73 research outputs found

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Improving Network Performance Through Endpoint Diagnosis And Multipath Communications

    Get PDF
    Components of networks, and by extension the internet can fail. It is, therefore, important to find the points of failure and resolve existing issues as quickly as possible. Resolution, however, takes time and its important to maintain high quality of service (QoS) for existing clients while it is in progress. In this work, our goal is to provide clients with means of avoiding failures if/when possible to maintain high QoS while enabling them to assist in the diagnosis process to speed up the time to recovery. Fixing failures relies on first detecting that there is one and then identifying where it occurred so as to be able to remedy it. We take a two-step approach in our solution. First, we identify the entity (Client, Server, Network) responsible for the failure. Next, if a failure is identified as network related additional algorithms are triggered to detect the device responsible. To achieve the first step, we revisit the question: how much can you infer about a failure using TCP statistics collected at one of the endpoints in a connection? Using an agent that captures TCP statistics at one of the end points we devise a classification algorithm that identifies the root cause of failures. Using insights derived from this classification algorithm we identify dominant TCP metrics that indicate where/why problems occur. If/when a failure is identified as a network related problem, the second step is triggered, where the algorithm uses additional information that is collected from ``failed\u27\u27 connections to identify the device which resulted in the failure. Failures are also disruptive to user\u27s performance. Resolution may take time. Therefore, it is important to be able to shield clients from their effects as much as possible. One option for avoiding problems resulting from failures is to rely on multiple paths (they are unlikely to go bad at the same time). The use of multiple paths involves both selecting paths (routing) and using them effectively. The second part of this thesis explores the efficacy of multipath communication in such situations. It is expected that multi-path communications have monetary implications for the ISP\u27s and content providers. Our solution, therefore, aims to minimize such costs to the content providers while significantly improving user performance

    Network and Server Resource Management Strategies for Data Centre Infrastructures: A Survey

    Get PDF
    The advent of virtualisation and the increasing demand for outsourced, elastic compute charged on a pay-as-you-use basis has stimulated the development of large-scale Cloud Data Centres (DCs) housing tens of thousands of computer clusters. Of the signi�cant capital outlay required for building and operating such infrastructures, server and network equipment account for 45% and 15% of the total cost, respectively, making resource utilisation e�ciency paramount in order to increase the operators' Return-on-Investment (RoI). In this paper, we present an extensive survey on the management of server and network resources over virtualised Cloud DC infrastructures, highlighting key concepts and results, and critically discussing their limitations and implications for future research opportunities. We highlight the need for and bene �ts of adaptive resource provisioning that alleviates reliance on static utilisation prediction models and exploits direct measurement of resource utilisation on servers and network nodes. Coupling such distributed measurement with logically-centralised Software De�ned Networking (SDN) principles, we subsequently discuss the challenges and opportunities for converged resource management over converged ICT environments, through unifying control loops to globally orchestrate adaptive and load-sensitive resource provisioning

    Transport Protocols for Data Center Communication

    Get PDF
    Data centers are becoming more and more important since there is a number of services covered especially by them. At the same time it is reasonable to maintain the costs of data centers low from a number of perspectives. To this end, one could propose a number of changes in the data center environment. While there is a number of studies that focus on different aspects of the data center environment, one of the most important factors that can be studied and changed is the transport protocol used in the data center environment. This change will have an impact on a number of factors in the data centers. For the purpose of this thesis a number of transport protocols were studied, starting from the broadly used TCP to a number of especially designed for data centers ones. These variations were studied for the changes they impose and the positive results they bring. At the same time the significance of DCTCP, the most extensively studied and deployed data center environment protocol was made apparent and the positive results from its deployment. This study outlines the necessity to know its behavior while coexisting with TCP as well since its deployment in the wide Internet would bring positive results for latency, losses and buffer queues minimization. To this end, the protocol was studied by emulating network behavior in Mininet network emulator and it was found out that its coexistence with TCP is possible without the TCP traffic starving as long as some parameters settings are followed

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL
    corecore