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Data centers are becoming more and more important since there is a number of
services covered especially by them. At the same time it is reasonable to maintain
the costs of data centers low from a number of perspectives.

To this end, one could propose a number of changes in the data center environment.
While there is a number of studies that focus on different aspects of the data center
environment, one of the most important factors that can be studied and changed
is the transport protocol used in the data center environment. This change will
have an impact on a number of factors in the data centers.

For the purpose of this thesis a number of transport protocols were studied, starting
from the broadly used TCP to a number of especially designed for data centers
ones. These variations were studied for the changes they impose and the positive
results they bring.

At the same time the significance of DCTCP, the most extensively studied and
deployed data center environment protocol was made apparent and the positive
results from its deployment. This study outlines the necessity to know its behaviour
while coexisting with TCP as well since its deployment in the wide Internet would
bring positive results for latency, losses and buffer queues minimization.

To this end, the protocol was studied by emulating network behaviour in Mininet
network emulator and it was found out that its coexistence with TCP is possible
without the TCP traffic starving as long as some parameters settings are followed.

Keywords: Data Center Networks, Data Center Traffic, Transport Protocols,
Congestion Control, Queue Management, DCTCP
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1 Introduction

Data Centers and Data Center Networks are gaining more and more importance
because of a wide number of applications that rely on them. These applications that
are more and more moving to the cloud and going away from our immediate reach of
desktops, laptops and servers can serve a number of functions. They might be search
applications, file storage and distribution, social networking, email, web servers,
gaming and large-scale data-intense computations. For the purpose of supporting
the load that these applications bring and the needs that come with them, the focus
is driven towards the Data Centers and Data Center Networking.

During the conduct of a study of data centers and data center networking, the
focus is driven towards the functionality of the aforementioned applications and
their requirements. In this way, conclusions can be drawn for the needs of the data
centers and the underlying networks to reach the best results when it comes to data
exchange. Data Center Networking is tied to Data Center Architectures and the
Network Protocols that are used for the information exchange.

The data center environment being different from that of the general Internet,
the necessity for a data center-tailored solution becomes apparent. A very popular
protocol used for years in information exchange and the one that functions in a
variety of different environments is TCP. Even though TCP as a protocol works
in the robust, high speed, low latency environment of the data centers, it is not
tailored for it. The solution to the optimization for the specific environment is a
data center-tailored protocol, namely DCTCP, that makes use of Explicit Congestion
Notification (ECN). While it is difficult to deploy ECN in the wide Internet because
of the behaviour of network components that one cannot control, in the data centers,
where everything falls under the same ownership, its deployment becomes easier. In
this way, ECN can provide the basis for a tailored protocol.

At the same time questions rise about the way this tailored for the data center
environment protocol would function outside the controlled conditions of a data
center. To be able to answer the behaviour of the protocols, data center conditions
and challenges need to be studied. In addition characteristics of the protocol need to
be outlined and its conduct in different environments has to be evaluated. This thesis
aims on answering some of these questions in a manner that will give an insight on
what has been done until now, how and what the conclusions are.

1.1 Research objectives

The main research objective of the thesis is to analyse intra data center transport
protocols and especially the data center-tailored protocol DCTCP and its differences
from the established protocols. This is an important step in studying the protocol
itself but it also builds on the goal of trying to see how the protocol will behave in
long distance links. This leads to the answer of the question if this protocol could be
used in inter data center transport scenarios.

In addition, importance is put in the way the protocol behaves in congested links
and the needs for this new design, since if the protocol is usable outside the data



center environment, it will need to coexist with other protocols, especially TCP.
This research, for the purpose of this thesis is done in an emulated environment
with the use of Mininet. To do this it is necessary to have a clear idea about everything
that has to do with the environment that is studied. To observe the differences and
its characteristics, all the components that are connected with DCTCP are presented.

1.2 Structure of this thesis

The way this study was conducted is tied to the research objectives.

In the beginning, a general overview is given of the environment that is being
studied. An overview of the data center environment is concluded and a deeper look
on the functionalities of these environments. Through this study the focus is driven
to important characteristics and changes that are necessary to further outline the
differences between the controlled data center environment and the general Internet.

The importance of transport protocols in the data center networks is made clear
and a survey of a number of protocols is included. In a next step, the importance
of signalling becomes prominent. A research on signalling is done and an analysis
on that level is given. By reaching some conclusions from all the researched data,
an evaluation of these protocols is made, based on criteria set by the functionalities
themselves.

Lastly, an emulated testbed is used to create a setup for the purpose of getting
some information that mirror better how such a scenario would run in the real world.
For this purpose the Mininet network emulator is used and further analysed in the
specific section of this thesis. Because of the extensive use of this tool for the practical
results, Mininet and the difficulties that arose from its use, as well as the environment
that it creates, are presented in a thorough way.



2 Data Center Networks

The study of Data Center Transport Protocols has its roots in the expansion and
growth of Cloud Computing. According to the definition given by NIST, "Cloud
computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction." [24] Data Centers and Data
Center Networking are connected with this definition because they provide the basis
for the services that are provided by the cloud. They are the physical layer of a
cloud infrastructure. Data centers comprise of large clusters of servers that are
interconnected through switches.

To support the different kind of clouds and their operations and characteristics
data centers are built in different ways. One of the main differences from one data
center to another can be found in their architecture. Different architectures can
also mirror the main services each data center provides and they are a basis for
the flexibility of the environment so it can adapt as quickly and cost-effectively as
possible to changes in the services and the demands.

2.1 Architectures

Data center architectures have been discussed in a number of studies conducted
e.g. [39] [22]. The main architecture that is in use in a data center is a three-tier
architecture. This architecture is tree-based and we see in Figure 1 that it involves
three layers, namely edge, aggregation and core layer. The top of rack (ToR) switches
connect the servers to aggregation switches, which are connected themselves through
core switches. The switches that connect the edge and aggregation layers are called
edge switches.

With the large amount of traffic that these links get, a number of problems with
this basic architecture become prominent and the need to explore some solutions is
obvious. The main issues that can be created are link oversubscription, scalability
and link failure. To resolve these issues, a number of different topologies that can
be used has been explored. The use of a specific architecture is dependent on many
variables and it cannot be said that there is only one "right topology" to be used,
but the architectures can be compared on some levels and the optimization solutions
they strive for can be outlined.

Figure 2 shows a taxonomy of data center architectures according to [22], where it
is obvious that there is a big number of topologies that can be used. From these many
proposed topologies, priority will be given to some of them that are more commonly
referred to and they will be further analysed. These researched architectures can
be mainly separated in two categories, fixed and flexible. In the category of fixed
architectures, one can distinguish the tree-based and the recursive topologies and
the flexible architectures are the ones where the topology can be reconfigured.

L Source of picture: http://www.slideshare.net/AnkitaMahajan2/
introduction-to-data-center-network-architecture, page4d



Conventional DCN Architecture

Core
[10 GigE switches]
ETHERNET
Aggregation @ | Aggr | | AGOF | - — - -~
[10 GigE switches]
| ToR  ToR |  ToR | ToR
Edge
[Commodity Server 1 Sarver 11 Server 21 Sarver 91
switches] S
5
Rack 1 Rack 2 Rack 3 Rack 10

Figure 1: Data Center Networks common architecture
1

Data Center Networks

A S

Fixed Topology Flexible Topology

4”/,\ Fully Optical Hybrid
Tree-based Recursive Y -I;p >
c-Through  Helios

DCell BCube piDCube FiConn

Basic tree  Fat tree Clos network

/R ;
V2

Al-Faresetal. Portland Hedera
Figure 2: A taxonomy of Data Center Topologies [22, p. 4, fig.1]

Very central in the tree-based technologies are the Clos Network and the Fat-Tree
topologies.

The Fat-Tree topology is an extension of the basic tree topology that is so
commonly used in data centers. It has three level of switches, namely the core,
aggregation and edge switches. A n-ary Fat-Tree topology creates n pods. Each
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pod is a structure that contains (5) servers, 5 n-port edge and 5 n-port aggrega-
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n
tion switches. The Fat-Tree topology in general contains e n-port switches and

3
n
Zservers. The interconnection between the switches and the servers happens by

creating a Clos topology and as it is showed in Figure 3.
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¢ Agpregation

Edge

Figure 3: A n-ary Fat-Tree topology with n=4 [28, p. 4, fig. 1]

The rest of the tree-based topologies are created with similar principles. What
one can see directly in these cases is the connection of servers to only one of the
switches’ layers. This is what provides the main difference with the architectures that
are part of the recursive topologies group. The servers in the recursive topologies
might be interconnected to other servers or to switches of different layers.

Main recursive topologies very commonly used in the research literature and very
basic are DCell and BCube. These technologies were initially created for container
based data centers, which consist of the data center components fit into a standard
shipping container so it is easier to have a data center in a specific location. These
technologies apply the principle of building each consequent layer based on an element
that consists the basis with a switch and servers.

DCell is the topology that can be seen in Figure 4. Each DCell comprises of
elements called DCelly. Each one of these elements consists of n servers and one
switch with n ports, with each server connecting to one port of the switch in the
same element. Moving from one element to a structure with more elements, each
server of a DCelly is connected to a server in another DCelly. This way every DCelly
connects to another DCelly with exactly one link. Recursively thus a DCell, is
constructed from DCell,_;s. Eventually in a DCell, each server will have n—+1 links
to neighbouring DCellgs. It is obvious from the way this topology is constructed
that there is a limitation and it is that of the number of NICs on the servers that
comprise it.

The basic element BCubey of BCube is exactly the same as DCelly. The difference
between the two topologies is obvious when the higher levels are created. In BCube,
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Figure 4: A n-ary DCell topology with n=4 [12, p. 6, fig. 4]
n extra switches are used and they connect each to one server in BCubey, as is seen

in Figure 5. In BCube as well the limitation of the NICs of the servers is the same.

