10,215 research outputs found

    Cooperative Wideband Spectrum Sensing Based on Joint Sparsity

    Get PDF
    COOPERATIVE WIDEBAND SPECTRUM SENSING BASED ON JOINT SPARSITY By Ghazaleh Jowkar, Master of Science A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University Virginia Commonwealth University 2017 Major Director: Dr. Ruixin Niu, Associate Professor of Department of Electrical and Computer Engineering In this thesis, the problem of wideband spectrum sensing in cognitive radio (CR) networks using sub-Nyquist sampling and sparse signal processing techniques is investigated. To mitigate multi-path fading, it is assumed that a group of spatially dispersed SUs collaborate for wideband spectrum sensing, to determine whether or not a channel is occupied by a primary user (PU). Due to the underutilization of the spectrum by the PUs, the spectrum matrix has only a small number of non-zero rows. In existing state-of-the-art approaches, the spectrum sensing problem was solved using the low-rank matrix completion technique involving matrix nuclear-norm minimization. Motivated by the fact that the spectrum matrix is not only low-rank, but also sparse, a spectrum sensing approach is proposed based on minimizing a mixed-norm of the spectrum matrix instead of low-rank matrix completion to promote the joint sparsity among the column vectors of the spectrum matrix. Simulation results are obtained, which demonstrate that the proposed mixed-norm minimization approach outperforms the low-rank matrix completion based approach, in terms of the PU detection performance. Further we used mixed-norm minimization model in multi time frame detection. Simulation results shows that increasing the number of time frames will increase the detection performance, however, by increasing the number of time frames after a number of times the performance decrease dramatically

    Bayesian Nonstationary Spatial Modeling for Very Large Datasets

    Full text link
    With the proliferation of modern high-resolution measuring instruments mounted on satellites, planes, ground-based vehicles and monitoring stations, a need has arisen for statistical methods suitable for the analysis of large spatial datasets observed on large spatial domains. Statistical analyses of such datasets provide two main challenges: First, traditional spatial-statistical techniques are often unable to handle large numbers of observations in a computationally feasible way. Second, for large and heterogeneous spatial domains, it is often not appropriate to assume that a process of interest is stationary over the entire domain. We address the first challenge by using a model combining a low-rank component, which allows for flexible modeling of medium-to-long-range dependence via a set of spatial basis functions, with a tapered remainder component, which allows for modeling of local dependence using a compactly supported covariance function. Addressing the second challenge, we propose two extensions to this model that result in increased flexibility: First, the model is parameterized based on a nonstationary Matern covariance, where the parameters vary smoothly across space. Second, in our fully Bayesian model, all components and parameters are considered random, including the number, locations, and shapes of the basis functions used in the low-rank component. Using simulated data and a real-world dataset of high-resolution soil measurements, we show that both extensions can result in substantial improvements over the current state-of-the-art.Comment: 16 pages, 2 color figure

    Likelihood-informed dimension reduction for nonlinear inverse problems

    Get PDF
    The intrinsic dimensionality of an inverse problem is affected by prior information, the accuracy and number of observations, and the smoothing properties of the forward operator. From a Bayesian perspective, changes from the prior to the posterior may, in many problems, be confined to a relatively low-dimensional subspace of the parameter space. We present a dimension reduction approach that defines and identifies such a subspace, called the "likelihood-informed subspace" (LIS), by characterizing the relative influences of the prior and the likelihood over the support of the posterior distribution. This identification enables new and more efficient computational methods for Bayesian inference with nonlinear forward models and Gaussian priors. In particular, we approximate the posterior distribution as the product of a lower-dimensional posterior defined on the LIS and the prior distribution marginalized onto the complementary subspace. Markov chain Monte Carlo sampling can then proceed in lower dimensions, with significant gains in computational efficiency. We also introduce a Rao-Blackwellization strategy that de-randomizes Monte Carlo estimates of posterior expectations for additional variance reduction. We demonstrate the efficiency of our methods using two numerical examples: inference of permeability in a groundwater system governed by an elliptic PDE, and an atmospheric remote sensing problem based on Global Ozone Monitoring System (GOMOS) observations

    On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart random matrices lie within an interval

    Full text link
    We derive the probability that all eigenvalues of a random matrix M\bf M lie within an arbitrary interval [a,b][a,b], ψ(a,b)Pr{aλmin(M),λmax(M)b}\psi(a,b)\triangleq\Pr\{a\leq\lambda_{\min}({\bf M}), \lambda_{\max}({\bf M})\leq b\}, when M\bf M is a real or complex finite dimensional Wishart, double Wishart, or Gaussian symmetric/Hermitian matrix. We give efficient recursive formulas allowing the exact evaluation of ψ(a,b)\psi(a,b) for Wishart matrices, even with large number of variates and degrees of freedom. We also prove that the probability that all eigenvalues are within the limiting spectral support (given by the Mar{\v{c}}enko-Pastur or the semicircle laws) tends for large dimensions to the universal values 0.69210.6921 and 0.93970.9397 for the real and complex cases, respectively. Applications include improved bounds for the probability that a Gaussian measurement matrix has a given restricted isometry constant in compressed sensing.Comment: IEEE Transactions on Information Theory, 201
    corecore