =

1

√2π σ
e

[−
(x−μ)2

2σ2 ]
 

(3.2.8) 

Where, μ and σ are the Mean and SD as discussed in equations (3.2.5) and (3.2.7).  

 

Figure 3-2-6: Mean and Variance of a PDF 
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Appendices of this series  cover Chapter 6 of thesis 
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Appendix 4.1 

Spectrum Utilisation Efficiency 

According to the RECOMMENDATION ITU-R SM.1046-1, the  spectrum 

utilization efficiency (SUE), or spectrum efficiency in short, is measured as a ratio 

of the amount of information transferred over a distance (or communications 

achieved) to the spectrum utilization factor. The spectrum efficiency allows the 

maximum amount of service, which can be derived from the given amount of radio 

spectrum.  The spectrum utilization factor, U, is defined to be the product of the 

frequency bandwidth, the geometric (geographic) space, and the time denied to 

other potential users: 

 U  =  B  ·  S  ·  T       5.1.1 

Where, 

 B : frequency bandwidth 

 S : geometric space (usually area) and 

 T : time. 

Spectrum utilization efficiency (SUE) is expressed by: 

 

TSB

M

U

M
SUE


  

5.1.2 

where: 

M : amount of information transferred over a distance. 

From the equation (5.1.1), the spectrum efficiency of a cellular radio system may be 

defined as: 

SE= Erlangs / (bandwidth ×  area)                                             5.1.3 

Where: erlangs is the total voice traffic carried by the cellular system, bandwidth is 

the total amount of spectrum used by the system and area is the total service area 

covered by the system. 

 



 

303 

Appendix 4.2 

Erlang B Table[1] 

 

N (or ‛n’)= number of TS; Presently blocking probability of 2% is considered.
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N (or ‛n’)= number of TS; Presently blocking probability of 2% is considered.
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N (or ‛n’)= number of TS; Presently blocking probability of 2% is considered.
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N (or ‛n’)= number of TS; Presently blocking probability of 2% is considered.
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N (or ‛n’)= number of TS; Presently blocking probability of 2% is considered. 
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Coverage and capacity are the decisive parameters of a network performance. 
The impact of the subscriber, moving, grouping and moving in groups of 
the above phenomena are defined in a novel way as Place Time Coverage 
(PTCo) and Place time Capacity (PTC) respectively, and we would refer 
them collectively as Place Time Coverage & Capacity (PTC2). The disser-
tation proves through the concept of the PTC2 that the network performance 
can severely be degraded by the excessive and unrealistic site demands, the 
network management inefficiency, and the consequence of the accumulation 
of subscribers substantially and randomly across the area under investiga-
tion (defined here as the Area of Interest or AoI).. Both the position and, the 
time of the position acquired by a subscriber, raises the demand for service 
at the very location (termed here as PTC wobble), thereby posing an ongo-
ing capacity demand and poor resource utilisation in the present MWCN. 
This random accumulation, being more intense and rapid in the highly pop-
ulated metropolitan cities, tend to affect both the signal propagation and the 
capacity demand at the point of accumulation more severely. This PhD re-
search addresses the PTC2 challenge through a viable solution that is based 
on injecting intelligence and services in parallel layers through a Distributed 
Antenna Systems (DAS) network. This approach would enable the remote 
sites to acquire intelligence and a resource pool at the same time, thereby 
managing the network dynamics promptly and aptly to absorb the PTC2 
wobble. An Active Probing Management System (APMS) is proposed as a 
supporting architecture, to assist the intelligent system to keep a check on the 
variations at each and every site by either deploying the additional antenna 
or by utilising the service antenna. The probing process is an independent 
layer and does not use paging channels of service technology, thereby, sav-
ing extra traffic channels. Further, it is discussed how this architecture can 
be compatible with multi-technology and dense-net environments. The ar-
chitecture that is proposed here is termed as Self Configurable Distributed 
Antenna System (SCIDAS).
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