Level 1

A ' Level 0

Figure 5: A n-ary BCube topology with n=4 [12, p. 6, fig. 4]

In the category of flexible data center architectures it is worth mentioning the basic
principle on which the technologies that comprise it are based. This technology is
optical switching. The characteristics of optical switching are used in these topologies
by changing during the operation the bandwidth that the optical links can offer and



to which kind of traffic. These topologies are usually hybrid, since they are used
together with common electrical switching.

After having outlined these topologies, the levels on which different architectural
solutions are usually compared should be mentioned. This can help understand why
research usually focuses on some solutions more than others and can set the ground
for optimization solutions by seeing what is already out there and what needs to be
done in the future.

The comparison of the different technologies can be done on two levels, that of
the characteristics and that of the performance.

On the characteristics level what usually gets compared is the number of switches
and the number of wires, that are connected to the cost of the topology, the number of
servers, which is connected to the scalability of the architecture, the average number
of ports on them, otherwise known as degree of the servers, and the diameter, which
is the longest of the shortest paths between two servers and has to do with routing
efficiency.

On the performance level very important comparing factors are the bandwidth,
that has to do with what the topology has to offer for different traffic patterns and
the bisection width, which is the minimal number of links to remove to partition a
network in two equal parts and is connected to the resiliency against failures of the
architecture.

In Tables 1 and 2 a basic comparison that the author of [22] has done is provided
and basic benefits of one architecture over another on some levels can be seen. Below
k depicts the number of ports in a server, N the total number of servers and n the
number of ports in a switch.

Tree-based Architecture Recursive Architecture
Basic Tree | Fat Tree | Clos Network DCell BCube
Degree of Servers 1 1 1 k+1 k+1
Diameter 2log,_1 N 6 ok+1l _q log, N
Nr. of Switches %N % sn+ %2 % %logn]\f
Nr. of Wires (N —1) Nlog%% n‘;]:; 5+ 1)N Nlog, N
>=(n+1)¥ -1
Nr. of Servers (n—1)3 n % nroR (n+2) A s
<=(n+1)* -1
Table 1: A comparison of the parameters for different topologies [22, p. 8, Table 1I]

2.2 Data Center Traffic Characteristics

After having observed the technologies deployed in data centers and having set apart
some of their basic characteristics, there is a need to study the traffic patterns of the




Tree-based Architecture Recursive Architecture
Basic Tree | Fat Tree | Clos Network | DCell BCube
One-to-one 1 1 1 k+1 k+1
One-to-several 1 1 1 k+1 k+1
One-to-all 1 1 1 k+1 k+1
All-to-all n N n’21"J:7R > & (N —1)
Bisection width 5 % m{\iR > ﬁ %

Table 2: A comparison of the performance metrics for different topologies. Bandwidths
are expressed as the number of links. "One-to-one" means one arbitrary server to
another and "All-to-all" means every server to all the others [22, p. 9, Table IV]

data centers themselves [7] [8]. The data traffic is connected with the traffic inside a
data center and the traffic between a data center and the outside Internet.

There are different types of data centers based on the different purposes they
serve and the applications they may host. This is directly connected with the kind of
traffic each data center has to be designed for. From university and private companies
dedicated ones that can contain around thousand servers, to large ones owned by
online service providers that might scale up easily to 10K servers, there is a variety
of traffic that data centers are demanded to accommodate.

From the different applications that these data centers might mainly host and
the services they provide, there is a number of observations that can be made for
the traffic patterns and an equal number of conclusions that can be drawn. The
basic applications that one has to discern traffic patterns for range from Web services
and file storing to data intensive applications like Map-Reduce. Some findings from
studies of specific traffic will be mentioned, to give an idea of main patterns.

In research the analysis of 19 commercial data centers with Simple Network
Management Protocol (SNMP) traffic patterns leads to interesting findings. All the
studied data centers have tree-based topologies. The main conclusions [7] are:

e Most flows have small size and most of them last less than a few hundred of
milliseconds. The number of active flows per second is less than 10000 per rack.

e The nature of traffic from a rack is ON-OFF, meaning that packets arrive in
groups, and has properties that fit heavy-tailed distributions.

e [t was found that link utilizations usually are rather low in all layers but the
core.

e In cloud data centers most of the traffic stays in the racks, while for university
and private enterprise ones it leaves the rack. While for cloud data centers this
is explained as they try to optimize the jobs by placing similar components in



the same racks, it is not certain why the traffic pattern is such in university
and private enterprise clouds. one possible explanation is that the placement
in these clouds is not as optimized.

e Losses are greater on the aggregation layer than the edge or core layers and
occur as a result of momentary spikes rather than high utilization.

e Link utilizations are very based on the time of the day and the day of the week.

In addition to these conclusions, after studying the traffic patterns of network
related events in a data center for two months, the following conclusions were drawn

[18]:

e Two main patterns comprise the biggest part of traffic in the data center. These
are the work-seeks-bandwidth pattern, the traffic of data between servers of a
rack, and the scatter-gather pattern, the traffic from map-reduce applications
and servers between a cluster.

e Congestion occurs very often in the data centers, especially short-lived conges-
tion.

e Almost 80% of the flows last less than 10 seconds.

Taking into account the conclusions one can safely separate the data center traffic
in three main categories. First the small flows traffic, which also consists most of the
data center traffic and which has lower data transmission volume, then the small
and medium sized flows and last the large updates.

2.3 Challenges in the Data Center Environment

The main goal of research in the field of data center networking is usually how to
achieve high energy efficiency in data centers. That is obviously straightforwardly
connected with costs and power consumption and utilization. It has been established
through research and observation that the servers are not fully utilized and that data
centers consume nevertheless huge amounts of energy.

From the analysed traffic patterns one can see the main link utilization and power
consumption patterns. Because the data centers that were studied are real ones that
are in use, one can generalize these findings for most data centers. To give an opinion
about an optimized solution, there is also a necessity of outlining the problems and
the challenges that the data center environment itself poses.

Taking into account a typical environment, that in today’s data centers is a
tree-based architecture, there is a number of challenges that require optimization.
As mentioned in research, these challenges include[39]:

e The possibility of adding new components instead of the upgrading of already
existing ones.
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The possibility of allocating servers directly to services instead of the physical
mapping that is prevalent in the typical environment by mapping an application
to specific switches and servers. This also creates the issue of resource allocation,
since the data center is not elastic with resource reassignment.

Every server should be able to connect to every other in the data center using
full bandwidth. This does not happen in the typical data centers and the
problem of bandwidth bottleneck happens in the aggregation or core switches
due to the tree-based nature of the architecture.

Another issue is the load balance. As it was mentioned earlier, there is an
imbalance in the utilization of links in the core and edge layers.

Because of the load balance and the architecture, issues are created during the
failure of a component. The problem is obviously greater if a core switch fails.

One more issue of the typical architecture is the cost, connected mainly here
with the extreme costs of high-end switches in case of cluster expansions.

Power Consumption is high and inefficient because it is not proportional to
utilization and mainly directed from the servers’ oversubscription.

Network Capacity, connected with high bandwidth services being constrained
due to server oversubscription ratio.

Taking into account the traffic patterns mentioned, one can realize that data

centers’ requirements as per the traffic are high burst tolerance, low latency and high
throughput. [1, 33]

Having mentioned what we want to tackle in the data center environment and

establishing that Ethernet is the established protocol for the data center networks to
communicate, there is a need to go one step deeper in the study of the data center
environment. In light of this the next step is the study of the data center protocols
as they are the basis for the transmission of the data. And the start has to be done
with the study of TCP since it is the main transport protocol in the Internet and
most incoming traffic in data center environments is subsequently TCP traffic.
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3 Transmission Control Protocol

Transmission Control Protocol (TCP) is the main transport protocol of the Internet.
In light of this, it is necessary to go deeper in the behaviour of the protocol, since it
is an already existing design that can be used in data centers. Because data centers
are isolated domains and have their own characteristics and requirements, TCP has
to adapt to the changes in this environment.

TCP is the reliable, connection-oriented data transport protocol of the Transport
layer of the Open Systems Interconnection model (OSI model). It started as a
part of the Transmissions Control Protocol/Internet Protocol (TCP/IP) network
architecture to transfer packets with a common protocol between different packet
networks and it is the main protocol used to send packets in the Internet.

The fact that the protocol is connection-oriented means that the applications
need to establish a connection with each other before the exchange of data. In
addition, the protocol is executed only in the end systems and the network elements,
e.g. routers, switches, do not process or change anything in the protocol.

A TCP connection provides a full-duplex service, meaning that once a connection
has been established, both ends of connection can send and receive data. The
connection is also point-to-point, meaning it always connects one sender and one
receiver.

The processes communicate via sockets. Each TCP socket is identified by an IP
address and a port number. When a process wants to initiate a connection with
another process, it behaves as a Client and sends a request to the process it wants
to establish a connection with, that functions as a Server. When the Server replies,
the Client replies back and thus the connection is established. This connection is
identified by the pair of sockets, so the two IP addreses and the ports numbers that
have been exchanged. The protocol puts a TCP header in the data that is exchanged,
creating this way TCP segments.

TCP segments have two parts, a header part and a data part, as shown in
Figure 6.

In the header one can see the Source and Destination Port fields and the
Checksum field that is used for error check. The Receive Window field is used
for establishing the number of bytes that a receiver can receive. An also important
part that is used in differentiations of the TCP protocol, as it will also be shown later,
is the Flag field, that has the six bits, URG, ACK, PSH, RST, SYN and FIN, that
depending on their status 1 or 0 mean different things depending on the situation.

Two of the fields in the TCP header are the Sequence Number (SEQ) and the
Aknowledgement Number (ACK), since they are directly connected with the
reliability that the protocol provides. This means that by use of these two numbers,
TCP makes sure that all packets are delivered across the network, without duplicates
and in the right order. With SEQ it makes sure the messages are delivered in order
and the receiver by way of sending an ACK acknowledges the arrival of a segment.
In case a segment has not been acknowledged, the protocol might need to retransmit

2 Image source: Chapter 11, Manual Transmissions, TCP Fundamentals: http://csel.net/
recaps/11-tcpip.html
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that segment.

