
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2017

Improving Network Performance Through
Endpoint Diagnosis And Multipath
Communications
Behnaz Arzani Arzani
University of Pennsylvania, barzani@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2169
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Arzani, Behnaz Arzani, "Improving Network Performance Through Endpoint Diagnosis And Multipath Communications" (2017).
Publicly Accessible Penn Dissertations. 2169.
https://repository.upenn.edu/edissertations/2169

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F2169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2169?utm_source=repository.upenn.edu%2Fedissertations%2F2169&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2169
mailto:repository@pobox.upenn.edu


Improving Network Performance Through Endpoint Diagnosis And
Multipath Communications

Abstract
Components of networks, and by extension the internet can fail. It is, therefore, important to find the points
of failure and resolve existing issues as quickly as possible. Resolution, however, takes time and its important
to maintain high quality of service (QoS) for existing clients while it is in progress. In this work, our goal is to
provide clients with means of avoiding failures if/when possible to maintain high QoS while enabling them to
assist in the diagnosis process to speed up the time to recovery.

Fixing failures relies on first detecting that there is one and then identifying where it occurred so as to be able
to remedy it. We take a two-step approach in our solution. First, we identify the entity (Client, Server,
Network) responsible for the failure. Next, if a failure is identified as network related additional algorithms are
triggered to detect the device responsible.

To achieve the first step, we revisit the question: how much can you infer about a failure using TCP statistics
collected at one of the endpoints in a connection? Using an agent that captures TCP statistics at one of the
end points we devise a classification algorithm that identifies the root cause of failures. Using insights derived
from this classification algorithm we identify dominant TCP metrics that indicate where/why problems
occur. If/when a failure is identified as a network related problem, the second step is triggered, where the
algorithm uses additional information that is collected from ``failed'' connections to identify the device which
resulted in the failure.

Failures are also disruptive to user's performance. Resolution may take time. Therefore, it is important to be
able to shield clients from their effects as much as possible.

One option for avoiding problems resulting from failures is to rely on multiple paths (they are unlikely to go
bad at the same time). The use of multiple paths involves both selecting paths (routing) and using them
effectively. The second part of this thesis explores the efficacy of multipath communication in such situations.

It is expected that multi-path communications have monetary implications for the ISP's and content
providers. Our solution, therefore, aims to minimize such costs to the content providers while significantly
improving user performance.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Boon Thau Loo

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2169

https://repository.upenn.edu/edissertations/2169?utm_source=repository.upenn.edu%2Fedissertations%2F2169&utm_medium=PDF&utm_campaign=PDFCoverPages


Second Advisor
Roch Guerin

Keywords
Data Center Networks, Multipath communications, Network Diagnosis, Networking, Transport Protocols

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2169

https://repository.upenn.edu/edissertations/2169?utm_source=repository.upenn.edu%2Fedissertations%2F2169&utm_medium=PDF&utm_campaign=PDFCoverPages


IMPROVING NETWORK PERFORMANCE THROUGH

ENDPOINT DIAGNOSIS AND MULTIPATH

COMMUNICATIONS

Behnaz Arzani
A DISSERTATION

in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2017

Boon Thau Loo
Associate Professor,

Computer and Information Science
Supervisor of Dissertation

Roch Guerin
Professor,

Electrical and Systems Engineering
Co-Supervisor of Dissertation

Lyle Ungar
Professor, Computer and Information Science

Graduate Group Chairperson

Dissertation Committee

Sudipto Guha (Chair), Associate Professor, Computer and Information Science

Andreas Haeberlen, Associate Professor, Computer and Information Science

Zachary Ives, Professor, Computer and Information Science

Jennifer Rexford, Gordon Y. S. Wu Professor, Computer and Information Science

(Princeton University)



IMPROVING NETWORK PERFORMANCE THROUGH ENDPOINT

DIAGNOSIS AND MULTIPATH COMMUNICATIONS

COPYRIGHT

2017

Behnaz Arzani



Dedicated to my mom, dad, and brother.

iii



Acknowledgments

My six years at the University of Pennsylvania have been among the most exciting

and eventful times in my life. This section is an attempt to express my gratitude to

all those who made this thesis possible. The completion of this thesis is owed to

many people. I would like to thank my mom and dad for your love and support

all these years. Mom, you gave up your dreams for a Ph.D. (three times) to be

there for us when we grew up, this is for you. My utmost gratitude goes to my

two advisors Dr. Boon Thau Loo and Prof. Roch Guerin. To Boon for his constant

support, for not only being the best advisor but the best friend one could ever ask

for, and for making sure that I had everything I needed to complete this thesis. To

Roch, for giving me the opportunity to come to Penn, for his constant support and

useful feedback, and for being there with advice whenever I needed help.

I would like to thank the many professors who provided useful feedback and

advice: Prof. Jennifer Rexford, Dr. Andreas Heaberlen, Dr. Sudipto Guha, Prof.

Zack Ives, and Dr. Vincent Liu. I would like to thank my collaborators at Mi-

crosoft and Microsoft research for their collaboration, their useful insights, and for

providing the resources needed to complete this thesis. My thanks go to Dr. Selim

Ciraci and Dr. Geoff Outhred for giving me the opportunity to work with them,

for inspiring me throughout my Ph.D., and for their friendship. My thanks to Dr.

Jitu Padhye, Dr. Hongqiang Liu, and Dr. Yibo Zhu for always having my back.

In addition to those mentioned above, I am grateful to so many amazing friends

iv



who made my study at Penn enjoyable and for helping me get through some

of the harder times: Omid Alipourfard, Shohreh Shaghaghian, Farzaneh Kha-

jouie, Sara Rahiminejad, Neda Rohani, Hoda Heidari, Mohammad Hassan Lotfi,

Mehrnoush Soroush, Emad Khazraee, Majid Irae, Monia Ghobadi, Alec Koppel,

Santiago Segarra, Mohammad Javad Salehi, Ang Chen, and Luiz Chamon, Salar

Moarref. This work is supported by Grants: CNS-1218066, CNS-0845552, ITR-

1138996, CNS-0915982, and as well as AFOSR Young Investigator Award FA9550-

12-1-0327, NSF CNS-1513679, DARPA/I2O HR0011-15-C-0098 and CNS-0845552.

v



ABSTRACT

IMPROVING NETWORK PERFORMANCE THROUGH ENDPOINT

DIAGNOSIS AND MULTIPATH COMMUNICATIONS

Behnaz Arzani

Boon Thau Loo
Roch Guerin

Components of networks, and by extension the internet can fail. It is, therefore,

important to find the points of failure and resolve existing issues as quickly as pos-

sible. Resolution, however, takes time and its important to maintain high quality

of service (QoS) for existing clients while it is in progress. In this work, our goal

is to provide clients with means of avoiding failures if/when possible to maintain

high QoS while enabling them to assist in the diagnosis process to speed up the

time to recovery.

Fixing failures relies on first detecting that there is one and then identifying

where it occurred so as to be able to remedy it. We take a two-step approach in our

solution. First, we identify the entity (Client, Server, Network) responsible for the

failure. Next, if a failure is identified as network related additional algorithms are

triggered to detect the device responsible.

To achieve the first step, we revisit the question: how much can you infer about

a failure using TCP statistics collected at one of the endpoints in a connection?

Using an agent that captures TCP statistics at one of the end points we devise a

classification algorithm that identifies the root cause of failures. Using insights

derived from this classification algorithm we identify dominant TCP metrics that

indicate where/why problems occur. If/when a failure is identified as a network

related problem, the second step is triggered, where the algorithm uses additional

information that is collected from “failed” connections to identify the device which

resulted in the failure.

vi



Failures are also disruptive to user’s performance. Resolution may take time.

Therefore, it is important to be able to shield clients from their effects as much as

possible. One option for avoiding problems resulting from failures is to rely on

multiple paths (they are unlikely to go bad at the same time). The use of multiple

paths involves both selecting paths (routing) and using them effectively. The sec-

ond part of this thesis explores the efficacy of multipath communication in such

situations. It is expected that multi-path communications have monetary impli-

cations for the ISP’s and content providers. Our solution, therefore, aims to min-

imize such costs to the content providers while significantly improving user per-

formance.

Contents

Acknowledgments iv

Contents vii

1 Introduction 1

2 Finding The Entity Responsible For The Failure 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Description of NetPoirot . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Monitoring Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



2.4.2 Learning Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 TCP Behavior under Faults . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Fault Injection and Application Workloads . . . . . . . . . . . 20

2.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Overall Accuracy and Confusion Matrix . . . . . . . . . . . . . 26

2.6.2 Individual Failure Classification . . . . . . . . . . . . . . . . . 28

2.6.3 Untrained Failures . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.5 Real Application Analysis . . . . . . . . . . . . . . . . . . . . . 34

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Finding The Device Responsible For The Failure 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Problem and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 The path discovery agent . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 ICMP Rate Limiting . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Engineering Challenges . . . . . . . . . . . . . . . . . . . . . . 48

3.5 The Analysis Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Voting Based Scheme . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Voting Scheme Analysis . . . . . . . . . . . . . . . . . . . . . . 51

3.5.3 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Evaluations: Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1 In the optimal case . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Varying Drop Rates . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.3 Impact of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.4 Varying Number of Connections . . . . . . . . . . . . . . . . . 58

viii



3.6.5 Impact of Traffic Skews . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.6 Detecting Bad Links . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6.7 Effects of Network size . . . . . . . . . . . . . . . . . . . . . . . 63

3.7 Evaluations: Test Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1 Clean Testbed Validation . . . . . . . . . . . . . . . . . . . . . . 64

3.7.2 Per-connection Link Failure Analysis . . . . . . . . . . . . . . . 64

3.7.3 Identifying Failed Links . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Evaluations: Production . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8.1 Comparison to EverFlow . . . . . . . . . . . . . . . . . . . . . . 67

3.8.2 Finding The Cause of VM Reboots . . . . . . . . . . . . . . . . 67

3.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Resilience to Failures at the Endpoints Through Multipath TCP 71

4.1 The Shortcomings of MultiPath TCP . . . . . . . . . . . . . . . . . . . 72

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.2 Background and Related Work . . . . . . . . . . . . . . . . . . 73

4.1.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.4 Impact of Path RTT on Throughput . . . . . . . . . . . . . . . . 75

4.1.5 MPTCP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.6 Setting Up The Problem . . . . . . . . . . . . . . . . . . . . . . 77

4.1.7 The Two Modes of an MPTCP Subflow . . . . . . . . . . . . . 78

4.1.8 Modeling The MPTCP Subflow in Mode 1 . . . . . . . . . . . . 79

4.1.9 Modeling The MPTCP Subflow in Mode 2 . . . . . . . . . . . . 79

4.1.10 Analyzing our MPTCP Model . . . . . . . . . . . . . . . . . . . 83

4.1.11 A Closer Look at Ii(ws) . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.12 The Overall Impact Of the “First” Path . . . . . . . . . . . . . . 85

4.1.13 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ix



5 Multipath at The Application Layer 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 MuMS Benefits and Implications . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Performance Benefits . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Cost-Performance Trade-offs . . . . . . . . . . . . . . . . . . . 97

5.2.3 Impact of MuMS on Cost . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Sunstar Client Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Sunstar Client Design Overview . . . . . . . . . . . . . . . . . 100

5.3.2 The Sunstar Scheduler . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.2 Comparison to Single Server Clients . . . . . . . . . . . . . . . 107

5.4.3 Comparison to the Min-RTT scheduler . . . . . . . . . . . . . . 108

5.4.4 Comparison to The YouTuber Scheduler . . . . . . . . . . . . . 110

5.4.5 Scheduler Execution Time . . . . . . . . . . . . . . . . . . . . . 113

5.5 Cost Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Related Work 118

6.1 Network diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Multi Server Video Delivery . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2.1 Video Delivery Optimizations . . . . . . . . . . . . . . . . . . . 123

6.2.2 Multipath Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2.3 Server selection and cost optimizations . . . . . . . . . . . . . 125

7 Conclusion 127

A Vigil Proofs 129

B Video Delivery And QoS 138

x



B.1 Mechanical Turk Experiment . . . . . . . . . . . . . . . . . . . . . . . 138

B.2 Server Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 141

xi



List of Tables

2.1 Table describing the types of faults we induced in our system for training. . . 11

2.2 Features captured by the monitoring agent during each epoch. We use R to

show that the raw value of a feature is captured and S to show that we capture

the statistics of that feature. (*) indicates normalized metrics. . . . . . . . . . . . 13

2.3 Important features in identifying failures for the duplex application. Statistics

proceed the variable name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The important features for identifying each type of failure in the simplex appli-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 The classification errors of NetPoirot in each general label broken down in

terms of faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Detailed fault classification with and without additional client side information. 30

2.7 Performance breakdown by machine location. All client statistics are used for

classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Sensitivity to failure duration. Recall numbers are shown here. . . . . . . . . . 33

2.9 Performance of NetPoirot when used for per connection classification. . . . . 34

2.10 Performance of NetPoirot when used to identify failures when streaming YouTube

videos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Percentage of time the playback buffers are empty when multiple clients share

the available links/servers simultaneously. We use 95th percentile confidence

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xii



List of Figures

2.1 Overview of NetPoirot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Example tree. The white/Black leave colors illustrate the labels of the training

data that end up in that leaf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Confusion matrix on the duplex application’s failure. Recall on each class is as

follows: Normal: 97.94%,Client: 87.32%,Server: 81.89%, Network: 90%. Preci-

sion values are included in the x axis for each class. . . . . . . . . . . . . . . . . 29

2.4 Confusion matrix on the simplex application’s failure. Recall on each class is

as follows: Normal: 78%,Client: 47%,Server: 55%, Network: 95.4%. Precision

values are included in the x axis for each class. . . . . . . . . . . . . . . . . . . . 29

2.5 NetPoirot performance on dormant and unknown failures, when all client

statistics are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Confusion matrix on EX. Recall on each class is as follows: Normal: 94.53%,Client:

98.54%, Server: 100%,Network: 98.2%. . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Simple tomography example, where a simple optimization problem can find

the problematic link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Overview of Vigil architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 When Theorem 2 holds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Testing Algorithm 1 when Theorem 2 holds. . . . . . . . . . . . . . . . . . . . . 57

3.5 Vigil’s accuracy for varying drop rates. . . . . . . . . . . . . . . . . . . . . . . . 58

xiii



3.6 Vigil’s accuracy for varying noise levels. Lone/sporadic drops are not of inter-

est to a network provider/operator. Vigil can successfully ignore such drops

and continue to perform well in the presence of high degrees of noise. . . . . . 59

3.7 Vigil’s accuracy for varying number of connections. Each host opens between

(10, 60) connections. Where the number is chosen unifromly at random. . . . . 60

3.8 Vigil’s accuracy under heavily skewed traffic. The large confidence intervals of

the optimization problem are a reflection of its sensitivity to noise. . . . . . . . 61

3.9 Algorithm 1 with single failure. Vigil can accurately detect the cause of prob-

lems with recall/precision above 90%. However, its recall drops as the number

of failed links increase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.10 Algorithm 1 with multiple failures. The drop rates on the links are heavily

skewed. Prior work have noted the difficulty of detecting links with high drop

rates in such scenarios. Vigil, however, continues to exhibit high precision/recall. 62

3.11 Recall of Algorithm 1 for different numbers of pods. A six pod network consists

of 12480 links. In all cases Vigil continues to have Recall higher than 90%. Note,

that its precision is 100% for all cases. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.12 Distribution of the difference between votes on bad links and the maximum

vote on good links for different bad link drop rates. The numbers clearly show

a large correlation between the drop rates induced and the votes on the link

dropping packets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Mininet topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 MPTCP throughput (MB) as path RTT difference increases. . . . . . . . . . . . . 75

4.3 MPTCP throughput (MB) as path RTT difference increases. . . . . . . . . . . . 76

4.4 The NewReno fast retransmission algorithm. There is no transmission on the

subflow during time block C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Change in transmission rate computed in a sliding window of 1 seconds for

different “first” paths. C1 = C2 = 10 Mbps, τ1 = 200ms, and τ2 = 280ms. The

path starting second, is established at t = 3 seconds. . . . . . . . . . . . . . . . . 86

xiv



4.6 Total number of packets transmitted vs δ (ms). The total duration of the exper-

iment is 200 seconds for each data point. The figures depict the influence of τ1,

and C on the impact of the initial path. . . . . . . . . . . . . . . . . . . . . . . . 87

4.7 Total number of packets transmitted vs δ (ms). The total duration of the exper-

iment is 1000 seconds for each data point. The figures depict the influence of

the duration of the transmission on the effects observed in Figure 4.7 . . . . . . 87

5.1 Average stall duration across clients. . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Fraction of total download time each client was stalled (across clients). . . . . 95

5.3 Distribution of the number of skipped chunks. . . . . . . . . . . . . . . . . . . 96

5.4 Comparison to single path. High and medium bandwidth scenarios were used

with smooth bandwidth variations. . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 High Ci comparison of the two schedulers (smooth bandwidth variations). . . 107

5.6 Medium Ci comparison of the two schedulers (smooth bandwidth variations). 107

5.7 Low Ci comparison of the two schedulers (smooth bandwidth variations). . . . 108

5.8 Percentage of time stalled in a medium bandwidth/bursty scenario. . . . . . . 109

5.9 Comparing Sunstar scheduler with YouTuber scheduler for regular video down-

loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.10 Live streaming schedulers comparison - Medium Ci, bursty bandwidth varia-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.11 The effect of mismatched RTTs. RTT difference between the links is denoted as

δ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.12 Peering costs under different schedulers and server selection approaches. . . . 115

6.1 Each dot shows BPostedmax in time and is representative of a 30s epoch. . . . 120

A.1 Illustration of notation for Clos topology used in the proof of Lemma 9 . . . . . 133

xv



Chapter 1

Introduction

Today guaranteeing good performance to users of the Internet as well as various

other networks such as datacenters is still a challenge [8, 42, 119, 65]. These net-

works are comprised of hundreds (if not tens of thousands) of routers and switches

which deliver user traffic on a best effort basis.

Failures and performance problems in such settings are not uncommon. Sources

of problems include (but are not limited to) congestion in the network, server over-

loads, link failures, and occasionally bad configurations. ISP’s attempt to deal with

problems such as congestion through traffic engineering [54, 15]. Datacenter oper-

ators have devised various diagnosis and debugging tools to minimize the mean

time to recovery [119, 65, 145, 17, 5]. However, none of these solutions are com-

pletely effective (especially in providing real-time solutions). The traffic engineer-

ing problem for traditional network protocols is NP hard [54]. Furthermore, in

both datacenters and the Internet, the network is typically comprised of a number

of different corporations and organizations. These organizations do not always

have an incentive to cooperate and to share information across their respective

boundaries. As a simple example, while BGP allows for ASs to advertise their

path preferences to their neighbors (through MED values), most ASs ignore such

1



Chapter 1. Introduction

specifications when deciding on the best path for their traffic. This makes global

traffic engineering difficult, if not impossible. In datacenters, the users belonging

to one organization may access a different organizations service through the dat-

acenter’s network, rendering end to end monitoring and visibility difficult. On

some occasions, these entities also provide competitive services to the users which

limit their willingness to cooperate [101]. Therefore, tools and methodologies that

depend on such information sharing typically are inadequate.

It is for these reasons that we believe it is important to empower the end users

themselves to be able to circumvent congestion occurrences and failures when they

occur, as well as to assist in the diagnosis process in the event of failures as they are

able to indirectly observe the entire communication path. Doing so requires solv-

ing a number of different challenges. To enable users (clients) to assist in the di-

agnosis process, effective monitoring tools are required that enable them to reason

about the network and the service without direct visibility into these systems. Fur-

thermore, such monitoring tools would need to be extremely lightweight as they

should coexist with the client without disrupting its “normal” behavior. Mean-

while, there are a number of different approaches that can be used to enable clients

to maintain high quality of service (QoS) when failures occur. One example is the

use of diversity coding [16] which augment the data transmitted from the end host

with additional redundancy to enable recovery from potential losses. However,

the ability of such approaches to cope with high loss rates is limited. A differ-

ent approach would be to allow clients to make use of the path diversity inher-

ently present in today’s networks (both datacenters and the Internet) as such path

are unlikely to fail at the exact same time. By doing so clients can route around

such failures if and when they occur. Doing so requires clients to detect/quantify

path quality and to quickly and effectively migrate traffic onto healthy path when

failures occur. Furthermore, there are cost implications to the ISPs and content

providers that need to be accounted for. For example, in this work, we will show

2



Chapter 1. Introduction

that multipath clients tend to result in an increase in cost for content providers.

However, with careful planning, such impacts can be largely controlled and miti-

gated.

Our contributions in this work are to address the afore mentioned challenges.

Specifically:

• Endpoint Diagnosis. We attempt to allow clients to assist in the diagnosis

process. We take a two-step approach to solving this problem: a) we iden-

tify the entity responsible for the failure through a system we call NetPoirot.

NetPoirot answers the following question: how much can you infer about

a failure in the data center using TCP statistics collected at one of the end-

points? Using an agent that captures TCP statistics it creates a classification

algorithm that identifies the root cause of failures using this information at a

single endpoint. Our evaluations on a real production datacenter show that

it is highly accurate in identifying the entity responsible for the failure. b) In

many cases, the entity identified by NetPoirot as the cause of the failure is

the network. The network itself, however, is comprised of many devices and

machines. Through a system named Vigil, we identify which of these de-

vices was responsible for each failure instance. Vigil is a lightweight always

on monitoring tool that is completely contained within the end hosts. During

its one-month deployment in a tier-1 data center, it has detected every prob-

lem identified by other previously deployed monitoring services while also

finding the sources of other problems. The system is effective in detecting

drop rates as low as 0.05%.

• Endpoint resilience through multipath communications. We explore the

efficacy of the Multipath TCP transport protocol in allowing clients to cir-

cumvent failures by going through multiple paths. Such solutions have been

extensively studied in the context of datacenters and ISPs e.g., [9, 105]. How-

3



Chapter 1. Introduction

ever, their implications in many contexts, especially when used for applica-

tions such as video delivery, is not yet completely understood. We show in

this work that the current state of the art multipath transport protocol [105]

suffers from unintended consequences that could have severe implications

those using it. We further illustrate why such multipath approaches typi-

cally result in an increase in peering cost when used for applications such as

video delivery. We then present a new solution in this context which attempts

to remove all such undesirable behaviors and that effectively improves user

performance.

The main contribution of this work is, therefore, in extending current approaches

for both diagnosis and resilience in a way that they can be used at the endpoints,

without any support from the network operators, and without negatively affecting

the other parties involved in the communication process.

4



Chapter 2

Finding The Entity Responsible For

The Failure

2.1 Introduction

Components of networks, and by extension the internet can fail. We can deal with

these failures in two ways. We can either try finding the points of failure and

fixing them, or we try avoiding the failures and route around them. The first two

chapters of this thesis are devoted to the first of these two solutions.

Fixing failures relies on first detecting that there is one and then identifying

where it occurred so as to be able to remedy it. We take a two step approach in

our solution. First, we identify the entity (Client, Server, Network) responsible

for the failure. Next, if a failure is identified as network related additional algo-

rithms are triggered to detect the device responsible. This approach allows for

a targeted investigation whereby additional monitoring/diagnosis algorithms are

only initiated when necessary, thus significantly reducing the diagnosis overhead.

Furthermore, such a design significantly reduces the amount of cooperation re-

5



2.2. Motivation

quired between the entities maintaining the client, server, and the network in the

diagnosis process.

The first step is done through a system we refer to as NetPoirot. NetPoirot

relies on TCP metrics captured from one of the endpoints involved in a TCP con-

nection to determine which entity is responsible for the failure. Our evaluations of

NetPoirot in a production data center shows that it is highly accurate (with Recall

and Percision as high as 97%). Our results also indicate that 17% of the failures

observed and diagnosed by NetPoirot were network related. This introduces the

need for additional steps in identifying the device (in the network) that is responsi-

ble for such failures. We do this through a system we refer to as Vigil. This chapter

is devoted to the description of NetPoirot. We defer the description of Vigil to the

next chapter.

2.2 Motivation

In today’s data centers, a common issue faced by operators is troubleshooting

faults in complex services. It is often unclear whether the cause of performance

bottlenecks lies in the underlying network, client, or service-level application code/-

machine. Often times, the knee-jerk reaction is to first blame the network whenever

performance issues surface.

The problem is exacerbated by two issues. First, the parties involved in di-

agnosing the errors (e.g. the service DevOps engineers, network operators) may

operate as different entities either within or across companies and each party may

lack easy access to the other’s performance/debugging logs. This significantly

increases debugging time and extends the mean time to recovery. Second, these

failures are sometimes intermittent and non-deterministic, and hence difficult to

reproduce without high fidelity, always on, monitoring probes in place through-

out the entire infrastructure.

6



2.2. Motivation

To highlight these challenges, we present a real-world example seen within a

production cloud. The public cloud offering is used by over 1 billion customers,

whose applications reside within VMs in its data centers. In one particular sce-

nario, the VM triggers an operation within the hypervisor, that requires the hy-

pervisor to send a request to a remote service. Whenever the request/response

latency increases (due to remote service failure, overload, or network slowdowns),

an error occurs in the hypervisor which in turn causes the VM to panic and reboot,

hence disrupting normal operations. We refer to this as “Event X or EX”.

EX occurs intermittently and only on a subset of nodes at any given time. How-

ever, its occurrence is sufficiently frequent to degrade user experience. It is also

unclear when a reboot happens, whether the error is caused by a remote service

issue (overload, server failure), or a network problem (e.g. packet drops or router

misconfigurations). In one example, when EX occurred the remote service De-

vOps team was first contacted. They suspected that EX may be occurring due to

high request/response latencies, and blamed the network, and passed on the di-

agnostics to the network engineers. The network engineers observed normal RTT

times in TCP traces at the time of failure and suspected that the problem is prob-

ably due to slow server responses, and handed over the issue back to the server

operations team. The iterations continued until the various teams involved pieced

together the sequence of events that led to the service disruption. The entire pro-

cess is time-consuming, expensive, and involves many engineers and developers

spanning different organizations. To make matters worse, while the symptoms of

EX may be the same, the actual cause may differ across occurrence, and fixing one

occurrence of EX may not prevent others from happening in the future. Note that

such lengthy debugging across multiple subsystems is an issue not unique to this

production cloud, and has been reported elsewhere as well [132, 65].

While many network diagnosis tools have been developed in the past, all of

them come short in some way when solving problems such as EX. Some require

7



2.2. Motivation

access to the entire system [138], others are too heavyweight and so cannot be used

in an always on fashion [140, 143], and finally some require information that the

service/network are not willing to share [17, 138]. Many of the proposed concepts

in these tools have been adopted by the afore mentioned organization and their

failure in assisting its engineers to diagnose EX is itself a testament to the persistent

need for a more effective tool.

In the ideal case, one would like to quickly pinpoint the most likely source of the

failure within the infrastructure. The team (client, network, or remote service) that

owns the failure can then provide a timely response, rather than have the error be

passed around within organizations.

To achieve this goal, we propose NetPoirot 1 that aims to perform such failure

attribution quickly and accurately. NetPoirot requires only a TCP measurement

agent to be deployed at each client VM in the cloud. The key insight of NetPoirot

is that different types of failures, albeit not network related, will cause TCP to react

differently. For example, a slow reading remote service results in exhaustion of the

TCP receive window on the sender VM, which itself triggers TCP zero window

probing. Packet drops on a router result in an increase in the number of duplicate

ACKs. High CPU load on the client result in fewer transmission opportunities for

the client application and thus fewer data sent by TCP. These differences are not

always easy to define, given the high correlation between the various TCP metrics.

Specifically, NetPoirot makes the following contributions:

Lightweight continuous monitoring. We develop a TCP monitoring agent that

runs on all client machines within our data centers. These machines request ser-

vices within and across data centers under our administration. The agent captures

various TCP related metrics periodically. It is implemented in Windows, although

a similar tool in Linux can be supported. Unlike more heavyweight approaches

1Named after Agatha Christie’s famous detective Hercule Poirot.

8



2.2. Motivation

that require packet captures, NetPoirot ’s agent is lightweight and non-intrusive,

requiring only aggregate TCP statistics to be periodically collected and measured.

At runtime, the agent requires only 132 numeric values be examined (and then

discarded) by the client machine every 30 seconds.

Machine-learning based classification. Using data collected from our agents, we

study the extent in which TCP statistics can be used to distinguish various types of

failures in data centers using decision-tree based supervised learning algorithms.

We then identify the key parameters in TCP that are most representative of each

type of failure in data centers.

Our approach is a significant improvement over techniques such as SNAP [138].

SNAP requires full knowledge of the data center topology, machine configuration,

and application to server mapping. Furthermore, it manually reasons about each

type of failure and devises a rule for each problem accordingly. Such manual in-

spections are limited in scope and are prone to human error. NetPoirot uses ma-

chine learning instead, which allows us to uncover more complex insights. For

example, our use of decision trees allows us to identify the dominant set of TCP

metrics that help to classify each failure. Furthermore, NetPoirot does not require

any knowledge of the topology, or client to server mappings.

NetPoirot implementation. We have designed and developed a proof-of-concept

implementation of NetPoirot that combines the above two ideas and is used for

diagnosis at runtime. NetPoirot consists of a training phase, where a variety of

faults are injected onto training VMs, in order to produce a diagnosis function as

output. This function is then distributed to all machines in the data center to be

used at runtime to identify the source of failures. NetPoirot can be used by both

customers and data center operators as it does not require any information from the

network or service.

NetPoirot evaluation. We perform an extensive evaluation of NetPoirot to validate

9



2.3. Overview

its effectiveness. We evaluate the worst case performance of NetPoirot using data

collected over a 6 month period in a production data center that hosts over 170K

web servers and transfers 10Tbps of traffic. We have induced 12 different common

types of failures in the communication of two different applications running on 30

different machines and observed the changes in TCP statistics collected from these

machines. NetPoirot performs coarse-grained blame allocation on this data with

high accuracy (96% for some failure types). NetPoirot ’s accuracy improves even

further if its input information is augmented with additional information from the

endpoint on which it resides. Our monitoring agent has currently been deployed

on all the compute nodes within our data centers. We show that NetPoirot can

accurately identify the entity responsible for a variety of failures.

The tradeoff that NetPoirot makes is that while it is able to determine the en-

tity (network, client, remote service) most responsible for the failure, it does not

pinpoint the exact physical device or the specific problem type (e.g. high CPU

load on the server vs high I/O load on the server). We argue that this is a worth-

while tradeoff because identifying the entity is often times the operationally most

time-consuming (and hence expensive) part of failure detection, e.g. EX failures

take from 1 hour (high severity) to days to diagnose. In fact, the development of

NetPoirot was commissioned as a direct result of this problem in the case of EX.

While we do not claim that we can diagnose all potential problems, our results

indicate that it is possible to distinguish between a number of common network,

server, and client failures with high accuracy. This is significant, as we do not need

to use per-flow TCP metrics, nor do we need data from both endpoints. Since

only aggregate metrics are collected, our methodology allows us to maintain some

extent of customer privacy.

10



2.3. Overview

Figure 2.1: Overview of NetPoirot

2.3 Overview

We first begin with an overview of NetPoirot , which consists of two phases: train-

ing and runtime.

Training phase. Fig. 3.2 depicts the training phase. The training phase occurs in

the production environment on a subset of machines, termed as the training nodes.

During this phase, a TCP monitoring agent is installed on these nodes. Details on

the monitoring agent are presented in Section 2.4. The agent can be either installed

at the hypervisor or within individual VMs hosted by the training nodes. When

there are no failures, agent statistics are periodically sent to the learning agent to

capture the behavior of a non-fault scenario. From time to time, we use a fault in-

jector to inject a variety of failures listed in Table 2.1. We define the “client” as the

local machine that is communicating with a remote service, which we refer to as

the “server”. Failures range from increased CPU load, increased memory load, in-

creased storage load (by generating excess I/Os on either the client or server using

11



2.3. Overview

General
label

Failure How it is induced

Server

High CPU load
on server

Application running kernel
level CPU intensive opera-
tions

Slow reading
server

Modified the server applica-
tion, added a random delay to
its read operation

High I/O on
server

SQLIO [92]

High memory
load on server

Testlimit [93]

Client

High CPU load
on client

Application running kernel
level CPU intensive opera-
tions

High I/O on
client

SQLIO l [92]

High memory
load on client

Testlimit [93]

Network
Bandwidth
throttling

Added rules in the A10’s

Sporadic packet
drops

SoftPerfect [4]

Packet reorder-
ing

SoftPerfect [4]

Random con-
nection drops

NEWT [94]

High Latency SoftPerfect [4]

Table 2.1: Table describing the types of faults we induced in our system for train-
ing.

