936 research outputs found

    Feasibility of LoRa for Smart Home Indoor Localization

    Get PDF
    With the advancement of low-power and low-cost wireless technologies in the past few years, the Internet of Things (IoT) has been growing rapidly in numerous areas of Industry 4.0 and smart homes. With the development of many applications for the IoT, indoor localization, i.e., the capability to determine the physical location of people or devices, has become an important component of smart homes. Various wireless technologies have been used for indoor localization includingWiFi, ultra-wideband (UWB), Bluetooth low energy (BLE), radio-frequency identification (RFID), and LoRa. The ability of low-cost long range (LoRa) radios for low-power and long-range communication has made this radio technology a suitable candidate for many indoor and outdoor IoT applications. Additionally, research studies have shown the feasibility of localization with LoRa radios. However, indoor localization with LoRa is not adequately explored at the home level, where the localization area is relatively smaller than offices and corporate buildings. In this study, we first explore the feasibility of ranging with LoRa. Then, we conduct experiments to demonstrate the capability of LoRa for accurate and precise indoor localization in a typical apartment setting. Our experimental results show that LoRa-based indoor localization has an accuracy better than 1.6 m in line-of-sight scenario and 3.2 m in extreme non-line-of-sight scenario with a precision better than 25 cm in all cases, without using any data filtering on the location estimates

    A SURVEY ON DEVICES EXPLOITING LORA COMMUNICATION

    Get PDF
    Information and Communication Technologies (ICT) have experienced a large application in many fields, such as smart homes, health monitoring, environmental monitoring, and a great number of studies is present in literature. In particular, it is expected that the Internet of Things (IoT) will become increasingly pervasive in everyday life. Among different technologies, devices based on Long Range (LoRa) and LoRaWAN stand out due to their relative low cost, low power consumption and large cover range. In this survey, recent papers investigating applications of LoRa modules have been selected. The different usecases are presented with a comparison between communication parameters and results obtained

    Variable link performance due to weather effects in a long-range, low-power LoRa sensor network

    Get PDF
    When aiming for the wider deployment of low-power sensor networks, the use of sub-GHz frequency bands shows a lot of promise in terms of robustness and minimal power consumption. Yet, when deploying such sensor networks over larger areas, the link quality can be impacted by a host of factors. Therefore, this contribution demonstrates the performance of several links in a real-world, research-oriented sensor network deployed in a (sub)urban environment. Several link characteristics are presented and analysed, exposing frequent signal deterioration and, more rarely, signal strength enhancement along certain long-distance wireless links. A connection is made between received power levels and seasonal weather changes and events. The irregular link performance presented in this paper is found to be genuinely disruptive when pushing sensor-networks to their limits in terms of range and power use. This work aims to give an indication of the severity of these effects in order to enable the design of truly reliable sensor networks

    Coverage and Deployment Analysis of Narrowband Internet of Things in the Wild

    Full text link
    Narrowband Internet of Things (NB-IoT) is gaining momentum as a promising technology for massive Machine Type Communication (mMTC). Given that its deployment is rapidly progressing worldwide, measurement campaigns and performance analyses are needed to better understand the system and move toward its enhancement. With this aim, this paper presents a large scale measurement campaign and empirical analysis of NB-IoT on operational networks, and discloses valuable insights in terms of deployment strategies and radio coverage performance. The reported results also serve as examples showing the potential usage of the collected dataset, which we make open-source along with a lightweight data visualization platform.Comment: Accepted for publication in IEEE Communications Magazine (Internet of Things and Sensor Networks Series

    Contribution to the integration, performance improvement, and smart management of data and resources in the Internet of Things

    Get PDF
    [SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones.[ENG] This doctoral dissertation has been presented in the form of thesis by publication. The IoT has seen a tremendous growth in the last few years. Not only due to its potential to transform societies, but also as an enabling technology for many other technological advances. Unfortunately, the IoT is a relatively recent paradigm that lacks the maturity of other well-established (not so recent) revolutions like the internet itself or Wireless Sensor Networks; upon which the IoT is built. The presented Thesis contributes to this maturation process by researching on the underlying communication mechanisms that enable a truly ubiquitous and effective IoT. As a Thesis by compilation, 5 relevant articles are introduced and discussed. Each of such articles delve into different key aspects that, in their own way, help closing the gap between what the IoT is expected to bring and what the IoT actually brings. As thoroughly commented throughout the main text, the comprehensive approach taken in this Thesis ensures that multiple angles of the same plane --the communication plane-- are analyzed and studied. From the mathematical analysis of how electromagnetic waves propagate through complex environments to the utilization of recent Machine Learning techniques, this Thesis explore a wide range of scientific and researching tools that are shown to improve the final performance of the IoT. In the first three chapters of this document, the reader will be introduced to the current context and state-of-the-art of the IoT while, at the same time, the formal objectives of this Thesis are outlined and set into such a global context. In the next five chapters, the five corresponding articles are presented and commented. For each and every of these articles: a brief abstract, a methodology summary, a highlight on the results and contributions and final conclusions are also added. Lastly, in the two last chapters, the final conclusions and future lines of this Thesis are commented.Los artículos que componen la tesis son los siguientes: 1. R. M. Sandoval, A.-J. J. Garcia-Sanchez, F. Garcia-Sanchez, and J. Garcia-Haro, \Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz," Sensors, vol. 17, no. 1, p. 76, Dec. 2016. 2. R. M. Sandoval, A.-J. J. Garcia-Sanchez, J.-M. M. Molina-Garcia-Pardo, F. Garcia-Sanchez, and J. Garcia-Haro, \Radio-Channel Characterization of Smart Grid Substations in the 2.4-GHz ISM Band," IEEE Trans. Wirel. Commun., vol. 16, no. 2, pp. 1294{1307, Feb. 2017. 3. R. M. Sandoval, A. J. Garcia-Sanchez, and J. Garcia-Haro, \Improving RSSI-based path-loss models accuracy for critical infrastructures: A smart grid substation case-study," IEEE Trans. Ind. Informatics, vol. 14, no. 5, pp. 2230{2240, 2018. 4. R. M. Sandoval, A.-J. Garcia-Sanchez, J. Garcia-Haro, and T. M. Chen, \Optimal policy derivation for Transmission Duty-Cycle constrained LPWAN," IEEE Internet Things J., vol. 5, no. 4, pp. 1{1, Aug. 2018. 5. R. M. Sandoval, S. Canovas-Carrasco, A. Garcia-Sanchez, and J. Garcia-Haro, \Smart Usage of Multiple RAT in IoT-oriented 5G Networks: A Reinforcement Learning Approach," in 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K), 2018, pp. 1-8.Escuela Internacional de Doctorado de la Universidad Politécnica de CartagenaUniversidad Politécnica de CartagenaPrograma de Doctorado en Tecnologías de la Información y las Comunicaciones por la Universidad Politécnica de Cartagen
    corecore