A client starts a connection establishment to a server by sending a segment with
the special flag SYN, which means synchronize field. The sequence number in
this segment will be established randomly to avoid errors. The server acknowledges
this message by sending a segment with the special lag ACK and again a random
sequence number. The connection is established when the client acknowledges with
his own ACK segment and the next sequence number of his own message and next
acknowledgement number the sequence number of the received message from the
server. Figure 7 shows the process.

3.1 Timeout and Retransmission Procedure in TCP

Very important part of the TCP protocol is the retransmission procedure. When
a segment is transmitted, a timer is set for that segment. If this timer expires
before the segment is acknowledged, then this segment is retransmitted. Because of
the different delays of the networks where the segment might be transmitted, the
protocol estimates the Round Trip Times (RTT)continuously, since definitely the
timers should last longer than the RTT.

RTT is the time for a signal to travel from a destination to a source until the
acknowledgement for this signal is received. The way this RT'T is estimated is given
by the equation

EstimatedRTT = (1 — a) *x EstimatedRTT + a x SampleRTT (1)

where Sample RT'T is the measured time for a transmitted segment, Estimated RTT
is the average of the Sample RTT's and a is a weighting factor that can be established
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Figure 7: TCP three-way handshake. Visible is also the progression of SYN and
ACK numbers

taking values between 0 and 1. The RTT value is an exponential weighted moving
average (EWMA) according to the definition of EWMA in statistics. More weight
is given to recent samples, which is normal, since recent values mirror better the
current congestion. Another important factor for RTT is the deviation. Deviation of
RTT is given by

DevRTT = (1 —b) * DevRTT + b * |Sample RTT — EstimatedRTT|  (2)

[20].

Through this procedure a timeout value is established. This value should be
bigger or equal than the Estimated RTT, but not much bigger since the bigger
this difference is the more delays in retransmission. So the margin between the
timeout and the EstimatedRTT should be bigger when there is big deviation between
SampleRTT values and smaller when the deviation is smaller. The equation taking
into account these facts is given by

Timeout = EstimatedRTT + 4 * DevRTT (3)

Different TCP approaches can have different ways of establishing this timeout value
[20].

In the same category falls Fast Retransmit, which is the procedure that is followed
when the transmitter considers the sent segment lost. The way this procedure
functions is that when a segment is received with a sequence number bigger than the
next sequence number expected, a gap in the data sequence is detected. Because the
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receiver has no other way of informing the transmitter, it sends another ACK for the
last segment that arrived in correct order. When the sender receives three ACKs
for the same data segment, it considers the next segment lost and it retransmits it
before this segments timeout, which is called fast retransmit. These procedures are
extremely important since they consist the baseline of reliable transmission.

In addition, the protocol uses buffers and windows for the flow control. There
is a receive buffer for data that is not yet delivered to the application and a send
buffer for data that has not yet been sent. The state of the receive buffer is given
by the advertised window field in the header of each segment, which informs the
transmitter of the number of available buffers in the receiver. When this window size
gets exhausted, the transmitter will stop sending. This avoids slow receiver buffers
to overflow by quick transmitters.

Last, error handling and payload are covered with the use of checksums, which
ensure that the segments have been sent to the correct address and that the type of
the protocol is TCP[20] [21].

Because of the mentioned characteristics and being there when Internet first
started expanding, there is no doubt that TCP is the basic protocol used in most
networks. For this reason, even if there are new protocols that can be used, they
always will have to have compatibility with TCP.

3.2 Congestion control in TCP

One of the most important factors in the way protocols function is congestion.
Congestion is bad for all sides involved in a transmission since it can possibly create
losses in the links, huge delays, useless retransmits that consume the available
bandwidth and loss in throughput and reliability. During the mid 1980s congestion
collapses were observed in the networks. Congestion collapse is the situation where
in a loaded network every packet is retransmitted many times leading to the buffers
in the nodes to be full and the necessity to drop packets. This on itself leads to
degradation of the network and sometimes even to timeouts because of the increase
of RTTs [26]. In this situation, the need for the protocol to adjust the sending rate
based on the rate of incoming acknowledgements and loss rate became apparent.

There are two main ways to do congestion control. End-to-end-congestion control
is one of them and it is when the network components do not contribute to the
congestion control. Every conclusion of congestion comes as a result of observations
in the terminal systems. On the other hand, there is congestion control with the
help of the network, where the network components provide clear feedback to the
terminals for the existence of congestion.

TCP uses end-to-end congestion control, since IP does not provide feedback about
congestion to the components of the network. The way that congestion control works
in TCP is that every TCP transmitter has to half the rate of transmission when
congestion is observed. If on the other hand, there is no apparent congestion, the
sender gradually increases the rate of transmission.

In more detail, a congestion window(CWND) parameter is used in all terminals
so the congestion situation can be observed and to regulate the rate at which the
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sender can transmit. This parameter is maintained by the sender and it is calculated
by the estimation of congestion between sender and receiver. The value of CWND is
set and increased during every RTT when there is no observation of loss or it follows
the slow start pattern in the beginning of each connection.

The existence of congestion in a link is observed by the timeout that might happen
or by the reception of 3 ACKs for the same segment, which shows loss. On the other
hand, in the case that there is no congestion in the network, ACKs will be normally
received, so TCP will assume that the network is functioning properly, in which case
the CWND will be increased according to the rate with which the acknowledgements
arrive. AIMD algorithm also varies the congestion window.

The TCP congestion control algorithm has three components: (1) Additive In-
crease/Multiplicative Decrease (AIMD), (2) Slow Start and (3) Reaction to timeouts.

The basic idea behind AIMD is the transmitter to decrease the rate of transmission
based on the size of the CWND. The mechanism behind this is that a sender increases
under normal circumstances the rate of sending in an additive manner, but when a
loss is detected, the transmission rate is halved in a multiplicative way. The phase
of the additional increase is also called Congestion Avoidance (CA). This phase
provides the traditional "sawtooth pattern' in long TCP connections, as we can see
in Figure 8.

cwnd
“Drops”

’ //L

Figure 8: Additive Increase Multiplicative Decrease CWND pattern
3

When a TCP connection starts, the CWND is set to 1 MSS. The Maximum
Segment Size (MSS) is a parameter in the TCP header options field that specifies
the biggest amount of bytes that a host can receive in a TCP segment. In this initial
state, the protocol assumes that there is the whole bandwidth available so it increases
exponentially the CWND size every RTT until a loss event occurs. When the loss
event occurs, as it was described beforehand, TCP enters in the AIMD phase, where
the CWND increase is done now linearly, hence the slow start phase.

3Image source: CS144 An Introduction to Computer Networks Flow Control, Congestion Control
and the size of Router Buffers Section Nick McKeown Professor of Electrical:http://slideplayer.
com/slide/6928333/
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In reality, TCP congestion control reacts differently to a loss that occurs because
of a timeout and a loss that is observed because of three consecutive ACKs. In the
case of the ACKSs, this is the way it reacts. In the case of a timeout, it enters the
slow start phase and the CWND size is increased until it reaches a threshold, in
which case the protocol enters in a CA phase.

Depending on the behaviour during a congestion event, there are different versions
of TCP algorithms and obviously different reactions. As an example, TCP Reno, a
TCP version, cancels the slow start phase after a triple ACK event, a process that is
called Fast Recovery.

The point of TCP protocol congestion control is to proactively probe the capacity
of the network path, in lack of other explicit information. The negative aspect of this
method is that the protocol can react only when buffers are full and packet losses
happen and do not prevent these losses.

3.3 Challenges in Data Centers for TCP

Because of the reason TCP is the main established protocol, consequently in data
centers the main traffic consists of TCP segments. Data center environment being
different from the environment of the Internet though makes the TCP face some
challenges in data center networks, since it is a protocol mainly created for the
Internet.

The type of traffic in data centers was analysed before, as well as the requirements
of the data center environment. These characteristics are directly connected with the
main challenges of the data center environment. Outlining these challenges in more
detail, they can be summarized in TCP Incast, TCP Outcast, Queue buildup
and Buffer pressure.

One of the most known problems that is created is that of the TCP Incast. It
has been defined as the pathological behaviour of TCP that results in gross under-
utilization of the link capacity in various many-to-one communication patterns[11].
This will happen when the switch interface will be overflowed with data from dif-
ferent flows concurrently. The possibility of the flows synchronizing is quite big,
since the time boundaries are very small when talking of applications using the
partition/aggregation model and that is exactly where the issue might be created
by having synchronous transmissions of data. Thus, incast is created in the switch
port connected to the aggregator where data from different flows arrives at the same
time and there is extreme congestion. In more detail, when a request is sent from
the aggregator to the layers below, the layer below will split the task between the
nodes. When the task is completed, all nodes will send the results to the aggregation
layer and because the task was equally distributed the data from all nodes will arrive
almost simultaneously. The more nodes are added to the model, the bigger the
problem that is created. Figure 9 shows a TCP incast scenario.

"TCP Outcast is the name of the situation when a lot of flows and a few flows
arrive at different input ports of a switch, but compete for the same bottleneck
output port and the small set loses on the throughput.'[31] The main factors that
cause this situation are the many-to-one patterns and the use of drop-tail queues
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Figure 9: Depiction of TCP incast

in the switches, which is quite common in data center networks. These drop-tail
queues, because of the packet drops and frequent timeouts, cause the high latencies
of small flows.

Queue buildup is the situation when the packets of small flows start building
queues behind the packets of large flows. This happens when large and small flows
use the same queue and because large flows are usually background traffic that occupy
most of the buffer space.