SQLIO), and also various forms of network-related problems such as throttling or

packet drops.

For each injected failure, the monitoring agent’s TCP statistics are collected and

then used by the learning agent to create a diagnosis function, trained using as the

label, either the actual failure itself or its type (e.g. client, remote, network). The

diagnosis function is the output of our supervised learning algorithm. The input

to the function is the latest TCP statistics read from the end point, and the output

is the entity most likely to be responsible for the failure. This function is broadcast

to all VMs at the end of the training phase.

Runtime phase. At run time, all monitored nodes run the monitoring agent. When-

ever failures are detected, each VM invokes the diagnosis function using digests

collected locally and then generate as output the likely source of failure.

12



2.4. Description of NetPoirot

2.4 Description of NetPoirot

In this section, we describe the various components of NetPoirot . NetPoirot is

comprised of a monitoring agent that collects data that is then input to a learning

agent. The learning agent uses this information to create a diagnosis function that

is used at runtime. The following describes the details of each of these components

in more detail.

2.4.1 Monitoring Agent

Our TCP monitoring agent is installed at each machine’s hypervisor or within in-

dividual VMs. The installation is limited to only client machines communicating

with various remote services within/across data centers. For example, if the re-

mote service is storage, this precludes the need to run the agent on storage servers.

The agent collects TCP statistics for all connections seen on its monitored node.

Given that our implementation is based on Windows, we will describe the agent

based on Windows terminology. These statistics can also be collected in a Linux-

based system.

The agent is implemented using Windows ETW events [91], a publish-subscribe

messaging system in the Windows OS. A TCP ETW event is triggered every time

a TCP related event, e.g. the arrival of a duplicate ACK occurs on any one of the

connections currently active in the OS. The agent collects and aggregates events at

the granularity of epochs so as to minimize bandwidth/storage overhead during

training. Within every epoch, it receives ETW events, extracts relevant features

and stores them in a hash table based on TCP’s 5−tuple. At the end of an epoch,

the TCP metrics that depend on the transmission rate are normalized by the num-

ber of bytes posted by the application in that epoch. The normalized metrics are

marked in Table 2.2. Each individual metric is then further aggregated by calculat-

13



2.4. Description of NetPoirot

metric statistics
calcu-
lated

abbreviation

Number of flows R NumFlows
Maximum congestion window
in δ

S MCWND

The change in congestion win-
dow in δ

S(∗) DCWND

The last congestion window ob-
served in δ

S(∗) LCWND

The last advertised (re-
mote)receive window observed
in δ

S(∗) LRWND

The change in (remote) receive
window observed in δ

S (*) DRWND

Maximum smooth RTT esti-
mate observed in δ

S (*) MRTT

Sum of the smooth RTT esti-
mates observed in δ

S (*) SumRTT

Number of smooth RTT esti-
mates observed in δ

S (*) NumRTT

Duration in which connection
has been open

S Duration

Fraction of open connections R FracOpen
Fraction of connection closed R FracClosed
Fraction of connections newly
opened

R FracNew

Number of duplicate ACKs S (*) DupAcks
Number of triple duplicate
ACKs

S (*) TDupAcks

Number of timeouts S (*) Timeouts
Number of resets S (*) RSTs
Time spent in zero window
probing

S Probing

Error codes observed by the
socket

R Error Code

Number of bytes posted by the
application

S BPosted

Number of bytes sent by TCP S BSent
Number of bytes received by
TCP

S (*) BReceived

Number of bytes delivered to
the application

S (*) BDelivered

Ratio of the number of bytes
posted by the application to the
number of bytes sent

S BPostedToBSent

Ratio of the number of bytes re-
ceived by TCP to the number of
bytes delivered

S BReceivedToBDelivered

Table 2.2: Features captured by the monitoring agent during each epoch. We useR
to show that the raw value of a feature is captured and S to show that we capture
the statistics of that feature. (*) indicates normalized metrics.

14



2.4. Description of NetPoirot

ing its mean, standard deviation, min, max, 10th, 50th, and 95th percentile across all

TCP connections going to the same destination IP/Port.

We assume that identical failures happen within a single epoch, e.g. if a con-

nection experiences failure A, then all other connections between the same end-

points in the same epoch either experience no failure, or also experience failure

A. Therefore, the epoch duration needs to be carefully tuned. Small epochs in-

crease monitoring overhead, but large epochs run the risk that sporadic failures of

different types will occur within one epoch, affecting the accuracy of the learning

algorithm. We currently use an epoch of 30s. Fine tuning the epoch duration is

part of our future work.

Table 2.2 shows the features maintained within an epoch by the monitoring

agent. Our aggregation method reduces the amount of bandwidth required on the

machines in the training stage2 and has the added benefit of hiding the clients exact

transmission patterns. Furthermore, when applications change their transmission

pattern across connections in reaction to failures it allows for this change to be

detected. In the other extreme, one may decide to use per connection statistics with

more overhead but with the benefit of detecting why each individual connection

has failed separately.

The agent imposes low runtime overheads. Based on our benchmarks, even

in the absence of aggregation, when processing 500, 000 events per second, each

agent uses 4% CPU load on an 8 core machine and less than 20 MB in memory.

2.4.2 Learning Agent

During the training phase, the learning agent takes as input TCP metrics gathered

by monitoring agents on training nodes. At run time, it distributes the learned

2Without aggregation, the client needs to transmit 31n features every epoch to the learning
agent where n is the number of connections during that epoch. With aggregation, this number is
reduced to 130.

15



2.4. Description of NetPoirot

model to all clients to be used for diagnosis. The model has to quickly classify

epochs with the appropriate labels to indicate whether it is a remote (Server), local

(Client), or Network issue.

The learning agent uses decision trees as its classification model. In a decision

tree, each internal node conducts a test on an attribute, each branch represents the

outcome of the test, and the leaf nodes represent the class labels. The paths from

root to leaf represents the classification rules.

In our setting, the internal nodes correspond to one of the aggregated TCP met-

rics being monitored. The learning phase determines the structure of the decision

tree, in terms of the choice of attributes and the order in which they are used for

testing along the path from the root to label (this ordering is determined by the

information gain of features in the dataset). The specific nature of the test at each

node, i.e. the inequality tests, is also determined in this phase.

As noted by prior work [36, 6, 49], the structure of decision trees allows for

further understanding of the attributes that identify each failure. For this reason,

we found decision trees more attractive to use than other machine learning ap-

proaches. We will elaborate further on this in Section 2.5.

Fig. 2.2 shows an example of a decision tree, that distinguishes packet reorder-

ing from normal data. Leaf colors in the figure represent the labels of the training

data that ended up in those leaves. Most leaves are ”pure”, i.e. all the data in

those nodes have the same label. leaf 2 shows an ”impure” leaf that has a mix of

both labels. In such situations, the tree picks the majority label in the leaf as its

diagnosis.

Based on the concept of decision trees, our learning agent requires three en-

hancements for improved stability and accuracy:

Random forests. Our learning agent uses an enhanced type of decision tree, known

as random forests [26]3. In random forests, multiple decision trees are generated
3Version 4.6-10 in R version 3.2.1.

16



2.4. Description of NetPoirot

Figure 2.2: Example tree. The white/Black leave colors illustrate the labels of the
training data that end up in that leaf.

from different subsets of the data, and the classification decision is majority-based,

where a majority is defined based on a cutoff fraction specified by the user. For

example, a cut-off of (0.2, 0.8) indicates that for class 1 to be chosen as the label,

at least, 20% of the trees in the forest need to output 1 as the label as well. Ran-

dom forests improve stability and accuracy in the face of differences in machine

characteristics and outliers.

Multi-round classification. To improve accuracy, we do rounds of classifications.

First, the forest is trained to classify Network failures only. The Server and Client

failures in the training set are labeled as non-faulty (Normal) in this phase. Next,

the Network failure data is removed from the training set, and a new forest is

trained to find Server failures with Client failures labeled as Normal. Finally, the

Server data is also removed and a forest is trained to identify client-side failures.

At run time, data is first passed through the first forest, if classified as Network,

the process terminates. If it is classified as Normal, it is passed through the second

17



2.4. Description of NetPoirot

forest. Again, if it is classified as Server failure the process terminates. If not, the

data is passed through the third forest and is assigned a label of Normal/Client. In

machine learning, such multi-round classifications are referred to as tournaments.

In traditional tournaments, different decision trees are used in pair-wise competi-

tions. Our tournament strategy is a modification of standard tournaments, as they

did not work well in our setting.

Per-application training. Applications react to failures differently. One application

may choose to open more TCP connections when its attempts on existing connec-

tions fail while others may keep retrying on the ones currently open. Some form

of normalization, such as that we use for the monitoring agent, helps avoid depen-

dence on the transmission rate of the client itself. However, it does not help avoid

this particular problem given that the effects of application behavior go beyond the

transmission rate but also influence the number of connections, their duration, etc.

Indeed, these behaviors themselves improve NetPoirot ’s accuracy as they provide

more information about the failure. Hence, it is advised to train NetPoirot for each

application separately. We argue that unless applications change drastically on a

daily basis, there is sufficient time in between major application code releases and

deploys for the model to be updated.

Two-phase tree construction with cross-validation. Each forest is constructed in

two phases. First, given the training set, we determine basic parameters of the

forest, e.g., its cutoff value and a minimum number of data points required in a

leaf node. The latter is required to bound the tree sizes and to avoid overfitting.

Once these parameters are determined, the training set is used to create the actual

forest.

One of the pitfalls of any machine learning algorithm is the danger of overfit-

ting, where the trained model is tailored to explicitly fit the subsequent testing set.

This leads to poor future predictive performance. To avoid overfitting, we apply a

standard machine learning technique, namely a modified variant of cross validation

18



2.4. Description of NetPoirot

(CV). In a nutshell, the first phase is accomplished using N-fold [28] CV which es-

timates error using subsets of the training data, while the second phase builds the

model using all the training data.

In the classic form of N-fold CV, the training data is randomly divided into N

subsets (folds). Iterating over all folds i, in each iteration i is omitted from the

training set and the model is trained over the remaining N − 1 folds. The trained

model is then tested using the ith fold. The estimated errors in each iteration are

averaged to provide an estimate of the model’s accuracy. N-Fold cross-validation,

however, if used on our data set runs the danger of overestimating accuracy as

models will learn specific machine/network characteristics when data from one

machine leaks between folds. Therefore, we divide data from each machine into its

own unique fold. We define CV error as the average error of CV when each fold

contains data from a single machine.

To show why this is important, we tested cross-validation on our data set using

both methods4. Using vanilla cross-validation, we observe an error of 1.5%. How-

ever, when we partition the data based on machine label, we get 10.55% error. This

further indicates that if data from the same machine is used for both training and

at runtime one may get much higher predictive accuracy than those reported in

this paper.

Normalization. We normalize TCP statistics that depend on the data being sent.

Namely, features marked with (∗) in Table 2.2 were divided by the number of bytes

posted by the application in that epoch in order to minimize dependency on the

application’s transmission pattern.

4This was done without the use of tournaments.

19



2.5. TCP Behavior under Faults

2.5 TCP Behavior under Faults

The hypothesis behind NetPoirot is that the different types of failures, albeit not

network related, cause TCP to react differently. To study this further, we examine

the changes in various TCP parameters in the presence of different failures. De-

cision trees allow for not only classifying faults, but also illuminating features (in

this case TCP metrics) affected by each failure. It is this basis that allows us to

develop NetPoirot and why we use decision trees in this section.

The algorithm used in NetPoirot is agnostic to the choice of decision tree algo-

rithm as we use random forests which rely on weak classifiers as their basis. With

regards to the results in this section, we experimented with different types of de-

cision trees, and will present our results based on a decision tree algorithm called

C5.0 [83]. We used the 0.1.0.24 version of C5.0 in the 3.2.1 version of R. C5.0 is based

on information gain and aims to greedily reduce the amount of uncertainty with re-

spect to the data’s label. Nodes higher up the tree provide the most information

gain (the most reduction in uncertainty) with respect to the output.

For each type of failure, we train a decision tree from data that includes that fail-

ure as well as Normal data. For each failure, we select the top three TCP metrics

(features) in the tree. For each of these top features, we also measure the corre-

lation between its value and the actual ground truth. This is done by computing

the Pearson correlation (PC) between each feature value and the corresponding

ground truth label (encoded as 0 for normal, and 1 for faulty) when that feature

value was recorded. The PC value is then computed across all epochs for the du-

ration in which the failure occurs.

PC is a measure of the linear correlation between the feature values and the

labels (failure type/Normal) and provides further insight into the level of (linear)

dependency between the features. PC’s value ranges between (−1, 1). The closer

20



2.5. TCP Behavior under Faults

the absolute PC is to 1, the higher the linear correlation and therefore the easier it

is to identify such correlations.

While PC is not required by NetPoirot for classification, we calculate the PC

value so as to provide insight into how easy it would be for an operator to simply

decipher the relationship between the failure and the metrics used by the decision

tree. The human brain is relatively good at identifying linear relationships be-

tween variables. Our results show that often times, the relationship is non-linear,

meaning that a manual classification approach is not likely to work.

2.5.1 Fault Injection and Application Workloads

Failure injection. Supervised learning requires labeled data for training. In or-

der to train our model, we injected failures in the communication pattern of two

different types of applications running on a subset(30) of the VMs in four of our

production data centers located in West and Central USA, North and West Europe.

Our network serves over 1 billion customers and handles petabytes of traffic per

day. Given that networks in a data center environment are highly symmetric, train-

ing on a small subset of machines in a given cluster is sufficient for high accuracies

at runtime. Some data centers already purposefully inject faults on a regular basis

in their production environment in order to evaluate their degree of fault toler-

ance [129]. The traffic of the nodes in the path of these failures can be observed for

training purposes.

Application workload. Applications are designed with a degree of fault tolerance,

and, therefore, react to any failures that might occur. To isolate the impact of fail-

ures on TCP behavior (and not applications), we experiment using two applica-

tions that were designed to remain passive when failures occur. The first is a duplex

application, where we recorded a hypervisor’s communication to a remote service

(the one that causes EX) for 6 hours. This trace is then replayed to and from the

21



2.5. TCP Behavior under Faults

server. There is no fault tolerance logic in the application. The second application

is a simplex application that opens 128 connections5 to a server and sends a constant

number of bytes on each connection every second. We use three sending rates: 100,

500, 10000 Bps.

These applications are designed to capture the worst case performance of Net-

Poirot . For example, the simplex application involves communication in one di-

rection. Therefore, some metrics that depend on communication from the server

back to the client would not be captured. The duplex application, on the other

hand, is an extreme application that does not react to failures. Overall, the simplex

application results in decision trees with higher CV errors ( Section 2.4.2) as a result

of fewer metrics being influenced by the failure.

Our data is gathered over a period of 6 months (July-December 2015). All

datasets are labeled with the corresponding machine ID where the data is collected,

to be used for cross-validation (CV) described in Section 2.4.2.

2.5.2 Results

We inject failures listed in Table 2.1 to study their impact on TCP. Tables 2.3 and 2.4

summarize our main findings. Each row corresponds to the top three features se-

lected by a decision tree trained on the input dataset. For each feature, we include

in parenthesis () the corresponding PC value as described earlier. We also measure

the CV error, which represents the accuracy of the decision tree. For the purpose of

this section, we do not apply the normalization described in Section 2.4.2 in order

to gain more visibility into the direct impact of TCP on the raw metrics.

We observe that each type of failure can be defined succinctly using a few fea-

tures. To validate this, we used a standard machine learning technique, Principal

Component Analysis (PCA) [111], where we identify the highest Eigenvalues of the
5This number is based on the number of connections opened by clients connecting to one of

our services.

22



2.5. TCP Behavior under Faults

General
label

Fault Features Selected CV
Err

Server

High CPU load
on server

Probingsd(PC=0.27)
Timeouts95(PC=0.009)
Duration50(PC=0.22)

6%

Slow reading
server

LCWNDmin(PC=0.78)
Duration50(PC=0.21)
Durationmax(PC=0.15)

3%

High I/O on
server

BDelivered95(PC=0.58)
BReceivedmax(PC=−0.72)

0.2%

High memory
load on server

BDeliveredTOBReceived(PC=0.01)
BReceived(PC=−0.74)

0.1%

Client
High CPU load
on client

Duration95(PC=−0.33)
Duration50(PC=−0.03)
Durationmin(PC=0.4)

0.6%

High I/O on
client

BReceivedmax(PC=−0.75)
Probingsd(PC=−0.61)
BDeliveredToBReceived95(PC=0.01)

1.7%

High memory
load on client

BReceivedmax(PC=−0.82)
LCWND10(PC=0.24)
BDelivered95(PC=0.3)

15%

Network

Bandwidth throt-
tling

BReceivedmax(PC=−0.78)
Durationsd(PC=−0.14)
BDelivered95(PC=0.26)

0.05%

Sporadic packet
drops

BReceivedmax(−0.73)
MRTTmax(0.12)
BDelivered10(0.34)

3%

Packet reordering MCWNDmean(PC=−0.07)
MCWNDsd(PC=0.01)
TDupAcks95(PC=0.79)

0.1%

Latency MRTTmean (PC=0.91) 0

Table 2.3: Important features in identifying failures for the duplex application.
Statistics proceed the variable name.

dataset for each failure type. The sum of the Eigenvalues of a dataset equals its

variance. Interestingly, for almost all failures, the sum of the 2 highest Eigenvalues

captured more than 95% of the variance in the feature set. This is important as it

shows that the space of each failure (as represented by TCP metrics) is compactly

representable on two dimensions6.

We next discuss interesting highlights of our analysis.

High CPU load on the server. This failure was induced by a multithreaded pro-

gram, where each thread performed a CPU intensive system level operation in a

loop. For the duplex application, the algorithm used the standard deviation of the

time spent in zero window probing as its top feature. Zero window probing oc-
6These dimensions can be derived from the original features using PCA.

23



2.5. TCP Behavior under Faults

curs on the client when the server runs out of receive buffer. In the presence of

high CPU load, the server would not read from the receive buffer as regularly as

normal operations resulting in higher variance in the size of the receive buffer and

by extension the time spent in zero window probing at the client.

Slow reading server Detecting a slow reading server should be simple in principle

if it results in zero window probing. We induced a random delay of 0-100ms be-

fore the server reads from the TCP socket in order to test this theory. Surprisingly,

the decision trees use measures of the congestion window and duration instead. It

seems that the secondary effect of the delay was more pronounced on these met-

rics.

High I/O load on the client side. To induce high I/O load, we use the SQLIO

tool [92] from Microsoft. High I/O load on the client has all the markings of an

application limited connection. The decision trees both use the maximum of BRe-

ceived, the standard deviation of the time spent in zero window probing, as well

as the 95th percentile of the ratio of BDeliveredToBReceived.

High memory usage on the server. The selected values point directly towards

a problem on the server, these values include the 95th percentile of BDelivered-

ToBReceived and the maximum of BDelivered. This shows that the reduction in

memory on the server side has caused an impact on the amount of data transmitted

from the server. Note, that such data is not available on the simplex application.

Here, instead the decision tree relies on the number of connections, as well as the

congestion window related metrics in order to do classification.

High memory usage on client. As part of our analysis, for all the failures, we

used fast correlation-based filters for feature selection and compared the results

with the top 3 features of the decision tree. We found that feature selection for

this particular failure returned an unexpected subset of the features. It returned

the mean time spent in zero window probing and its standard deviation. On all

machines, the client had zero Probingmean when the memory usage on the client

24



2.5. TCP Behavior under Faults

General
label

Fault Features Selected CV
Err.

Server

High CPU load
on server

MRTT10(PC=0.87),
MRTTsd(PC=−0.12),
Timeoutssd(PC=0.03)

1.2%

Slow reading
server

NumberofFlows(PC=−0.22),
DCWNDsd(PC=0.16),
LCWND95(PC=0.37)

13%

High I/O on
server

NumberofFlows(PC=−0.08),
MCWNDmax(PC=0.11),
LCWNDmax(PC=0.46)

14%

High memory
load on server

NumberofFlows(PC=−0.04),
DCWNDsd(PC=0.08),
LCWNDmax(PC=0.49)

16%

Client
High CPU load
on client

MCWND10(PC=−0.07),
BpostedtoSentmin(PC=−0.05)

0%

High I/O on
client

NumberofFlows (PC=0.32),
MCWNDmean(PC=−0.31)

15%

High memory
load on client

NumberofFlows (PC=0.57),
MRTTmax(PC=−0.47)

13%

Network
Bandwidth throt-
tling

NLossRecovery95(PC=0.66) 0.02%

Sporadic packet
drops

MCWND95(PC=−0.47),
BPostedmean(PC=0.24),
Durationmin(PC=−0.07)

4%

Latency MRTTmax(PC=0.94) 0.02%

Table 2.4: The important features for identifying each type of failure in the simplex
application.

was increased, whereas it was positive in the normal data. The client, having less

memory, is pushing less data to the server allowing it to “keep up”.

Packet drops. Using a commercial tool called SoftPerfect [4], we induce 5, 10, and

30 percent packet drop rates on all connections to the service. Metrics pointing to

TCP throughput are those mostly used to identify the failure. While packet drops

do result in a decrease in throughput it is surprising that DupAcks are not the

most prominent metric. Indeed, the maximum number of BReceived has twice as

high information gain than any of the DupAck statistics. We plotted the CDF’s for

both these metrics. Both showed a significant difference between failure/normal

data. And therefore, we can only explain this choice by noting that the impact

of BRecieved had a more pronounced effect on information gain compared to the

number of DupAcks.

Connection drops. This type of failure is one of the easiest for our classification

25



2.6. Evaluation

tool to identify as tracking SYN, SYN/ACK ETW events suffice in understanding

whether all or only a random subset of connections are being dropped. Thus, these

failures are identified with 100% accuracy. With clear indicators, that identify why

they occur.

Overall takeaways. TCP reacts differently to different failures. Therefore, the top

three features selected by the decision tree also vary across failures. PC values

are not a good predictor of the importance of TCP metrics. In fact, the top three

features on occasion have low absolute PC values, suggesting that the relation-

ship between faults and TCP metrics may be more complex than a straightforward

linear one. This makes manual classification difficult and motivates the need for

automated approaches.

2.6 Evaluation

We have developed a prototype of NetPoirot , which we deployed in a production

data center with failure injection and application workloads as described in Sec-

tion 2.5.1. The focus of our evaluation is to measure the accuracy of NetPoirot in

identifying each failure type. To this end, we compute the confusion matrix [27] of

the test set on the trained model. A confusion matrix illustrates what each class of

failure in the test set is classified as by NetPoirot .

Within each class, we further report the precision and recall, defined as follows:

Precision is defined as the ratio of true positives divided by the sum of true posi-

tives and false positives. It is a measure of reliability. For example, if the precision

of the network failures are reported as 96%, it means that when NetPoirot allocates

responsibility to the network for a failure it is the culprit with 96% likelihood.

Recall is the ratio of true positives to the actual number of instances in a class and

is a measure of NetPoirot ’s ability to recognize that an entity is indeed responsible

for a failure.

26



2.6. Evaluation

We will first describe the performance of NetPoirot when only TCP metrics

from the client side are used. We then show that by augmenting network infor-

mation with high-level counters, e.g. CPU load, on the same client machine one can

achieve almost perfect classification.

We use the workload described in Section 2.5 and partition the measured data

into two sets for training and testing. The partition is done by using disjoint sets

of machines for the training and test sets in order to avoid any bias in favor of

NetPoirot . The datasets used for training and testing are roughly the same size

and contain aggregated information for over 37 million connections.

General
label

Fault P (fault |
error ∩
General label)

P (error |
fault)

Server

High CPU load on
sever

66.36% 24%

Slow reading server 2.81% 4.06%
High I/O on server 6.36% 9.66%
High memory load
on server

24% 17.51%

Client
High CPU load on
client

4.78% 9.86%

High I/O on client 33% 17.61%
High memory load
on client

61.52% 11.2%

Network
Bandwidth throttling 96.06% 20.06%
Sporadic packet
drops

0.21% 0.13%

Packet reordering 3.71% 1.52%
Latency 0 0

Table 2.5: The classification errors of NetPoirot in each general label broken down
in terms of faults.

2.6.1 Overall Accuracy and Confusion Matrix

Duplex application. Fig. 2.3 shows the confusion matrix of NetPoirot when

tested on the duplex application. We focus here on identifying the entity responsi-

ble for a failure. This could be the Client, Server, Network, or Normal (non-failure).

Individual failure classification is deferred to Section 2.6.2. For better visualization,

27



2.6. Evaluation

we show the confusion matrix as a bar graph in each class, where labels on the x-

axis show the ground truth. The bars show what each failure was classified as by

NetPoirot . The bar matching the ground truth label on the x-axis represents the

value of recall. For example, Normal (green bar) has a high recall value close to

100% (height of the green bar). Precision values are reported on the x-axis next to

the ground truth labels in parenthesis.

We make the following observations. First, network failures are the easiest to

diagnose from TCP statistics and the most reliable among the three types of failure

classes. NetPoirot has 99% precision for network failures, indicating that an output

of “Network” from NetPoirot can be trusted. Server failures are the hardest to

identify, given the lack of direct access to server side information. Recall was 82%

for these failures, with the majority of errors going to Normal.

To understand the source of our errors, we looked into the specifics of the mis-

classified subclasses. Table 2.5 shows this information, limited to the misclassified

data points from Fig. 2.3. P (fault | error ∩General label) describes the probability

of a failure given that it was erroneously classified by NetPoirot and that it be-

longed to a particular class (Network/Server/Client). In other words, this column

shows the breakdown of the error in each class to show how much was attributed

to each particular failure. The second column, P (error | fault), shows the proba-

bility of classification error given a failure type. This shows the likelihood that a

failure of a particular type will be misclassified by NetPoirot .

As can be seen, the error within each class is usually less than 20%. However,

High CPU load on server seems to be the most problematic failure type with 24%

misclassification as normal data. Also, note that even though Network failures

have a high recall of 90%(as shown in Fig. 2.3), almost all the error in the remaining

10% can be attributed to bandwidth throttling. We found that within this failure,

throttling at 50 and 1 Mbps caused the most problems as they did not significantly

disrupt application performance.

28



2.6. Evaluation

The above shows the performance of NetPoirot when it relies only on TCP met-

rics from the client side. We can achieve near 100% precision/recall on Server and

Client failures by augmenting network information with CPU/IO/Memory load

from only the client machine (this is indicated by the high precision in the Network

class). We can then locally check whether a client-side problem has occurred. If

not, NetPoirot can check whether the failure is due to a Network problem. If both

tests are negative, by elimination, the Server is the cause of failure. Note that sim-

ply relying on client information without TCP metrics (and NetPoirot ) would not

work – it would provide high precision/recall for client failures but fail (0% recall)

for all other failures.

Finally, NetPoirot exhibits high precision in all classes of failures indicating

that the entity output by NetPoirot can be trusted with high probability as the

source of the failure.

Simplex application. The duplex application shows the worst case performance

of NetPoirot on typical applications that have bidirectional communication. We

also examine a more extreme situation where data is only transmitted from the

client machine. Fig. 2.4 shows that while precision and recall remain high for

network failures, it is more difficult to differentiate between Client/Normal and

Server/Normal. We note, however, that the errors are not uniformly spread across

all failures. In fact, NetPoirot achieved a recall of 99.9% in detecting high CPU load

on the server. However, high I/O and high memory on the server side contribute

to the majority of the misclassifications. This is because the simplex application

lacks information that relates to data transmitted by the remote application, given

that communication is only in one direction. To understand why this information

is critical, we observe from Table 2.3 that in the case of the duplex application, the

amount of data transmitted by the remote application (BReceived) plays a signifi-

cant role in identifying the failure related to high memory on the server side.

We present the simplex application as an extreme scenario. Given that most

29



2.6. Evaluation

applications have bidirectional communication similar to the duplex application,

we focus on the duplex application for the rest of this section.

Figure 2.3: Confusion matrix on the duplex application’s failure. Recall on each
class is as follows: Normal: 97.94%,Client: 87.32%,Server: 81.89%, Network: 90%.
Precision values are included in the x axis for each class.

2.6.2 Individual Failure Classification

NetPoirot is primarily designed to identify the entity responsible for a failure. As

a more ambitious goal, it is highly desirable to also identify the actual failure type

itself. To test the extent to which NetPoirot can accurately classify specific fail-

ures (as opposed to responsible entities), once the failure class is identified (Sec-

tion 2.6.1), we use detailed failure labels to train an additional diagnosis function

to identify the type of failure within the entity. The results are shown in Table 2.6.

The third column only uses TCP metrics at the client, while the fourth column

includes additional client-side information such as CPU, IO, and memory.

Table 2.6 shows that NetPoirot can classify the majority of failures, particularly

on the network and server. In fact, NetPoirot is accurate enough in these classes

30



2.6. Evaluation

Figure 2.4: Confusion matrix on the simplex application’s failure. Recall on each
class is as follows: Normal: 78%,Client: 47%,Server: 55%, Network: 95.4%. Preci-
sion values are included in the x axis for each class.

so that we simply used a standard random forest trained for the failures with-

out having to resort to running tournaments. For the client side failures, however,

NetPoirot does not perform as well and we have to run tournaments. Distinguish-

ing between high I/O and memory load on both the client and server proved ex-

tremely difficult without client-side information as TCP behavior remains largely

the same in the presence of either failure. They are presented as a single class in

Table 6. We note that, simply by augmenting the TCP statistics used by NetPoirot

with client-side information, one can achieve high accuracy in identifying the in-

dividual failure type.

2.6.3 Untrained Failures

NetPoirot ’s design is based on supervised learning and thus requires labeled data

for training. This means that it should not be able to detect failures for which

31



2.6. Evaluation

General
label

Fault With only client net-
work stats

With all client stats

Server side
High CPU
load on server

Precision:99.69%,
Recall:75.54%

Precision:99.78%, Re-
call: 76%

Slow reading
server

Precision:83.21%,
Recall:95.66%

Precision:83.63%,
Recall:96.44%

High I/O or
Memory on
Server

Precision:65.78%,
Recall:98.75%

Precision:76.97%,
Recall:98.75%

Client side High CPU
load on client

Precision:75.64%,
Recall:88.05%

Precision:100%,
Recall:100%

High I/O or
Memory on
Client

Precision:82.63%,
Recall:98.48

Precision:100%,
Recall:100%

Network
Bandwidth
throttling

Precision:91.4%,
Recall:79.94%

Precision:92.14%,
Recall:85.53%

Sporadic
packet drops

Precision: 75.54%,
Recall: 97.72%

Precision: 75.54%,
Recall: 97.72%

Packet re-
ordering

Precision: 99.73%,
Recall: 66.53%

Precision: 99.73%,
Recall: 66.84%

Latency Precision:99.47%, Re-
call: 100%

Precision: 99.47%,
Recall=100%

Table 2.6: Detailed fault classification with and without additional client side in-
formation.

it was not specifically trained. Thus, it is important to understand NetPoirot ’s

typical behavior in the presence of such failures. The situation can occur in one of

the following two ways:

Dormant failures: A previously unknown type of failure is present during training

and is labeled as Normal.

Unknown failures: A failure occurs for the first time during runtime.

While we cannot anticipate what the “unknown/dormant” failures would be,

we attempt to illustrate this behavior by purposefully changing our original train-

ing data to reflect each of these behaviors. Ideally, we would like these failures to

be either classified as Normal by NetPoirot , or as their ground truth class (actual

entity).

To emulate dormant failures, we deliberately mislabeled each class in our train-

ing data as Normal before training NetPoirot . Similarly, to emulate unknown fail-

ures, we remove failed classes from the training data. We then investigate what

entity will be output as being responsible for these unknown failures. Fig. 2.5

32



2.6. Evaluation

Figure 2.5: NetPoirot performance on dormant and unknown failures, when all
client statistics are used.

shows that dormant failures result in most of the dormant failure being classified

as Normal (what we are hoping for). This shows that in the presence of dormant

failures, an output of Normal from NetPoirot may require further investigation to

uncover the source of the problem. Fig. 2.5 also shows that NetPoirot is resilient

to unknown failures, as failures from each entity have similar characteristics7. In

the few failure types where significant misclassifications occur, they usually result

in classification to Normal.

2.6.4 Sensitivity Analysis

We do a series of sensitive analysis to explore NetPoirot ’s ability to detect failures

across data centers.

So far we have shown the accuracy of NetPoirot when the data center locations

7Fig. 2.5 shows the results for when both client and network statistics are used. Our results
showed that NetPoirot performed almost equally as well when using only network information.

