234 research outputs found

    Spatial Variation of Leaf Optical Properties in a Boreal Forest Is Influenced by Species and Light Environment

    Get PDF
    Leaf Optical Properties (LOPs) convey information relating to temporally dynamic photosynthetic activity and biochemistry. LOPs are also sensitive to variability in anatomically related traits such as Specific Leaf Area (SLA), via the interplay of intra-leaf light scattering and absorption processes. Therefore, variability in such traits, which may demonstrate little plasticity over time, potentially disrupts remote sensing estimates of photosynthesis or biochemistry across space. To help to disentangle the various factors that contribute to the variability of LOPs, we defined baseline variation as variation in LOPs that occurs across space, but not time. Next we hypothesized that there were two main controls of potentially disruptive baseline spatial variability of photosynthetically-related LOPs at our boreal forest site: light environment and species. We measured photosynthetically-related LOPs in conjunction with morphological, biochemical, and photosynthetic leaf traits during summer and across selected boreal tree species and vertical gradients in light environment. We then conducted a detailed correlation analysis to disentangle the spatial factors that control baseline variability of leaf traits and, resultantly, LOPs. Baseline spatial variability of the Photochemical Reflectance Index (PRI) was strongly influenced by species and to a lesser extent light environment. Baseline variability of spectral fluorescence derived LOPs was less influenced by species; however at longer near-infrared wavelengths, light environment was an important control. In summary, remote sensing of chlorophyll fluorescence has good potential to detect variation in photosynthetic performance across space in boreal forests given reduced sensitivity to species related baseline variability in comparison to the PRI. Our results also imply that spatially coarse remote sensing observations are potentially unrepresentative of the full scope of natural variation that occurs within a boreal forest.Peer reviewe

    In situ measurement of Scots pine needle PRI

    Get PDF
    Background: The Photochemical Reflectance Index (PRI) calculated from narrow-band spectral reflectance data is a vegetation index which is increasingly used as an indicator of photosynthetic activity. The leaf-level link between the status of photosynthetic apparatus and PRI has been robustly established under controlled light conditions. However, when a whole canopy is measured instantaneously, the PRI signal is heavily modified by vegetation structure and local variations in incident light conditions. To apply PRI for monitoring the photosynthesis of whole canopies under natural conditions, these large-scale measurements need to be validated against simultaneous leaf PRI. Unfortunately, PRI changes dynamically with incident light and has a large natural variation. No generally accepted procedure exists today for determining the PRI of canopy elements in situ. Results: We present a successful procedure for in situ measurements of needle PRI. We describe, characterize and test an optical measurement protocol and demonstrate its applicability in field conditions. The measurement apparatus consisted of a light source, needle clip, spectroradiometer and a controlling computer. The light level inside the clip was approximately two-thirds of that on sunlit needle surfaces at midday. During each measurement the needle was inserted into the clip for approximately 5 s. We found no near-instantaneous changes (sub-second scale jumps) in PRI during the measurements. The time constants for PRI variation in light to full shade acclimations were approximately 10 s. The procedure was successfully applied to monitor the greening-up of Scots pine trees. We detected both facultative (diurnal) PRI changes of 0.02 (unitless) and constitutive (seasonal) variations of 0.1. In order to reliably detect the facultative PRI change of 0.02, 20 needles need to be sampled from both sunlit and shaded locations. Conclusions: We established a robust procedure for irradiance-dependent leaf (needle) PRI measurements, facilitating empirical scaling of PRI from leaf (needle) to full canopy level and the application of PRI to monitoring the changes in highly structured vegetation. The measured time constants, and facultative and constitutive PRI variations support the use of an artificial light for in situ PRI measurements at leaf (needle) level.Peer reviewe

    In situ measurement of Scots pine needle PRI

    Get PDF
    Abstract Background The Photochemical Reflectance Index (PRI) calculated from narrow-band spectral reflectance data is a vegetation index which is increasingly used as an indicator of photosynthetic activity. The leaf-level link between the status of photosynthetic apparatus and PRI has been robustly established under controlled light conditions. However, when a whole canopy is measured instantaneously, the PRI signal is heavily modified by vegetation structure and local variations in incident light conditions. To apply PRI for monitoring the photosynthesis of whole canopies under natural conditions, these large-scale measurements need to be validated against simultaneous leaf PRI. Unfortunately, PRI changes dynamically with incident light and has a large natural variation. No generally accepted procedure exists today for determining the PRI of canopy elements in situ. Results We present a successful procedure for in situ measurements of needle PRI. We describe, characterize and test an optical measurement protocol and demonstrate its applicability in field conditions. The measurement apparatus consisted of a light source, needle clip, spectroradiometer and a controlling computer. The light level inside the clip was approximately two-thirds of that on sunlit needle surfaces at midday. During each measurement the needle was inserted into the clip for approximately 5 s. We found no near-instantaneous changes (sub-second scale jumps) in PRI during the measurements. The time constants for PRI variation in light to full shade acclimations were approximately 10 s. The procedure was successfully applied to monitor the greening-up of Scots pine trees. We detected both facultative (diurnal) PRI changes of 0.02 (unitless) and constitutive (seasonal) variations of 0.1. In order to reliably detect the facultative PRI change of 0.02, 20 needles need to be sampled from both sunlit and shaded locations. Conclusions We established a robust procedure for irradiance-dependent leaf (needle) PRI measurements, facilitating empirical scaling of PRI from leaf (needle) to full canopy level and the application of PRI to monitoring the changes in highly structured vegetation. The measured time constants, and facultative and constitutive PRI variations support the use of an artificial light for in situ PRI measurements at leaf (needle) level

    Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in Norway spruce needles

    Get PDF
    A dedicated field experiment was conducted to investigate the response of a green reflectance continuum removal-based optical index, called area under the curve normalized to maximal band depth between 511nm and 557nm (ANMB511-557), to light-induced transformations in xanthophyll cycle pigments of Norway spruce [Picea abies (L.) Karst] needles. The performance of ANMB511-557 was compared with the photochemical reflectance index (PRI) computed from the same leaf reflectance measurements. Needles of four crown whorls (fifth, eighth, 10th, and 15th counted from the top) were sampled from a 27-year-old spruce tree throughout a cloudy and a sunny day. Needle optical properties were measured together with the composition of the photosynthetic pigments to investigate their influence on both optical indices. Analyses of pigments showed that the needles of the examined whorls varied significantly in chlorophyll content and also in related pigment characteristics, such as the chlorophyll/carotenoid ratio. The investigation of the ANMB511-557 diurnal behaviour revealed that the index is able to follow the dynamic changes in the xanthophyll cycle independently of the actual content of foliar pigments. Nevertheless, ANMB511-557 lost the ability to predict the xanthophyll cycle behaviour during noon on the sunny day, when the needles were exposed to irradiance exceeding 1000 ”mol m-2 s-1. Despite this, ANMB511-557 rendered a better performance for tracking xanthophyll cycle reactions than PRI. Although declining PRI values generally responded to excessive solar irradiance, they were not able to predict the actual de-epoxidation state in the needles examine

    Parallel Seasonal Patterns of Photosynthesis, Fluorescence, and Reflectance Indices in Boreal Trees

    Get PDF
    Tree species in the boreal forest cycle between periods of active growth and dormancy alter their photosynthetic processes in response to changing environmental conditions. For deciduous species, these changes are readily visible, while evergreen species have subtler foliar changes during seasonal transitions. In this study, we used remotely sensed optical indices to observe seasonal changes in photosynthetic activity, or photosynthetic phenology, of six boreal tree species. We evaluated the normalized difference vegetation index (NDVI), the photochemical reflectance index (PRI), the chlorophyll/carotenoid index (CCI), and steady-state chlorophyll fluorescence (FS) as a measure of solar-induced fluorescence (SIF), and compared these optical metrics to gas exchange to determine their efficacy in detecting seasonal changes in plant photosynthetic activity. The NDVI and PRI exhibited complementary responses. The NDVI paralleled photosynthetic phenology in deciduous species, but not in evergreens. The PRI closely paralleled photosynthetic activity in evergreens, but less so in deciduous species. The CCI and FS tracked photosynthetic phenology in both deciduous and evergreen species. The seasonal patterns of optical metrics and photosynthetic activity revealed subtle differences across and within functional groups. With the CCI and fluorescence becoming available from satellite sensors, they offer new opportunities for assessing photosynthetic phenology, particularly for evergreen species, which have been difficult to assess with previous methods

    Spectral Similarity and PRI Variations for a Boreal Forest Stand Using Multi-angular Airborne Imagery

    Get PDF
    The photochemical reflectance index (PRI) is a proxy for light use efficiency (LUE), and is used in remote sensing to measure plant stress and photosynthetic downregulation in plant canopies. It is known to depend on local light conditions within a canopy indicating non-photosynthetic quenching of incident radiation. Additionally, when measured from a distance, canopy PRI depends on shadow fraction-the fraction of shaded foliage in the instantaneous field of view of the sensor-due to observation geometry. Our aim is to quantify the extent to which sunlit fraction alone can describe variations in PRI so that it would be possible to correct for its variation and identify other possible factors affecting the PRI-sunlit fraction relationship. We used a high spatial and spectral resolution Aisa Eagle airborne imaging spectrometer above a boreal Scots pine site in Finland (Hyytiala forest research station, 61 degrees 50'N, 24 degrees 17'E), with the sensor looking in nadir and tilted (off-nadir) directions. The spectral resolution of the data was 4.6 nm, and the spatial resolution was 0.6 m. We compared the PRI for three different scatter angles (beta = 19 degrees, 55 degrees and 76 degrees defined as the angle between sensor and solar directions) at the forest stand level, and observed a small (0.006) but statistically significant (p <0.01) difference in stand PRI. We found that stand mean PRI was not a direct function of sunlit fraction. However, for each scatter angle separately, we found a clear non-linear relationship between PRI and sunlit fraction. The relationship was systematic and had a similar shape for all of the scatter angles. As the PRI-sunlit fraction curves for the different scatter angles were shifted with respect to each other, no universal curve could be found causing the observed independence of canopy PRI from the average sunlit fraction of each view direction. We found the shifts of the curves to be related to a leaf structural effect on canopy scattering: the ratio of needle spectral reflectance to transmittance. We demonstrate that modeling PRI-sunlit fraction relationships using high spatial resolution imaging spectroscopy data is suitable and needed in order to quantify PRI variations over forest canopies.Peer reviewe
    • 

    corecore