This impairment is a direct consequence of queue buildup, since the buffer space
available is reduced because of the background traffic large flows. The result is the
same as that of incast, with the difference that here synchronization of the flows is
not necessary.

As a result of the aforementioned impairments, a lot of research has been done
and a lot of different solutions are available. One of the most popular solutions
is changes on the transport protocols or new transport protocols or designs that
attempt to solve the issues. Some of these solution rely on TCP or change some of
the features of it, while others are designs that use already established algorithms or
other protocols. In the next section, a survey of these solutions will be presented, so
it is obvious what has been done in research and what innovation it brings and what
challenge each solution tackles.

3.4 TCP Improvements for Data Center Networks

There is a number of improvements studied for the purpose of using TCP in the data
center environment. Each of these improvements changes some parts of the protocol
to tackle one or more of the mentioned challenges in data centers.

One of the designs is TCP Timeout Improvements [35] [33]. In a previous
part the way TCP times the segments and the retransmission process were described.
Based on observations and analysis the retransmission timeout (RTO) is estimated
and set for TCP connections. Taking into consideration that the average round-trip
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time(RTT) in networks like the Internet is around hundreds of milliseconds gives
usually the value 200ms to the RTO. The data center being different though and
RTT on the order of microseconds, the value of RT'O turns out to be quite bigger than
that of RTT. Through simulations and measurements in real clusters the innovations
that this TCP variant brings is the improvement of RTO by enabling timeouts with
microsecond granularity, which also makes necessary the existence of high resolution
timers. An addition to this approach is connected to delayed ACKs, which is the
condition when the receiver aknowledges every two received segments. Because with
such fine RTO timers, spurious retransmissions might occur, the solution is to either
reduce the delayed ACKs’ timeout period to a few microseconds or to disable the
timeouts completely. The goal of this approach is to improve the overall throughput,
reduce the impact of packet loss, and to effectively avoid incast collapse. While the
TCP throughput is improved and it improves on TCP incast, the approach reacts to
packet loss without actually avoiding it and it does not solve the other challenges
of TCP in data centers. Another characteristic of this approach is that it does not
need many modifications of the TCP.

Another improvement is Incast congestion Control TCP (ICTCP) [37].
This approach is an incast congestion control scheme for TCP on the receiver side
that regulates the receiving window. The reaction happens on the receiver side based
on the fact that the bandwidth there is a signal for congestion control and that the
receiver side can adjust according to the requirements of both the application and the
link. ICTCP tries to avoid packet loss before incast congestion happens by adjusting
the receive window of each connection based on the total bandwidth of the incoming
traffic. This is done by having each flow estimating the increase of throughput and
by measuring the actual throughput of a connection. Through experimental results
one can see that the approach tackles the incast challenge on data center networks,
as it was its original goal.

In continuation there is the approach of Multipath TCP (MPTCP)[32]. Mul-
tipath TCP is a version of the TCP protocol which uses multiple paths by spreading
data from a single TCP connection to multiple subflows that can take different paths
in the network. Each subflow has its own congestion window and subflows with
larger windows increase them faster than the ones with smaller windows. The use of
MPTCP is negotiated upon connection but the applications do not need to know that
MPTCP is used. The protocol achieves increased network utilization since underuti-
lized and idle links can be explored. It also provides fairer allocation of capacities
to flows and robustness by using multiple paths and by avoiding to send traffic to
congested ones. MPTCP has been proved through simulations and experiments to
do better in today’s data centers, since it is compatible also with the aforementioned
architectures of FatTree and BCube, even though fairness and performance have also
to do with the number of subflows. On occasions it ourperforms TCP, but they both
are the same when it comes to being aggresive.



19

3.5 Other Transport Designs

In addition, there is a number of protocols tailored for the data center environment.
Changes in the TCP protocol is not the only way to impove designs for the data
center environment. Some others are protocols designed from scratch, sometimes
based on already existing techniques and put together to perform better in data
centers. There are a number of algorithmic designs as well, focusing mainly on the
improvement of performance in the data center. These designs can be based on
queueing heuristics or be standalone designs. In continuation some of these designs
are presented.

Rate Control Protocol (RCP) is a protocol that is mainly created to keep
flow completion times low. It achieves this goal by the routers "stamping" a rate R(t)
of every link to the packets that pass through. The sender receives these values and
gets informed of the slowest rate or bottleneck and adjusts the rate that it should be
using, avoiding this way slow start and managing to complete flows quickly and in
fairness [13].

D? ("Deadline-Driven Delivery") is a control protocol specifically designed
for data centers. It is not based on TCP and for its implementation an endhost-based
stack and a router that supports the protocol were created. It is also taken for
granted the existence of flow deadline and size when the flow transmission begins.
On a first phase, when the flow is initiated, the source and each router along the
path request a rate that is carried as information in the header. Through the ACKs
of the flows, the source gets informed about this requested rate and sends the data
with the smallest from the requested ones, while at the same time sends the request
for the next RTT. The routers assign rate requests by trying to satisfy as many flow
deadlines as possible, while the remainig flows will send at least a packet with a
header so they can get the request for next RTT through. The goals of the protocol
are to maximize the application throughput, to accommodate flow bursts and high
network utilization. Compared to TCP, the protocol achieves similar performance for
long flows and shorter queues. On what can be considered a negative aspect of D3,
the protocol calls for changes in all components of the network and the transmission
[36].

Preemptive Distributed Quick (PDQ) is a layer that can be added between
the IP and transport layers and is designed for quick flow completion by meeting
the flow deadlines. The way the protocol works is by taking into account that the
information about the flows exists in their headers through the PD(Q switches. These
switches read the information and are the ones responsible to inform the transmitters
about the rates that are going to be used, while at the same time they perform
"dynamic decentralized scheduling by building on traditional scheduling techniques
like Earliest Deadline First (EDL) and Shortest Job First (SJB). Research has been
done as well on Multipath-PDQ (M-PDQ), with which a flow is transmitted on
multiple paths. The same principle is followed while the paused subflows shift their
load to the transmitting ones with the least load. Through simulations it was found
that the protocol performs better comparatively to TCP, D? and RCP as the number
of flows increases and it has better flow completion times [17].
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pFabric is a data center transport design that has on the basis of its design the
idea to separately handle flow scheduling and rate control. Another core characteristic
of the protocol design is the fact that each segment has on its header a priority
number. This number is set on end hosts on the transport layer and the switches
decide which packets to accept and which to drop based on this number. The switches
also maintain queues with the arrived packets and their metadata for easy access if a
packet is dropped because the buffers were full. The rate control is a simple version
of the TCP rate control, which means all flows start at line rate and decrease their
sending rate only if they see high and persistent loss. At the same time, there are
no more complex mechanisms that TCP has. The protocol was evaluated through
simulations and it reaches almost ideal flow completion times and it handles incast
like other protocols, but depending on the scenario its fairness might suffer [4].

PASE is a transport framework that combines existing transport strategies, like
Prioritization, Arbitration and Self-adjusting Endpoints. It adopts the self-adjusting
endpoints from TCP strategies, where senders make their rate decisions based on the
observed network conditions. From the queueing algorithms it adopts the arbitration,
where a part of the network allocates rates to each flow and it uses in-network
prioritization like in pFabric, where switches schedule and drop packets based on
some priority number [25].

Hedera is a flow scheduling system. Its general design has to do with giving
large flows good paths with the use of placement algorithms by estimating their
demands. After the estimation, the design uses the Simulated Annealing technique
to compute the flow paths and having a switch per receiver rather than per flow. The
goal of the scheme is to maximize the aggregate network utilization without impact
on active flows. Through simulations it has been found that the design outperforms
some of the specifically designed for data centers protocols [14].

DeTail is a design that uses cross-layer mechanisms. The goals of the design are
to reduce packet losses and retransmissions, prioritize latency-sensitive flows and
balance traffic across multiple paths. The design detects congestion at lower network
layers and finds different paths with less congestion to destination, leading this way
to the routing of the flows. The lossless fabric deployed ensures that losses occur
only because of hardware errors or failures [38].

FastPass is a data center network architecture that makes use of centralized
arbitration to determine the time at which packets should be transmitted and which
paths should be used. With FastPass there is no congestion at the switches and the
endpoints can transmit at wire-speed since the architecture uses a timeslot allocation
and a path assignment algorithm. The goal is to send the packets in a way that will
avoid congestion and make use of full paths dealing with problems that might arise
in the network a priori [30].

This chapter focuses on the TCP protocol, it being the main protocol used for
data transmission. The changes in TCP to tailor it for the data center environment
are also brought forward and a number of other transport designs that tackle the
issues of transmission in the data center environment.
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4 Queue Management and Explicit Congestion No-
tification

Having studied already the cause of congestion and the end-to-end methods that the
protocols use to react to it, we are going to study in more depth the network based
methods that are deployed for congestion avoidance and reaction to congestion.[9] [5]

4.1 Queue Management

Traditionally, what happens in the queues of the routers involves dropping packets
from the queues if a maximum length of each queue is reached with the incoming
packet. This mechanism is called "drop-tail’, since the last arriving packet, "the tail",
is dropped if the queue is full. Drop-tail mechanism has the drawback that it can
lead to the occupation of the queues from specific flows or connections only, so it
does not treat fairly the incoming packets. Another very important drawback is
that the devices do not give feedback until the queues are really full so losses can be
avoided and this leads to a throughput reduction and to problematic bursty traffic
with delays and reduction in performance.

Other mechanisms exist, like dropping a random packet if the full is queue instead
of the last arrived, or drop the first packet in the queue. In the same way though,
these mechanisms do not solve the problem of early feedback and the maintenance
of small queues that can solve the issue of degrading throughput.

There has been discussion already about the congestion avoidance mechanisms
that TCP deploys to avoid the collapse of the network. With the growth of Internet
during the years though, it has become obvious that network devices need also to
cooperate with the already existing mechanisms on the edges against congestion
collapse so the protocols can perform better.