33



2.6. Evaluation

of the machines used for testing only partially overlap with those used in training.

Here we investigate whether the location of the machines used for training and

testing influences the performance of NetPoirot .

Sensitivity to Cross Data-center Effects. In this experiment, we train NetPoirot

for the duplex application using client machines in data centers on the west coast

and one of the southern states. We then test the result on data from machines in

the same southern state, and also on those in a midwest data center. Table 2.7

summarizes the precision and recall for test data collected for two machines in the

southern data center, and two machines in the midwest. We observe that NetPoirot

is mostly resilient to the location on which it has been trained. Interestingly, server-

side failures are the most sensitive to location. We conjecture that this may be

caused by cross-traffic effects as RTT variance increases. Further investigation is

needed as part of our future work.

General label Southern State Midwest
Normal Precision: 98.85% Re-

call: 98.2%
Precision: 83.34% Re-
call: 99.07%

Client Precision: 100% Re-
call: 100%

Precision: 100% Re-
call: 100%

Server Precision: 84.71% Re-
call: 94.67%

Precision: 97.75% Re-
call: 78.91%

Network Precision: 98.85% Re-
call: 88.99%

Precision: 100% Re-
call: 98.82

Table 2.7: Performance breakdown by machine location. All client statistics are
used for classification.

Sensitivity To Failure Duration. We next investigate NetPoirot ’s ability to identify

short-lived failures. Table 2.8 summarizes our results for three failures (high IO at

server, high IO at client, and high network latency). For training, we use failures

that last for the application’s lifetime. For each test case, we inject failures with

durations ranging from less than 30 seconds, to 5 to 6 minutes. We allow at least

a 15 minute gap between each failure. Our results indicate that NetPoirot is not

overly sensitive to the duration of the failure. Note the relatively higher accuracy

in identifying high I/O on the server side as compared to Table 2.5. This is because

34



2.6. Evaluation

the VMs we use for testing and training in this scenario are all from the same data

centers.
Duration Client (High IO) Server (High IO) Network (High Latency)
< 30s 100% 100% 100%

[30s,1min] 100% 99.99 100%
[1, 3]min 100% 96.96% 97%
[3, 5] min 100% 99% 100%
[5, 6] min 100% 96.01% 100%

Table 2.8: Sensitivity to failure duration. Recall numbers are shown here.

Sensitivity to Per-connection Training. NetPoirot is trained on a per-application

basis, where the decision-tree based forests are built using TCP metrics aggre-

gated across all connections of an application to the same service. This aggregation

method has three advantages: 1) It allows us to take advantage of the differences

across connections to better detect failures, 2) It allows us to capture an applica-

tion’s reaction to failure, and 3) It reduces the runtime/training overhead of Net-

Poirot .
General
label

Normal Client Server Network

Precision 74.2% 100% 48.16% 89.53%
Recall 85.77% 100% 41.46% 77.82%

Table 2.9: Performance of NetPoirot when used for per connection classification.

We explore another method of training, where we build the forest on a per-

connection basis. Table 2.9 shows the precision/recall achieved by NetPoirot , on

failure detection using the duplex application. Here, NetPoirot is trained using

per-connection metrics. We observe that training on a per-connection basis re-

quires 100X increased learning time. Hence, we are restricted to only 40% of the

earlier training set. We observe that the recall and precision numbers are lower.

For example, server-side failures are the hardest to classify, with a recall of 41.46%.

Overall, per-application aggregation is a more accurate and efficient approach, and

the alternative approach should only be considered if the operator requires per-

connection diagnostics information.

35



2.6. Evaluation

2.6.5 Real Application Analysis

Our test applications present challenging scenarios that help us explore the limits

of NetPoirot ’s ability to detect failures. As noted in Section 2.5.1, these are extreme

applications as they do not modify their communication patterns in response to

failures. Here, we explore the performance of NetPoirot on two real-world ap-

plications, one based on video streaming, and another based on traces from our

production data center containing EX failures.

YouTube video streaming. We tested NetPoirot on data collected while streaming

YouTube videos in a browser. On 9 of our VM’s located in three different data cen-

ters, we induced Client and Network failures8 while streaming YouTube Videos.

Table 2.10 shows the results for when only network statistics are used. Compared

to our results in Section 2.6.1, we observe that NetPoirot does significantly better

on the streaming application than on the duplex and simplex applications.

General
label

Normal Client Network

Precision 97.78% 99.7% 100%
Recall 99.68% 98.25% 99.37%

Table 2.10: Performance of NetPoirot when used to identify failures when stream-
ing YouTube videos.

Production applications experiencing EX. We run an experiment to validate Net-

Poirot ’s effectiveness in identifying causes of EX failures based on real production

traces. We use Syslog entries from our production machines to identify when an

EX event caused a VM reboot. As training and test sets, we extract information

captured by our monitoring agent,which is deployed on all compute nodes in our

data centers, during the same time period . The monitoring agent used to cap-

ture this data is an older version of NetPoirot and does not report metrics such as

time spent in zero window probing which we added in subsequent releases. We

additionally use resolved tickets to identify the cause of failures.
8Server failures are excluded as we do not control the servers.

36



2.6. Evaluation

We use a large subset of machines (162/175) for training as EX occurrences on

any one machine tend to be low (typically at most 1), though in aggregate, they

occur frequently. The remaining machines are used for testing. We lack direct

access to the ground truth labels and have to use a combination of log analysis and

resolved tickets to identify the start-time/type of the failure that lead to EX. Note

that in a real-world deployment, we would have injected faults as described in

Section 2.3 in the training phase to induce and learn about all types of EX failures,

leading to a more accurate failure labeling process.

Figure 2.6: Confusion matrix on EX. Recall on each class is as follows: Normal:
94.53%,Client: 98.54%, Server: 100%,Network: 98.2%.

In the training set, we mark the duration of each failure based on a simple

heuristic. We know when the failure ended as the VM experiencing EX reboots

(detectable from Syslog), we set the failure start time to 3 minutes prior to this

reboot. We do not use data after the reboot. 3 minutes is a conservative estimate

that we apply. However, this is at best an estimate. After talking to operators of

37



2.7. Discussion

a large scale datacenter, they confirmed that the duration of failures that cause EX

are highly variable and can last from a couple of seconds to minutes.

To improve label accuracy, we first pass each class of failure in the test set

through a classifier that identifies that failure (e.g. Client) from Normal data. We

then label the data based on the output as failure/Normal making sure that each

class occurs with contiguous time stamps. Similarly for the data that we label as

normal, based on the 3 minutes time-frame, we first pass it through each of these

classifiers and label it as failure if its timestamp is a continuous extension of the

failure on the same machine. This allows us to extend the failure labeling past the

3 minute conservative estimate.

Fig. 2.6 shows the confusion matrix similar to the format described in Sec-

tion 2.6.1. Since client information was not collected, the results are based on Net-

Poirot when using network statistics alone. We make the following observations.

First, despite lacking the actual ground truth on failures and the time interval in

which they occur, NetPoirot never misclassifies failures as other types of failures.

Second, given course granularity labels of failures vs normal, NetPoirot is able to

achieve very high recall values, consistently above 94%, and in fact, achieves 100%

recall for server failures. This suggests that NetPoirot is a promising approach at

pinpointing the entity causing EX.

2.7 Discussion

Our results in Section 5.4 demonstrates the effectiveness of NetPoirot in pinpoint-

ing the source of failures in a data center. We perform a range of sensitivity anal-

ysis, on different applications to fully explore the efficacy of NetPoirot . In doing

so, we have identified possible extensions of NetPoirot , as well as gained a better

understanding of the scenarios in which it is most useful. We briefly discuss these

possibilities here, as well as point out directions for future extensions.

38



2.7. Discussion

NetPoirot uses lightweight endpoint monitoring, is non-intrusive, and incurs

minimal overhead to machines in a data center. Despite being lightweight, Net-

Poirot is able to perform accurate failure detection of the entity responsible for

the failure, and even the type of failure itself. This precludes identification of the

actual device, e.g. the physical router that causes a network problem. Another

limitation of NetPoirot is its reliance on TCP metrics, which precludes failures ob-

served by UDP. Given that most traffic within data center uses TCP, a wide range of

applications (e.g. web apps, database applications) can still benefit from NetPoirot

.

NetPoirot is a lightweight failure identification tool for data center applica-

tions. We have identified several avenues to further improve our results via more

sophisticated learning techniques. These include:

Cross-application learning. NetPoirot requires per-application training, which we

argue is feasible, given that learning can be done offline for each new application

being deployed in a data center. One interesting idea we are exploring is the use

of a concept in machine learning, known as transfer learning [109], in which the

feature space of one application can be modified so that it can be used in NetPoirot

for identifying the cause of failures in another application.

Non-production training. NetPoirot exploits the fact that data centers tend to have

homogeneous setups, where failures can be induced on a subset for machines for

supervised learning. This has been explored by others [129]. As an enhancement,

we plan to explore training in a staging environment. Our sensitivity analysis in

Section 2.6.4 suggests that NetPoirot is resilient to learning across data centers,

suggesting it is possible to limit the training to a single cluster within a data center,

and still apply the results to another cluster with similar configuration.

Improving accuracy. In Section 2.4.2 we reported that traditional CV on our data

set yields an error of 1.5%. Cross-validation error where each fold comprises of

data from only a single machine is much higher (11%). This suggests that if sam-

39



2.7. Discussion

ples of faulty/normal data from a machine exist in the training data, the classifi-

cation error on that machine dramatically decreases. Thus, continuously changing

the machines used in training should improve the accuracy of NetPoirot even fur-

ther over time.

40



Chapter 3

Finding The Device Responsible For

The Failure

In Chapter 2 we introduced NetPoirot, a system which allows for the identification

of the entity responsible for a failure that is completely contained to the end host.

NetPoirot, however, is only the first step in the diagnosis process. Once a network

failure is detected it still remains to detect the link/switch that caused the fail-

ure. For example, during our deployment of NetPoirot in a production datacenter,

we found that on a typical day 17% of VM reboots were due to network related

failures. Such networks are comprised of thousands of links and switches. Thus

finding the cause of failures is often equivalent to finding a needle in the proverbial

haystack.

In this chapter we will outline why state of the art diagnosis algorithms fall

short in identifying the cause of many of such failures and present a new system

Vigil which not only allows for identifying the cause of failures but also allows us

to go one step further and to identify the link most likely to have dropped packets

on each individual TCP connection.

41



3.1. Introduction

3.1 Introduction

Vigil started with an ambitious goal: For every TCP retransmission in our data

centers, we wanted to pinpoint the network link that caused the packet drop that

triggered the retransmission with negligible diagnostic overhead or changes to the

networking infrastructure.

This goal may sound like an overkill—after all, TCP is supposed to be able to

deal with a few packet losses. Packet losses might occur due to simple congestion

instead of network equipment failures. Even network failures might be transient.

Above all, there is a danger of drowning in a sea of data without generating any

actionable intelligence.

These objections are valid, but so is the need to diagnose TCP “failures” which

can result in severe problems for applications. For example, in most data centers,

VM images are stored in a storage service. When a customer boots a VM, the im-

age is mounted over the network. Thus, even a small network outage can cause the

host kernel to “panic” and reboot the guest VM. In fact, our observations show that

17% of VM reboots in a production data center were caused by network issues and

in over 70% of these, none of the available monitoring systems were able to pin-

point the link(s) that caused the problem. To illustrate this problem, in a one-day

snapshot, there were on average 10 VM reboots per hour across these data centers

caused by network problems that could not be attributed to a specific network link

or device.

Since VM reboots directly affect the end customer, we place very high value on

understanding their root causes. Any persistent pattern in such transient failures

is a cause for concern and is potentially actionable. An example of such failure is

silent packet drops [65]. Such problems are nearly impossible to detect with tradi-

tional monitoring systems (e.g., SNMP counters). If a switch is experiencing such

problems, we may want to reboot or replace it. Such interventions are “costly”

42



3.1. Introduction

in that they affect a large number of flows/VMs. Therefore, we need a system to

correctly assign the blame in face of such transient failures.

There is a lot of prior work in the area of network failure diagnosis and blame

assignment. However, none of the existing systems meet the ambitious goal we

have set for ourselves. Pingmesh [65] sends periodic probes to detect link failures

and can therefore leave “gaps” in coverage, as it must manage the overhead of

probing. Also, since it uses out-of-band probes, it cannot detect failures that affect

only in-band data. NetPoirot, identifies the network as a likely cause of perfor-

mance issues, but cannot find the specific device that causes the problem. Roy

et. al. [119] report a system that monitors all paths in the network for possible

link failures. Their system requires modifications to routers and assumes a specific

topology. Everflow [145] cannot be directly used to pinpoint the location of packet

drop, since it would require capturing all traffic, which is not scalable.

To address these limitations, we propose Vigil, a simple, lightweight, always-on

monitoring tool. Vigil records the path of TCP connections that suffer from one or

more retransmission and assigns a proportional “blame” to each link on the path.

Vigil then provides a ranking of the links that represents their relative packet drop

rates. Using this ranking, it can find the most likely cause of packet drops on each

TCP connection.

Vigil has several noteworthy properties. First, it does not require any changes

to the existing networking infrastructure. Second, it does not require changes to

the client software—the monitoring agent is an independent entity that sits on

the side. Third, Vigil detects in-band failures and is hence more useful than tools

such as Pingmesh [65]. Fourth, Vigil continues to perform well in the presence of

noise, as opposed tools such as to NetDiagnoser [48]. Finally, Vigil’s overhead is

negligible.

While the high-level design of Vigil is deceptively simple, the practical chal-

lenges of making Vigil work and the theoretical challenge of proving that Vigil

43



3.2. Problem and challenges

works are non-trivial. For example, its path discovery is based on a traceroute-

like approach. Due to the use of ECMP, traceroute packets have to be carefully

crafted to ensure that they follow the same path as the TCP connection. Also, we

needed to ensure that we do not overwhelm the routers along the path by sending

too many traceroutes (traceroute responses are handled by control-plane CPUs of

the routers, which are quite puny). To this end, we had to do careful calculations to

ensure that our sampling strikes the right balance between the need for accuracy

and the overhead on the switches. On the theoretical side, we are able to show that

Vigil’s simple blame assignment scheme is highly accurate even in the presence of

noise.

In summary, this paper makes the following contributions: (i) we design Vigil,

a simple, lightweight, and yet accurate fault localization system for data center

networks; (ii) we prove that Vigil is accurate without imposing excessive burden

on the switches; (iii) we prove that the simple blame assignment scheme used by

Vigil correctly finds the failed links with high probability; and (iv) we show how

to tackle numerous practical challenges involved in deploying Vigil in a real data

center.

Our results from deploying Vigil in a tier-1 data center show that it detects

every problem identified by other previously deployed monitoring services while

also pinpointing the sources of problems for which information is not provided by

these monitoring services.

3.2 Problem and challenges

The goal of Vigil is to identify the cause of TCP retransmissions with high probabil-

ity. Our current focus is mainly on infrastructure traffic, especially connections to

services such as storage as these can have the most severe consequence (see §3.1).

Note that we are deliberately not excluding congestion-induced retransmissions.

44



3.2. Problem and challenges

1 3

4

2
Figure 3.1: Simple tomography example, where a simple optimization problem
can find the problematic link.

If episodes of congestion (however short-lived) are common on a link, we want to

be able to flag them. Of course, in practice, any such system needs to deal with a

certain amount of “noise”—which we will formalize later.

The design of Vigil is driven by two practical requirements: (i) it should scale to

data center size networks and (ii) it should be deployable in a running data center

with as little change to the infrastructure as possible.

Generally, there are three ways to monitor link failures to determine the cause

of packet drops. First, one can continuously monitor switch counters. These are,

however, inherently unreliable [136] and monitoring thousands of switches in a

data center at a fine time granularity is not scalable. Having to correlate this data

with each TCP retransmission significantly exacerbates this problem. Second, one

can use a system like PingMesh [65] that sends probe packets to monitor link sta-

tus. Such systems suffer from a rate of probing trade-off: sending too many probes

creates unacceptable overhead whereas reducing the probing rate leaves temporal

and spatial gaps in coverage. More importantly, the probe traffic does not capture

what the end user and the TCP connections see. Thus, we choose the third alter-

native, which is to use data traffic itself as probe traffic [119]. Using data traffic has

the advantage that the system introduces little or no monitoring overhead.

45



3.2. Problem and challenges

As one might expect, almost all traffic in our data centers is TCP traffic. One

way to monitor this type of traffic is to use a system like Everflow. Everflow in-

serts a special tag in every packet and has the switches mirror tagged packets to

special collection servers. Thus, if a tagged packet is dropped, we can easily de-

termine the link on which it happened. Unfortunately, there is no way to know in

advance which packet is going to be dropped, so we would have to tag and mirror

every single TCP packet. This is clearly infeasible. We could tag only a fraction of

packets, but doing so would result in another sampling rate trade-off.

Hence, it follows that we must rely on some form of network tomography [143,

71, 85]. We can take advantage of the fact that TCP is a connection-oriented, reliable

delivery protocol, so that any packet loss results in retransmission1,which can be

easily detected. If we knew the path of every TCP connection, we can set up a

standard optimization problem to determine, with high confidence, which link

may have dropped the packet. For example, in Figure 3.1, the link between nodes

2 and 4 is lossy and drops packets. As a result, connections 1-2, and 3-2 suffer

from retransmissions, but connection 1-3 does not. A straightforward set cover

optimization formulation that attempts to minimize the number of “blamed” links

will correctly identify the cause of drops on each TCP connection.

Still, there are two issues with this approach: (i) the optimization problem is

known to be NP-hard [22] and solving it on the data-center scale is not feasible;

(ii) tracking the path of every single TCP connection in the data center is not scal-

able in our setting.

One can use alternative solutions such as using Everflow to track the path of

SYN packets or use a system like the one described in [119]. However, both these

schemes rely on making changes to the switches. The only way to capture the

path of a TCP connection without making any special infrastructure support is to

run something like a traceroute. However, traceroute relies on getting ICMP TTL
1False retransmissions are rare and we handle them (§3.4).

46



3.3. Design Overview

exceeded messages back from the switches. These messages are generated by the

control plane, i.e., the switch CPU, not the ASIC that drives the dataplane. To avoid

overloading the CPU, our datacenter administrators have capped the rate of ICMP

responses to 100 per second. This severely limits the number of TCP connections

we can track.

Given these limitations, what can we do? In this paper, we show that the an-

swer, for data center networks, is deceptively simple. We show that if (a) we track

the path only of those TCP connections that have suffered retransmissions, (b) as-

sign each link on the path of such a connection a vote of 1/h, where h is the path

length, and (c) sum up the votes during a given period, then the top-voted links

are almost always the ones that are dropping packets (see §3.5)! Unlike the solu-

tion of the optimization problem, our scheme is able to provide a ranking of the

links in term of their drop rates, i.e. if link A has a higher total vote than B, it is

also dropping more packets (with high probability). This allows Vigil to find the

link most likely responsible for each connection’s packet drops.

In the next three sections, we describe Vigil in more detail, beginning with an

overview of its architecture.

3.3 Design Overview

Figure 3.2 shows the overall architecture of Vigil. Within our data centers, Vigil

is deployed side-by-side with other applications on each end-host as a user-level

process running in the host OS. Vigil (shown in light purple/gray) consists of three

agents for TCP monitoring, path discovery, and analysis.

At a high level, the TCP monitoring agent detects potential retransmissions at

each end-host. The TCP monitoring agent is deployed on all end hosts in the data

center. The Event Tracing For Windows (ETW) [91] framework2 notifies the agent
2Similar functionality exists in Linux.

47



3.3. Design Overview

D
IP

di
sc

ov
er

y

Software
Load

Balancer

Analysis
agent

...

Top of the rack switch

Tier-1
switches

Host

TCP retransmission

Path

TCP Monitoring

Path Discovery

Other apps

Pre-processor

Host

Vigil

Other
apps

Figure 3.2: Overview of Vigil architecture

as soon as an active TCP connection established by the host suffers a retransmis-

sion (Vigil currently does not monitor TCP connections in the VMs).

Upon a retransmission, the TCP monitoring agent then triggers the path discov-

ery agent (§3.4) to identify the set of links along this connection. The path discovery

agent uses a modified version of traceroute to discover this path to the destination

IP (DIP).

At each end-host, at regular intervals (30 seconds in our implementation), the

voting scheme described in §3.5 is carried out based on the reported paths of con-

nections that suffered retransmission within the epoch. The results of the vote is

sent to a centralized analysis agent to identify the top-voted links across the entire

data center.

Overall, the Vigil implementation consists of 6000 lines of C code at the end-

host. The analysis engine contains an additional several hundred lines of code. Its

memory usage never goes beyond 6 KB on any of our production hosts and its CPU

utilization is minimal (+1% overhead for each core). The bandwidth utilization of

Vigil due to traceroute is minimal (maximum of 200 KBps per host). As our results

will show, Vigil can determine the most likely culprit for each connection, even

with loss rates as low as 0.05%.

48



3.4. The path discovery agent

We now describe the path discovery agent and the analysis agent in more de-

tail.

3.4 The path discovery agent

The path discovery agent uses traceroute functionality to discover the path of TCP

connections that suffer retransmissions. We first ensure that the number of tracer-

outes sent by the agent does not overload our switches (§3.4.1). We then briefly

describe the key engineering issues and how we solve them (§3.4.2). Our data cen-

ters use IP routing and thus the path discovery agent captures the L3 path. The

architecture of the path discovery agent is shown in Figure 3.2.

3.4.1 ICMP Rate Limiting

Generating ICMP packets in response to traceroute consumes switch CPU, which

is a valuable resource in a data center. In our network, there is a hard cap of

Tmax = 100 on the number of ICMP messages a switch will send per second. We

want to limit the traceroute load on the switches such that the number of ICMP

messages is below Tmax. To do so, we first checked the hop count of all host’s TCP

connections during a one hour period in one of our production data centers to see

how many connections might go through a T3 switch. We observed that 97.9% of

these connections had a hop count less than or equal to 5 and did not go through

a T3 switch. Given that our network is a Clos topology and assuming that hosts

under a top of the rack switch (ToR) communicate with hosts under a different ToR

uniformly at random, we show:

Theorem 1. The rate of ICMP packets generated by any switch due to a traceroute is

49



3.4. The path discovery agent

below Tmax if the rate Ct at which hosts trigger traceroutes is upper bounded as

Ct ≤
n1n2Tmax

H max
[
n2,

n2
0(npod−1)

n0npod−1

] , (3.1)

where n0, n1, and n2 are the numbers of ToR, T1, and T2 switches respectively and H is the

number of hosts under each ToR.

Proof. See appendix.

For example, the upper bound of Ct in one of our data centers is 10. This means

that as long as hosts do not open more than 10 connections per second, we can

guarantee that the number of traceroutes generated by Vigil will not go above Tmax.

We use the hard threshold Ct obtained in the above calculation to limit the number

of traceroutes allowed on each host to prevent overwhelming the switches. The

agent triggers path discovery no more than once every epoch for a given connection

to further limit the number of traceroutes. We use epochs of 30 seconds. We will

show in §3.5 that this number is sufficient to ensure high accuracies in detecting

links dropping packets in the network.

3.4.2 Engineering Challenges

Using the correct five-tuple: Like most modern data centers, our network also

makes extensive use of ECMP. All packets of a given flow, defined by the so-called

five-tuple, follow the same path [68]. Thus, the traceroute packets must have the

same five-tuple as the TCP connection we are attempting to trace. To ensure this,

we must account for the use of load balancers.

TCP connections are initiated in our data center in a manner similar to that

described in [110]. The connection is first established to a virtual IP (VIP) and the

SYN packet (containing the VIP as destination) goes to a software load balancer

50



3.4. The path discovery agent

(SLB) which assigns that connection to a physical destination IP (DIP) and a service

port associated with that VIP. The SLB then sends a configuration message to the

virtual switch (vSwitch) in the hypervisor of the source machine that registers that

DIP with that vSwitch. The destination of all subsequent packets in that connection

have the DIP as their destination and do not go through the SLB. In order for the

path of the traceroute packets to match that of the data packets, its header should

contain the DIP and not the VIP. Thus, before tracing the path of a connection, the

path discovery module first queries the SLB for the VIP-to-DIP mapping for that

connection and uses the DIP as the destination address for the traceroute packets.

Note that there are cases where the TCP connection establishment itself may fail

due to packet loss. Path discovery is not triggered for such connections. It is also

not triggered when the query to SLB fails to avoid tracerouting the internet.

Re-routing and packet drops: We must consider the possibility that the traceroute

itself may fail. For example, this may happen if the link drop rate is very high. This

actually helps us, since it directly pinpoints the faulty link. Our analysis engine,

described in the next section, is able to use such partial traceroutes.

A more insidious possibility is that the routing may change by the time tracer-

oute starts. We use BGP in our data center network. A lossy link may cause one or

more BGP sessions to fail, triggering rerouting. Then, the traceroute packets may

take a different path than the original connection.

The design of VigilVigil helps avoids this problem. The RTTs in a data cen-

ter are typically less than 1 or 2 milliseconds, so the TCP sender retransmits a

dropped packet quickly. The ETW framework notifies the TCP monitoring agent

immediately, which invokes the path monitoring agent. The only additional delay

is the time required to query the SLB to obtain the VIP-to-DIP mapping, which is

typically less than a millisecond. Thus, as long as paths are stable for a few mil-

51



3.5. The Analysis Agent

liseconds after a packet drop, the traceroute packets will follow the same path as

the TCP connection.

Our network also makes extensive use of link aggregation (LAG) [75]. How-

ever, unless all the links in the aggregation group fail, the L3 path is not affected.

Router aliasing We note that the problem of router aliasing [64] is easily solved in

a data center, as we know the topology, names, and IP addresses of all routers and

interfaces. We simply map the IP’s from traceroutes to the switch names (which

we have from the topology).

To summarize, Vigil’s implementation is as follows: Once the TCP monitoring

agent notifies the path discovery agent that a connection has suffered a retransmis-

sion, the path discovery agent checks its cache of discovered path for that epoch

and if need be, queries the SLB for the DIP. It then sends 15 appropriately crafted

TCP packets with TTL values ranging from 0 − 15. In order to disambiguate the

responses, the TTL value is also encoded in the IP ID field [3]. This allows for con-

current traceroutes to multiple destinations. The TCP packets deliberately carry a

bad checksum to ensure that they do not interfere with the ongoing connection.

3.5 The Analysis Agent

Next we describe the analysis agent, focusing first on its voting-based scheme,

before presenting an analytical optimal solution that is NP-hard for comparison.

3.5.1 Voting Based Scheme

Vigil’s analysis agent operates based on a simple voting scheme. If a connection

sees a retransmission, Vigil votes the links of that connection to be bad. Each vote

carries a value that is tallied at the end of each epoch, giving a natural ranking of

each link in the network. We set the value of good votes to 0 (if a connection has no

52



3.5. The Analysis Agent

retransmission, no traceroute needs to be issued). Bad votes are assigned a value

of 1
h

, where h is the number of hops on the path since every link on the path is

equally likely to be responsible for the drop.

The ranking obtained by Vigil after tallying the votes allows us to identify the

most likely cause of packet drops on each connection by comparing their ranking

(which are higher for links with higher drop rates). To further guard against high

levels of noise, we can use our knowledge of the topology. Namely, when finding

the rankings, the votes of the links lower in the list can be adjusted (assuming

ECMP distributes connections uniformly at random) using an approximation of

the number of votes due to the links higher up in the list. We saw in our evaluations

that this can result in a 5% reduction in the number of false positives.

Note, that Vigil can also be used to find the most problematic links in the net-

work at each point in time. This can be done using Algorithm 1. The algorithm

first sorts the links based on their votes. It then checks whether the top voted link’s

votes are higher than 1% of the total votes cast. If not, it stops. If yes, it marks it

as one of the most problematic links, removes it from the set of links, and adjusts

the votes of the remaining links as described earlier. It continues to iterate in this

manner until the stop criterion is met.

3.5.2 Voting Scheme Analysis

Can Vigil deliver on its promise of finding the most probable cause of packet drops

on each TCP connection? In Vigil’s voting scheme failed connections contribute to

increases in the tally of both good and bad links. Moreover, in a large data center

such as ours, occasional, lone, and sporadic packet drops can and will happen

due to good links (links that have very low drop rates). These failures are akin

to “noise” and can cause severe inaccuracies in any detection system [99], Vigil

included. Thus, the answer to this question is not obvious. We show that the

53



3.5. The Analysis Agent

Algorithm 1 Finding the most problematic links in the network.
1: L ← Set of all links
2: P ← Set of all possible path
3: v(li)← Number of votes for li ∈ L
4: B ← Set of most problematic links
5: lmax ← Link with the maximum votes out of ∀li ∈ L ∩ Bc
6: while v(lmax) ≥ 0.01(

∑
li∈L v(li)) do

7: lmax ← maxli∈L∩Bc v(li)
8: B ← B ∪ {lmax}
9: for li ∈ L ∩ Bc do

10: if ∃ pi ∈ P s.t. li ∈ pi & lmax ∈ pi then
11: Adjust the score of li
12: end if
13: end for
14: end while
15: return B

likelihood of Vigil making these errors is small. Taking advantage of the fact that

we know our topology (Clos network):

Theorem 2. For npod ≥ n0

n1
+ 1, Vigil will rank with probability 1 − 2e−O(N) the k <

n2(n0npod−1)

n0(npod−1)
bad links that drop packets with probability pb higher than all good links that

drop packets with probability pg if

pg ≤
1− (1− pb)cl

αcu

where N is the total number of connections between hosts, cl and cu are lower and upper

bounds, respectively, on the number of packets per connection, and

α =
n0(4n0 − k)(npod − 1)

n2(n0npod − 1)− n0(npod − 1)k
. (3.2)

Proof. See appendix.

A single connection is unlikely to go through more than one “failed” link in

a network with thousands of links. Theorem 7 ensures that the tally of votes on

54



3.5. The Analysis Agent

links with higher drop rates is larger than that of good links. Combining these

two observations allows Vigil to find the most likely cause of packet drops on each

connection.

Note that a straightforward corollary of Theorem 7 is that in the absence of

noise (pg = 0), Vigil can pinpoint all bad links with high probability for large

enough N . In the presence of noise, Vigil can still identify the bad links, as long

as the probability of dropping packets on non-failed links is low enough (i.e., the

signal-to-noise ratio is large enough). This number, however, is compatible with

typical values found in practice. Indeed, take as an example cl and cu to be the

10th and 90th percentiles, respectively, of the number of packets sent by TCP con-

nections across all our hosts in a 3 hour period. If pb ≥ 0.5%, the packet drop rate

on good links can be up to 1.8 × 10−6. For pb ≥ 0.05%, then Theorem 7 only re-

quires pg ≤ 7.7× 10−7. Note that packet drop rates in a production data center are

typically below 10−8 [146].

Another important consequence of Theorem 7 is that it establishes that the

probability of errors in Vigil’s results diminishes exponentially with N , so that

even with the limits imposed by Theorem 3.1 we do not need to use epochs longer

than 30s. Moreover, it is worth noting that the conditions in Theorem 7 are suffi-

cient but not necessary. In fact, §3.6 illustrates how well Vigil performs even when

the conditions in Theorem 7 do not hold (e.g., for a larger number of failed links).

3.5.3 Optimal Solution

While Vigil’s voting scheme works with high probability in a set of situations (those

considered in Section 3.5.2), it is not guaranteed to work in all situations. In this

section, we illustrate an alternative solution in the form of an optimization prob-

lem. Given enough resources and time, this method can find the set of links drop-

ping packets on any given connection with high fidelity. The issue is that finding a

55



3.5. The Analysis Agent

solution to this optimization problem is NP-hard in general [22]. We compare Vigil

to this benchmark in our evaluations.

Our goal is to find the most likely cause of failures. This results in the following

optimization problem:

minimize ‖p‖0

subject to Ap ≥ s

‖p‖1 = ‖s‖1

pi ∈ N ∪ {0}

(3.3)

where N is the set of natural numbers, A is aC×L routing matrix, s is aC×1 vector

that collects the number of retransmissions suffered by each connection during an

epoch, L is the number of links in the network, C is the number of connections in

an epoch, and ‖y‖0 denotes the cardinality of the support of y. Note that the i-th

element of p estimates how many retransmissions were caused by link i, so that it

can be used to rank the network links.

The formulation assumes that the minimum subset of links that explain all

packet drops is close to representing the set of links dropping packets in real-

ity (this can be shown to be equivalent to a maximum likelihood formulation).