The congestion control in the network devices, like routers, is done in two main
ways, with scheduling algorithms and with queue management. Scheduling algorithms
regulate the way in which arriving packets are handled and forwarded and allocate
bandwidth, while queue management algorithms handle the queues of the network
devices when these queues are created because the incoming packet rate is bigger
than the outgoing.

The reasons for the queues to be managed derives from the need to reduce queue
delay and to evenly distribute packet losses between flows.

4.1.1 Active Queue Management

Intuitively, the solution to the queues problem is for the network devices to manage
the buffers before queues become full by controlling their lengths or the time the
packets spend there. Such an approach is called Active Queue Management (AQM)[5].
AQM mechanisms lead to less packets being dropped in routers, since keeping the
queues small more packets can be absorbed in queues if they come in bursts. At the
same time the perceived delays get reduced and by buffer space being available for all
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flows, the incoming traffic management becomes more fair. The deployment of AQM
mechanisms leads thus to tackling an important issue, that of the Internet latency.

AQM mechanisms are used to control the queue sizes from the scheduling algo-
rithms. Depending on the priorities the scheduling algorithms want to give and the
flow or class queues that are created from these algorithms, AQM can contribute
to these queues by reducing delays and minimizing the losses. Additionally, instead
of packet drops, AQM might use ECN to mark packets during congestion events
or even introduce delays to packets. This way, the end points get informed about
congestion beforehand, so losses and delay can be avoided. The way AQM is used
should not be protocol-oriented or application-oriented, but to provide a solution to
the current measured conditions of congestion that might occur in a network.

4.1.2 Random Early Detection (RED)

It becomes apparent that the AQM mechanism that might be used depends on a
number of factors that have to do with network conditions and other measurements.
This was not always the case though. When AQM was first introduced, the main
mechanism that was proposed was Random Early Detection (RED).

RED is an algorithm that functions in two phases. The first phase is the estimation
of the queue size making use of an exponential weighted moving average. This avoids
extreme increases of the queue size by bursty traffic. In the second phase, RED takes
the decision if a packet drop is going to occur or not. This is done by comparing
the measured average queue size avgq against two threshold values, minimum and
maximum, that are chosen based on the desired avgq. If avgq is smaller than minimum,
no packets are marked. If it is larger than maximum, all arriving packets are marked.
When the value is between the two thresholds, the packets are marked with a
probability that varies linearly from 0 to mazp, which are functions of avgq. To
understand this in a simple manner, one would say that packets are dropped if the
queue has been mostly full in the "recent" past. [15]

RED is not the only AQM algorithm that is deployed in the networks. Two other
very popular algorithms are Controlled Delay (CoDel)[27] and Proportional Integral
controller Enhanced (PIE) [29].

4.1.3 Controlled Delay (CoDel)

In the case of CoDel, it has already been used a lot in many implementations, amongst
them in Linux. CoDel is different from other AQMs on some points. One of them
is that it treats "good" and "bad" queues differently, with "bad" being the queues
that keep buffers full. To distinguish these queues, CoDel uses the sojourn times of
the packets by tracking the local queue minimum. The algorithm then reacts with
the goal of minimal delay and maximal utilization when the delay is bigger than a
set target delay. The way CoDel reacts is by dropping packets from the queue and
maintaining the number of the dropped packets setting the time for the next drop
until the delay falls under target delay again. In this case CoDel exits the dropping
state. CoDel algorithm has been used as a basis for other mechanisms or just by
itself.
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4.1.4 Proportional Integral controller Enhanced (PIE)

In the case of PIE the image of the delay during the whole transmission is used and
not only the current delay. As it is mentioned in [29], "similar to RED, PIE randomly
drops an incoming packet at the onset of the congestion. The congestion detection,
however, is based on the queueing latency instead of the queue length like RED.
Furthermore, PIE also uses the derivative (rate of change) of the queueing latency to
help determine congestion levels and an appropriate response. The design parameters
of PIE are chosen via control theory stability analysis. While these parameters can
be fixed to work in various traffic conditions, they could be made self-tuning to
optimize system performance". In case of supporting ECN, the algorithms mark the
packets rather than dropping them.

4.2 Explicit Congestion Notification (ECN)

Explicit Congestion Notification (ECN) is a network-layer mechanism that is used
for notifying of existing congestion. On the network devices side, when ECN is used,
it makes use of AQM mechanism. Instead of dropping packets when a congestion
event happens, AQM can set a Congestion Experience (CE) codepoint in the IP
header of the packet and is translated by the protocol as congestion indication. At
the same time, delays due to retransmissions are being avoided, since the packet is
not actually dropped.

In the IP header, there is the 2 bits long ECN field, that includes the possible
codepoints 00, 01, 10 and 11. If the codepoints are set 01, 10 by the senders, this is
an indication of ECN-Capable Transport (ECT), which means that the sender and
the receiver are capable of using ECN. If the codepoints are not set, so 00, there
is an indication that ECN is not being used and if both codepoints are set by the
router, 11, it means that congestion was experienced. If a router is congested it can
use congestion notification when it sees these bits set. If these bits are not set, the
router will drop the packet instead of marking it, since it will mean that it cannot
be processed as an ECN packet by the endpoints.

If a CE packet is received, the protocol should react to it, usually once per window
of data and the packet is not dropped, but transmitted normally. This CE codepoint
is set by the router if it receives a packet with set ECN codepoints. In the case
this packet is erroneously dropped, the end nodes react to congestion as if it was an
actual dropped packet, since there is no information that it was the CE packet.

4.2.1 ECN and TCP

The TCP protocol functions with ECN by negotiating the protocol during the
connection setup. There are two flags added in the Reserved field of the TCP header
that indicate use of ECN, the ECN-Echo (ECE) that informs for the reception of
a CE packet, and the Congestion Window Reduced (CWR) that informs that the
window size was reduced, as it is shown in Figure 10. These flags are used for
signalling between TCP endpoints.
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Checksum Urgent Pointer

Figure 10: The TCP header with use of ECN flags
4

During the negotiation phase, if a host receives an ECN-setup SYN packet, it
may respond with an ECN-setup SYN-ACK packet if it agrees to the use of ECN.
This however, does not compel the host to set ECT, but to respond accordingly
to the reception of CE packets. A host can only use ECT only if it has sent one
ECN-setup SYN or SYN-ACK packet.

The sequence of events in a TCP connection that makes use of ECN is as follows:

Sender sends ECT packet to indicate ECN support.

Network device detects congestion and sets ECT codepoint. CE is also set
when ECT in the IP header is detected and the packet is forwarded.

When the CE packet is received, ECE is set in the next TCP ACK packet that
is sent to the sender.

When the sender receives the ACK packet reacts in the same way that would
react to a dropped packet.

CWR flag is set by the sender to acknowledge the reaction to the ECE packet
received.

It is important to note here that the reaction to congestion should be once per
series of CE packets or drops from the same data window. If a retransmitted packet
is dropped though, a new congestion event is being experienced. At the same time,
CWR flag should be set only on the first transmitted data packet, even though it is
in response to a series of received ECE ACK packets.

After recognizing congestion as one of the main challenges in data transmission,
this chapter focuses on the deployed methods that tackle congestion. This is a
necessary step between all the transport protocols that can be used in the data center
environment and DCTCP, since the DCTCP algorithm uses ECN feedback.

4Image source: http://bocloud.blogspot.fi/2013/04/tcp-flags-part-2.html
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5 Data Center TCP (DCTCP)

Previously the TCP based algorithms and other protocols tailored for the data center
environment were studied. In continuation, a study of DCTCP will be done, it being
by far the most popular design for data center environment.

5.1 DCTCP in depth

Data Center TCP (DCTCP) is a TCP variant specifically designed for data centers,
with the goal of achieving in the different from wide area data center environment
high burst tolerance, low latency and high throughput. The protocol has been broadly
used in research as the main protocol for data centers and even deployed, which
makes it very interesting for the specific purposes of this study.

DCTCP functions by reacting to congestion according to the extent of congestion
experienced. For this purpose, the end hosts that use the protocol need to receive
feedback from the switches about the experienced congestion. This is easy to achieve
since most modern switches are ECN capable, meaning they can provide explicit
feedback so end hosts can react.

The algorithm includes three parts. The first part is an AQM mechanism based on
the marking configurable parameter K. Upon a packet arrival, if the queue occupancy
is bigger than K, then the packet is marked with CE to indicate congestion. Through
a series of experimentation in NS-2 (network simulator) and also through the results
from the testbed in [1], there are different values that are proposed for K. These
proposed thresholds are K = 20 packets for line rates of 1Gbps and K = 65 packets
for line rates of 10Gbps. This is connected to the burstiness of traffic experienced in
these links and the fact that to achieve 100% of its throughput, K has been found
that needs to be at least 17% of the bandwidth delay product.

The second part of the algorithm has to do with the reaction to the experienced
congestion. It was mentioned that for TCP the receiver sets the ECE in response
to a series of ECE ACKSs until the reception of a CWR packet. In DCTCP, every
packet is ECE marked if it has a CE codepoint mark. In the case of delayed ACKs,
the receiver uses the two state machine shown in Figure 11 to decide if it will set
ECN-Echo bit.

On the third part of the algorithm, "the sender maintains an estimate of the
fraction of packets that are marked, called a, which is updated once for every window
of data (roughly one RTT) as follows:

a+ (1—g)xa+gxF (4)

where F is the fraction of packets that were marked in the last window of data, and
0 < g < 1 is the weight given to new samples against the past in the estimation of
a. Given that the sender receives marks for every packet when the queue length is
higher than K and does not receive any marks when the queue length is below K,
the equation implies that a estimates the probability that the queue size is greater
than K. Essentially, a close to 0 indicates low, and a close to 1 indicates high levels
of congestion." [1, p. 5]
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Send immediate ACK with ECN=0

Send 1 ACK for Send 1 ACK for
every m packets every m packets
with ECN=0 with ECN=1

Send immediate ACK with ECN=1

Figure 11: The two state ACK generation state machine. The states correspond to
whether the last receved packet was marked with the CE codepoint or not. [1, p. 5]

It was also mentioned how TCP reacts to a congestion event. For DCTCP,
everything is the same except for the new window size. In DCTCP, the new value of
the CWND is given by

cwnd + cwnd * (1 —a/2) (5)

[1, p. 6], meaning that the CWND is not halved, but reduced according to the amount
of congestion encountered. When the congestion is really high, DCTCP behaviour
becomes similar to TCP.