Formulating the problem as 3.3 allows us to relax the stringent Ap = s constraint

employed in tomography, which allows for finding the most probable cause of

failure. A different binary optimization formulation which only marks the links

as good/bad is also possible. In fact, it is the optimization problem that [48, 80]

approximate. Namely,

minimize ‖p‖0

subject to Ap ≥ s

pi ∈ {0, 1}

(3.4)

Similarly to (3.3), this minimum set cover formulation is not tractable (it is NP-

complete [22]). Moreover, it does not provide a ranking of the links and does not

56



3.6. Evaluations: Simulations

perform well in the presence of noise. Our evaluations showed that Vigil (Algo-

rithm 1) significantly outperformed this binary optimization (by more than 50% in

the presence of noise). We illustrate this point in Figures 3.4 and 3.9, but otherwise

omit results for this optimization in §3.6 for clarity.

In the next three sections, we present our evaluation of Vigil in simulations §3.6,

in a test cluster §3.7, and in one of our production data centers §3.8.

3.6 Evaluations: Simulations

We start by evaluating in simulations where we know the ground truth. In these

simulations, Vigil finds connections whose drops were due to noise and marks

them as “noise drops”. It then finds the link most likely responsible for packet

drops on the remaining set of connections (“failure drops”). A noisy drop is de-

fined as one where the link responsible for the drop only dropped a single packet.

We found that Vigil never marked a connection into the noisy category incorrectly.

We therefore focus on the accuracy for connections that Vigil puts into the failure

drop class.

Performance metrics. Our primary measure for performance for Vigil is detection

accuracy, which is defined as the likelihood of being able to correctly identify the

cause of a failed connection (e.g., pinpoint the correct link that failed). For simplic-

ity, we refer to this only as accuracy in this section. For evaluating Algorithm 1, we

use the alternative performance metrics of recall and precision. Recall is a measure

of reliability and shows how many of the failures Vigil can accurately detect (false

negatives). For example, if there are 100 failed links and Vigil detects 90 of them, its

recall is 90%. Precision is a measure of accuracy and shows to what extent Vigil’s

results can be trusted (false positives). For example, if Vigil flags 100 links as bad,

but only 90 of those links actually failed, its precision is 90%.

Simulation setup. We use a flow level simulator implemented in MATLAB. Our

57



3.6. Evaluations: Simulations

simulated topology consists of 4160 links, 2 pods, 20 ToRs per pod. Each host in

the simulator establishes 2 connections per second to a random ToR in the network

outside of its rack. The simulator has two types of links. For good links that are

operating without failure, packets are dropped at a very low rate chosen uniformly

from (0, 10−6) to simulate noise. On the other hand, failed links have a much higher

drop rate to simulate failures. By default, drop rates on failed links are set to vary

uniformly from 0.01% to 0.1%, though to study the impact of drop rates, we do

allow this rate to vary as an input parameter. The number of good and failed links

is also a tunable simulation parameter. Every 30 seconds of simulation time, we

send up to 100 packets per connection, and drop packets based on the rates above

as they traverse links along the connection. The simulator records all connections

with at least one packet drop, for each such connection, the link with the most

drops.

As a basis for comparison, we compare Vigil against the optimal solution de-

scribed in in §3.5.3. We refer to the optimal solution as “Integer Optimization” in

the figures, and “optimization” in the text when comparing with Vigil.

3.6.1 In the optimal case

In our first experiment, we use simulation settings where the bounds in Theorem 7

do hold. Recall that these bounds are sufficient conditions for Vigil’s accuracy.

The first experiment aims to validate that Vigil can trivially achieve high levels of

accuracy as expected. Given the simulation setup above, we set the drop rates on

the failed links to be between (0.05%, 1%). At drop rates below 0.05%, the theorem

bounds will no longer hold.

Accuracy. Figure 3.3 shows that Vigil has an average accuracy that is higher than

96% in almost all cases. Furthermore, due to its robustness to noise, it also outper-

forms the optimization algorithm (§ 3.5.3) in most cases.

58



3.6. Evaluations: Simulations

0

0.5

1

2 6 10 14

A
cc

ur
ac

y

Number of failed links

Vigil
Integer optimization

Figure 3.3: When Theorem 2 holds.

Recall and precision. Figure 3.4 shows that even with low packet drop rates on

the failed links, Vigil detects the failed links with high recall and precision. This

confirms that when the conditions in Theorem 7 hold, Vigil can be trusted to find

the right set of links.

In the rest of this section, we proceed to evaluate Vigil’s performance when the

conditions in Theorem 7 do not hold (i.e. packet drop rates below 0.05%). This

illustrates that while sufficient, these conditions are not necessary for the good

performance of Vigil.

3.6.2 Varying Drop Rates

Our next experiment aims to push the boundaries of Theorem 7 by varying the

“failed” links drop rates well below the conservative bounds of Theorem 7.

Single Failure. Figure 3.5a shows simulation results for different drop rates on a

single failed link in the network. Our results show that for high drop rates, Vigil

can find the cause of packet drops on each connection with high accuracy. Even

as the drop rate decreases below the 0.05% bound obtained from Theorem 7, we

59



3.6. Evaluations: Simulations

Number of failed links

0

50

100

2 6 10 14

P
re

ci
si

on
(%

)

25

75

0

50

100

2 6 10 14

R
ec

al
l 
(%

)

Number of failed links

(a) (b)

25

75

Vigil
Integer optimization
Binary optimization

Figure 3.4: Testing Algorithm 1 when Theorem 2 holds.

observe that Vigil is still able to maintain a high level of accuracy (≥ 80%), on par

with the optimal solution.

Multiple Failures. A noted shortcoming of past work has been in identifying

problematic links in the network where the failed links have very different drop

rates [119]. We test Vigil’s ability to find the cause of packet drops in the presence

of such failures. Figure 3.5b illustrates this point for different number of failed

links under the default drop rate setting described in the simulation setup. Vigil is

almost always successful at identifying the link responsible for a packet drop. In

fact, it surpasses the optimization algorithm (albeit slightly) in §3.5.3. This is due to

the optimization’s susceptibility to lone packet drops due to noise.

3.6.3 Impact of Noise

Single Failure. We next vary the level of noise in the network to see how well

Vigil can attribute the cause of packet drops in the presence of various degrees of

noise. This is done by changing the drop rate of the good links across different ex-

60



3.6. Evaluations: Simulations

0

0.5

1
A

cc
ur

ac
y

0

0.5

1

2

A
cc

ur
ac

y

(a) Single failure (b) Multiple failures

0 0.2 0.4 0.6 0.8 1 6 10 14
Number of failed linksPacket drop rate, (%)

Vigil
Integer optimization

Figure 3.5: Vigil’s accuracy for varying drop rates.

perimental runs. Figure 3.6a shows the accuracy results in the case of a single link

failure as the drop rate varies. Higher noise levels could make it harder for Vigil

to detect the link failure through Algorithm 1. However, as shown in Figure 3.6

they have little impact on its ability to find the cause of packet drops on individual

connections.

Multiple Failures. We repeat this experiment for the case of 5 failed links. Fig-

ure 3.6b shows the results. Again, Vigil shows little sensitivity to the increase in

noise when identifying the cause of per-connection packet drops. Note that the

large confidence intervals of the integer optimization problem show its high sensi-

tivity to noise.

3.6.4 Varying Number of Connections

In previous experiments, all hosts opened 2 connections per second. Here, we

allow hosts to choose the number of connections they create in each epoch uni-

formly at random between (10, 60). Recall from Theorem 7 that a larger number of

connections from each host helps Vigil improve its accuracy.

61



3.6. Evaluations: Simulations

0

0.5

1
A

cc
ur

ac
y

0

0.5

1

A
cc

ur
ac

y

(a) Single failure (b) Multiple failures

Packet drop rate,

Vigil
Integer optimization

Packet drop rate,

Figure 3.6: Vigil’s accuracy for varying noise levels. Lone/sporadic drops are
not of interest to a network provider/operator. Vigil can successfully ignore such
drops and continue to perform well in the presence of high degrees of noise.

Single Failure. Figure 3.7a validates this effect for the case of a single filed link.

Our results show that Vigil accurately identify the cause of packet drops on con-

nections with high probability. Vigil also significantly outperform the optimization

when the failed link has a low packet drop rate. This is because the optimization

has multiple optimal points and is not sufficiently constrained.

Multiple Failures. Figure 3.7b repeats the same experiment as above, but we vary

the number of failed links under the default drop rate settings. The integer opti-

mization problem suffers from the lack of information to constrain the set of re-

sults. It therefore has a huge variance (shown in terms of confidence intervals).

Vigil on the other hand maintains high probability of detection (at low variance)

no matter the number of failed links.

3.6.5 Impact of Traffic Skews

Single Failure. We next demonstrate Vigil’s ability to detect the cause of connec-

tion packet drops even when traffic is heavily skewed. We pick 10 ToRs at random

62



3.6. Evaluations: Simulations

0

0.5

1

2

A
cc

ur
ac

y

(b) Multiple failures

6 10 14
Number of failed links

0

0.5

1

0

A
cc

ur
ac

y

(a) Single failure

0.2 0.4 10.6 0.8
Packet drop rate, (%)

Vigil
Integer optimization

Figure 3.7: Vigil’s accuracy for varying number of connections. Each host opens
between (10, 60) connections. Where the number is chosen unifromly at random.

from the set of all ToRs in the network (25% of the ToRs). To skew the traffic, 80% of

the connections have destinations set to hosts under these 10 ToRs, an the remain-

ing connections route to hosts randomly chosen in the network. Figure 3.8a shows

that despite the traffic skews, the optimization is much more heavily impacted by

the skew than Vigil. Vigil continues to detect the cause of packet drops with high

probability (≥ 85%) for drop rates higher than 0.1%.

Multiple Failures. We repeated the above experiment for multiple failures. Fig-

ure 3.8b shows that the optimization’s accuracy suffers. It consistently shows a

low detection rate as its constraints are not sufficient in guiding the optimizer to

the right solution. On the other hand ,Vigil maintains a detection rate of ≥ 98% at

all times.

63



3.6. Evaluations: Simulations

0

0.5

1
A

cc
ur

ac
y

0

0.5

2

A
cc

ur
ac

y

(a) Single failure (b) Multiple failures

0 0.2 0.4 0.6 0.8 1 6 10 14

1

Number of failed linksPacket drop rate, (%)

Vigil
Integer
optimization

Figure 3.8: Vigil’s accuracy under heavily skewed traffic. The large confidence
intervals of the optimization problem are a reflection of its sensitivity to noise.

3.6.6 Detecting Bad Links

In all our previous experiments, the focus has been on detection accuracy from

each connection’s point of view. In our next experiment, we evaluate Vigil’s ability

to detect bad links using the metrics of recall and precision.

Single Failure. Figure 3.9 shows the results for finding the failed link in the net-

work using Algorithm 1. In the presence of a single failure, our approach out-

performs the optimization algorithm as it does not require a fully specified set of

equations in order to provide a best guess as to which link is failed.

Multiple Failures. In this scenario, the drop rates on the failed links are heav-

ily skewed. More specifically, at least one failed link is assigned a drop rate in

the range of (10%, 100%) while all others have a drop rate in (0.01%, 0.1%). This

scenario is one where past approaches have reported as potentially hard to de-

tect [119]. Figure 3.10 shows that Vigil can detect up to 7 failures with recall/pre-

cision above 90%. However, its recall drops as the number of failed links increase.

This is due to the fact that the increase in the number of failures drives up the votes

64



3.6. Evaluations: Simulations

of all other links increasing the cutoff threshold and therefore increasing the likeli-

hood of false negatives. In fact if instead the top k links had been selected Vigil’s

recall would have been close to 100% [1]. Further evaluations can be found in [1].

0

50

100

P
re

ci
si

on
(%

)

25

75

0

50

100

0

R
ec

al
l 
(%

)
(a) (b)

25

75

Vigil
Integer optimization
Binary optimization

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 3.9: Algorithm 1 with single failure. Vigil can accurately detect the cause
of problems with recall/precision above 90%. However, its recall drops as the
number of failed links increase.

3.6.7 Effects of Network size

In our final experiment, we explore how Vigil performs as the network size grows.

We observe that its accuracy was on average 98% when the network consisted of

1 pod, 92% for 2 pods, 91% for 3 pods, and 90% for 4 pods when finding a single

link failure. In contrast, the optimization problem (3.3) had an average accuracy

of 94%, 72%, 79%, and 77% for the respective number of pods.

We further evaluate both Vigil and the optimization’s ability to find the cause of

per connection drops when the number of failed links in the network was≥ 30. We

observe that both approach’s performance remained unchanged for the most part,

e.g., the accuracy of Vigil in identifying drop causes in an example with 30 failed

65



3.7. Evaluations: Test Cluster

0

50

100
P

re
ci

si
on

(%
)

25

75

0

50

100

R
ec

al
l 
(%

)

(a) (b)

25

75

2 6 10 14
Number of failed links

2 6 10 14
Number of failed links

Vigil
Integer optimization

Figure 3.10: Algorithm 1 with multiple failures. The drop rates on the links are
heavily skewed. Prior work have noted the difficulty of detecting links with
high drop rates in such scenarios. Vigil, however, continues to exhibit high pre-
cision/recall.

links is 98.01%. Figure 3.11 shows the performance (recall) of using Algorithm 1

as the pod sizes vary. We observe that recall stayed high even as the network

increases in size. The precision was always 100% and we omit the graph for brevity.

3.7 Evaluations: Test Cluster

We next evaluate Vigil on the more realistic environment of a test cluster consisting

of 10 ToRs with a total of 80 links. We only control 50 hosts in the cluster, while

others are production machines. Therefore, the T1 switches see real production

traffic. We recorded 6 hours of TCP traffic from a host in production and replayed

that traffic from our hosts in the cluster (with different starting times varying by 1-2

minutes). Using Everflow-like functionality [145] on the ToR switches, we induced

different rates of packet drops on T1 to ToR links. Our goal is to identify the cause

66



3.7. Evaluations: Test Cluster

0

0.5

1

1 3 5 7

R
ec

al
l

Number of pods
Figure 3.11: Recall of Algorithm 1 for different numbers of pods. A six pod net-
work consists of 12480 links. In all cases Vigil continues to have Recall higher than
90%. Note, that its precision is 100% for all cases.

of packet drops on each TCP connection §3.7.2 and to validate whether Algorithm

1 works in practice §3.7.3.

3.7.1 Clean Testbed Validation

We first validate a clean testbed environment. We repave the cluster by setting all

hosts and ToR switches to a clean state. We then run Vigil without injecting any

failures. We observe that in the newly-repaved cluster, links arriving at a particular

ToR switch had abnormally high votes, namely 22.5 ± 3.65 in average. We thus

suspected that this ToR is experiencing problems. After rebooting it, the total votes

of the links went down to 0, validating our suspicions. We then proceed with our

controlled experiments.

67



3.7. Evaluations: Test Cluster

3.7.2 Per-connection Link Failure Analysis

We aim to quantify the accuracy of Vigil in identifying the cause of packet drops

when links have very different drop rates. We induce a drop rate of 0.2% and 0.05%

on two different links in the network over an hour period. Since we do not know

the ground truth when the connection path does not go through either of the two

links, we only consider connections that go through at least one of the two failed

links. In 90.47% of the connections seen in a one hour period, Vigil was able to

attribute the packet drop to the correct link (the one with higher drop rate).

3.7.3 Identifying Failed Links

We next validate Vigil’s ability to correctly identify a failed link in the presence

of a single failure. We inject different packet drop rates on a chosen failed link

and seek to determine whether there is a correlation between total votes and drop

rates. Specifically, we look at the difference between the vote tally on the bad link

and that of the most voted good link. We induced a packet drop rate of 1%, 0.1%,

and 0.05% on a T1 to ToR link in the test cluster.

Figure 3.12 illustrates the distribution for the various drop rates on the bad link.

As the figure indicates, the failed link has the highest vote out of all links when the

drop rate is 1% and 0.1%. When the drop rate is lowered to 0.05%, the failed link

becomes harder to detect due to the smaller gap between the drop rate of the bad

link and that of the normal links. Indeed, the bad link only has the maximum score

in 88.89% of the instances (mostly due to occasional lone drops on healthy links).

Nevertheless, it is always one of the 2 links with the highest vote.

Figure 3.12 also shows the high correlation between the probability of packet

drop on a links and its vote tally. Note that this trivially shows that Vigil is 100%

accurate in identifying the cause of packet drops on each connection given a single

link failure: the failed link has the highest votes among all links. We compare Vigil

68



3.8. Evaluations: Production

with the integer optimization problem in (3.3). We find that the latter also returns

the correct result every time, albeit at the cost of a large number of false positives.

To illustrate this point: the number of links marked as bad by (3.3) is 1.54 ± 0.09,

1.18 ± 0.04, and 1.47 ± 0.13 times higher than the number given by Vigil for the

drop rates of 1%, 0.1%, and 0.05% respectively (averaged across each 30-seconds

epoch in a one hour period).

Finally, we investigate Vigil’s ability to identify multiple link failures. This is

a harder experiment to configure due to the smaller number of links in this test

cluster and hence lower path diversity. We induce different drop rates (p1 = 0.2%

and p2 = 0.1%) on two links in the test cluster. We note that the link with higher

drop rate is the most voted 100% of the time. The second link, however, is the sec-

ond highest ranked 47% of the time and the third 32% of the time. Still, it always

remained in the top 5 links. This shows that by allowing a single false positive (in

this case, identifying three instead of two links), Vigil can detect all failed links 80%

of the time even in a setup where the traffic distribution is skewed. This is some-

thing past approaches [119] could not achieve. Note that in this example, Vigil

identifies the true cause of packet drops on each connection 98% of the time.

3.8 Evaluations: Production

We have deployed Vigil in one of our production data centers. In this section, we

share some of our observations from this deployment. We note that the number of

traceroutes generated by Vigil never exceeded Tmax during its one month deploy-

ment in production.

69



3.8. Evaluations: Production

0

0.5

1

0 50 100 150 200

E
m

pi
ri

ca
l 
C

D
F

Drop rate = 0.5%
Drop rate = 0.05%

Drop rate = 1%

[Bad link votes] − [Maximum good link votes]

Figure 3.12: Distribution of the difference between votes on bad links and the max-
imum vote on good links for different bad link drop rates. The numbers clearly
show a large correlation between the drop rates induced and the votes on the link
dropping packets.

3.8.1 Comparison to EverFlow

Knowing the true nature of failures in a production data center is hard. Therefore,

we perform a semi-controlled experiment in one of our production data centers

to test the efficacy of Vigil. The cluster consists of thousands of hosts/links. This

provides evidence that Vigil works well in practice. To find the “ground truth”, we

compare its results to that obtained by an EverFlow-like system, hereby referred to

as EverFlow, deployed in our production data center (this system is not deployed

in our test cluster and could not be used in that setting). EverFlow captures all

packets going through each switch on which it was enabled. Therefore, it is ex-

pensive to run for extended periods of time. We thus only run EverFlow for a

period of 30 minutes and configure it to capture all outgoing IP traffic from two

random hosts in the cluster. Furthermore, we specifically capture connections to

our storage service. We filter all connections that were detected to have at least

one retransmission during this time. We also tracked their packets and find where

70



3.9. Discussion

any where dropped (using EverFlow). We then check whether the detected link

matches that found by Vigil. We found that Vigil was accurate in every single case.

3.8.2 Finding The Cause of VM Reboots

During our deployment, there were 278 VM reboots in the cluster for which there

was no explanation. Vigil identified a link as the cause of problems in each of

these instances. In 261 cases, there was high drop rates on the host to ToR link.

In another 15, the endpoints of the identified links were undergoing configuration

updates. In the remaining 2 instances, the link was flapping.

3.9 Discussion

A number of novel innovations are enabled by Vigil. As an example, using Vigil,

the host can determine a healthy DIP pool to use at each point in time. This is be-

cause due to encapsulation, the path of each connection is completely determined

by the DIP. Thus, Vigil can potentially help avoid unhealthy path. Vigil is de-

ployed in our production data center. A number of additional factors to consider

when using Vigil include:

Source NATs. Source network address translators (SNATs) change the source IP of

a packet before it is sent out to the network to a VIP. The ICMP messages will have

to carry the right source address for Vigil to get the response to its traceroutes. This

can be enabled through a query to SLB. Details are omitted.

ACK Loss on reverse path. In rare cases, it is possible that the packet loss on the

reverse path is so severe that loss of ACK packets trigger timeout at the sender.

If this happens, the traceroute would not be going over any link that triggered

the packet drop. Since TCP ACKs are cumulative, this is typically not a problem

unless loss rates are very high. Spurious retransmissions triggered by timeouts

71



3.9. Discussion

may also occur if there is sudden increase delay on forward or reverse paths. This

can happen due to a variety of reasons including rerouting, or large queue buildup.

Currently, we treat these retransmissions like any other.

Vigil’s dependency on network topology. The calculations in §3.5 take advantage

of the fact that our network topology is known and is similar to a Clos network.

However, the same calculations can be repeated for any known topology. The ac-

curacy of Vigil is heavily tied to the degree of path diversity in the network and

that multiple path are available at each hop: the higher the degree of path diver-

sity, the better Vigil performs. This is also a desired property in any data center

topology [113].

Header specific drops. Vigil may result in a large number of false positives when

a packet drops are header specific, either due to policy misconfigurations or hard-

ware bugs. In this case, packets may be dropped for one connection, while other

connections along the same path are unharmed. Vigil can only narrow down the

cause of these drops to all the links along the path without being able to localize

the device itself. Such problems are rare, Vigil still provides useful information to

the operator in narrowing down the set of devices to be investigated.

Vigil’s ranking. Vigil’s ranking approach will naturally bias towards the detection

of failed links that are frequently used. This is an intentional design choice as the

goal of Vigil is to identity high impact failures that affect many connections.

Finding the path of all connection. One may think that if one knew the topology,

and the details of the ECMP functions on all the routers, the path of a packet can be

identified by simply inspecting its header. However, ECMP functions are typically

proprietary and also have initialization “seeds” that change with every reboot of

the switch. More importantly, ECMP functions change in the face of link failures

and recoveries. Keeping track of all link failures/recoveries in real time is not

feasible at data center scale.

72



3.10. Conclusion

Diagnosing VM traffic problems. Vigil’s current goal is to find the cause of packet

drops on infrastructure connections (and through those find the failed links in the

network). In principle, we can build a Vigil-like system to diagnose TCP failures

for connections established by customer VM’s as well. However, a number of prob-

lems need to be solved to build such a system. Including security and scalability

issues. This is part of our future work.

3.10 Conclusion

In this chapter we presented Vigil, an always on and scalable monitoring/diagno-

sis system for data center networks that is completely contained within the end

hosts. Vigil can accurately identify drop rates as low as 0.05% in data centers with

thousands of links through monitoring the status of ongoing TCP connections and

“informed path discovery”. It provides a ranking of links that allows for find-

ing the most likely cause of packet drops on each individual TCP connection. We

demonstrate mathematically, in simulations, and empirically in a production envi-

ronment that Vigil continues to provide high accuracy (recall and precision) in the

presence of noise. This is achieved while rate limiting path discovery messages to

stay within production limits.

Both NetPoirot and Vigil allow end hosts to assist operators in the diagnosis

process. However, such diagnosis (as well as recovery) takes time. It is important

to maintain high QoS while recovery is in progress. In the following chapters we

will investigate the efficacy of multipath approaches in allowing clients to circum-

vent failures if/when possible in various settings.

73



Chapter 4

Resilience to Failures at the

Endpoints Through Multipath TCP

Our work in Chapters 2 and 3 aims to enables clients to assist in identifying the

cause of failures when they occur. However, failures are disruptive and it’s desir-

able to shield users from their impact. With the increasing number of users, pro-

viding performance guarantees to these users is becoming increasingly difficult.

Similar reasons to those described in earlier chapters (lack of cooperation between

the various organizations as well as high reaction times) reduce the effectiveness

of distributed solutions to this problem. Thus, additional algorithms/protocols at

the endpoints can help further improve client’s resilience to such problems.

Multipath solutions are one such solution, as it is unlikely that all path should

fail simultaneously. They have been extensively studied in the past e.g., [9, 105] in

the context of datacenters and the Internet. For example, Multipath TCP (MPTCP) [105]

has allowed end users to leverage multiple path at the transport layer in order to

connect through multiple parallel paths. The protocol is designed to move traf-

fic away from congested paths onto less congested ones using its joint congestion

control algorithm [78]. Significant progress has been made in understanding the

74



4.1. The Shortcomings of MultiPath TCP

protocols behavior in terms of fairness, stability, etc. However, a complete un-

derstanding of the protocol, its performance, and especially the implications of

MPTCPs joint congestion control algorithm on other modules in the protocol is

lacking. In our work in [14], we observed various interesting (and in some cases

unintuitive) behaviors by the protocol. Such behaviors show that a complete un-

derstanding of multipath protocols is still lacking. In this work we focus mainly

on investigating such behavior in wide area networks, as most are fundamental to

the protocol itself (irrespective of the setting in which it is used). Extending these

investigations to the context of datacenter networks is the subject of future work.

4.1 The Shortcomings of MultiPath TCP

4.1.1 Motivation

Multipath TCP (MPTCP) [116] is an emerging protocol that enables transmissions

over multiple paths, overcoming potential single path capacity limitations. These

benefits are fueling a growing adoption with, for example, Apple iOS 7 now sup-

porting MPTCP. The protocol is complex with many interacting parameters, and

has been the focus of numerous empirical [107, 116, 13] and analytical [112, 135]

studies. A complete understanding of the interactions of its many parameters,

and in particular those associated with its complex congestion control algorithm,

is lacking.

We make the following contributions:

Empirical evaluation. the Mininet [95] emulator, we study the impact of the choice

of initial path in establishing an MPTCP connection. We uncover some surprising

outcomes – that the choice of the initial path can not just have a lasting impact on

MPTCP performance, but that in some cases, starting with an inferior path (with

higher RTT) can improve overall throughput.

75



4.1. The Shortcomings of MultiPath TCP

Analytical model. We develop a stylized analytical model to investigate this be-

havior based on the partitioning of MPTCP’s congestion control into two distinct

phases. Using this model and numerical analyses, we elucidate and validate em-

pirical observations, and identify the non-linear coupling between paths intro-

duced by MPTCP’s congestion control as a major contributor.

4.1.2 Background and Related Work

MPTCP extends TCP with the ability to transmit on multiple paths. For backward

compatibility purposes, MPTCP presents applications a TCP-like socket abstrac-

tion. The protocol then establishes and maintains multiple subflows, one on each

path. A representative implementation of MPTCP [116] incorporates an API to add

and remove paths from the set of available selections. The MPTCP layer handles

out-of-order packet arrivals and congestion control across sub-flows. MPTCP’s

congestion control algorithm was designed with the following objectives: (1) Per-

form at least as well as a single TCP session on the best path; (2) Be fair to other

TCP flows; and (3) Move traffic away from congested paths to less congested ones

when possible.

To satisfy these goals, MPTCP performs joint congestion control over its multi-

ple paths, which operates exactly as TCP would when in slow start or fast retrans-

mit. However, MPTCP couples tuning of the congestion windows of each sub-flow

during congestion avoidance.

A significant body of work has been devoted to characterizing and optimiz-

ing MPTCP’s coupled congestion control. The authors of [112] perform a theo-

retical analysis of the problem, characterizing factors governing responsiveness,

TCP-friendliness, and window oscillations of a joint congestion control method for

MPTCP. Other works [123, 78, 135] focus on improving MPTCP’s joint congestion

control.

76



4.1. The Shortcomings of MultiPath TCP

4.1.3 Empirical Evaluation

MPTCP’s throughput is highly dependent on its ability to appropriately schedule

transmissions across paths [13]. The scheme used in the current implementation

of MPTCP favors lower RTT paths, since this in turns reduces the receive buffer

size (lowering the memory footprint at the receiver). However, a comprehensive

understanding of the interactions between this selection and congestion control is

still lacking. To gain an initial understanding, we perform an empirical evaluation

using an open-source MPTCP implementation [116] over the Mininet [95] emu-

lator on a Ubuntu (version 3.11) OS. These experiments as well as our analysis,

rely on the Linked Increase Algorithm (LIA) [135] as the coupled congestion control

algorithms, but the results should apply to other schemes.

Experiment Setup

Figure 4.1: Mininet topology.

Figure 4.1 shows the simple topology used in our experiments. It consists of

a source S and destination D. S is dual-homed (connected to routers R1 and R2).

The link R3/D is added so that D is single-homed. Consequently, there are only

two candidate subflows S → R1 → R3 → D and S → R2 → R3 → D. Since the

77



4.1. The Shortcomings of MultiPath TCP

main purpose of the R3/D link is to make D single-homed, its propagation delay

is set to 0. All other links have the same propagation delay and are assumed to be

lossless.

In the rest of the paper, C1 and C2 denote the capacity of the first and second

subflows respectively. We vary C1 and C2 during the experiments, and set the

capacity between R3 and D to be high enough (100Mbps) to avoid it becoming

the bottleneck. Each experiment runs for at least 200 seconds to allow MPTCP to

reach steady state. The iperf tool is used to measure throughput, which we define

as the total number of bytes (MB) transmitted successfully for each experiment’s

duration. To avoid interference across experiments, we turn off TCP route caching

in Linux.

4.1.4 Impact of Path RTT on Throughput

0 20 40 60 80 100 120 140 160 180 200
250

300

350

400

δ (ms)

T
h
ro

u
g
h
p
u
t 

(M
B

)

 

 

Path 1 first

Path 2 first

Figure 4.2: MPTCP throughput (MB) as path RTT difference increases.

78



4.1. The Shortcomings of MultiPath TCP

0 20 40 60 80 100 120 140 160 180 200
200

250

300

350

400

δ(ms)

T
h
ro

u
g
h
p
u
t 

(M
B

)

 

 

Path 2 first

Path 1 first

Figure 4.3: MPTCP throughput (MB) as path RTT difference increases.

Across experiments, the RTT of each subflow varies as follows. We fix τ1, which

is the RTT of subflow S → R1 → R3 → D. The RTT of subflow 2, τ2, is varied and

always set to be larger than τ1, with the difference denoted as δ. In all experiments,

we set C1 and C2 to be 10Mbps, τ1 to be 200ms, and vary δ from 10ms to 200ms.

For each experiment, either the path with lower RTT τ1 (Path 1) starts first, or

the higher RTT path (Path 2) does. This is achieved by configuring the routing

tables and deactivating the interface on the later path for the duration of the start

time-lag. Note that no matter which path starts first, MPTCP’s built in scheduler

prioritizes the lower RTT path. Figures 4.2-4.3 summarize the MPTCP throughput

(MB) as δ increases, across two sets of experiments. Each experiment is carried

out over 15 runs, and we present average throughput results with 95% confidence

interval bars to account for variations in CPU load.

Figure 4.2 corresponds to a scenario where both paths start immediately one

after the other. Irrespective of which path is selected to start first, the lag between

their respective establishment depends solely on the RTT of the second path, as it

79



4.1. The Shortcomings of MultiPath TCP

affects the duration of the three-way TCP handshake. The figure shows that when

the lower RTT path is selected first (solid blue line labeled as Path 1 First), MPTCP’s

throughput is higher than under the Path 2 First scenario (dotted red line). This is

as expected, given the scheduler’s preference for the lower RTT path and its initial

higher throughput.

Figure 4.3 shows our next set of results, where we add a 4 seconds time lag

between the time the initial path is chosen, and when the second path is made

available. This produces a non-intuitive result, namely, that when the longer RTT

path is selected first, MPTCP’s throughput is actually higher for δ values up to

100ms! Beyond δ = 100ms, Path 1 First begins to exhibit higher throughput again.

We observed similar results when increasing the time lag to 6 seconds. Note also

that the overall throughput is higher in this scenario than in the previous one.

4.1.5 MPTCP Model

Our empirical results in Section 4.1.3 suggest that whenever multiple subflows of

different RTT are available, MPTCP throughput will depend on the initial path

being chosen, and sometimes, picking the path with higher RTT as the starting

point results in higher throughput – a non-intuitive observation. In this section,

we present a stylized analytical model of MPTCP, to explain the behavior as a

consequence of MPTCP’s coupled congestion control.

4.1.6 Setting Up The Problem

Our model is based on a generalization of the topology in Figure 4.1, where we

assume two paths 1 and 2, with an arbitrary number of intermediate routers. Each

path, i, is assumed to have a bottleneck capacity Ci. The two paths are disjoint,

and all queues in the network use the Drop-Tail policy.

80



4.1. The Shortcomings of MultiPath TCP

In the analysis that follows, the congestion window of path i at time t is de-

noted1 as wi(t), and the transmission rate on that path is represented as xi(t). We

denote the round trip time on path i as τi. Note that τi can be considered as the

sum of the two-way propagation delay on path i and the added queueing delay.

We take both path’s propagation delays to be constant2.

Without loss of generality, we assume that in the absence of queueing delay

τ1 ≤ τ2 or equivalently τ2 = τ1 + δ. Consistent with the Linux kernel implementa-

tion, the ssthresh is zero, which means that the connection begins in congestion

avoidance. Upon reception of each acknowledgment on path i, MPTCP’s conges-

tion window is increased by Ii(ws(t)), where ws(t) = (w1(t), w2(t)).

Based on the LIA coupled congestion algorithm:

Ii(ws(t)) = min

(max(w1(t)

τ21
, w2(t)

τ22
)

(w1

τ1
+ w2

τ2
)2

,
1

wi

)
. (4.1)

We divide the operation of MPTCP subflows into two modes, each of which is

modeled separately in Sections 4.1.8 and 4.1.9, and used to characterize the effect

of MPTCP’s choice of “first” path in initiating the connection.

4.1.7 The Two Modes of an MPTCP Subflow

Depending on congestion window size, each subflow’s congestion control mecha-

nism is divided into two modes.

Mode 1. When MPTCP subflows have a relatively small initial window, each sub-

flow i will start by operating in mode 1. Here, an MPTCP subflow on path i can

transmit up to wi(t) packets before it has to stop and wait for acknowledgments.

The acknowledgment for a packet transmitted at time t over path i arrives at the

1We further assume that the source and destination have sufficient memory available such that
TCP’s congestion window is equal to the sending window and that the send buffer is large enough
so that there is always data available to be sent if the sending window allows it.

2Variations in round trip times are due to variations in queueing delay.

81



4.1. The Shortcomings of MultiPath TCP

source at time t + τi. Thus, if a subflow’s congestion window is smaller than the

bandwidth delay product (BDP) of its path i.e., if wi(t) ≤ τiCi, the subflow remains

idle until acknowledgments for the current window transmissions start arriving.

When a subflow is operating in mode 1, it transmits at a rate below that of the

bottleneck link. Thus, all queues along the subflow’s path remain empty.

Mode 2. As the congestion window increases, if wi(t) ≥ τiCi acknowledgments

now arrive periodically, at regular intervals determined by the bottleneck capacity,

Ci, the MPTCP subflow enters mode 2. This means that the subflow can continue

transmission without interruption (until a packet is lost). In mode 2, the subflow

is able to transmit at a rate higher than Ci allowing for the queue at the bottleneck

link to grow. This results eventually in a dropped packet, as well as progressive

increases in the path’s observed round trip time until the packet drop. Note that

depending on wi(t), at time t when the loss occurs, it is possible for the subflow to

then return to mode 1.

4.1.8 Modeling The MPTCP Subflow in Mode 1

In mode 1, the subflow i’s transmission rate is limited by its congestion window,

and xi(t) ' wi(t)
τi

. This allows us to use the traditional fluid model [77], to model its

behavior.

Subflow i is operating under the condition wi(t) ≤ τiCi. Since the congestion

window is not large enough to use the entire capacity available on path i, upon

transmission of wi(t) packets the subflow waits until acknowledgments arrive be-

fore it can send any more packets. Thus, the MPTCP subflow can be considered as

sending wi(t) packets every τi seconds (xi(t) ' wi(t)
τi

). Since the subflow is trans-

mitting at a rate below Ci, queues remain empty and there is no queueing delay.

Thus, following the approach in [112], we can model the change in congestion

82



4.1. The Shortcomings of MultiPath TCP

Figure 4.4: The NewReno fast retransmission algorithm. There is no transmission
on the subflow during time block C.

window over a period of τi seconds, which we denote as ∂wi, as follows:

∂wi = Ii(ws)wi =
∂wi
∂t

τi. (4.2)

Using (4.2) and the relation xi(t) ' wi(t)
τi

we can write

∂xi
∂t

=
xi(t)

τi
Ii(ws), (4.3)

which describes the transmission rate on flow i in mode 1.

This model will not be valid in mode 2, since not only xi(t) 6= wi(t)
τi

, but also we

can no longer assume that τi is constant. Furthermore, it is possible for an MPTCP

subflow in mode 2 to experience losses due to an overflow of the queue at the

bottleneck link.

4.1.9 Modeling The MPTCP Subflow in Mode 2

When operating in mode 2, the MPTCP subflow has a congestion window that sat-

isfies wi(t) ≥ τiCi. The subflow is no longer able to send wi(t) packets every round

83



4.1. The Shortcomings of MultiPath TCP

trip time, since τi is not enough time for all the acknowledgments of the previously

transmitted window to arrive. Thus, the model described in Section 4.1.8 cannot

be used to describe an MPTCP subflow’s behavior in this situation.

The MPTCP subflow is allowed to transmit at a rate progressively higher than

Ci (although acknowledgments are clocked, the continued increase in window size

allows the transmissions of additional packets in each roundtrip). Therefore, the

queue at the bottleneck link grows, eventually resulting in a packet loss as well as

a steady increase in observed round trip time.

We denote the capacity of the queue on path i as Ni and the number of packets

in the queue at time t as li(t). Using this notation, and given that the rate of change

in li(t) is equal to the difference in the queue’s input and output rates

∂li
∂t

= xi(t)1li(t)<Ni − Ci1li(t)>0, (4.4)

where 1x is an indicator function evaluating to 1 when x is TRUE and 0 otherwise,

ensuring that no packets are added to the queue once it reaches its maximum size

and that it is not drained when li(t) = 0. Since propagation delays are constant,

the rate of change in path i’s RTT, τi, can be written as:

∂τi
∂t

=
xi(t)

Ci
1li(t)≤Ni − 1li(t)>0. (4.5)

Given that ACKs arrive periodically with a period Ti = 1
Ci

in mode 2, we can

assume that changes in wi(t) and xi(t) occur at equally spaced points in time t =

kTi where k ∈ {1, 2, 3 . . . }. Thus, we can use a discrete time system with a step size

of Ti to model the subflow’s behavior and then generalize that model by setting

wi(t) = wi[k] and xi(t) = xi[k] for k satisfying kTi ≤ t < (k + 1)Ti, where [ ] is used

to denote the discrete time counterparts of xi(t) and wi(t).

Therefore, in the absence of losses

x[k] = Ci + Ii(ws)Ci (4.6)

w[k] = w[k − 1] + Ii(ws). (4.7)

84



4.1. The Shortcomings of MultiPath TCP

We assume that notifications of losses arrive only due to triple duplicate ACKs,

at which point the subflow enters fast retransmit [67]. At any time t, there are wi(t)

outstanding packets while the subflow is in mode 2. We can use this to describe

the subflow’s behavior during fast retransmit. This is illustrated in Figure 4.4.

The end of block A in Figure 4.4 marks t = nTi where a packet was lost. At that

time wi[n] packets remain unacknowledged on path i. The ACK which arrives3

at the end of block B at t = (n + wi[n])Ti, marks the arrival of the first of the

triple duplicate ACKs. We approximate the arrival of the third duplicate ACK to

be the same. At this time, the congestion window is halved and ssthresh is set

to wi[n+wi[n]]
2

.

At the beginning of block C, the congestion window is set to the reduced value
wi[n+wi[n]]

2
. Given that wi[n + wi[n]] packets are outstanding at that time, wi[n+wi[n]]

2

packets need to arrive before the subflow can restart transmission. This occurs at

the end of block C, i.e., t = (n+ wi[n] + wi[n+wi[n]]
2

)Ti. Finally, the acknowledgment

for the lost packet arrives at the end of block D at t = n + 2wi[n], ending fast

retransmission.

To model MPTCP’s behavior during fast retransmission, we use qi[n] as the

indicator variable set to 1 if a packet is dropped at t = nTi on path i and is zero

otherwise, i.e., qi[n] = 1li(nTi)=Ni . Note that a packet lost at time t = nTi implies4

wi[n] = τi[0]Ci +Ni. (4.8)

Using the indicator function q[k] we can model the congestion window on path

3Notice that the transmission time of a packet over path i is equal to Ti, which means that wi[n]
packets are transmitted in wi[n]Ti seconds.

4the queue is full and τi[0]Ci packets are on the links

85



4.1. The Shortcomings of MultiPath TCP

i as

wi[k] = A(1− q[k − 2wi[n]]) +Bq[k − 2wi[n]],

∀k ∈ {1, 2, 3 . . . },

A =
(
wi[k − 1] + Ii(ws)(1− q[k − wi[n]]) (4.9)

− wi[k − 1]

2
q[k − wi[n]]

)
,

B = wi[k − wi[n]], (4.10)

where we have used A and B as auxiliary variables. Similarly, we can write

ssthreshi = Si as

Si[k] = Si[k − 1](1− q[k − wi[n]) +
wi[k]

2
q[k − wi[n]]. (4.11)

Note that equations (4.9)-(4.10) do not track the congestion window during fast

retransmit, but this is fine as it is reset when fast retransmit ends. To capture the

evolution of the bottleneck queue and the transmission rate xi[k], we introduce the

indicator variable zi[k] that tracks if and when a subflow is in block C. Specifically,

we define zi[k] as

zi[k] =zi[k − 1](1− q[k − wi[n+ wi[n]]

2
− wi[n]])

+ (1− zi[k − 1])q[k − wi[n]], (4.12)

Where we set zi[0] = 0.

Note that both terms in (4.12) remain zero until q[k − wi[n]] = 1 after which

zi[k] = 1, and remains constant until q[k − wi[n+wi[n]]
2

−wi[n]] = 1. Hence, capturing

the duration of block C.

Because in mode 2, Ii(ws) << 1, we have wi[n + wi[n]] ' wi[n] + Ii(ws)wi[n] '

wi[n]. Assuming that we allow the transmission of partial packets, we can now

write

xi[k] =
(
Ci + Ii(ws)Ci(1− q[k − wi[n]])

)
(1− zi[k]), (4.13)

86



4.1. The Shortcomings of MultiPath TCP

thus completing our model for subflow i in mode 2. In section 4.1.10 we will use

the model developed in this section to provide insight into the behaviors observed

in Section 4.1.3.

4.1.10 Analyzing our MPTCP Model

We analyze our model in Section 4.1.5 to investigate why MPTCP’s initial choice

of path can impact its performance. We use Ii(ws) as defined by (4.1) to represent

MPTCP’s joint congestion control. We will show that the coupled nature of Ii(ws)

is at the root of the differences observed in Section 4.1.3.

4.1.11 A Closer Look at Ii(ws)

MPTCP’s design goals are noted in Section 4.1.2. Satisfying these goals requires

that each of MPTCP’s subflows “cooperate” in increasing their congestion window

so as to, not violate the required fairness property. This introduces a coupling in

the congestion control protocol across subflows. An example of such a congestion

control protocol is the LIA of (4.1).

Designed to satisfy MPTCP’s design goals5, the coupling imposed by Ii(ws) has

unexpected consequences that need to be accounted for. One of these unintended

consequences is that the coupling in increasing the congestion control windows

also couples the effects of the initial choice of path to the performance of MPTCP.

We illustrate why in the following.

Using t = 0 to mark the time where the second subflow is established, we first

look at the case where the path with lower propagation delay i.e., path 1, is used

to initiate the connection. In this situation w1(0) = w2(0) + ∆w for some values of

∆w. This allows us to arrive at the following proposition:

5The work in [78] has shown that this congestion control mechanism does not really satisfy all
of the design goals.

87



4.1. The Shortcomings of MultiPath TCP

Proposition 1. If path 1 is used to initiate the connection, then (4.1) for Ii(ws) reduces to

I(xs) =
x1

τ1(x1 + x2)2
∀i ∈ {1, 2}, (4.14)

where xs = (x1(t), x2(t)). Thus, the following set of equations can be used to characterize

the solution to (4.3)

x2(t) = K ′x1(t)
τ1
τ2 (4.15)

x1(t) +
K ′2

(2 τ1
τ2
− 1)

x1(t)
(2
τ1
τ2
−1)

+
2K ′

( τ1
τ2

)
x1(t)

τ1
τ2 =

t

τ 2
1

+K2

K ′ =
x2(0)

x1(0)
τ1
τ2

K2 = x1(0) +
K ′2

(2 τ1
τ2
− 1)

x1(0)
(2
τ1
τ2
−1)

+
2K ′

( τ1
τ2

)
x1(0)

τ1
τ2 .

It is clear from (4.15) that x1(t) and x2(t) have a nonlinear dependence on the

initial values x1(0), x2(0) when the subflows are operating in mode 1.

Next, we look at the case where the path with higher propagation delay, path

2, is used to initiate the MPTCP connection. We arrive at the following:

Proposition 2. If path 2 is used to initiate the connection then (4.1) for Ii(ws) can be

written as:

I1(xs) =


x2

τ2(x1+x2)2
if τ1 >

δ(w1(0)+
√
w1(0)2+∆ww1(0))

∆w

x2
τ2(x1+x2)2

if τ1 <
δ(w1(0)−

√
w1(0)2+∆ww1(0))

∆w

x1
τ1(x1+x2)2

otherwise

I2(xs) =


x2

τ2(x1+x2)2
if τ1 >

δ(w1(0)+
√
w1(0)2+∆ww1(0))

∆w

x2
τ2(x1+x2)2

if τ1 <
δ(w1(0)−

√
w1(0)2+∆ww1(0))

∆w

x1
τ1(x1+x2)2

2τ1 > τ2

min( x1
τ1(x1+x2)2

, 1
x2τ2

) otherwise

88



4.1. The Shortcomings of MultiPath TCP

If I2(xs) = I1(xs) = x2
τ2(x1+x2)2

, then we have that

x2(t) = K ′x1(t)
τ1
τ2 (4.16)

x1(t) +
K ′2

(2 τ1
τ2
− 1)

x1(t)
(2
τ1
τ2
−1)

+
2K ′

( τ1
τ2

)
x1(t)

τ1
τ2 =

t

τ 2
1

+K2

K2 = x1(0) +
K ′2

(2 τ1
τ2
− 1)

x1(0)
(2
τ1
τ2
−1)

+
2K ′

( τ1
τ2

)
x1(0)

τ1
τ2

K ′ =
x2(0)

x1(0)
τ1
τ2

Otherwise, if I2(xs) = I1(xs) = x1
τ1(x1+x2)2

, x1(t) and x2(t) can be defined as in (4.15).

Proof of Proposition 1-2 is omitted due to space constraints. Propositions 1

and 2 clearly indicate that one should expect a difference in MPTCP transmission

rate in mode 1 when the path starting the connection is changed. Further note that

this impact is mainly due to the coupling introduced by Ii(ws), and therefore, is

inherent in the MPTCP protocol design. Propositions 1 and 2 do not quantify this

difference, or indicate how long the difference would persist once both MPTCP

subflows exit mode 1.

4.1.12 The Overall Impact Of the “First” Path

We have shown that MPTCP’s initial choice of path can impact its performance

through the coupled nature of its congestion control mechanism. The analysis,

focused on the situation where both subflows were in mode 1. Beyond mode 1, in

order to observe the impact of MPTCP’s initial choice of path on its performance

over a relatively long period of time and to see whether or not the effect lasts for the

entire duration of its operation, we use a sliding window to characterize MPTCP’s

transmission rate over a period of 1000 seconds.

Figure 4.5 depicts this quantity for a situation where C1 = C2 = C = 10 Mbps,

τ1 = 200 ms, τ2 = 280 ms, and N1 = N2 = 85 packets6. The size of the window
6This is done using a numerical solution to our model.

89



4.1. The Shortcomings of MultiPath TCP

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

Time (seconds)

T
h
ro

u
g
h
p
u
t 

(P
ac

k
et

s)

 

 

Both paths start at the same time

Path 1 first

Path 2 first

Figure 4.5: Change in transmission rate computed in a sliding window of 1 sec-
onds for different “first” paths. C1 = C2 = 10 Mbps, τ1 = 200ms, and τ2 = 280ms.
The path starting second, is established at t = 3 seconds.

itself is taken to be 1 seconds, and it is moved by the transmission time of a packet

i.e., 1
C

. The queues are chosen to be large so that the congestion window on each

subflow can grow before a loss occurs so as to stay in mode 2 even after the loss is

detected.

Figure 4.5, depicts three different possibilities for starting the connection, either

path 1 is used to initiate the connection (blue/solid line), or path 2 is used to ini-

tiate the connection (red/dashed line), or both paths start in the established state

at the same time (black/dotted line). The figure shows a difference in MPTCP’s

transmission rate between the three different scenarios for t < 300 secs. Note that

in each of these three scenarios there are two dominant points of discontinuity

corresponding to where each of the subflows exited mode 1.

Our results in Figure 4.5 indicate that it is possible for the MPTCP subflows

to take a relatively long time to reach “steady state”. They also show that the

optimal strategy in selecting the better path to start with, may vary depending on

the amount of data being transmitted. This being said, once both subflows have

exited mode 1, MPTCP’s transmission rate is relatively stable.7 Thus, the periodic

7Note, that the order in which paths started may indeed influence the frequency with which

90



4.1. The Shortcomings of MultiPath TCP

0 20 40 60 80 100 120 140 160 180 200

2

2.5

3

3.5
x 10

5

 

 

δ (ms)

T
h
ro

u
g
h
p
u
t 

(P
ac

k
et

s)
Both paths start at the same time

Path 1 first

Path 2 first

(a) τ1 = 100 ms, C1 =
C2 = 10 Mbps.

0 20 40 60 80 100 120 140 160 180 200

0.5

1

1.5

2

2.5

3

3.5
x 10

5

δ (ms)

T
h
ro

u
g
h
p
u
t 

(P
ac

k
et

s)

 

 

Both start at the same time

Path 1 first

Path 2 first

(b) τ1 = 200 ms , C1 =
C2 = 10 Mbps.

0 20 40 60 80 100 120 140 160 180 200

2

2.5

3

3.5
x 10

5

δ (ms)

T
h
ro

u
g
h
p
u
t 

(P
ac

k
et

s)

 

 

Both paths start at the same time

Path 1 first

Path 2 first

(c) τ1 = 200 ms, C1 = C2 =
20 Mbps

Figure 4.6: Total number of packets transmitted vs δ (ms). The total duration of
the experiment is 200 seconds for each data point. The figures depict the influence
of τ1, and C on the impact of the initial path.

arrival of ACKs, at least in this example, eliminates the dependency on the initial

starting path. One would expect that any parameter influencing transitions into

mode 2 e.g., the BDP, competing flows, retransmission timeouts, or AQM queues

should also influence the magnitude of the difference in overall throughput across

these three scenarios.

0 20 40 60 80 100 120 140 160 180 200
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x 10
6

δ (ms)

T
h
ro

u
g
h
p
u
t 

(P
ac

k
et

s)

 

 

Both paths start at the same time

Path 1 first

Path 2 first

(a) τ1 = 100 ms, C1 =
C2 = 10 Mbps.

0 20 40 60 80 100 120 140 160 180 200

1.5

2

2.5

3

x 10
6

δ (ms)

T
h
ro

u
g
h
p
u
t 

(P
ac

k
et

s)

 

 

Both start at the same time

Path 1 first

Path 2 first

(b) τ1 = 200 ms , C1 =
C2 = 10 Mbps.

0 20 40 60 80 100 120 140 160 180 200
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x 10
6

 

 

X: 200
Y: 2.63e+06

δ (ms)

T
h
ro

u
g
h
p
u
t 

(P
ac

k
et

s)

Both paths start at the same time 

Path 1 first

Path 2 first

(c) τ1 = 200 ms, C1 = C2 =
20 Mbps

Figure 4.7: Total number of packets transmitted vs δ (ms). The total duration of
the experiment is 1000 seconds for each data point. The figures depict the influence
of the duration of the transmission on the effects observed in Figure 4.7

.

Figure 4.6 shows how the BDP influences the impact of the starting subflow on

performance. The y-axis ranges over [170 − 350] KPackets ([255 − 525] Mbytes),

where each packet is 1460 bytes and each data point shows MPTCP’s throughput

over a period of 200 seconds. We can see in Figure 4.6b that the maximum differ-

losses are observed on each path. However, for the time being we assume that this effect is rela-
tively minor for the situation considered, where there is no transition from mode 2 to mode 1.

91



4.1. The Shortcomings of MultiPath TCP

ence in throughput between the three different possible choices of the first paths is

10%. Decreasing the BDP by reducing the round trip times, as in Figure 4.6a, the

maximum difference becomes about 20%. Note that the impact of the decrease in

RTT is two fold, not only does it effect the BDP, but it also increases ∂xi
∂t

(equation

4.3). We also see that by increasing the BDP by changing the bottleneck bandwidth,

C = 20, the influence of the initial choice of path is increased to up to 45% and it is

reversed so that using the path of lower RTT provides better performance. Finally,

Figure 4.6 indicates, that it is possible that in some situations starting a connection

with the “worse” path results in a performance improvement.

Based on the results presented in Figure 4.5, we also expect that the choice of

“best” path to initiate the connection should also depend on the duration of the

transmission8. Figure 4.7 confirms this hypothesis. Figure 4.7 shows MPTCP’s

throughput over a period of 1000 seconds in the same three scenarios of Figure 4.6

(the range of the y-axis is [1.4− 3.1] MPackets([2.1− 4.6] Gbytes)). We can see that

the difference in the three paths performance has decreased to 1% in Figure 4.7a,

6% in Figure 4.7b, and 15% in Figure 4.7c. Notice that looking at a longer period of

time in the scenario of Figures 4.7c and 4.6c, the use of the higher RTT path results

in better performance.

It is also of interest to see how the the difference in the two paths start times

(indicated as the time lag in our earlier experiments), ∆t, effects the magnitude of

the differences observed. In MPTCP’s normal operation the ∆t is only due to the

delay caused by the three way handshake of the second path, which is relatively

small. The results shown so far in this section use ∆t = 3 seconds. We conduct fur-

ther experiments to vary ∆t. As expected the change in ∆t has a higher influence

when path 2 is the starting path (Preposition 2).

Our observations indicate that the choice of which path MPTCP starts with

could have a significant impact on performance depending on the size of the file
8Or alternatively the size of the file being transmitted.

92



4.1. The Shortcomings of MultiPath TCP

to be transmitted, the BDP of the paths, and whether or not, and how fast, the

subflows are able to reach mode 2. Furthermore, our observations show, that this

impact is more significant in better network conditions and that it is possible in

some situations that starting with the worse path results in better overall perfor-

mance.

4.1.13 Discussion

We have shown that the coupling introduced by MPTCP’s congestion control mech-

anisms introduces unexpected behaviors in terms of the influence of its initial

choice of path. In our work we flush out the cause of such behavior through a

stylized mathematical analysis of the protocol (such a model may also be useful

in studying other aspects of the protocol as well). It is expected that the design

of a scheduler based on a more comprehensive study of this impact would allow

for improved MPTCP performance. It is important to be aware of these impacts

when studying the protocol in order to avoid undesirable interactions. This being

said, we think it would be beneficial to decouple the two by initiating the multi

path communication at the application layer. By doing so, we trade of fine grained

control of the traffic distribution for less complexity in design. This also allows us

to extend our definition of multi path to go beyond the use of different routes in

the network in end to end protocols. In the next chapter we present our design of

this system.

93



Chapter 5

Multipath at The Application Layer

In the previous chapter, we analyzed a simple model of the Multipath transport

protocol and showed that there exists complex interactions between the various

modules of the protocol. Such interactions can potentially have high impact on

client performance. Due to this complexity and the lack of understanding of its

possible implications, the protocol is not entirely suitable for performance sensitive

applications such as video delivery. We instead propose a multi path approach in

the application layer. Such an approach further allows us to expand our notion

of multi path to take advantage of the geographic diversity of content delivery

networks. Namely, in this context, multi path not only refers to multiple path

inside the network but also potentially multiple end point locations. Furthermore,

such a design allows us to avoid changing both endpoints. Instead a client side

application can achieve the same level of resilience to failures as that of a multipath

transport protocol without requiring cooperation from the server-side operators.

This further allows for the new protocol to take advantage of caches that might

exist in different parts of the network as they need not be updated to serve the

new clients. Next, we propose one such solution and outline the various aspects

that need to be considered in its design.

94



5.1. Introduction

5.1 Introduction

The growing importance of video traffic is by now well-documented, with the

share of video traffic on North American networks exceeding 70% of peak hour

traffic in early 2016 and expected to surpass 80% by the end of 2020 [121]. And

while its dominance is not as strong on mobile access links where it now repre-

sents about 40% of peak traffic, it is a major factor there as well. Furthermore, this

growth appears unimpeded by continued progress in codec efficiency, e.g. x265 or

VP9 codecs [82, 130, 104].

In the face of such a trend, or maybe because of it, there are, however, per-

sistent problems when it comes to ensuring quality video delivery. For example,

Conviva VXR reports, e.g.[42, 44, 43], which each year track various video perfor-

mance metrics, report that buffering events (periods during which the video stalls

to replenish its playback buffer) remain common (from 20% to 40% depending on

location), as do drop in video resolution while playing (those affect over 50% of

all videos). Equally important, degradation in video quality is also known to have

a major impact on users’ behavior and their satisfaction with Internet video [81].

This is obviously of concern, as articulated in several recent industry forums fo-

cused on video delivery [30, 31, 32, 33].

The first goal of this paper is, therefore, to explore possible solutions to remedy

this situation and improve the quality of Internet video delivery. Of interest in this

context is the use of multipath solutions, and in particular solutions that let video

clients download video segments (chunks) simultaneously from multiple servers.

We refer to such solutions as Multipath-MultiServer (MuMS), e.g.[118, 40]. Re-

liance on multiple paths from distinct servers can help mitigate exposure to quality

degradations caused by congestion or failure of individual paths, and server over-

load. In particular, multipath has been shown useful in improving throughput and

reliability in both wired and wireless networks [10, 35, 37, 58, 63, 115], and there is

95



5.1. Introduction

initial evidence that it could also benefit delay [74] as well as rate stability [12]. The

latter is of particular interest, as rate variations are a major factor in video quality

degradation.

Specifically, a typical video streaming client operates in two phases [117]: pre-

buffering and re-buffering. A video is split into segments (chunks), and in the

pre-buffering phase the client requests chunks at the maximum rate allowed by

the network1. Once there are enough chunks in the client’s playback buffer, it

starts playing the video and switches to re-buffering mode. In this mode, the client

requests chunks at a fixed rate determined by the encoding rate. Video playback

proceeds smoothly as long as chunks are in the playback buffer before they need

to be played-out. Variations in transmission capacity between the server(s) and the

client can result in late delivery or loss of video chunks. This, in turn, depletes the

playback buffer and eventually induces video stalls or skips.

A popular approach for dealing with variations in transmission capacity is

adaptive bit rates (ABR) [56, 34] – sometimes also called HTTP Adaptive Stream-

ing (HAS). Under ABR/HAS, the client changes its encoding bit rate to match the

capacity available in the network and avoid losses/delays. However, rate changes

remain visible to the viewer and still translate in degraded quality of experience

(QoE) [125, 59, 122], albeit at a lesser level. As a result, it remains desirable to de-

vise solutions that eliminate or mitigate variations in transmission rate, and there-

fore preserve video quality without having to resort to (coding) rate adjustments.

This is one of the goals of our solution, Sunstar, which seeks to leverage multi-

ple paths to different servers to maintain a stable transmission rate even in the

presence of network variations (on individual paths). In this respect, Sunstar is

complementary to ABR-based solutions.

Another goal of Sunstar is to realize its goal of mitigating rate variations with-

1This holds for both video download and live-streaming, though with obvious limitations on
the pre-buffering phase for the latter.

96



5.2. MuMS Benefits and Implications

out impacting peering costs, i.e. the costs video providers incur from Internet Ser-

vice Providers (ISPs) for delivering video to their customers. Ensuring that better

quality in video delivery does not translate into higher peering costs is of partic-

ular importance given the low profit margins under which most video providers

operate [19, 24, 46]. Of concern in our context is the extent to which reliance on

multiple paths might increase peering costs. The possibility of such increases is, in

hindsight, intuitive given the non-linear nature of most ISPs’ charging model, i.e.

most charge based on the 95th percentile of usage in 5 mins intervals over a period

of a month2. Spreading transmissions over multiple paths means that a separate

95th percentile is now computed on each path, which, as discussed in Section 5.2,

can result in a higher overall cost value.

In summary, Sunstar’s main contributions are as follows:

A cost-neutral solution to improving video delivery. We develop a principled un-

derstanding of how different mechanisms for improving video delivery, including

multipaths, contribute to higher (peering) costs. We use this understanding to

develop a scheduler capable of delivering significant performance improvements

with little to no impact on cost.

A video client improving users’ QoE. We implement a user-space version of a Sun-

star video client, and demonstrate its benefits by quantifying its ability to minimize

video stalls/skips across a broad range of network impairments. Our Emulab [131]

results indicate that Sunstar can improve video performance quality by up to 50%

or more in various settings.

5.2 MuMS Benefits and Implications

Before presenting Sunstar, we first motivate a MuMS approach by showing the

type of performance improvements achievable when downloading from multiple
2See https://www.noction.com/blog/95th_percentile_explained.

97

https://www.noction.com/blog/95th_percentile_explained.


5.2. MuMS Benefits and Implications

servers. Next, we offer insight into the relationship that exists between perfor-

mance and (peering) cost, and in particular why reliance on multiple paths, as in

MuMS, can result in higher costs. This serves as a motivation for Sunstar, which

seeks a balance between performance and cost.

5.2.1 Performance Benefits

A MuMS solution should improve users’ QoE as multiple servers (and the paths

from those servers) are unlikely to simultaneously experience congestion or fail-

ures. To assess the significance of those gains, we compare the performance of a

MuMS client to that of a single-server client in an Emulab experiment. To simplify

our setup, in all cases clients use only a single path to each server.

The Emulab connection between the client and each server consists of two links

separated by a shaping node with a buffer size of 50 packets. To create an environ-

ment that exercises bandwidth limitations, the available bandwidth to each server

from the client was set to an average value equal to its download rate T (as de-

termined by the video player), but with variations between T
2

and 3T
2

. This was

achieved using dummynet [29] on the shaping node. Each client repeatedly down-

loads a large video (5 minutes or more) and is assigned to a fixed set of n servers

where n is either 1, 2, or 3. In all cases, video download proceeds by issuing http

get requests at a rate commensurate with that of the video. In the single-server

case, TCP controls the actual download rate. In the multi-server case, a standard

TCP-like application-level congestion control mechanism determines the available

rate from each server, and when multiple servers are available, the lowest RTT

server is selected. This represents a relatively basic “scheduler,” which neverthe-

less serves the purpose of demonstrating the benefits of a MuMS solution.

In evaluating performance, we focus on two metrics of importance to video

QoE, namely, the fraction of time clients are stalled (because their playback buffer

98



5.2. MuMS Benefits and Implications

is empty), the average stall duration, and the number of video chunks the client’s

player skips. Previous studies [18, 69, 50] have verified the correlation between

user satisfaction and these metrics. We further verify their impact on user experi-

ence through a Mechanical Turk experiment described in Appendix B.1. Note that

there is an inherent trade-off between the two metrics. A short time-out for chunks

increases skips but minimizes stalls, while increasing the time-out has the opposite

result.

Figure 5.1: Average stall duration across clients.

Figures 5.1-5.2 report the distribution of the average stall time, as well as the

fraction of the total download time clients, are stalled across clients for the 1, 2,

and 3-server configurations respectively, while Figure 5.3 focuses on the distribu-

tion of the number of skipped video chunks for the same configurations. The con-

fidence intervals in the figure show the 95th percentile confidence interval based

on assuming a binomial distribution for data in each bin. The figures establish the

benefits of a MuMS solution, which is successful in reducing both stalls duration

99



5.2. MuMS Benefits and Implications

Figure 5.2: Fraction of total download time each client was stalled (across clients).

and the number of skips. For example, more than 91% of 3-server clients saw no

stalls, while the number was 90% for 2-server clients, and 73% for single-server

clients; and those benefits persist among clients that experienced longer stalls on

average. Similarly, over 90% (82%) of 3-server (2-server) clients did not experience

any skips, while this number drops to below 80% for single-server clients, with

again the benefits of a MuMS solution extending to the tail of the distribution.

In Section 5.4, we show how Sunstar’s more sophisticated scheduler can yield

further improvements.

5.2.2 Cost-Performance Trade-offs

There are multiple options to improve video delivery. A simple approach is to

download the video at the highest possible rate from one or more servers, as it

should minimize the odds of a chunk arriving late and/or the playback buffer run-

100



5.2. MuMS Benefits and Implications

Figure 5.3: Distribution of the number of skipped chunks.

ning empty3. This is why works such as [40] focus on maximizing clients’ through-

put during their “on” period (the time during which the client fills its playback

buffer).