The results from the use of protocol in simulations in research have been so that
the protocol outperforms TCP in data center traffic scenarios. At the same time
though, because of the way DCTCP changes the CWND, the protocol’s convergence
time is longer than that of TCP. In spite of this for the data center environment and
the traffic patterns one can observe there, the difference is not considered important.

The way the protocol functions leads to it tackling the challenges that were
mentioned for the data center environment. Because of the threshold value K, there
are no queueing delays and it even reacts to the buffer problem since the queues
do not grow large. Because of the early marking, buffer overflows and timeouts are
prevented.

Because of the wide use of the protocol, there is a number of changes that are
made or proposed for it that lead to improvements of its performance.

DCTCP modifications

Some modifications that are made in the protocol portray the experience from
its use and solutions to impairments found from the practicalities of the protocol.
Here the changes that are introduced have to do with a number of variables that
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inform the sender side about the actual amount of congestion encountered. Thus,
the boolean variable DCTCP.CE that is stored in the Transmission Control Block is
introduced and is used when sending an ACK, the ECE flag MUST be set if and
only if DCTCP.CE is true. Another value that is introduced is DCTCP.Alpha, which
is the estimation of the fraction of bytes that encountered congestion. The window
is reduced based on this parameter, which is in turn updated by the estimation gain
and the congested bytes during the previous RTT. The gain should be set depending
on the implementation and the congested bytes are set by counting the marked
and sent bytes on the observation window of choice. DCTCP only works if both
ends, sender and receiver, are DCTCP-capable. Another crucial point is that the use
of DCTCP is explicit inside data centers or exchanges that can be named to exist
inside data center networks. In addition, this version of DCTCP is implemented on
Microsoft Windows Server 2012. [1, 2, 6]

5.2 DCTCP-based Data Center protocols

Next some protocols that are based on DCTCP will be mentioned to additionally
outline the importance of DCTCP for the data center environment. The fact that
there are already designs that use DCTCP as a basis and improve upon it further
shows the protocol’s importance.

First, there is Double-Threshold DCTCP (DT-DCTCP) [10]. DT-DCTCP
improves on the original DCTCP by using two parameters K1 and K2 instead of the
threshold K. K1 is to start ECN marking in advance, informing that there might be
congestion in the network so the CE codepoint should be set. If the queue length
gets smaller than the value K2, the CE codepoint stops being set.

Next the High-bandwidth Ultra-Low Latency architecture (HULL) de-
sign that uses DCTCP mechanisms [3]. HULL is an architecture that has as a goal
the achievement of ultra-low latency and high bandwidth utilization. The HULL
architecture consists of three main components: DCTCP congestion control, phantom
queues (PQ), and packet pacing. The PQ mechanism is practically a counter that
sets ECN marks based on link utilization and not on queue occupancy, achieving low
latency because of the signaling before queueing occurs. HULL reacts to these ECN
marks using DCTCP’s mechanism. In the HULL architecture, pacing takes place in
the hardware after the last source of bursty transmission and only the packets that
belong to large flows are paced, since otherwise it exist the danger of introducing
end-to-end latency while decreasing network latency.

Further on Deadline-Aware DCTCP (D?*TCP) [34]. D*TCP is a TCP-based
data center network protocol that aims at achieving high bandwidth for background
flows while meeting the Online Data Intensive (OLDI) applications’ deadlines. At the
same time, it requires no changes to the switches. D*TCP) changes the congestion
window size through a gamma-correction function based on deadline information
and encountered congestion. If the flows have no deadlines, then D*TCP) functions
as DCTCP.

Finally, DCTCP with Weighted Random Early Detection (WRED) [19].
WRED ensures that flows do not starve when coexisting with flows from other, more
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aggressive variants. There are two changes proposed to the classical DCTCP. First,
the fraction of marked packets to be updated with every acknowledgment packet
received and second, decrease of the congestion window whenever an ECN-Echo is
received.
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6 Analysis

We studied extensively the data center environment and the challenges of this
environment that also highlight the differences between the data center networks
and the broad Internet. In addition we studied the protocols that are being used and
can be used depending on the needs of the network. Very important parts are the
characteristics of the TCP and DCTCP protocols, since they are most extensively
researched and used.

TCP is so established and so broadly used that this fact is not going to change
soon in the networking scene. At the same time through the study of new protocols
and algorithms in the data center environment one is made aware of a number of
positive results for the networks because of changes in already existing protocols or
development of new algorithms. From the comparison of these other designs with
TCP in the controlled data center environment one can specify as well the changes
that make the algorithms perform better.

Narrowing down to specific results, research has shown that higher throughput
is achieved, losses are minimized with the use of marking and lower occupancies
are achieved in the buffers minimizing the queueing delay in the case of DCTCP.
DCTCP being the most researched protocol for data center environments and at the
same time being easy to deploy, the necessity to research its performance on different
long distance and loss scenarios immerses itself. This is as a result of the fact that
networks would have better performance if the protocols would achieve the same
results as DCTCP does in data center environment in the wider Internet.

At the same time, because most incoming traffic in data centers is TCP traffic,
the need to study the coexistence of TCP and DCTCP in a link is also important.
This is helpful both for the coexistence of TCP and DCTCP traffic in the data center
networks and for their coexistence in case DCTCP is used as a transport protocol in
the wide Internet as well.

One of the solutions for the use of DCTCP in the internet was provided by the
authors in [19], where they provide a number of modifications for the algorithm and
the AQM design used that lead to the coexistence of TCP and DCTCP traffic in
links without having starvation.

The main difference is the use of a dual AQM design, where packets share one
queue, but the traffic is classified based on the ECN capabilities. The authors "propose
to standardize an ECN signal that signals congestion immediately, allowing the end
hosts to distinguish between smoothed and immediate congestion notification." From
the results in simulations running different scenarios of different numbers of long-lived
DCTCP and TCP flows, it is proposed in [19] that with specific changes to have
more instantaneous and accurate ECN feedback is the actual way to deploy gradually
DCTCP in the Internet. The majority of research lately focuses on ECN for the
deployment of DCTCP in the internet and the results are promising.
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6.1 Tools used in study

For the purpose of studying the scenarios, it is necessary to deploy TCP and DCTCP
in a link and see the traffic behaviour. In addition, it is beneficial to study different
scenarios with different parameters so we see the protocols’ characteristics in a variety
of situations. The parameters that were considered that can change were the RT'T,
the number of nodes, losses in the links and the possibility of sending packets with
different transport protocols, since each of these changes give us a different network
scenario.

Because of the number of parameters that need to change and test the performance
in such diverse scenarios and at the same time because of the necessity to mimic the
behaviour of real networks, network emulation was chosen as the best technique to
study the traffic.

Network emulation uses virtual test networks to measure the performance of
applications by giving the opportunity to change different characteristics of networks
like RTT (latency), packet loss, jitter and others. Figure 12 shows a network using
lightweight virtualization. Network emulation differs from simulation in the fact that
in simulations mainly mathematical and network models are applied, while emulators
test by changing the network setup itself. In the process of simulation the main
characteristics are taken into account to model the behaviour of a network. Through
emulation the goal is to test this behaviour of a system. At the same time especially
in networking, network emulation makes it easier to test with a number of switches
and servers that are required for testbeds but might not be possible to have as actual
hardware because of costs or difficulties in changing the setup.

6.2 Mininet

For the study of the behaviour of TCP, TCP with ECN marking and DCTCP
in the scope of this thesis, Mininet network emulator was used to conduct the
traffic observation. DCTCP in Mininet is used in the paper [16] as an example for
reproducibility of network research in the emulator.

Mininet® is a container-based network emulator used to test Software Defined
Networking(SDN) applications that uses Python API (Application Programming
Interface) to write the different testbed scenarios and compiled C code for the
emulation. The emulator can run a number of hardware components in a single
Linux kernel. Mininet uses virtualization to make a system look like a real network.
A Mininet host behaves like a real host. The packets are exchanged and processed
by what looks like real Ethernet links, switches and routers. The difference is that
these links and switches are created using software and are not real hardware, but
they behave the same way.

Mininet is very helpful for a number of reasons. It can run the same programs

5 A mininet tutorial: https://github.com/mininet/mininet/wiki/SIGCOMM-2014-Tutorial:
-Teaching-Computer-Networking-with-Mininet
6 Introduction to Mininet: https://github.com/mininet/mininet/wiki/
Introduction-to-Mininet
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Figure 12: A very simple network using lightweight virtualization
5

that run on Linux and the emulator can run everywhere, like a laptop, a server or a
VM. With the use of Python scripts it is easy to create custom topologies and it is
an ongoing open source project with a very active developer community that update
the software often and receive feedback. At the same time Mininet uses OpenFlow
to program the switches and this makes it easy to customize packet forwarding and
transfer the scripts to hardware OpenFlow switches. OpenFlow is a communications
protocol that gives access to the forwarding plane of a network switch or router over
the network[23]. Through a number of simulations in Mininet running the same
scenarios as in testbeds, it is obvious that Mininet approximates the hardware very
closely. Figure 13 [16, p. 6, Fig. 6] shows how results from the same topology run
in Mininet and hardware are similar. This practically means that we can safely use
Mininet as an emulator with a variety of scenarios.