However, while performance benefits are intuitive, it is unclear how such a

scheme affects cost. On one hand, a download strategy that maximizes throughput

has clients leaving the system earlier, which can reduce bandwidth usage when

computed over 5 minute intervals. On the other hand, the higher download rates

while clients are present can increase bandwidth usage. How these two opposing

factors contribute to 95th-percentile costs is not obvious at first sight.

To gain a better understanding of this trade-off, we develop a simple analytical

model to evaluate the impact of the download rate on peering costs. We consider

a scenario where: (1) clients connect to a fixed set of k servers with distinct peering

links for each server; (2) clients download a video of size S at a constant aggregate

3Note though that this comes at the expense of larger playback buffers at the clients, and a
potential waste of bandwidth when clients abandon watching the video halfway.

101



5.2. MuMS Benefits and Implications

rate of T and distribute download requests equally across servers (the download

rate for each server is T/k); (3) clients arrive according to a Poisson process of rate

λ; and (4) peering costs follow a q-percentile model (q = 95 in a typical scenario).

Theorem 3 establishes that the higher the download rate T , the higher the peer-

ing cost. In other words, while a more aggressive download strategy may improve

performance, it results in higher costs.

Theorem 3. Given clients arriving according to a Poisson process and downloading equally

from k servers at an aggregate rate of T , the q-percentile peering cost is an increasing func-

tion of T .

Proof. Assuming a properly provisioned system, i.e. non-blocking, each server

plus peering link combination behaves as an M/G/∞ system whose occupancy

probability is given by πi = e−ρρi

i!
, where ρ = λS/k

T/k
= λS

T
. Assuming ρ is large, i.e. we

are dealing with large systems, πi can be approximated by a normal distribution

with mean and variance equal to ρ.

The q-percentile occupancy n(q) of the system (each client is assigned one “server”

with a service/download rate of T/k) is then of the form

φ

(
n(q)− ρ
√
ρ

)
= q

where φ(x) is the CDF of the normal distribution. This implies n(q)−ρ√
ρ

= α where α

is a positive constant, e.g. for q = 0.95, α = 1.64. Thus, n(q) = α
√
ρ + ρ, and the

q-percentile traffic volume on the corresponding peering link is n(q)T/k. Hence,

under a q-percentile cost model, the peering cost for the system is Cq(λ, T, k) ∼

(c
√
ρ+ ρ)T/k, an increasing function of T .

Although Theorem 3 relies on a number of simplifying assumptions, it never-

theless captures the key factor that while increasing download rates allows clients

to leave the system faster (and improves video quality), its overall impact on cost

102



5.2. MuMS Benefits and Implications

is negative. In other words, downloading at the lowest possible rate that meets the

video requirements yields the lowest cost. As described in Section 5.3, we leverage

this insight in designing the Sunstar scheduler.

5.2.3 Impact of MuMS on Cost

The previous section established that a greedy/aggressive download strategy had

a negative impact on cost. In this section, we show that the multiple paths of a

MuMS’ solution have a similar effect.

For that purpose and without loss of generality, we consider a system with a

single server reachable by clients over either one or two peering links. When two

peering links are available, clients split their traffic across the two links accord-

ing to some strategy. Under the two peering links configuration, we denote as xxx1

and xxx2 the vectors of traffic volumes recorded in 5 minute intervals on links 1-2,

respectively.

In the absence of significant rate variations on either peering link, the traffic

volumes on the single peering link configurations are of the form xxx = xxx1 +xxx2. This

readily gives

max(xxx) ≤ max(xxx1) + max(xxx2) (5.1)

There are obviously additional factors at play when considering the multiple

servers of MuMS clients and a 95th percentile, rather than peak, charging model.

Nevertheless, this captures a fundamental aspect of multipath scenarios that points

to a negative impact on cost. Mitigating this impact is one of the goals of Sunstar.

103



5.3. Sunstar Client Design

5.3 Sunstar Client Design

As discussed in Section 5.2, realizing the lowest possible cost calls for downloading

at the lowest possible rate, while meeting the video’s target rate of T . Blindly fol-

lowing such a recommendation is, however, likely to result in poor performance.

Sunstar seeks to instead minimize rate variance, while guaranteeing a sufficient av-

erage download rate. Minimizing rate variance still favors lower rates, but at the

same time also aims for rate stability. A more stable download rate can, in turn,

mitigate playback disruptions by ensuring a regular replenishing of the playback

buffer, even during periods of network fluctuations.

5.3.1 Sunstar Client Design Overview

The Sunstar client design assumes that video content is replicated across multiple

servers. Upon requesting a video, a client is assigned a given set of servers. This

is done through a server selection algorithm imposed by the CDN and can be re-

alized through manifest files that clients can download from a designated server.

The client is an application layer client that downloads and plays back videos by

sending requests for fixed size chunks to its assigned servers using http range re-

quests. It adapts the number of chunks requested from each server at runtime

based on current performance measures. This calls for both estimating the band-

width available to each server to avoid congesting the network or servers, and for

distributing requests across paths to meet cost and performance objectives.

Specifically, the current Sunstar client realizes the following functionality:

Bandwidth estimation. The client updates its estimates of the bandwidth available

on each path using a TCP-like AIMD mechanism, which computes a window size

(in chunks) for each path. This provides upper bounds for the number of requests

that can be sent to each server. Specifically, we use a TCP CUBIC congestion control

mechanism to adapt the window size to server i. CUBIC, however, relies on losses

104



5.3. Sunstar Client Design

to reduce its window size, and since chunks are requested over http, there is no

application level loss in the Sunstar client. We use a drop of more than 20% in the

estimated average rate to server i as equivalent to a CUBIC packet loss.

Request scheduling. The client dynamically adapts the number of chunks to re-

quest from each server. In particular, the Sunstar scheduler (see Section 5.3.2) aims

to optimize the user’s QoE by allocating chunk requests to minimize rate variabil-

ity.

Out-of-order delivery. As with other multipath solutions, chunks requested from

different servers may arrive out of order. We take an approach similar to MPTCP

in dealing with this issue, namely, split the client design into two layers. The lower

layer consists of individual http connections or subflows, each responsible for send-

ing requests to a single server. Upon receiving responses to requests, the subflow

passes them up to the upper layer that reassembles them in the correct order.

Performance optimizations. The Sunstar client incorporates optimizations previ-

ously devised for MPTCP. In particular, it employs opportunistic retransmit. When

latencies across servers are significantly different, opportunistic retransmit pre-

vents the client from stalling while waiting for a chunk requested from a high la-

tency server. A mechanism similar to TCP timeouts is also implemented for chunk

requests. If a response is not received before a timeout, the request is re-sent to

another server. Last, we limit the number of retries for chunk requests to bound

playback stalls. Once this retry limit is exhausted, the chunk is skipped and the

player relies on its codec to mask missing frames.

We acknowledge that an alternative to an application layer solution is a trans-

port layer one, i.e. by extending a protocol such as MPTCP. A transport layer solu-

tion has advantages such as finer adaptation granularity and, therefore, faster re-

actions. However, extending MPTCP to work in a multi-server rather than single-

server setting involves non-trivial changes to the network protocol stack. In addi-

tion, the tight coupling of MPTCP components can result in unexpected interac-

105



5.3. Sunstar Client Design

tions [14]. Avoiding or predicting them calls for a careful evaluation of proposed

changes. Hence, an application layer solution offers a number of benefits, in terms

of flexibility and ease of deployment.

Note also that while, as mentioned earlier, Sunstar is complementary to ABR

solutions, combining Sunstar with an effective ABR strategy, i.e. deciding when

to adjust coding rates, is not addressed in the current Sunstar client design. Ex-

tending the design to make it fully compatible with ABR solutions is part of future

work.

5.3.2 The Sunstar Scheduler

The scheduler is the core component of the Sunstar client4. Its main goal is to

minimize playback stalls as their frequency and duration are known to have a

significant influence on users’ QoE [18, 69] (see also our Mechanical Turk exper-

iments in Appendix B.1). Playback stalls are a direct consequence of an empty

playback buffer, which arises when the download rate falls below the playback

rate for an extended period of time. To minimize the odds of such occurrences, the

Sunstar scheduler periodically runs an optimization process that computes how

many chunks to request from each server to ensure a target average download

rate while minimizing variations around that average rate.

The optimization is greedy and myopic, i.e. based on current performance es-

timates for the paths to each server and does not attempt to predict future per-

formance. It operates in “epochs” or “rounds”, whereby in each epoch it seeks to

minimize the increase in variance in that round. The optimization takes as input

the current window size of each server (an upper bound on its rate), its current

estimate of the (average) rate to each server, and the number of pending requests

4We show in Sections 5.4 and 5.5 that it not only delivers significantly better performance than
other schedulers, but that it realizes those performance improvements with little to no impact on
cost.

106



5.3. Sunstar Client Design

to each server. It then computes a target rate (number of requests) for each server

in the next epoch. This rate is used by the scheduler to schedule requests to the

servers.

The rest of this subsection describes the formulation of this optimization pro-

cess in more details.

Scheduler Optimization

Let S be the set of servers assigned to a MuMS client. The goal is to guarantee each

client an average rate T , while minimizing changes in the running variance:

(
∑
i∈S

αiRi − T )2, (5.2)

where Ri is the inverse of the time it takes for requests to arrive from server i (in

other words Ri is the inverse of the application level round trip time), and αi is the

number of chunks that the client has requested from server i. The client’s attained

rate is thus
∑

i αiRi.

This translates to solving the following optimization:

min
α
|
∑
i∈S

αiRi − T | (5.3)

s.t.
∑
i∈S

αiR̂i ≥ T

αi ≤ wi,

where R̂i is the expectation ofRi, andwi the current window size to server i. LetRu
i

andRl
i be upper and lower bounds forRi, respectively. Ru andRl can be estimated

107



5.3. Sunstar Client Design

using Chebychev’s inequality. Equation 5.3 is then equivalent to:

min
α,t

t (5.4)

s.t.
∑
i∈S

αiR̂i ≥ T

∑
i∈S

αiR̂
u
i ≤ T + t

∑
i∈S

αiR̂
l
i ≤ T − t

αi ≤ wi.

Equation 5.4 is derived by first converting the absolute value form of the problem

to its linear form and then replacing the two resulting bounded constraints with

tighter bounds through Ru
i and Rl

i.

The above formulation assumes integer values for αi, but this can occasionally

result in significant overshoots in the realized rate. We, therefore, use fractional

values for αi. However, because requests are for an integer number of chunks, we

maintain a state variable that accounts for the “excess” rate yi to each server. After

solving the optimization, we compute max(αiRi − yi, 0) and use this value as the

target rate to server i. When this corresponds to a fractional number of chunks, we

then round it up and update yi accordingly.

There are two other aspects to the above optimization that need discussion, as

they affect the implementation of the Sunstar scheduler.

The first is Dealing with Infeasibility. As network bandwidth fluctuates, the

above optimization may not always be feasible. However, we still want the client

to request the best possible transmission rate. For that purpose, we progressively

decrease the target rate T (by 10% in our experiments) and rerun the optimization

until a feasible solution is found. Conversely, following a period of rate deficit,

we seek to increase the target rate whenever feasible to make up for the deficit.

108



5.4. Performance Evaluation

Specifically, we run the optimization for a higher target rate (typically 30%) until

the deficit has been absorbed.

The second issue concerns Breaking ties. The optimization need not have a

unique solution, e.g. with homogeneous paths with sufficient bandwidth, using

any of them is a feasible and optimal solution. We, therefore, add two tie-breaking

criteria to the optimization: (1) we minimize the number of servers used, and (2)

we favor those that have been used more frequently in the past. Both criteria aim

to reduce the number of out-of-order chunks.

max(xxx) = max(xxx1 + xxx2) ≤ max(xxx1) + max(xxx2). (5.5)

Hence, under a peak rate charging model, a single path solution yields a lower

cost.

We show in Section 5.4.5 that the optimization of Equation 5.4 is practical in

that it can be solved for up to 4 servers in less than 1ms without overloading an

entry-level machine5. We also note that it is possible to improve the optimization

run time by re-using past solutions as a starting point in each round [22]. Such

improvements are, however, beyond the scope of this paper.

5.4 Performance Evaluation

We implemented a prototype of the Sunstar client, and carried out a number of

experiments to evaluate its behavior along the following dimensions: (1) improve-

ments in video quality over a single server client; (2) improvements in video qual-

ity compared to two representative multi-server schedulers, an RTT-based sched-

uler6 similar to that used (at the transport layer) by MPTCP, and the YouTuber

5Note though, that the complexity of solving the problem grows relatively fast with the number
of servers and variables.

6We refer to it in the paper as the min-RTT scheduler.

109



5.4. Performance Evaluation

(a) Distribution of the fraction of time clients
stalled in each run.

(b) Distribution of the number of chunks
skipped in each run.

Figure 5.4: Comparison to single path. High and medium bandwidth scenarios
were used with smooth bandwidth variations.

scheduler of [40]; (3) its run-time performance, in particular, that of its core opti-

mization routine.

5.4.1 Evaluation Setup

Our evaluation setup is similar to that of Section 5.2, but spans a broader set of

scenarios to offer a more a comprehensive evaluation of Sunstar’s performance.

Our Sunstar prototype is a Linux-based MuMS client that retrieves video from

Nginx web servers. The videos are 250 MB and broken into fixed chunks of 102 KB

(we experimented with larger/smaller chunk sizes, and the results were similar).

The clients have a target rate of T = 4.08 Mbps (experiments at T = 360 Kbps

yielded similar results). The scheduler’s epoch is 10 ms.

As before, the experiments were carried out on the Emulab testbed. Clients

connect to servers via a dedicated “path” consisting of a link connecting the client

to a machine running dummynet, followed by a link connecting that machine to

the server. The dummynet machine on path i is used to add a fixed latency of 20ms

and vary the capacity available to the client on path i from 0 to Ci with an average

value of Ci/2. Those variations seek to capture the impact of interfering traffic on

the bandwidth available between clients and servers. We consider two types of

110



5.4. Performance Evaluation

bandwidth variations smooth and bursty. Under smooth variations, the available

bandwidth increases and decreases progressively in fixed small sized steps. This

is intended to capture scenarios where congestion from cross-traffic changes rela-

tively slowly. In contrast, bursty bandwidth variations are based on large sporadic

changes in available bandwidth that seek to mimic abrupt changes in congestion,

e.g. because of the start of a high-bandwidth download on a shared link.

In comparing the min-RTT and Sunstar schedulers, we explore both smooth

and bursty bandwidth variations. In the evaluation of Sunstar and in its compari-

son to the min-RTT schedulers, both configurations yield similar results so that we

typically report only one. In the comparison to the YouTuber scheduler of [40], we

focus on bursty bandwidth variations as rapid changes are expected to be the most

stressful to Sunstar’s ability to detect and adapt to bandwidth changes. In configu-

rations with smooth bandwidth variations both Sunstar and YouTuber performed

similarly.

Figure 5.5: High Ci comparison of the two schedulers (smooth bandwidth varia-
tions).

111



5.4. Performance Evaluation

We experiment with three configurations: (i) High Ci, where T � Ci/2 (the av-

erage available bandwidth significantly exceeds the client’s target rate); (ii) Medium

Ci where T + 1 Mbps ≤ Ci/2 ≤ T + 2 Mbps; (iii) Low Ci where Ci/2 < T . Note

that in the Low Ci scenario, multiple paths, and therefore servers, are necessary to

meet the client’s target rate.

Figure 5.6: Medium Ci comparison of the two schedulers (smooth bandwidth vari-
ations).

Performance metrics. As in Section 5.2, we measure QoE-based on [18, 69, 50]: (1)

the number of skipped chunks; and (2) the fraction of times clients are stalled.

5.4.2 Comparison to Single Server Clients

Our first set of experiments compares the performance of the Sunstar client to that

of a single server client. This repeats the earlier MuMS validation of Section 5.2,

with the main distinction that the Sunstar scheduler is now used instead of the

min-RTT scheduler. We report results only for the High Ci and Medium Ci config-

urations, since they are the only two for which an individual path has enough (av-

erage) bandwidth for a client. Statistics for stall durations and number of skipped

112



5.4. Performance Evaluation

Figure 5.7: Low Ci comparison of the two schedulers (smooth bandwidth varia-
tions).

chunks across both configurations are combined and shown in Figures 5.4a,5.4b,

respectively7. The figures confirm the results of Section 5.2, but now for the Sun-

star client. A casual comparison of, say, Figure 5.3 and Figure 5.4b, also hints at

the Sunstar scheduler’s better performance over that of the min-RTT scheduler of

Section 5.2. We explore this aspect further in the next section.

5.4.3 Comparison to the Min-RTT scheduler

We focus on a configuration where a single client downloads videos from the same

set of servers (we vary the number of servers from 2 to 4). The client is either the

Sunstar client or a client where the Sunstar scheduler is replaced by a min-RTT

scheduler. Due to the high variance in the performance of the MinRTT scheduler,

7Error bars show the 95th percentile confidence intervals by assuming data in each bar is a
Bernoulli distributed random variable.

113



5.4. Performance Evaluation

Figure 5.8: Percentage of time stalled in a medium bandwidth/bursty scenario.

we report stall statistics8 in the form of scatter plots, where each datapoint com-

pares the Sunstar client to the minRTT scheduler (the large confidence intervals for

the min-RTT scheduler make the results hard to interpret otherwise). Points below

the x = y line indicate better performance for the Sunstar client. Results are shown

in Figure 5.5 to Figure 5.7 for the High, Medium and Low Ci configurations for

smooth link variations. Figure 5.8 presents results for one representative configu-

ration with bursty bandwidth variations, namely, the Medium configuration.

The figures show that the Sunstar scheduler consistently outperforms the min-

imum RTT scheduler irrespective of the number of servers used. As expected, the

biggest improvements arise in the Low Ci scenarios, where the limited resources

amplify the need for judicious scheduling decisions. The Medium Ci scenario still

8Results for skipped chunks statistics were of a similar nature.

114



5.4. Performance Evaluation

sees the Sunstar client outperforming the other two in most cases, while the differ-

ences are less pronounced in the High Ci scenario because the plentiful resources

ensure that all schedulers perform well. In the rest of the paper (unless explicitly

said otherwise), we focus on the Medium Ci scenario as it is more likely to arise in

practice.

Number
of servers

Percentage of time buffer
is empty – minRTT sched.

Percentage of time buffer
is empty – our sched.

2 50.75± 13.02 1.61± 0.15
3 1.25± 0.34 0.122± 0.098
4 0.114± 0.14 0.0145± 0.0236

Table 5.1: Percentage of time the playback buffers are empty when multiple clients
share the available links/servers simultaneously. We use 95th percentile confi-
dence intervals.

5.4.4 Comparison to The YouTuber Scheduler

The next set of experiments compare the Sunstar client to a client based on YouTuber [40].

YouTuber works by estimating the bandwidth to each server, and requests chunks

at a rate equal to that estimate. The original design of [40] only considers the case

of two servers. Hence, to ensure a fair comparison, we limit our experiments to

configurations with only two servers.

(a) Fraction of time stalled compared to the
YouTuber scheduler.

(b) Number of skipped bytes compared to the
YouTuber scheduler.

Figure 5.9: Comparing Sunstar scheduler with YouTuber scheduler for regular
video downloads

115



5.4. Performance Evaluation

Video Downloads. Our first set of experiments consider the case of stored video

downloads (as opposed to live streaming, which we consider next). We also al-

low the YouTuber an infinite buffer so as to maximize its performance. YouTuber

aims to estimate the bandwidth available in the network and send requests ac-

cordingly. We, therefore, compare our performance against that of YouTuber in a

bursty environment to contrast the two algorithms’ ability to adapt to such sudden

changes in bandwidth (and therefore their resilience to prediction errors). Since the

YouTuber [40] scheduler requires the use of variable sized chunks, we compare the

number of skipped bytes instead of the number of skipped chunks. YouTuber also

lacks an explicit timeout mechanism. We, therefore, add a timeout period of 10s

to YouTuber when it stalls. At the end of the timeout period, 16 KB of data (its

minimum chunk size) is skipped. This avoids penalizing YouTuber for the lack of

timeouts (in which case it would stall for long periods of time).

Figures 5.9a-5.9b summarizes the comparison for the two QoE metrics of stalls

and skipped bytes. The data is shown in the form of boxplots to be able to show

the results for each metric separately. For completeness, we also include results

for the min-RTT scheduler. The box boundaries show the 25th and 75th percentiles

of the data while the red lines show the median. The whiskers show the most ex-

treme data points in the data. Our results indicate that when link variations are

busty, the Sunstar schedulers outperform the YouTuber scheduler in terms of the

fraction of time stalled (both in median and in the tail). The Sunstar scheduler

is slightly worse in terms of the number of bytes skipped, but the difference is

mostly attributed to the explicit timeout added to YouTuber. When link variations

are smooth, Youtuber performs similar to the Sunstar scheduler and we omit the

presentation. All in all, Sunstar performs better than Youtuber, and the main rea-

son is due to Sunstar’s ability to do finer timescale adaptation accompanied by its

use of opportunistic retransmits, while Youtuber instead relies solely on TCP to

recover from losses, failures, and sudden bandwidth changes. We note that with-

116



5.4. Performance Evaluation

out the explicit timeout mechanism added to Youtuber, this protocol will end up

stalling for long periods – a drawback that Sunstar avoids.

Mis-matched RTTs. We next look at the effect of mismatched RTTs on the different

schedulers. Using two servers, we create a mismatch in RTT, by configuring the

client to server latency for one to be higher by a delta (10-90ms) compared to the

other server. Figure 5.11 illustrates the results. The relative performance of the

different schedulers is preserved. The Sunstar scheduler continues to outperforms

both the min-RTT and YouTuber scheduler.

Live Streaming. Our next experiment aims to compare the three schedulers (Sun-

star, YouTuber, and min-RTT) when streaming live video content. Unlike the ear-

lier workload, live content is generated at a constant rate. We emulate a live

streaming experience by first writing the number of bytes equal to the client’s pre-

buffering threshold into a file. Subsequently, the server continues to write at a

constant rate of T to the file until the entire file is created. Clients start sending

requests after the pre-buffer portion of the file is created.

(a) Fraction of time stalled. (b) Number of skipped bytes.

Figure 5.10: Live streaming schedulers comparison - Medium Ci, bursty band-
width variations.

Figures 5.10a-5.10b illustrate the results. Sunstar outperforms all other sched-

ulers in both metrics. YouTuber has the worst performance out of the three (with

and without limited buffering) as it cannot accurately estimate the rate at which

content is generated at the server. YouTuber’s overly aggressive download strat-

egy that maximizes throughput will backfire as this results in unnecessary stalls.

The YouTuber design is based on an on/off model where the clients maximize

117



5.4. Performance Evaluation

throughput during “on” periods and fill their playback buffers after which they

stop and wait until the contents of the buffer drop below a certain threshold at

which point they go back into “on” mode. The player optimizes its performance

by predicting the bandwidth available to each server and requesting at the maxi-

mum rate possible. However, parts of the video may not be available at the time

a request is made. A limited buffer size should allow the client to pace itself to

download at a more reasonable rate. However, this does not allow YouTuber to

take full advantage of scenarios where a significant part of its benefits is coming

from: maximizing its download rate. It is, therefore, clear that Sunstar is a better

solution compared to YouTuber for handling live video content.

We repeated the above experiments with various sizes of pre-buffers, since

YouTuber’s performance may be affected by pre-buffer duration. We note that

while YouTuber performance improved with the increase in pre-buffer size, the

other two schedulers continued to significantly outperform it even with a pre-

buffer duration of 1 minute.

Figure 5.11: The effect of mismatched RTTs. RTT difference between the links is
denoted as δ.

118



5.5. Cost Impact

5.4.5 Scheduler Execution Time

The previous experiments validate Sunstar’s ability to select high-quality paths to

servers such that QoE metrics are achieved. Our next set of evaluations measure

the runtime of Sunstar’s scheduler. Recall that the optimization algorithm used

by the scheduler is run every epoch. Hence, it is essential that the scheduler is

efficient.

We conducted a number of experiments to evaluate the runtime performance

of our scheduling algorithm. We use the Mosek Solver [96] for the optimizer im-

plementation and it is executed every 10 ms. The Emulab machines used for our

experiments are Dell PowerEdge 2850s with a single 3GHz processor, 2GB of RAM,

and two 10,000 RPM 146GB SCSI disks [2]. Computing the optimal solution typ-

ically takes around 1 − 2 ms. The run times increase with the number of servers,

incurring an average time of 0.27 ± 0.0022 ms (two servers) and 2.20 ± 0.0026 ms

(four servers). Beyond four servers, the run time increases significantly – sug-

gesting that 4 servers offers a reasonable trade-off between execution times and

performance improvements.

5.5 Cost Impact

Sunstar is motivated by the need to improve video quality, but do so without nega-

tively impacting peering costs. The insight derived from Section 5.2 led to a design

that seeks to minimize rate variations while keeping the download rate as close as

possible to the target download rate. The previous section showed it was effective

in improving video quality. The focus here is on showing that those benefits are

realized without increasing the provider’s cost. Because the YouTuber scheduler

behaves aggressively when it comes to download rate, i.e. it seeks to use all the

available bandwidth, we expect that it will perform poorly when it comes to cost.

119



5.5. Cost Impact

We, therefore, focus our efforts on comparing the Sunstar client to a single server

solution (our baseline), and to a client using the Min-RTT scheduler.

We evaluate peering costs using a setup similar to that of Section 5.4. The main

differences are increases in both the number of clients simultaneously active, and

the number of servers available to them (we now have 10 servers to chose from).

The latter allows us to subsequently consider the impact of server selection on

cost, as part of a sensitivity analysis. While this section is only concerned with

cost, we also evaluated Sunstar’s performance and verified that its benefits remain

qualitatively similar to those of Section 5.4 in spite of the larger number of clients.

Figure 5.12: Peering costs under different schedulers and server selection ap-
proaches.

In a given round of experiment, clients connect to k out of 10 Emulab servers,

where k is a parameter that varies from 1 to 3. Since Emulab has a limited num-

ber of physical machines available, we configure each machine to have 10 active

clients at any point in time, for a total of 100 clients in the system. To emulate an

environment with clients coming and leaving, clients watch videos of fixed dura-

tion chosen from a set of {5, 10, 20, 30, 60} minutes long videos, and then leave to

120



5.5. Cost Impact

be replaced by a new client that randomly chooses a new video. Video selection

is biased towards shorter videos (based on the observation [61] that clients tend to

watch shorter duration videos).

Each physical machine has a dedicated link to a dummynet node through which

clients originating on that machine experience bandwidth variations that are inde-

pendent of those for clients on other machines. We use a Medium Ci configura-

tion, as described in the previous section, but scale the bandwidth by a factor 10

(the number of clients on the link). Low and high bandwidth scenarios yielded

qualitatively similar results. Each server is in turn logically connected to a single

peering link shared by all clients accessing it. The bandwidth on the peering link

is high enough to avoid congestion, independent of the number of clients assigned

to the server. New clients first connect to a “master” server, which redirects them

to a list of k servers, k = 1, 2, or 3, from which to download their video. The master

uses a round-robin server assignment strategy to select which k servers to assign

to a new client.

To allow a meaningful comparison, the same pattern of link bandwidth vari-

ations and server assignments are used across schedulers in a given experiment.

Individual experiments last for 4 hours, with the 95th percentile cost (traffic vol-

ume) of the provider obtained by summing the individual 95th percentiles costs of

the 10 servers in those 4 hours. Statistics are then computed over a set of 10 inde-

pendent experiments. The first five data points (from the left) of Figure5.12 report

results for the following configurations: SS (Single Server, our baseline reference),

mRTT-2 and mRTT-3 (for Min-RTT with 2 and 3 servers), and SS-2 and SS-3 (for

Sunstar with 2 and 3 servers). The definition of the boxplots used in the figure is

similar to that of Section 5.4.

We make two observations from the results of Figure 5.12. The first is a con-

firmation of the insight of Section 5.2.2, which forecast cost increases when us-

ing multiple servers. In particular, configurations with 2 and 3 servers and the

121



5.5. Cost Impact

min-RTT scheduler show clear increases over the single server case (about 20% for

3 servers). The second observation is that the strategy behind Sunstar is indeed

successful in both improving performance (as shown in Section 5.4), and realizing

those improvements with little to no impact on cost. In fact, our results suggest

that Sunstar actually reduces cost on average, suggesting that Sunstar is more cost

effective in some settings. Overall, our results show that Sunstar does improve

video quality, and does so without affecting the peering costs of video providers;

something they can ill afford.

In addition to assessing the benefits of Sunstar’s “smarter” scheduling deci-

sions, another question of interest is whether further improvements can be realized

by also optimizing the set of servers that clients are assigned to. To explore this is-

sue, we formulate the server assignment problem as a constrained optimization9

(see Appendix B.2 for details on this optimizations) that seeks to greedily minimize

increases in the 95th percentile cost when assigning servers to new clients, while

meeting client rate constraints.

The results from experiments combining this optimization with the Sunstar

scheduler are shown in the right-most part of Figure5.12 (labeled “Optimization”).

They highlight that the approach offers only limited benefits, at least when used

with the Sunstar scheduler (other experiments with the min-RTT scheduler showed

slightly larger improvements). This is likely due in part to the relatively balanced

request patterns used in our experiments, as well as the limited ability of a greedy

approach to accurately predict how different assignments affect the 95th percentile.

In addition, the Sunstar scheduler itself also contributes to this outcome, in that its

goal of keeping rates low is likely to already realize much of the achievable gains

in cost reductions. We repeated our experiment using a server selection strategy

that picks the k closest servers (lowest RTT), and again found little to no differ-

9Note that unlike the optimization of the Sunstar scheduler, this optimization is required only
once when a new client starts.

122



5.5. Cost Impact

ences in cost. A full assessment of the benefits of the server selection approach

of Appendix B.2 and other server selection algorithms across traffic scenarios is of

interest, and something we expect to explore as future work.

123



Chapter 6

Related Work

In this work we presented various algorithms that can be employed at the client

side of a communication to allow for higher resilience and network diagnosis at

low overhead. In this chapter we describe how these algorithms are different from

previous work in this space.

6.1 Network diagnosis

Identifying the source of failures in distributed systems and more specifically net-

works is a mature topic. In this section, we outline some of the key differences of

NetPoirot and Vigil with some of these works.

Anomaly detection in distributed systems [55, 70, 57, 73, 141, 47, 79] detect when

a failure has occurred using techniques such as PCA [57], Fourier transforms [141],

and decision trees [55]. The goal of NetPoirot is to find the entity responsible for

the failure. Vigil goes a step further by identifying the device responsible for the

failure.

Inference and Trace-Based Algorithms [17, 5, 145, 65, 60, 88, 119, 87, 84, 66] either

require (a) data not locally available to the client at runtime, (b) knowledge/in-

124



6.1. Network diagnosis

ference of the probability distribution of failure on each device in the system, (c)

high resource consumption at runtime, or (d) knowledge/inference of application

dependence on the different network/service devices. Each of these requirements

raises the barrier of adoption, as compared to NetPoirot /Vigil.

Everflow [145] represents a different class of these algorithms that aims at ac-

curately identifying the path of packets of interest. However, Everflow does not

scale to be used as an always on diagnosis system. Furthermore, it uses the DSCP

bit which is typically reserved for other purposes.

Some inference approaches aim at covering the full topology, e.g. [65]. While

useful in their own right, they typically only provides a sampled view of con-

nection livelihood (this is also true of most tomography approaches) and do not

achieve the type of always on monitoring that NetPoirot and Vigil provide. The

time between probes for [65] for example is currently 5 minutes. Therefore, it is

highly likely that failures that happen at finer time scales slip through the cracks

of its monitoring probes.

Other such work, e.g. [88, 119, 87, 84] require access to both endpoints and/or

switches. Such access may not always be possible.

Fault Localization by Consensus [108] violates the data locality requirement, but

does not require any information from the network or service. The work assumes

that a failure on a node common to the path used by a subset of clients will re-

sult in failures on all or a significant number of those clients. Therefore, if many

clients in different locations report a failure, it is most likely caused by the service,

whereas if only a single client fails the problem is likely local to that client. Figure

6.1 illustrates why this approach fails in the face of problems such as EX. Here, we

use the Network Emulator Tool (NEWT) [94] to induce a 5% packet drop rate on

all TCP connections to the remote service on a single machine in our stage cluster.

Even though the 5% drop rate was present over the entire 6 hour period, only 3 EXs

occurred. These events happened when data transmissions increased. This shows

125



6.1. Network diagnosis

that even though a failure may be present in the network, not all clients will ob-

serve it at the same time or in the same way. NetProfiler [108] would erroneously,

classify such a problem as a client side problem. These approaches require further

information in order to provide reliable fault localization. Vigil builds on this idea,

it provides a confidence measure that identifies how reliable a diagnosis report is.

Figure 6.1: Each dot shows BPostedmax in time and is representative of a 30s
epoch.

126



6.1. Network diagnosis

Fault Localization using TCP statistics [90, 134, 140, 138, 119] targets using TCP

metrics for diagnosis. [90] requires heavyweight active probing. [134] uses learn-

ing techniques (SVM), however, it relies on packet captures from both end points

and is limited in the scope of failures it detects (network and application problems

only). T-Rat [140] infers TCP information from packet captures. It is used to un-

derstand why a TCP connection is rate limited. Our diagnosis goals are broader.

T-Rat is too heavyweight to be used as always on. SNAP [138] requires sensitive

information, such as topology, path information, and switch counters to perform

diagnosis. NetPoirot eliminates the need to share such information with clients.

SNAP [138] initially identifies performance problems/causes for single connec-

tions by acquiring TCP information which are gathered by querying socket op-

tions. It also gathers routing data combined with topology data to compare the

TCP statistics for connections that share the same host, link or top of rank switch

or aggregator switch. It then collects the mapping of connections to applications to

further see if a particular application is experiencing more problems than others.

Given their lack of continuous monitoring, all of these approaches fail in detect-

ing the type of problems NetPoirot/Vigil are designed to detect. Furthermore, the

goal of Vigil is more ambitious, namely to find the link that causes packet drops

for each TCP connection.

Network tomography [143, 71, 85, 51, 80, 76, 103, 38, 144, 72, 52, 99] typically con-

sist of two aspects: (i) the gathering and filtering of network traffic data to be

used for identifying the points of failure [103, 143] and (ii) using the information

found in the previous step to identify where/why failures occurred [71, 85, 51, 99,

48, 52, 20]. Vigil and NetPoirot utilize ongoing traffic to detect problems, unlike

tomography-based approaches which require a much heavier-weight operation of

gathering large volumes of data for analysis. Tomography-based approaches are

also better suited for non-transient failures, while our systems can handle both

transient and persistent errors. NetPoirot/Vigil also have coverage that extends

127



6.1. Network diagnosis

to the entire network infrastructure, and does not limit coverage to only paths

between designated monitors as some tomography approaches do. Some tomog-

raphy techniques on analyzing failures [143, 51, 103, 99] are complementary and

can be applied to NetPoirot/Vigil to improve our accuracy.

Learning Based Approaches [36, 49, 6] do failure detection. NetPoirot also uses

machine learning techniques, but the application domain is different (home net-

works [6] and mobile video delivery [49]). [36] uses decision trees in order to

locate the device responsible for a failure by observing the path traversed on the

tree. It requires request to server mappings. NetPoirot does not require this addi-

tional information.

Application diagnosis [39, 7] aim at identifying the cause of problems in a dis-

tributed application’s execution path. These works are useful in their own right,

but the limitations of diagnosing network level paths and the complexities associ-

ated with this task are different. Obtaining all execution paths seen by an applica-

tion, is plausible in such systems but is not an option in ours.

Fault localization in wide area networks [139, 102, 128, 127, 89, 21] shares some

similarity to that of Vigil, the constraints in a datacenter network are vastly differ-

ent.

Understanding datacenter failures [146, 62] aims to identify the various types of

failures in data center networks. These approaches are useful in understanding the

types of problems that arise in practice and to ensure that our monitoring/diagno-

sis engines are well equipped to find them. In fact, in our analysis of Vigil, we use

the findings of [146].

Perhaps the most related body of work to Vigil is that of [119] which requires

modifications to routers and assumes a specific topology, limitations that Vigil

does not have. Moreover, in order to apply their approach to a traditional data-

center, a number of engineering problems need to be overcome as well, including

128



6.2. Multi Server Video Delivery

finding a substitute for their use of the DSCP (used for other purposes in our data

center).

6.2 Multi Server Video Delivery

There has obviously been much work on optimizing video transmission and us-

ing multipaths to overcome network impairments. Our intent is not to provide

an exhaustive review, but rather to summarize major approaches and highlight

similarities and differences with this work.

6.2.1 Video Delivery Optimizations

Adaptive bit rate (ABR) [56, 34] is, as mentioned earlier, a powerful approach for

mitigating the impact of network rate variations by allowing clients to correspond-

ingly adjust their video coding rate. The main drawback of ABR is that it requires

servers and caches to store multiple encodings of the same video, or codecs to be

able to dynamically update their coding rate. In addition, adjustments in coding

rates still produce noticeable changes in video quality [125, 59, 122]. Our goal with

Sunstar is complementary to ABR, in that we aim to leverage multiple paths to

different servers to minimize (network) rate variations, and therefore coding rate

changes.

Caching is another popular strategy. It improves performance by moving files as

close as possible to clients through caches located at the network edge. This is,

however, not always effective, in part because copyrights laws make much con-

tent un-cachable, and the combination of the long tail of video popularity [41] and

the use of ABR can lower cache efficiency. Consequently, even smart caching algo-

rithms only boast a cache efficiency of about 50% [114] (for ABR videos). Sunstar

129



6.2. Multi Server Video Delivery

is meant to improve video delivery in instances when video cannot be served from

a local edge cache.

OpenConnect [101] was proposed by Netflix. It relies on embedding appliances

in ISPs’ networks to locate content closer to clients and to preemptively populate

caches at off-peak hours to avoid cache warm-up and network congestion during

peak hours. It calls for partnership between content providers and ISPs, e.g. locat-

ing appliances in the ISP’s facility, which some large ISPs are reluctant to engage

in as they have competitive businesses [120].

Content filtering limits content available to users to content that can be delivered

with high quality, e.g. from caches. This is realized by applying filters that limit

viewable listings to a subset of (popular) videos, or by steering users away from

unpopular items [25]. Both approaches result in potential loss of revenue, e.g.

removing such filters can increase the number of views by 45% [25].

Dynamic CDN switching is offered by companies such as Conviva and Cedexis

which act as brokers in the CDN domain. They measure CDN status and switch

between CDN providers based on performance. The main disadvantage is that

CDNs no longer control how clients are redirected to servers, which can have un-

intended consequences, including higher costs [97]. In contrast, Sunstar keeps the

assignment of clients to servers under the video provider’s purview and incorpo-

rates mitigating cost increase as an explicit criterion.

Hybrid CDN-P2P seeks to combine the best of CDN and peer-to-peer solutions [137].

Netsession [142] offers a representative example of the potential benefits of such

an approach. Unlike Sunstar, it again does not offer an explicit control on how

improving performance affects a provider’s cost. Additionally, aspects such as

copyright management are traditionally difficult to handle in a P2P setting.

130



6.2. Multi Server Video Delivery

6.2.2 Multipath Solutions

The benefits of multipaths have been studied in numerous settings, e.g.[9, 124, 45],

but perhaps most visible among them are studies of Multipath TCP (MPTCP) [116],

whose investigations related to congestion control [123, 135, 112, 14] or schedul-

ing [13, 106] are of most relevance, even if not directly applicable because of MPTCP’s

assumption of a single source and a single destination. Nevertheless, several tech-

niques developed to improve MPTCP can be repurposed in a MuMS setting. For

example, as discussed in Section 5.3, Sunstar is able to leverage MPTCP’s oppor-

tunistic retransmit to improve its performance.

More directly comparable to Sunstar are works that explicitly target improving

video delivery by relying on multiple servers. In most such settings, e.g.[118, 40],

the focus has, however, been on optimizing download rates, which, as we shall see,

can have a significant impact on cost. Specifically and as discussed in Section 5.2,

while the more aggressive download strategies of [118, 40] can reduce the odds of

skips and stalls, they typically result in higher costs. In contrast, Sunstar aims to

realize comparable improvements in video quality, but with little to no increases

in cost.

6.2.3 Server selection and cost optimizations

Another relevant body of work is that of server selection algorithms that optimize

for a given metric, e.g. performance or cost [98, 133, 100, 23]. Extending those

approaches to a MuMS’ setting is, however, challenging. This is because the mul-

tipath nature of MuMS clients makes predicting variations in traffic volumes at

peering links more difficult than with single path clients. In particular, clients are

now free to choose how to distribute video requests across paths. How this im-

pacts cost and performance adds a new non-trivial dimension to the problem.

In this context, the approach closest to Sunstar is [86]. It considers both perfor-

131



6.2. Multi Server Video Delivery

mance and cost and adopts a cost minimization formulation with performance as

a constraint, where for each CDN performance is based on long-term QoE mea-

surements from clients in different regions. Given an expected request load, [86]

computes a “prioritized” list of servers that a client should use when requesting

content. Higher priority servers are to be used first as long as they have available

capacity. A TCP-like AIMD mechanism is used to estimate the bandwidth avail-

able to each server. Sunstar’s approach differs from that of [86] in that rather than

minimizing cost and keeping performance as a constraint, it leverages its under-

standing of the relationship between cost and performance to select rate variation

as its minimization target. In addition, Sunstar’s scheduler offers a more respon-

sive mechanism than that of [86], which is limited to the set of servers computed

by its optimization. In some sense, the scheduler of [86] is similar to the min-RTT

scheduler of Section 5.4, which, as we shall see, performs significantly worse that

that of Sunstar in terms of both cost and performance.

Finally, of note in the context of cost optimization is [126], which attempts to

account for the contributions of individual users to a 95th percentile cost function.

Although such an approach could be used to formulate an appropriate objective

function for a server selection algorithm, it requires detailed knowledge of the

exact traffic patterns of each user. This is unlikely to be feasible, especially in a

multipath setting where variations on a given path affect traffic on all paths.

132



Chapter 7

Conclusion

Endpoints can play a significant role in improving their own quality of service

when using networks such as the Internet or datacenters. In this work we demon-

strate how clients can effectively assist network operators in finding the source of

performance problems. We introduce two systems NetPoirot and Vigil that allow

the client to help with diagnosis (and recovery) when failures occur.

Diagnosis and recovery are only one part of ensuring all clients achieve high

QoS. Both take time to resolve performance problems if/when they occur. We

show that through the use of multiple path (or multiple servers in the context of

video delivery) clients can significantly improve their performance as all such path

are unlikely to experience problems at the same time. We demonstrate the effec-

tiveness of this idea in the context of video delivery through a new multipath-

multiserver client (Sunstar).

There are a number of questions that remain unanswered in this work. For

example, in designing NetPoirot we found that TCP reacts differently to different

types of failures depending on their root cause. By deriving a better understanding

of when, how, and why such reactions are triggered it should be possible to arrive

at not only a more robust protocol but also to provide further assistance to oper-

133



Chapter 7. Conclusion

ators when diagnosing failures in data center networks. Furthermore, the use of

multipath changes the diagnosis problem significantly. How does one identify the

subpath responsible for a failure? What is the implication for congestion control

and scheduling across the different path? How fast can these algorithms recover

from a transient failure and reroute traffic accordingly? What are the potential im-

plications of these protocols for network security? These are problems that remain

unanswered and should be investigated if these protocols are to be widely adopted

in future.

134



Appendix A

Vigil Proofs

Definition: [Clos topology]

A Clos topology has npod pods each with n0 top of the rack (ToR) switches under

which lie H hosts. The ToR switches are connected to n1 tier-1 switches by a com-

plete network (n0n1 links). Links between tier-0 and tier-1 switches are referred

to as level 1 links. The tier-1 switches within each pod are connected to n2 tier-2

switches by another complete network (n1n2 links). Links between these switches

are called level 2 links.

Remark 4 (Communication and failure model). Assume that connection occur uni-

formly at random between hosts under different ToR switches. Since the number of hosts

under each ToR switch is the same, this is equivalent to saying that connections occur

uniformly at random directly between ToR switches. Also, assume that link failure and

connection routing are independent and that links drop packets independently across links

and across packets.

Remark 5 (Notation). We use calligraphic letter (A) to denote sets. Also, we write [M ]

to mean the set of integers between 1 and M , i.e., [M ] = 1, . . . ,M .

Theorem 6. In a data center with Clos topology, the rate of traceroutes T going through

135



Appendix A. Vigil Proofs

any link is bounded by

T ≤ CH

n1n2

·max

[
n2,

n2
0(npod − 1)

(n0npod − 1)

]
, (A.1)

where C is the connection rate between hosts. Hence, a maximum traceroute rate of Tmax

will be met if the connection rate of each host satisfies

C ≤ n1n2Tmax

H ·max
[
n2,

n2
0(npod−1)

(n0npod−1)

] . (A.2)

Proof. Start by noticing that the number of hosts below each ToR switch is the

same, so that we can consider connections to happen uniformly at random directly

between ToR switches at a rate CH . Moreover, note that routing probabilities are

the same for links on the same level, so that the traceroute rate depends only on

whether the link is on level 1 or level 2.

Since the probability of a switch routing a connection through any link is uni-

form, the traceroute rate of a level 1 link is given by

R1(r) =
1

n1

CHr, (A.3)

where r denotes the probability of issuing a traceroute, i.e., the probability of a

TCP retransmission occurring during a connection. Similarly for a level 2 link:

R2(r) =
n0

n1n2

n0(npod − 1)

(n0npod − 1)
CHr, (A.4)

where the second fraction represents the probability of a host connecting to an-

other host outside its own pod, i.e., of going through a level 2 link. Since (A.3)

and (A.4) are increasing in r and r ≤ 1, it holds that T ≤ max [R1(1), R2(1)]. Taking

max [R1(1), R2(1)] ≤ Tmax yields (A.2).

Theorem 7. In a Clos topology with n0 ≥ n2 and npod ≥ 1 + max
[
n0

n1
, n2(n0−1)
n0(n0−n2)

, 1
]
,

Vigil will rank with probability (1 − ε) the k <
n2(n0npod−1)

n0(npod−1)
bad links that drop packets

136



Appendix A. Vigil Proofs

with probability pb above all good links that drop packets with probability pg as long as

pg ≤
1− (1− pb)cl

αcu
, (A.5)

where cl and cu are lower and upper bounds, respectively, on the number of packets per

connection,

α =
n0(4n0 − k)(npod − 1)

n2(n0npod − 1)− n0(npod − 1)k
, (A.6)

and

ε ≤ e−N DKL((1+δ)vg‖vg) + e−N DKL((1−δ)vb‖vb)

= 2e−O(N),
(A.7)

with vg and vb being the probabilities of a good and bad link receiving a bad vote, respec-

tively, N being the total number of connections between hosts, and DKL(q‖r) denoting

the Kullback-Leibler divergence between two Bernoulli distributions with probabilities of

success q and r.

Before proceeding, note that when, as in our data center, n0 ≥ 2n2, n2(n0−1)
n0(n0−n2)

≤ 1,

so that case the condition on the number of pods reduces to npod ≥ 1 + n0

n1
.

Proof. The proof proceeds as follows. First, note that the number of votes on a

bad (good) link is a binomial random variable with parametersN and vb (vg). Then,

using large deviation theory [11], we proceed to show that if vb ≥ vg, Vigil will rank

bad links above good links with high probability for large enough N (Lemma 8).

Finally, we derive bounds on vb and vg using Boole’s inequality (Lemma 9) and use

these results to show that vb ≥ vg if pb and pg satisfy (A.5).

Let us start by stating the lemmas and showing how they imply Theorem 7.

Lemma 8. If vb ≥ vg, Vigil will rank bad links above good links with probability (1 − ε)

for ε as in (A.7).

137



Appendix A. Vigil Proofs

Lemma 9. In a Clos topology with n0 ≥ n2 and npod ≥ max
[
n0

n1
, n2(n0−1)
n0(n0−n2)

, 1
]

+ 1, it

holds that for k ≤ n0 bad links

vb ≥
rb

n0n1npod
(A.8a)

vg ≤
1

n1n2npod

n0(npod − 1)

n0npod − 1

[
(4− k

n0

)rg +
k

n0

rb

]
(A.8b)

where rb and rg are the probabilities of a retransmission occurring due to a bad and a good

link, respectively.

From the (A.8) in Lemma 9, it holds that

rb ≥
n0(4n0 − k)(npod − 1)

n2(n0npod − 1)− n0(npod − 1)k︸ ︷︷ ︸
α

rg ⇒ vb ≥ vg, (A.9)

for k <
n2(n0npod−1)

n0(npod−1)
< n0. Thus, in a Clos topology, rb ≥ αrg ⇒ vb ≥ vg for α as

in (A.6).

However, (A.9) gives a relation between the probabilities of retransmission (rg, rb)

instead of the packet drop rates (pg, pb) as in (A.5). Indeed, to obtain (A.5), note that

the probability r of retransmission during a connection with c packets due to a link

that drops packets with probability p is r = 1 − (1 − p)c. Since r is monotonically

increasing in c, we have that rb ≥ 1− (1− pb)cl . Similarly, rg ≤ 1− (1− pg)cu . Using

the fact (1− x)n ≥ 1− nx yields (A.5).

We now proceed with the proofs of Lemmas 8 and 9.

Proof of Lemma 8. We start by noting that in a data center-sized Clos network, al-

most every connection has a hop count of 5. In our data center, this happens

to 97.5% of connections. Therefore, we can approximate links votes by assum-

ing all bad votes have the same value. Thus, suffices to determine how many bad

votes each link has.

Since links cause retransmissions independently across connections (see Re-

mark 4), the number of bad votes received by a bad link is a binomial random

138



Appendix A. Vigil Proofs

variable B with parameters N , the total number of connections, and vb, the proba-

bility of a bad link receiving a bad vote. Similarly, letG be the number of bad votes

on a good link, a binomial random variable with parameters N and vg. Vigil will

correctly rank the bad links if B ≥ G, i.e., when bad links receive more votes than

good links. This event contains the event {G ≤ (1 + δ)Nvg ∩ B ≥ (1 − δ)Nvb} for

δ ≤ vb−vg
vb+vg

. Using the union bound P [
⋃
iEi] ≤

∑
i P [Ei] [53], the probability of Vigil

identifying the correct links is therefore bounded by

P(B ≥ G) ≥ P [G ≤ (1 + δ)Nvg ∩B ≥ (1− δ)Nvb]

≥ 1− P [G ≥ (1 + δ)Nvg]

− P [B ≤ (1− δ)Nvb]

(A.10)

To proceed, note that the probabilities in (A.10) can be bounded using the large

deviation principle [11]. Indeed, let S be a binomial random variable with param-

eters M and q. For δ > 0 it holds that

P [S ≥ (1 + δ)qM ] ≤ e−M DKL((1+δ)q‖q) (A.11a)

P [S ≤ (1− δ)qM ] ≤ e−M DKL((1−δ)q‖q) (A.11b)

where DKL(q‖r) is the Kullback-Leibler divergence between two Bernoulli distri-

butions with probabilities of success q and r [?]. Explicitly,

DKL(q‖r) = q log
(q
r

)
+ (1− q) log

(
1− q
1− r

)
.

Substituting the inequalities (A.11) into (A.10) yields (A.7).

Proof of Lemma 9. Before proceeding, let T0, T1, and T2 denote the set of ToR, tier-

1, and tier-2 switches respectively (Figure A.1). Also let T s0 and T s1 , s = [npod],

denote the tier-0 and tier-1 switches in pod s respectively. Note that T0 = T 1
0 ∪· · ·∪

T npod
0 and T1 = T 1

1 ∪ · · · ∪ T
npod

1 . Note that we use subscripts to denote the switch

139



Appendix A. Vigil Proofs

Level 1 links

Level 2 links

Figure A.1: Illustration of notation for Clos topology used in the proof of Lemma 9

tier and superscripts to denote its pod. To clarify the derivations, we maintain

this notation for indices. For instance, is0 is the i-th tier-0 switch from pod s, i.e.,

is0 ∈ T s0 , and `2 is the `-th tier-2 switch. Note that tier-2 switches do not belong to

specific pods. We write (is0, j
s
1) to denote the level 1 link that connects is0 to js1 (as

in Figure A.1) and use r(is0, js1) = r(js1, i
s
0) to refer to the probability of link (is0, j

s
1)

causing a retransmission. Note that r is also a function of the number of packets in

a connection, but we omit this dependence for clarity.

The bounds in (A.8) are obtained by decomposing the events that Vigil votes

“bad” for a level 1 or level 2 link into a union of simpler events. Before proceeding,

note that each connection only goes through one link in each level and in each

direction, so that events such as “going through a ToR to tier-1 link” are disjoint.

Starting with level 1, let A0 be the event that a connection goes through link (is0, j
s
1).

This event happens with probability

P [A0] =
1

n0n1npod
, (A.12a)

given that there are n0n1npod level 1 links and that connections occur uniformly at

random. Therefore, a link (is0, j
s
1) receives a bad vote if a connection goes through

it (event A0) and either of the following occurs:

• event A1: (is0, j
s
1) causes a retransmission, i.e.,

P [A1] = r(is0, j
s
1) (A.12b)

140



Appendix A. Vigil Proofs

• event A2: the connection also goes through some (js1, k
s
0), ks0 6= is0, and (js1, k

s
0)

causes a retransmission. Therefore,

P [A2] =
1

n0npod − 1︸ ︷︷ ︸
connect to ks0

∑
ks0∈T s0 \{is0}

r(js1, k
s
0) (A.12c)

• event A3: the connection also goes through some (js1, `2) and (js1, `2) causes a

retransmission, which occurs with probability

P [A3] =
n0(npod − 1)

n0npod − 1︸ ︷︷ ︸
leave pod s

1

n2︸︷︷︸
go through

`2

∑
`2∈T2

r(js1, `2) (A.12d)

• event A4: the connection also goes through some (`2,m
t
1), t 6= s, and (`2,m

t
1)

causes a retransmission, so that

P [A4] =
n0

n0npod − 1︸ ︷︷ ︸
go to pod t

1

n1n2︸ ︷︷ ︸
go through

(`2,mt1)

∑
`2∈T2,
mt1∈T t1 ,
t∈[npod]\s

r(`2,m
t
1) (A.12e)

• event A5: the connection also goes through some (mt
1, u

t
0), t 6= s, and (mt

1, u
t
0)

causes a retransmission. Thus,

P [A5] =
1

n0npod − 1︸ ︷︷ ︸
go to pod t

1

n1︸︷︷︸
go through

mt1

∑
mt1∈T t1 ,
ut0∈T t0 ,
t∈[npod]\s

r(mt
1, u

t
0) (A.12f)

Similarly for level 2, let B0 be the event that a connection goes through link (js1, `2),

so that its probability is

P [B0] =
1

npod︸︷︷︸
start in pod s

n0(npod − 1)

n0npod − 1︸ ︷︷ ︸
leave pod s

1

n1n2︸ ︷︷ ︸
go through

(js1 ,`2)

(A.13a)

Then, link (js1, `2) gets a bad vote if a connection goes through (js1, `2) (event B0)

and either of the following occurs:

141



Appendix A. Vigil Proofs

• event B1: (js1, `2) causes a retransmission, i.e.,

P [B1] = r(js1, `2) (A.13b)

• event B2: the connection also goes through some (is0, j
s
1) and (is0, j

s
1) causes a

retransmission. Then,

P [B2] =
1

n0︸︷︷︸
start in is0

∑
is0∈T s0

r(is0, j
s
1) (A.13c)

• event B3: the connection also goes through some (`2,m
t
1), t 6= s, and (`2,m

t
1)

causes a retransmission, which yields

P [B3] =
1

n1(npod − 1)︸ ︷︷ ︸
go through mt1

∑
mt1∈T t1 ,
t∈[npod]\s

r(`2,m
t
1) (A.13d)

• event B4: the connection also goes through some (mt
1, u

t
0), t 6= s, and (mt

1, u
t
0)

causes a retransmission. Therefore,

P [B4] =
1

n0n1(npod − 1)︸ ︷︷ ︸
go through

(mt1,n
t
0), t 6=s

∑
mt1∈T t1 ,
ut0∈T t0 ,
t∈[npod]\s

r(mt
1, u

t
0) (A.13e)

To obtain the lower bound in (A.8a), note that a bad link receives at least as

many bad votes as retransmissions it causes. Therefore, the probability of Vigil

voting “bad” for a bad link is larger than the probability of that link causing a

retransmission. Explicitly, using the fact that failure and routing are independent

and r = rb, (A.12) and (A.13) give

sb ≥ min [P(A0 ∩A1),P(B0 ∩B1)]

= min

[
1

n0n1npod
,

1

n1n2npod

n0(npod − 1)

n0npod − 1

]
rb.

142



Appendix A. Vigil Proofs

The assumption that npod ≥ 1 + n2(n0−1)
n0(n0−n2)

makes the first term smaller than the

second and yields (A.8a).

In contrast, the upper bound in (A.8b) is obtained by applying the union bound [53]

to (A.12) and (A.13). Indeed, this leads to the following inequalities for the proba-

bility of Vigil voting “bad” for a good level 1 and level 2 link:

vg,1 = P [A0 ∩ (A1 ∪A2 ∪A3 ∪A4 ∪A5)]

≤ P[A0]

(
5∑
i=1

P[Ai]

)
(A.14a)

vg,2 = P [B0 ∩ (B1 ∪B2 ∪B3 ∪B4)]

≤ P[B0]

(
4∑
i=1

P[Bi]

)
(A.14b)

where vg,1 and vg,2 denote the probability of a good level 1 and level 2 link being

voted bad, respectively. Note that once again used the independence between fail-

ures and routing. From (A.14), it is straightforward to see that vg ≤ max [vg,1, vg,2].

To obtain (A.8b), we first bound (A.14) by assuming that all k bad links belong

to the event Ai and Bi, i ≥ 2, that maximize vg,1 and vg,2. For a good level 1 link,

it is straightforward to see from (A.12) that since n0 ≥ n2, event A3 has the largest

coefficient. Thus, taking all links to be good except for k bad links satisfying A3

one has

vg,1 ≤
1

n0n1npod

n0(npod − 1)

n0npod − 1
× [(

4− k

n2

+
2(n0 − 1)

n0(npod − 1)

)
rg +

k

n2

rb

]
, (A.15)

which holds for k ≤ n2. Similarly for a good level 2 link, since npod ≥ n0

n1
+ 1 it

holds from (A.13) that event B2 has the largest coefficient. Therefore,

vg,2 ≤
1

n1n2npod

n0(npod − 1)

n0npod − 1
× [(

4− k

n0

)
rg +

k

n0

rb

]
, (A.16)

143



Appendix A. Vigil Proofs

which holds for k ≤ n0. Straightforward algebra shows that for npod ≥ 2, vg,2 ≥ vg,1,

from which (A.8a) yields.

144



Appendix B

Video Delivery And QoS

B.1 Mechanical Turk Experiment

The motivation was to further validate the QoE metrics (stalls and skips) we se-

lected to evaluate video quality. For that purpose, we used a high quality (HD)

documentary about Buckingham Palace1. The video was divided into equal sized

segments of 1 min each, and different types of impairments were introduced in

those segments. Due to of logistics constraints, only results for stalls are available.

Specifically, we considered: 1) a single stall of variable duration at a random loca-

tion in the video; 2) multiple stalls of small (≈ 0.5 sec), medium (≈ 1 sec), and long

(≈ 1.5 sec) durations, evenly distributed in the segment; 3) multiple stalls with the

same distribution in duration, but now closely spaced (0.1 sec) in a burst. In 2) and

3) we varied the number of stalls. The quality of the video segments was evaluated

on a 0−5 scale (0 being the lowest quality) by 20 users recruited through Amazon’s

Mechanical Turk market. For calibration purposes, users were first presented with

an unimpaired video segment, and told to assign it a rating of 5.

Results of the study are presented in Figure ??, which confirms a strong cor-

1https://www.youtube.com/watch?v=jffKwoWjXtg.

145

https://www.youtube.com/watch?v=jffKwoWjXtg


B.2. Server Selection Algorithm

relation (error bars again correspond to 95 percent confidence intervals) between

stalls, both number and duration, and video quality. The limited size of the study

is clearly insufficient for broad conclusions, but it further confirms previous QoE

studies [18, 69, 50] and the impact of stalls on video quality. Hence, fewer/shorter

stalls do translate into higher video quality.

B.2 Server Selection Algorithm

Server selection can be viewed as a Stackelberg game between the clients and the

provider, with the provider as the leader and clients as the followers. Once as-

signed servers, clients seek to maximize their performance by scheduling requests

to servers accordingly. Given this behavior, the provider’s goal is to assign servers

so as to minimize the 95th percentile cost. This non-convex cost function together

with the online nature of the game make computing the optimal assignment strat-

egy hard.

We therefore propose a semi-online greedy optimization that is run every 5 mins

and uses the current estimate of the 95th percentile cost to assign client’s to servers

in a way that meets their rate guarantees while minimizing cost. Specifically, the

optimization maintains an estimate of the number of client’s expected to arrive

from each region (clients in a region have similar bandwidth profiles and share

the same connections to servers). Given these estimates, it seeks to identify which

assignment of servers for each group of client results in the smallest increase in

the current 95th percentile cost. Furthermore, while the optimization’s goal is to

minimize peering costs, it acknowledges that this should not be at the expense of

146



B.2. Server Selection Algorithm

poor performance for the clients. Thus, it also includes two additional constraints:

E

[∑
j

αijRij − T

]
≥ 0 (B.1)

E

(∑
j

αijRij − T

)2
 ≤ γ (B.2)

where αij is the number of requests client i sends to server j and Rij is the rate in

chunks per second from that client’s region to server j.

Note that, reusing the notation of Section ??, B.2 can be written as aiTQai +

bTai + c ≤ γ where Q is a matrix with Qii = V ar(Ri) + R̂2
i and Qij = R̂iR̂j , b is a

vector where bi = −2TR̂i, and c = T 2.

Take Fj as the current 95th percentile cost on peering link j, Lj the current load

on peering link j, and mi the expected number of clients arriving from region i in

the current decision period. We aim to solve the following optimization:

min
αij

max
Bj

(Bj + Lj −Fj, 0)

s.t. Bj =
∑
i

mi

∑
j

αijR̂ij

∑
j

αijR̂ij ≥ Ti ∀i

αij ≤ wmax

αTi Qiαi + bTαi + T 2 ≤ γ2

Bj + Lj ≤ Cj

where wmax is the maximum window size allowed on the clients, and the server

selection algorithm assigns all servers with αij > 0 to region i. It is straightfor-

ward to show that Q in the above equations is positive semidefinite. Therefore, the

optimization is convex and can be solved efficiently.

147



Bibliography

[1] Closing the network diagnostics gap with vigil (extended version). https:

//www.dropbox.com/s/vupgssrby3z40xu/techreport.pdf.

[2] Pc3000. emulab. https://wiki.emulab.net/wiki/pc3000.

[3] RFC 791: Internet Protocol, 1981. DARPA.

[4] Soft Perfect Connection Emulator. https://www.softperfect.com/,

2012. [Online].

[5] Kristin L Adair, Alan P Levis, and Susan I Hruska. Expert network develop-

ment environment for automating machine fault diagnosis. In Aerospace/De-

fense Sensing and Controls, pages 506–515. International Society for Optics and

Photonics, 1996.

[6] Bhavish Agarwal, Ranjita Bhagwan, Tathagata Das, Siddharth Eswaran,

Venkata N Padmanabhan, and Geoffrey M Voelker. Netprints: Diagnosing

home network misconfigurations using shared knowledge. In NSDI, vol-

ume 9, pages 349–364, 2009.

[7] Marcos K Aguilera, Jeffrey C Mogul, Janet L Wiener, Patrick Reynolds, and

Athicha Muthitacharoen. Performance debugging for distributed systems of

black boxes. ACM SIGOPS Operating Systems Review, 37(5):74–89, 2003.

148

https://www.dropbox.com/s/vupgssrby3z40xu/techreport.pdf
https://www.dropbox.com/s/vupgssrby3z40xu/techreport.pdf
https://www.softperfect.com/


Bibliography

[8] Akamai state of the Internet report, q2, 2016. http://www.akamai.com/

dl/akamai/akamai-soti-q114.pdf.

[9] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,

Navindra Yadav, George Varghese, et al. CONGA: Distributed congestion-

aware load balancing for datacenters. ACM SIGCOMM Computer Communi-

cation Review, 44(4):503–514, 2014.

[10] J.G. Apostolopoulos and M.D. Trott. Path diversity for enhanced media

streaming. IEEE Comm. Mag., 42(8), August 2004.