On the other hand the usage of Mininet imposes some limitations. Since the
emulator runs on a single kernel, appropriate resource allocation needs to be done
amongst the switches and hosts and the parameters of each emulated topology. At
the same time the OpenFlow controller needs to be customized depending on the
needs by the user of the software. Last, the environment is isolated from the LAN
and the Internet and the timing is based on real-time, meaning that faster than
real-time results are difficult to emulate.
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Figure 13: TCP queue occupancy in Mininet and hardware.

6.3 Setup

Emulator Mininet provides the environment to test TCP, TCP with ECN and
DCTCP. For this purpose again the environment was based on already existing
DCTCP tests in Mininet.” Since Mininet is Linux based, the operating system to run
the different scenarios is Ubuntu Linux. In the course of creating the environment
for running the scenarios there was a number of difficulties that we faced. Because
DCTCP was not yet a protocol option in the Linux kernel at the time of the setup,
a DCTCP patched kernel was used. This kernel was a patched version of kernel
v.3.2 that runs on Ubuntu 12.04.5 LTS 8. The kernel installation was not completed
as the given kernel was not being installed properly on the created environment.
Due to a number of incompatibilities during the initial setup and because latest
versions of Linux kernels got released that have DCTCP as an enhancement of TCP
congestion control, in the final setup Ubuntu 14.04.4 LTS with kernel v.4.2 was used.
DCTCP is enabled as a congestion control version in this release with the command
sysctl — w net.ipvd.tep _congestion__control = dctep. The installation was done in

" "Mininet system-level tests, benchmarks, and performance monitoring”: https://github.
com/mininet/mininet-tests

8A kernel patch provided by the University of Stanford: https://github.com/mininet/
mininet-tests/blob/master/dctcp/0001-Updated-DCTCP-patch-for-3.2-kernels.patch
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a virtual machine and for the environment was given 20Gb of RAM memory and 2
cores with two threads each.

In continuation, different topologies were tried in Mininet. For the purpose of
studying the traffic two very simple topologies were chosen as shown in Figures 16
and 17.

The topology of Figure 14 includes a switch and 3 hosts connected to it, but the
number of hosts may vary depending on the results we want to see. hl functions as
a receiver and the link hl-s1 as the bottleneck link. h2 and h3 are the sender hosts.

h2

hl

Figure 14: One of the two basic topologies used in Mininet. Depiction with MiniEdit.

The topology of Figure 15 includes two switches connected with each other and
each of them is connected to a varying number of hosts. In its basic form each switch
is connected to two hosts. The hosts connected to one switch function as receivers,
so in the Figure example h1 and h2 connected to sl function as receivers and h3 and
h4 connected to s2 function as senders. The bottleneck in this topology is created in
the link between the two switches.

ECN in Linux is implemented using RED. The RED parameters are set to
maintain 20 packets threshold on DCTCP. Mininet achieves best performance and
similar to hardware when the resources are used proportionally. This means that
with links of 10GB the results are not accurate and they can be questionable with
links of 1Gb as well. The best solution for this situation is for Mininet to use links of
100MBps to approximate the results that we would have from the use of hardware.

With the topologies mentioned we can run a number of scenarios. The main goal
of the emulations is to see the behaviour of each protocol and their variations and
how the protocols behave when they coexist in the link.

For the different scenarios a number of parameters changes. The link behaviour
was studied with both mentioned topologies and the number of hosts that send traffic
to the receivers was varied. At the same time the bandwidth of the links was also
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Figure 15: One of the two basic topologies used in Mininet. Depiction with MiniEdit.

changed. In the following figures a number of results is shown from the use of the
topology of Figures 14 and 15 and the figures depict the CWND and the queue
occupancy of the link when the bandwidth and the number of hosts changes. The
differences with the increasing number of hosts from 3 to 100 are made obvious
through these depictions and it is also beneficial to see how Mininet behaves with
bandwidth of 1GBps, based on the mentioned limitations as well, so the results from
links of 1000MBps are shown.

6.4 Evaluation

For the different scenarios the results are presented below. At the same time
the constants used for the scenarios that are presented are as follows. The RED
parameters used are: minimum:30000, mazimum:35000, packet size of 1500 bytes
and marking probability 1. For ECN we have the same values since ECN in Linux is
implemented using RED. At the same time the delay was configured to be 0.05ms.
The traffic generation is done with iperf, which can create TCP streams and functions
as a bandwidth measurement tool for the network these packets travel in.

6.4.1 3 hosts, 100 MBps

Figure 16 is a CWND against time graph for a link of 100MBps that Mininet can
emulate with big approximation to reality and with 3 hosts. As it was mentioned,
Linux uses RED congestion control, so here we can see the behaviour of TCP Linux.
Because the two links from the two sender hosts are the same, the figure shows the
sum of the CWND so we have a more encompassing image. We can see a peak
around 8000 kB for these hosts and the rest of the time the CWND values seem to
be around 400 and lower. At the same time we can see the results from running
exactly the same topology with TCP with ECN congestion control and DCTCP. In
the case of ECN TCP, as we can see in Figure 17, the values that CWND takes are
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much lower, with the sum of them reaching hardly and in very rare instances like
second 15 the peak of 360kB. At the same time the CWND image is much smoother
for ECN TCP traffic with increases and decreases that have peaks from 20kB or less
up to 100kB in average. In Figure 18, the image that we get from the same topology
but with DCTCP traffic this time is very similar to that of Figure 17. This makes
sense in the results since DCTCP uses ECN.

Already by running with a small number of hosts we can start seeing the differences
between the protocols. Through the images of the CWNDs we can tell for the TCP
traffic that CWND starts growing as packets flow in the link. When the peak is
reached in the graph the protocol reacts to the congestion experienced. Then the
protocol enters the congestion avoidance phase and thus we have the specific image
in the graph that suggests the AIMD and CA phases.

Contrary to the way TCP reacts we can see the much smoother reaction in the
CWND of DCTCP. The image of the CWND with DCTCP has this shape because
of the marking of the packets that mirror the congestion in the last window of data
and the adjustment of the CWND according to this marking, which means that
the protocol does not enter the AIMD phase like TCP, but reacts by adjusting the
CWND according to the marking. Then it informs for the reduction with the CWR
parameter. Because of this we can see exactly the importance of the feedback and

ECN in the link.
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Figure 16: CWND with bandwidth of 100MBps and 3 hosts for TCP traffic
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Figure 17: CWND with bandwidth of 100MBps and 3 hosts for ECN TCP traffic

400 TCP congestion window (cwnd) timeseries
T

— 5]

350
300+

250

cwnd KB

150+

Figure 18: CWND with bandwidth of 100MBps and 3 hosts for DCTCP traffic

The most interesting part of the results lies in the comparison of the queue
occupancies with the use of the different protocols in the same topology. Figure
19 shows the queue occupancy with the use of TCP. We can see a big peak in the
beginning of the connection and then from the 10th second to the 20th it shows
that the queue occupancy is maintained quite high, with values that reach many
times peaks of around 200 packets. At the same time, using the same scale, the
big difference from the use of ECN is made obvious by Figure 20, where we see
the queue occupancy is kept at minimal. Figure 21 shows the queue occupancy for
DCTCP, that is kept very low and around 20 packets at its peak, which tells as well
that DCTCP is tuned according to the parameters given by the authors in [1]. The
images were on purpose done in different scale so this difference is obvious.

With maintaining the queue occupancy low in DCTCP, we have lower queueing
delay which affects in turn the smoother image of the DCTCP CWND, since we
avoid losses and drops of packets keeping the queues in the marking threshold.
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Figure 19: Queue occupancy with bandwidth of 100MBps and 3 hosts for TCP traffic
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Figure 20: Queue occupancy with bandwidth of 100MBps and 3 hosts for ECN TCP
traffic
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Figure 21: Queue occupancy with bandwidth of 100MBps and 3 hosts for DCTCP
traffic

6.4.2 3 hosts,1000 MBps

In continuation, by changing the link bandwidth, but maintaining the number of
hosts at 3, we can see some interesting results. Figure 22 shows the CWND in this
case with the use of TCP and what is interesting is the very smooth line after the
5th second. We believe that the CWND is like this because of the big speed of the
link and the small number of hosts. After the 5th second it appears that there was
no congestion indication, while until that moment the window has reached even
a 15000kB peak. Figures 23 and 24 show respectively the CWND from the same
topology but with the use of ECN TCP and DCTCP. Again we see much smoother
curves that reach hardly around 500kB at specific times.
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Figure 22: CWND with bandwidth of 1000MBps and 3 hosts for TCP traffic
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Figure 23: CWND with bandwidth of 1000MBps and 3 hosts for ECN TCP traffic
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Figure 24: CWND with bandwidth of 1000MBps and 3 hosts for DCTCP traffic

Figures 25, 26, 27 show the queue occupancy in the case of TCP, ECN TCP and
DCTCP respectively. Again we can see much smaller queue occupancy in the case of
ECN TCP and DCTCP. If what we said about the congestion of the links being low
in this case is true, this case is not very interesting since the queues will be mostly
empty or will contain a small number of packets. Figure 25 proves this as except
from the initial stage the queue occupancy is kept low there as well, especially from
the H5th second onwards.
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Figure 27: Queue occupancy with bandwidth of 1000MBps and 3 hosts for DCTCP
traffic

6.4.3 100 hosts, 100 MBps

A very interesting case that can show the benefits of DCTCP and ECN is the case
where the number of hosts increases a lot (100 in our case) and the link bandwidth
remains at 100MBps, giving thus space for congestion to happen. In this case Figure
28 shows the CWND with the use of TCP. Because of 100 links, the sum of the
CWND was depicted, so we can have a general image. We can see that the CWND
takes quite high values and we can see quite clearly as well the "sawtooth" behaviour
of TCP, especially after the 5th second. At the same time, ECN TCP as depicted
in Figure 29 has a smoother behaviour and the CWND is kept at lower values.
For DCTCP and Figure 30 again we can see the CWND maintaining lower values
compared to TCP, as the sum of the CWND from the 100 links is still kept mainly
under 1000kB while for TCP that is a value lower than the average that is around
1500kB.
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Figure 28: CWND with bandwidth of 100MBps and 100 hosts for TCP traffic
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Figure 29: CWND with bandwidth of 100MBps and 100 hosts for ECN TCP traffic
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Figure 30: CWND with bandwidth of 100MBps and 100 hosts for DCTCP traffic