[11] R. Arratia and L. Gordon. Tutorial on large deviations for the binomial dis-

tribution. Bulletin of Mathematical Biology, 51(1):125–131, 1989.

[12] B. Arzani, R. Guerin, and A. Ribeiro. A distributed routing protocol for pre-

dictable rates in wireless mesh networks. In Proc. IEEE ICNP, Austin, TX,

October 2012.

[13] Behnaz Arzani, Alexander Gurney, Shuotian Cheng, Roch Guerin, and

Boon Thau Loo. Impact of path characteristics and scheduling policies on

MPTCP performance. In Proc. PAMS, 2014.

[14] Behnaz Arzani, Alexander Gurney, Sitian Cheng, Roch Guerin, and

Boon Thau Loo. Deconstructing MPTCP performance. In ICNP, 2014.

[15] Behnaz Arzani, Alexander Gurney, Bo Li, Xianglong Han, Roch Guerin, and

Boon Thau Loo. Fixroute: A unified logic and numerical tool for provably

safe internet traffic engineering. arXiv preprint arXiv:1511.08791, 2015.

[16] Ender Ayanoglu, I Chih-Lin, Richard D Gitlin, and James E Mazo. Diversity

coding for transparent self-healing and fault-tolerant communication net-

works. IEEE Transactions on communications, 41(11):1677–1686, 1993.

149

http://www.akamai.com/dl/akamai/akamai-soti-q114.pdf
http://www.akamai.com/dl/akamai/akamai-soti-q114.pdf


Bibliography

[17] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula,

David A Maltz, and Ming Zhang. Towards highly reliable enterprise net-

work services via inference of multi-level dependencies. In ACM SIGCOMM

Computer Communication Review, volume 37, pages 13–24. ACM, 2007.

[18] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Sto-

ica, and Hui Zhang. Developing a predictive model of quality of experience

for Internet video. In Proc. ACM SIGCOMM, 2013.

[19] M. Ball. The state and future of Netflix v. HBO in 2015. RE-

DEF Originals, May 2015. https://redef.com/original/

the-state-and-future-of-netflix-v-hbo-in-2015.

[20] Dipyaman Banerjee, Venkateswara Madduri, and Mudhakar Srivatsa. A

framework for distributed monitoring and root cause analysis for large IP

networks. In IEEE SRDS, pages 246–255, 2009.

[21] Boaz Barak, Sharon Goldberg, and David Xiao. Protocols and lower bounds

for failure localization in the internet. In EUROCRYPT, pages 341–360, 2008.

[22] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to linear optimization.

Athena Scientific, 1997.

[23] Peter Bodı́k, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani,

David A Maltz, and Ion Stoica. Surviving failures in bandwidth-constrained

datacenters. In ACM SIGCOMM, pages 431–442, 2012.

[24] J. Bonte. Online video: What do media companies Really want? White paper,

Cisco Internet Business Solutions Group, July 2010.

[25] Youmna Borghol, Sebastien Ardon, Niklas Carlsson, Derek Eager, and Anir-

ban Mahanti. The untold story of the clones: content-agnostic factors that

impact YouTube video popularity. In Proc. SIGKDD, 2012.

150

https://redef.com/original/the-state-and-future-of-netflix-v-hbo-in-2015
https://redef.com/original/the-state-and-future-of-netflix-v-hbo-in-2015


Bibliography

[26] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[27] Mark Burgess. Probabilistic anomaly detection in distributed computer net-

works. Science of Computer Programming, 60(1):1–26, 2006.

[28] Prabir Burman. A comparative study of ordinary cross-validation, v-fold

cross-validation and the repeated learning-testing methods. Biometrika,

76(3):503–514, 1989.

[29] M. Carbone and L. Rizzo. Dummynet revisited. ACM SIGCOMM Computer

Communication Review, 40(2), March 2010.

[30] Content delivery summit 2013. http://www.contentdeliverysummit.

com/2013/.

[31] Content delivery summit 2014. http://www.contentdeliverysummit.

com/2014/.

[32] Content delivery summit 2015. http://www.contentdeliverysummit.

com/2015/.

[33] Content delivery summit 2016. http://www.contentdeliverysummit.

com/2016/.

[34] C. Chen, S. Inguva, A. Rankin, and A. Kokaram. A subjective study for the

design of multi-resolution ABR video streams with the VP9 codec. In Proc.

Intl. Symp. Electronic Imaging: Human Visual Perception, San Francisco, CA,

February 2016.

[35] J. Chen, S.H.G. Chan, and V.O.K. Li. Multipath routing for video delivery

over bandwidth-limited networks. IEEE J. Select. Areas Commun, 22(10), 2004.

151

http://www.contentdeliverysummit.com/2013/
http://www.contentdeliverysummit.com/2013/
http://www.contentdeliverysummit.com/2014/
http://www.contentdeliverysummit.com/2014/
http://www.contentdeliverysummit.com/2015/
http://www.contentdeliverysummit.com/2015/
http://www.contentdeliverysummit.com/2016/
http://www.contentdeliverysummit.com/2016/


Bibliography

[36] Mike Chen, Alice X Zheng, Jim Lloyd, Michael Jordan, Eric Brewer, et al.

Failure diagnosis using decision trees. In Autonomic Computing, 2004. Pro-

ceedings. International Conference on, pages 36–43. IEEE, 2004.

[37] X. Chen, M. Chamania, A. Jukan., A.C. Drummond, and N.L.S Da Fonseca.

On the benefits of multipath routing for distributed data-intensive applica-

tions with high bandwidth requirements and multidomain reach. In Proc.

Comm. Netw. & Serv. Research Conf. (CNSR’09), Moncton, NB, May 2009.

[38] Yan Chen, David Bindel, Hanhee Song, and Randy H Katz. An algebraic

approach to practical and scalable overlay network monitoring. ACM SIG-

COMM Computer Communication Review, 34(4):55–66, 2004.

[39] Yen-Yang Michael Chen, Anthony Accardi, Emre Kiciman, David A Patter-

son, Armando Fox, and Eric A Brewer. Path-based failure and evolution

management. In USENIX NSDI, 2004.

[40] Yung-Chih Chen, Don Towsley, and Ramin Khalili. MSPlayer: Multi-source

and multi-path leveraged YoutubER. In CoNEXT, 2014.

[41] Xu Cheng, Jiangchuan Liu, and Cameron Dale. Understanding the char-

acteristics of Internet short video sharing: A YouTube-based measurement

study. IEEE Transactions on Multimedia, 2013.

[42] Conviva. 2014 viewer experience report 2014. http://lp.conviva.

com/rs/901-ZND-194/images/2014%20Conviva%20Viewer%

20Experience%20Report.pdf/,.

[43] Conviva. 2015 end of year report and 2016 predictions.

[44] Conviva. 2015 viewer experience report. http://lp.conviva.com/

rs/901-ZND-194/images/Conviva_Viewer_Experience_Report_

2015_Final.pdf.

152

http://lp.conviva.com/rs/901-ZND-194/images/2014%20Conviva%20Viewer%20Experience%20Report.pdf/
http://lp.conviva.com/rs/901-ZND-194/images/2014%20Conviva%20Viewer%20Experience%20Report.pdf/
http://lp.conviva.com/rs/901-ZND-194/images/2014%20Conviva%20Viewer%20Experience%20Report.pdf/
http://lp.conviva.com/rs/901-ZND-194/images/Conviva_Viewer_Experience_Report_2015_Final.pdf
http://lp.conviva.com/rs/901-ZND-194/images/Conviva_Viewer_Experience_Report_2015_Final.pdf
http://lp.conviva.com/rs/901-ZND-194/images/Conviva_Viewer_Experience_Report_2015_Final.pdf


Bibliography

[45] Xavier Corbillon, Ramon Aparicio-Pardo, Nicolas Kuhn, Géraldine Tex-

ier, and Gwendal Simon. Cross-layer scheduler for video streaming over

MPTCP. In Proceedings of the 7th International Conference on Multimedia Sys-

tems. ACM, 2016.

[46] Cox’s OTT service shows the way to revive US ca-

ble TV industry, July 2013. http://press.ihs.

com/press-release/design-supply-chain-media/

coxs-ott-service-shows-way-revive-us-cable-tv-industry.

[47] Mark Crovella and Anukool Lakhina. Method and apparatus for whole-

network anomaly diagnosis and method to detect and classify network

anomalies using traffic feature distributions, 2014. US Patent 8,869,276.

[48] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot. NetDiagnoser: Trou-

bleshooting network unreachabilities using end-to-end probes and routing

data. In ACM CoNEXT, 2007.

[49] Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, Konstantina Papa-

giannaki, and Peter Steenkiste. Identifying the root cause of video streaming

issues on mobile devices.

[50] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya

Ganjam, Jibin Zhan, and Hui Zhang. Understanding the impact of video

quality on user engagement. In ACM SIGCOMM Computer Communication

Review, volume 41, pages 362–373. ACM, 2011.

[51] Nick Duffield. Network tomography of binary network performance char-

acteristics. IEEE Transactions on Information Theory, 52(12):5373–5388, 2006.

153

http://press.ihs.com/press-release/design-supply-chain-media/coxs-ott-service-shows-way-revive-us-cable-tv-industry
http://press.ihs.com/press-release/design-supply-chain-media/coxs-ott-service-shows-way-revive-us-cable-tv-industry
http://press.ihs.com/press-release/design-supply-chain-media/coxs-ott-service-shows-way-revive-us-cable-tv-industry


Bibliography

[52] Nick G. Duffield, Vijay Arya, Rémy Bellino, Timur Friedman, Joseph

Horowitz, D. Towsley, and Thierry Turletti. Network tomography from ag-

gregate loss reports. Performance Evaluation, 62(1):147–163, 2005.

[53] William Feller. An Introduction to Probability Theory and Its Applications, vol-

ume 1. Wiley, 1968.

[54] Bernard Fortz and Mikkel Thorup. Internet traffic engineering by optimizing

ospf weights. In INFOCOM 2000. Nineteenth annual joint conference of the IEEE

computer and communications societies. Proceedings. IEEE, volume 2, pages 519–

528. IEEE, 2000.

[55] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly de-

tection in distributed systems through unstructured log analysis. In Data

Mining, 2009. ICDM’09. Ninth IEEE International Conference on, pages 149–

158. IEEE, 2009.

[56] Jr. G. D. Forney, L. Brown, M. V. Eyuboglu, and J. L. Moran III. The V.34 high-

speed modem standard. IEEE Comm. Mag., 54(12):28–33, December 1996.

[57] Moshe Gabel, Kento Sato, Daniel Keren, Satoshi Matsuoka, and Assaf Schus-

ter. Latent fault detection with unbalanced workloads. Technical report,

Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2014.

[58] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin.

Highly-resilient, energy-efficient multipath routing in wireless sensor net-

works. ACM SIGMOBILE Mobile Computing and Communications Review, 5(4),

2001.

[59] M.-N. Garcia, F. De Simone, S. Tavakoli, N. Staelens, S. Egger, K. Brunnstróm,

and A. Raake. Quality of experience and HTTP adaptive streaming: A re-

154



Bibliography

view of subjective studies. In Proc. 6th IEEE Intl. Workshop on Quality of Mul-

timedia Experience (QoMEX), Singapore, Singapore, September 2014.

[60] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. RINC: Real-

time Inference-based Network diagnosis in the Cloud. Technical re-

port, Princeton University, 2015. https://www.cs.princeton.edu/

research/techreps/TR-975-14.

[61] Phillipa Gill, Martin Arlitt, Zongpeng Li, and Anirban Mahanti. Youtube

traffic characterization: a view from the edge. In Proceedings of the 7th ACM

SIGCOMM conference on Internet measurement, pages 15–28. ACM, 2007.

[62] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding

network failures in data centers: Measurement, analysis, and implications.

ACM SIGCOMM Computer Communication Review, 41(4):350–361, 2011.

[63] L. Golubchik, J.C.S. Lui, T.F. Tung, A.L.H. Chow, W.-J. Lee, G. Franceschi-

nis, and C. Anglano. Multi-path continuous media streaming: what are the

benefits? Performance Evaluation, 49(1–4), September 2002.

[64] Mehmet H. Gunes and Kamil Sarac. Resolving IP aliases in building

traceroute-based internet maps. IEEE/ACM Transactions on Networking,

17(6):1738–1751, 2009.

[65] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang,

Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al. Pingmesh: A

large-scale system for data center network latency measurement and analy-

sis. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication, pages 139–152. ACM, 2015.

[66] Brandon Heller, Colin Scott, Nick McKeown, Scott Shenker, Andreas Wund-

sam, Hongyi Zeng, Sam Whitlock, Vimalkumar Jeyakumar, Nikhil Hand-

155

https://www.cs.princeton.edu/research/techreps/TR-975-14
https://www.cs.princeton.edu/research/techreps/TR-975-14


Bibliography

igol, James McCauley, et al. Leveraging SDN layering to systematically trou-

bleshoot networks. In ACM SIGCOMM HotSDN, pages 37–42, 2013.

[67] Tom Henderson, Sally Floyd, Andrei Gurtov, and Yoshifumi Nishida. The

NewReno modification to TCP’s fast recovery algorithm. RFC6582, 2012.

[68] Christian E. Hopps. RFC 2992: Analysis of an Equal-Cost Multi-Path algo-

rithm, 2000.

[69] Tobias Hoßfeld, Raimund Schatz, Ernst Biersack, and Louis Plissonneau. In-

ternet video delivery in YouTube: From traffic measurements to quality of

experience. In Data Traffic Monitoring and Analysis. Springer, 2013.

[70] Ling Huang, XuanLong Nguyen, Minos Garofalakis, Michael I Jordan, An-

thony Joseph, and Nina Taft. In-network pca and anomaly detection. In

Advances in Neural Information Processing Systems, pages 617–624, 2006.

[71] Yiyi Huang, Nick Feamster, and Renata Teixeira. Practical issues with using

network tomography for fault diagnosis. ACM SIGCOMM Computer Com-

munication Review, 38(5):53–58, 2008.

[72] Yiyi Huang, Nick Feamster, and Renata Teixeira. Practical issues with using

network tomography for fault diagnosis. ACM SIGCOMM Computer Com-

munication Review, 38(5):53–58, 2008.

[73] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik Elm-

roth. Performance anomaly detection and bottleneck identification. ACM

Computing Surveys (CSUR), 48(1):4, 2015.

[74] U. Javed, M. Suchara, J. he, and J. Rexford. Multipath protocol for delay-

sensitive traffic. In Proc. COMSNETS’09, Bangalore, India, January 2009.

156



Bibliography

[75] Brian Weatherred Johnson, Steve HS Kim, Edward James Leo Jr, and Dennis

Lee. Link aggregation path selection method, 2003. US Patent 6,535,504.

[76] Srikanth Kandula, Dina Katabi, and Jean-Philippe Vasseur. Shrink: A tool

for failure diagnosis in IP networks. In ACM SIGCOMM MineNet, pages

173–178, 2005.

[77] Frank Kelly. Fairness and stability of end-to-end congestion contro. European

journal of control, 2003.

[78] Ramin Khalili, Nicolas Gast, Miroslav Popovic, Utkarsh Upadhyay, and

Jean-Yves Le Boudec. MPTCP is not Pareto-optimal: performance issues

and a possible solution. In Proc. ACM CoNEXT, 2012.

[79] Andreas Kind, Marc Ph Stoecklin, and Xenofontas Dimitropoulos.

Histogram-based traffic anomaly detection. IEEE Transactions on Network and

Service Management, 6(2), 2009.

[80] Ramana Rao Kompella, Jennifer Yates, Albert Greenberg, and Alex C. Sno-

eren. IP fault localization via risk modeling. In USENIX NSDI, pages 57–70,

2005.

[81] S. S. Krishnan and R. K. Sitaraman. Video stream quality impacts viewer be-

havior: Inferring causality using quasi-experimental designs. In Proc. ACM

IMC’12, Boston, MA, November 2012.

[82] J. Kufa and T. Kratochvil. Comparison of H.265 and VP9 coding efficiency for

full HDTV and ultra HDTV applications. In Radioelektronika (RADIOELEK-

TRONIKA), 2015 25th International Conference, pages 168–171, April 2015.

[83] Max Kuhn and Kjell Johnson. Applied predictive modeling. Springer, 2013.

157



Bibliography

[84] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. FlowRadar: A better

NetFlow for data centers. In USENIX NSDI, pages 311–324, 2016.

[85] Chang Liu, Ting He, Ananthram Swami, Don Towsley, Theodoros Salonidis,

and Kin K Leung. Measurement design framework for network tomography

using fisher information. ITA AFM, 2013.

[86] Hongqiang Harry Liu, Ye Wang, Yang Richard Yang, Hao Wang, and Chen

Tian. Optimizing cost and performance for content multihoming. In Proc.

ACM SIGCOMM, 2012.

[87] Yuliang Liú, Rui Miao, Changhoon Kim, and Minlan Yuú. LossRadar: Fast

detection of lost packets in data center networks. In ACM CoNEXT, pages

481–495, 2016.

[88] Ratul Mahajan, Neil Spring, David Wetherall, and Thomas Anderson. User-

level internet path diagnosis. ACM SIGOPS Operating Systems Review,

37(5):106–119, 2003.

[89] Pietro Marchetta, Antonio Montieri, Valerio Persico, Antonio Pescapé, Ítalo

Cunha, and Ethan Katz-Bassett. How and how much traceroute confuses

our understanding of network paths. In IEEE LANMAN, pages 1–7, 2016.

[90] Matt Mathis, John Heffner, Peter O?Neil, and Pete Siemsen. Pathdiag: au-

tomated tcp diagnosis. In Passive and Active Network Measurement, pages

152–161. Springer, 2008.

[91] Microsoft. Windows ETW. https://msdn.microsoft.com/en-us/

library/windows/desktop/bb968803(v=vs.85).aspx, 2000. [On-

line].

[92] Microsoft. SQLIO. http://www.microsoft.com/en-us/download/

details.aspx?id=20163, 2012. [Online].

158

https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
http://www.microsoft.com/en-us/download/details.aspx?id=20163
http://www.microsoft.com/en-us/download/details.aspx?id=20163


Bibliography

[93] Microsoft. TestLimit. http://blogs.msdn.com/b/vijaysk/archive/

2012/10/27/tools-to-simulate-cpu-memory-disk-load.aspx,

2012. [Online].

[94] Microsoft. BWorld Robot Control Software. https://chocolatey.org/

packages/newt, 2013. [Online].

[95] Mininet. http://mininet.org/.

[96] APS Mosek. The MOSEK optimization software. Online at http://www. mosek.

com, 54, 2010.

[97] Matthew K Mukerjee, Ilker Nadi Bozkurt, Bruce Maggs, Srinivasan Seshan,

and Hui Zhang. The impact of brokers on the future of content delivery. In

Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pages 127–

133. ACM, 2016.

[98] Matthew K Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan

Seshan, and Hui Zhang. Practical, real-time centralized control for CDN-

based live video delivery. In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication. ACM, 2015.

[99] Radhika Niranjan Mysore, Ratul Mahajan, Amin Vahdat, and George Vargh-

ese. Gestalt: Fast, unified fault localization for networked systems. In

USENIX ATC, pages 255–267, 2014.

[100] Srinivas Narayana, Wenjie Jiang, Jennifer Rexford, and Mung Chiang. Joint

server selection and routing for geo-replicated services. In Proc. UCC, 2013.

[101] Netflix, openconnect. https://openconnect.itp.netflix.com/.

[102] Ashkan Nikravesh, David R Choffnes, Ethan Katz-Bassett, Z Morley Mao,

and Matt Welsh. Mobile network performance from user devices: A longi-

159

http://blogs.msdn.com/b/vijaysk/archive/2012/10/27/tools-to-simulate-cpu-memory-disk-load.aspx
http://blogs.msdn.com/b/vijaysk/archive/2012/10/27/tools-to-simulate-cpu-memory-disk-load.aspx
https://chocolatey.org/packages/newt
https://chocolatey.org/packages/newt
http://mininet.org/
https://openconnect.itp.netflix.com/


Bibliography

tudinal, multidimensional analysis. In International Conference on Passive and

Active Network Measurement, pages 12–22. Springer, 2014.

[103] Nagao Ogino, Takeshi Kitahara, Shin’ichi Arakawa, Go Hasegawa, and

Masayuki Murata. Decentralized boolean network tomography based on

network partitioning. In IEEE/IFIP NOMS, pages 162–170, 2016.

[104] J. Ozer. Netflix finds x265 20% more efficient than VP9. streaming me-

dia, September 2016. Available at http://www.streamingmedia.

com/Articles/Editorial/Featured-Articles/

Netflix-Finds-x265-20-More-Efficient-than-VP9-113346.

aspx,.

[105] Christoph Paasch and Olivier Bonaventure. Multipath TCP. Communications

of the ACM, 57(4):51–57, 2014.

[106] Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier Bonaventure. Ex-

perimental evaluation of multipath TCP schedulers. In Proceedings of the 2014

ACM SIGCOMM workshop on Capacity sharing workshop. ACM, 2014.

[107] Christoph Paasch, Ramin Khalili, and Olivier Bonaventure. On the benefits

of applying experimental design to improve Multipath TCP. In Proc. ACM

CoNEXT, 2013.

[108] Venkata N Padmanabhan, Sriram Ramabhadran, and Jitendra Padhye. Net-

profiler: Profiling wide-area networks using peer cooperation. In Peer-to-Peer

Systems IV, pages 80–92. Springer, 2005.

[109] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. Knowledge

and Data Engineering, IEEE Transactions on, 22(10):1345–1359, 2010.

[110] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-

berg, David A Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu

160

http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Netflix-Finds-x265-20-More-Efficient-than-VP9-113346.aspx
http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Netflix-Finds-x265-20-More-Efficient-than-VP9-113346.aspx
http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Netflix-Finds-x265-20-More-Efficient-than-VP9-113346.aspx
http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/Netflix-Finds-x265-20-More-Efficient-than-VP9-113346.aspx


Bibliography

Wu, et al. Ananta: Cloud scale load balancing. ACM SIGCOMM Computer

Communication Review, 43(4):207–218, 2013.

[111] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in

space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science, 2(11):559–572, 1901.

[112] Qiuyu Peng, Anwar Walid, and Steven H Low. Multipath TCP: Analysis and

design. In Proc. ACM SIGMETRICS, Pittsburgh, PA, June 2013.

[113] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Kr-

ishnamurthy. Designing distributed systems using approximate synchrony

in data center networks. In USENIX NSDI, pages 43–57, 2015.

[114] 6 key factors to consider when choosing a transpar-

ent caching solution. http://qwilt.com/downloads/

Qwilt-TransparentCaching-6KeyFactors.pdf.

[115] Marjan Radi, Behnam Dezfouli, Kamalrulnizam Abu Bakar, and Malrey Lee.

Multipath routing in wireless sensor networks: Survey and research chal-

lenges. Sensors, 12(1), January 2012.

[116] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,

Fabien Duchene, Olivier Bonaventure, and Mark Handley. How hard can

it be? designing and implementing a deployable Multipath TCP. In Proc.

NSDI, 2012.

[117] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi Barakat,

and Walid Dabbous. Network characteristics of video streaming traffic. In

Proc. ACM CoNEXT, 2011.

[118] Pablo Rodriguez and Ernst W Biersack. Dynamic parallel access to replicated

content in the Internet. IEEE/ACM Transactions on Networking, 2002.

161

http://qwilt.com/downloads/Qwilt-TransparentCaching-6KeyFactors.pdf
http://qwilt.com/downloads/Qwilt-TransparentCaching-6KeyFactors.pdf


Bibliography

[119] Arjun Roy, Jasmeet Bagga, Hongyi Zeng, and Alex Sneoren. Passive realtime

datacenter fault detection. In ACM NSDI, 2017.

[120] K. Russel. What the Netflix-Comcast deal really means

in plain english. http://www.businessinsider.com/

netflix-comcast-deal-explained-2014-2.

[121] Sandvine. 2016 Global Internet Phenomena – Latin America & North America,

2016.

[122] M. Seufert, S. Egger, M. Slanina, T. Zinner, and T. Hossfeld. A survey on

qualitty of experience of HTTP adaptive streaming. IEEE Communications

Surveys & Tutorials, 17(1), April 2014.

[123] Amanpreet Singh, Mei Xiang, Andreas Könsgen, Carmelita Goerg, and Yasir

Zaki. Enhancing fairness and congestion control in Multipath TCP. In Proc.

IEEE WMNC, 2013.

[124] V Singh, T Karkkainen, J Ott, S Ahsan, and L Eggert. Multipath rtp (mprtp).

Technical report, IETF Internet-Draft, 2012.

[125] J. Søgaard, S. Tavakoli, K. Brunnström, and N. Garcia. Subjective analysis

and objective characterization of adaptive bitrate videos. In Proc. Intl. Symp.

Electronic Imaging: Human Vision and Electroninc Imaging, San Francisco, CA,

February 2016.

[126] Rade Stanojevic, Nikolaos Laoutaris, and Pablo Rodriguez. On economic

heavy hitters: shapley value analysis of 95th-percentile pricing. In SIG-

COMM IMC, 2010.

[127] Srikanth Sundaresan, Nick Feamster, and Renata Teixeira. Locating through-

put bottlenecks in home networks. ACM SIGCOMM Computer Communica-

tion Review, 44(4):351–352, 2015.

162

http://www.businessinsider.com/netflix-comcast-deal-explained-2014-2
http://www.businessinsider.com/netflix-comcast-deal-explained-2014-2


Bibliography

[128] Srikanth Sundaresan, Yan Grunenberger, Nick Feamster, Dina Papagiannaki,

Dave Levin, and Renata Teixeira. WTF? Locating performance problems

in home networks. Technical report, Georgia Institute of Technology, 2013.

http://hdl.handle.net/1853/46991.

[129] Ariel Tseitlin. The antifragile organization. Communications of the ACM,

56(8):40–44, 2013.

[130] M. Uhrina, L. Sevcik, J. Frnda, and M. Vaculik. Impact of H.265 and VP9

compression standards on the video quality for 4k resolution. In Telecommu-

nications Forum Telfor (TELFOR), 2014 22nd, pages 905–908, November 2014.

[131] Kirk Webb, Mike Hibler, Robert Ricci, Austin Clements, and Jay Lep-

reau. Implementing the Emulab-PlanetLab portal: Experience and lessons

learned. In Proc. WORLDS, 2004.

[132] Philip M Wells, Koushik Chakraborty, and Gurindar S Sohi. Adapting to

intermittent faults in multicore systems. ACM SIGOPS Operating Systems

Review, 42(2):255–264, 2008.

[133] Patrick Wendell, Joe Wenjie Jiang, Michael J Freedman, and Jennifer Rex-

ford. Donar: decentralized server selection for cloud services. In Proc. ACM

SIGCOMM, 2010.

[134] Chathuranga Widanapathirana, Jonathan Li, Y Ahmet Sekercioglu, Milosh

Ivanovich, and Paul Fitzpatrick. Intelligent automated diagnosis of client

device bottlenecks in private clouds. In Utility and Cloud Computing (UCC),

2011 Fourth IEEE International Conference on, pages 261–266. IEEE, 2011.

[135] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. De-

sign, implementation and evaluation of congestion control for Multipath

TCP. In Proc. NSDI, 2011.

163

http://hdl.handle.net/1853/46991


Bibliography

[136] Xin Wu, Daniel Turner, Chao-Chih Chen, David A Maltz, Xiaowei Yang, Li-

hua Yuan, and Ming Zhang. NetPilot: Automating datacenter network fail-

ure mitigation. ACM SIGCOMM Computer Communication Review, 42(4):419–

430, 2012.

[137] Hao Yin, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu, Chuang Lin, Hui

Zhang, and Bo Li. Design and deployment of a hybrid CDN-P2P system for

live video streaming: experiences with LiveSky. In ACMMM, 2009.

[138] Minlan Yu, Albert G Greenberg, David A Maltz, Jennifer Rexford, Lihua

Yuan, Srikanth Kandula, and Changhoon Kim. Profiling network perfor-

mance for multi-tier data center applications. In NSDI, 2011.

[139] Kyriakos Zarifis, Tobias Flach, Srikanth Nori, David Choffnes, Ramesh

Govindan, Ethan Katz-Bassett, Z Morley Mao, and Matt Welsh. Diagnosing

path inflation of mobile client traffic. In International Conference on Passive and

Active Network Measurement, pages 23–33, 2014.

[140] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the charac-

teristics and origins of internet flow rates. In ACM SIGCOMM Computer

Communication Review, volume 32, pages 309–322. ACM, 2002.

[141] Yin Zhang, Zihui Ge, Albert Greenberg, and Matthew Roughan. Network

anomography. In ACM SIGCOMM IMC, 2005.

[142] Mingchen Zhao, Paarijaat Aditya, Ang Chen, Yin Lin, Andreas Haeberlen,

Peter Druschel, Bruce Maggs, Bill Wishon, and Miroslav Ponec. Peer-assisted

content distribution in Akamai Netsession. In Proc. IMC, 2013.

[143] Yao Zhao, Yan Chen, and David Bindel. Towards unbiased end-to-end net-

work diagnosis. In ACM SIGCOMM Computer Communication Review, vol-

ume 36, pages 219–230. ACM, 2006.

164



[144] Yao Zhao, Yan Chen, and David Bindel. Towards unbiased end-to-end

network diagnosis. ACM SIGCOMM Computer Communication Review,

36(4):219–230, 2006.

[145] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Ma-

hajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. Packet-level

telemetry in large datacenter networks. In Proceedings of the 2015 ACM Con-

ference on Special Interest Group on Data Communication, pages 479–491. ACM,

2015.

[146] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,

Xuan Kelvin Zou, Hang Guan, Arvind Krishnamurthy, and Tom Anderson.

RAIL: A case for Redundant Arrays of Inexpensive Links in data center net-

works. In USENIX NSDI, 2017.

165


	University of Pennsylvania
	ScholarlyCommons
	2017

	Improving Network Performance Through Endpoint Diagnosis And Multipath Communications
	Behnaz Arzani Arzani
	Recommended Citation

	Improving Network Performance Through Endpoint Diagnosis And Multipath Communications
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords


	Acknowledgments
	Contents
	Introduction
	Finding The Entity Responsible For The Failure
	Introduction
	Motivation
	Overview
	Description of NetPoirot 
	Monitoring Agent
	Learning Agent

	TCP Behavior under Faults
	Fault Injection and Application Workloads
	Results

	Evaluation
	Overall Accuracy and Confusion Matrix
	Individual Failure Classification
	Untrained Failures
	Sensitivity Analysis
	Real Application Analysis

	Discussion

	Finding The Device Responsible For The Failure
	Introduction
	Problem and challenges
	Design Overview
	The path discovery agent
	ICMP Rate Limiting
	Engineering Challenges

	The Analysis Agent
	Voting Based Scheme
	Voting Scheme Analysis
	Optimal Solution

	Evaluations: Simulations
	In the optimal case
	Varying Drop Rates
	Impact of Noise
	Varying Number of Connections
	Impact of Traffic Skews
	Detecting Bad Links
	Effects of Network size

	Evaluations: Test Cluster
	Clean Testbed Validation
	Per-connection Link Failure Analysis
	Identifying Failed Links

	Evaluations: Production
	Comparison to EverFlow
	Finding The Cause of VM Reboots

	Discussion
	Conclusion

	Resilience to Failures at the Endpoints Through Multipath TCP
	The Shortcomings of MultiPath TCP
	Motivation
	Background and Related Work
	Empirical Evaluation
	Impact of Path RTT on Throughput
	MPTCP Model
	Setting Up The Problem
	The Two Modes of an MPTCP Subflow
	Modeling The MPTCP Subflow in Mode 1
	Modeling The MPTCP Subflow in Mode 2
	Analyzing our MPTCP Model
	A Closer Look at Ii(ws)
	The Overall Impact Of the ``First'' Path
	Discussion


	Multipath at The Application Layer
	Introduction
	MuMS Benefits and Implications
	Performance Benefits
	Cost-Performance Trade-offs
	Impact of MuMS on Cost

	Sunstar Client Design
	Sunstar Client Design Overview
	The Sunstar Scheduler

	Performance Evaluation
	Evaluation Setup
	Comparison to Single Server Clients
	Comparison to the Min-RTT scheduler
	Comparison to The YouTuber Scheduler
	Scheduler Execution Time

	Cost Impact

	Related Work
	Network diagnosis
	Multi Server Video Delivery
	Video Delivery Optimizations
	Multipath Solutions
	Server selection and cost optimizations


	Conclusion
	Vigil Proofs
	Video Delivery And QoS
	Mechanical Turk Experiment
	Server Selection Algorithm

	Bibliography