Very interesting are the results that have to do with the queue occupancy with
the same topology. In Figure 31 it is shown clearly the high queue occupancy that
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TCP keeps at all times during the traffic exchange. Comparing that to the queue
occupancy of ECN TCP in Figure 32 that is in the same scale, we see the very big
difference between the congestion algorithms. At the same time Figure 33 shows that
with the use of DCTCP even when we have such a large number of hosts and small
links with congestion, the queue occupancy is kept extremely low and it does not get
bigger than 20 packets most of the time. When it does we have obvious drops and
that is why the image of the CWND is not as smooth for DCTCP when we have
such a big number of links.
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Figure 31: Queue occupancy with bandwidth of 100MBps and 100 hosts for TCP
traffic
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Figure 32: Queue occupancy with bandwidth of 100MBps and 100 hosts for ECN
TCP traffic
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Figure 33: Queue occupancy with bandwidth of 100MBps and 100 hosts for DCTCP
traffic

As it is obvious from running the different scenarios and their results that are
represented with the figures, a clear picture exists for the benefits of using DCTCP in
the links. When the queue occupancy is maintained lower, the variations of CWND
so we can see how DCTCP works more smoothly than TCP are shown clearly. It
is made obvious that even in scenarios with huge traffic when the number of hosts
e.g increases to 100, the queue occupancy is still very low with the use of DCTCP
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and that helps with keeping the delays low as not many packets are dropped and the
reaction is based on feedback.

Further on the topology of Figure 15 with the same parameters was used to have
more results. Figures 34, 35 and 36 show the CWND with the use of this topology
for TCP, ECN TCP and DCTCP respectively. The difference in these images is
that we focus on the flows and do not use the sum of the CWND so we can see in a
smaller scale how the individual flows behave. So the figures are from the hosts h1
and h2 that function as receivers and the flows that reach there, after travelling the
bottleneck created between switches s1 and s2. We can make the same observations
in a more clear way since the images are more specified.
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Figure 34: CWND with bandwidth of 100MBps and 4 hosts for the topology of
Figure 15 and TCP traffic
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Figure 35: CWND with bandwidth of 100MBps and 4 hosts for the topology of
Figure 15 and ECN TCP traffic
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Figure 36: CWND with bandwidth of 100MBps and 4 hosts for the topology of
Figure 15 and DCTCP traffic

The initial goal with the use of the topology of Figure 15 was to be able to send
simultaneously different kind of traffic from the hosts h3 and h4 so we can have
an image of how this traffic traversed the network when they reach hosts h1l and
h2. From an example of trying to run simultaneously TCP and DCTCP Figure
37 is the result. The image though was not what we expected, which made us try
to understand what was the issue and why the emulator was not functioning as
we expected. The solution became apparent when we checked the packets and we
understood that because of the limitations of Mininet and the way it uses the kernel,
with the change of the congestion control to DCTCP, all the trafficis DCTCP traffic
and there is no TCP traffic at all. At the same time the change is not done since
the beginning, since Mininet runs TCP for most of the time, until it changes the
kernel to DCTCP congestion control and then we see an image that is a mix of the
DCTCP and TCP without actually making a lot of sense graphically.
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Figure 37: CWND with bandwidth of 100MBps and 4 hosts for the topology of
Figure 15 and TCP and DCTCP traffic. It was proved that only DCTCP traffic
traverses the network

We could not run simultaneously TCP and DCTCP in the same Mininet environ-
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ment but still we want to have an image of the main difference that DCTCP makes
on the queue occupancy. For this reason we represented the queue occupancies from
a TCP and DCTCP run in the topology of Figure 14 in one graph so we can better
see the difference. Figure 38 shows exactly that.

% 350 /_/\/__/\_\/\__J\A___ — DCTePl
[ — TCP

9
¥ 300

8.0 2.5 5.0 7.5 10.0

TirmAlCAarAanAd~

Figure 38: Difference in queue occupancy from TCP and DCTCP traffic

These results have been studied in [1] extensively as well as being simulated and
emulated. At the same time, the main reason that DCTCP cannot be deployed in
the same links as TCP is because it will lead the links to starvation.

At the same time, to have an idea about the behavior of the protocol in long
distance scenarios and comparatively to TCP, we run the protocol with delay of
100ms, that is a scenario of long distance and the extremely long delay of 200ms.

In Figures 41 and 42 we can see the queue occupancy for TCP and DCTCP with
100 ms delay. Again the queue occupancy is very low for DCTCP. At the same time
Figure 40, that shows the CWND for DCTCP gives us the image that even though
the delay is bigger, DCTCP CWND maintains its lower values comparatively to
those of TCP that we can see in Figure 39. Even thought the two CWND look like
they have similar behavior from one point onward, DCTCP gains again a lot when
it comes to the beginning of the connection, which is much smoother.
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Figure 39: CWND with bandwidth of 100MBps and 100 hosts for the topology of
Figure 14 and TCP traffic, 100ms delay
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Figure 40: CWND with bandwidth of 100MBps and 100 hosts for the topology of
Figure 14 and DCTCP traffic, 100ms delay
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Figure 41: Queue occupancy with bandwidth of 100MBps and 100 hosts for TCP
traffic, delay 100ms
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Figure 42: Queue occupancy with bandwidth of 100MBps and 100 hosts for DCTCP
traffic, delay 100ms

Similarly, we run the emulator with delay of value 200ms and again we can see
the same results. Figure 44 comparatively to Figure 43 shows clearly the smoother
behavior of DCTCP when it comes to congestion even in this extreme delay scenario.
The queue occupancy is similarly kept lower throughout the transfer as we can see
from Figure 46 comparatively to Figure 45 that is the queue occupancy of TCP with
delay of 200ms magnitude.
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Figure 44: CWND with bandwidth of 100MBps and 100 hosts for the topology of
Figure 14 and DCTCP traffic, 200ms delay



ol

1000
800
600
400

200 ) oy

O 3 o6 9 12

Seconds

! ! ! ]
— tcpmcl-n100-bw100/glen_sl-ethl.

I OUNCTLD

Figure 45: Queue occupancy with bandwidth of 100MBps and 100 hosts for TCP
traffic, delay 200ms
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Figure 46: Queue occupancy with bandwidth of 100MBps and 100 hosts for DCTCP
traffic, delay 200ms

From our own simulations we managed to prove the benefits of DCTCP use and
see how DCTCP behaves in different links with a number of changing parameters.
From the study of different scenarios and research it has been further established that
there is a growing focus on the deployment of DCTCP in the wide Internet. This
happens because of the easy way to change to the protocol with minimal changes
and the way DCTCP functions and the results it achieves. Different scenarios can
be studied for its Internet deployment, but the main focus again in research is in the
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use of ECN feedback, because as it is also shown in simulations, with parametrizing
properly, DCTCP flows do not starve the coexisting traffic. This chapter helped the
evaluation of the research and draw the conclusions in the next chapter.
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7 Conclusion

In the world of today because of the way cloud computing has evolved and the
extensive use of data centers, it is extremely important to know how the data center
environment functions and what challenges it imposes. One of the main reasons for
these challenges to be tackled is the reduction of the expenses to maintain the data
center environment.

While there has been extensive study of this problem and a lot of solutions can
be proposed, varying from the data center architecture to the way the hardware
functions, it is common belief that changes in the protocols used in the data center
environment are beneficial as solutions to this problem. In light of this and research
showing that most of the traffic that enters data centers is TCP based, a number
of studies have been concluded for different variations of TCP and its alternatives
especially designed for the data center environment.

The most popular of this alternative data center transport protocols is DCTCP, a
variation of TCP that changes the congestion window proportionally to the amount
of congestion in the link and based on ECN feedback from middleboxes. At the
same time, because it would be beneficial to have homogeneous traffic, it is necessary
to study the behaviour of both protocols coexisting in the same environment. To
this end, it is necessary to see the behaviour of DCTCP in links that simulate the
behaviour of the wide Internet and its behaviour through the coexistence with TCP
traffic in the same link.

The initial goal of this thesis was to study the traffic of DCTCP through Mininet
inside the data center environment and how the protocol behaves outside inter-data
center scenarios. Another aspect that this thesis wanted to cover was the interaction
in the links between TCP and DCTCP when they coexist. On the first part the goal
was partially achieved, since DCTCP was put across TCP with the use of different
delays.

On the second part of what this thesis wanted to achieve the thesis remains
inconclusive. Because of the decision to use the Mininet network emulator and the
way Mininet functions, in the scope of the thesis we were not able to simultaneously
run TCP and DCTCP traffic. For this purpose the better solution would be in
future work to use another testbed that is not based on the configurations of the
kernel directly. If Mininet is still used for this purpose our conclusion is that it
needs to be installed in a separate Virtual machine and the incoming traffic should
already be coming from separate machines that have TCP or DCTCP traffic already
configured.In addition, a queue that handles differently DCTCP and TCP traffic
before passing through the link should be created in the queue that Mininet emulator
would have to monitor.

In conclusion to the work that is done by this thesis and also taking into account
the research that exists in this topic, DCTCP can be used outside the data center
environment. The protocol behaves better than TCP and keeping queue occupancies
low even in long propagation delay scenarios, it keeps the losses lower and smoother
CWND. At the same time it is not as easy to configure the routers and middle boxes
in more complex scenarios, so that would actually impede the smooth use of DCTCP
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in broader networks. But if the feedback is accurate, DCTCP gives a low latency,
low queue occupancy solution in comparison with the established TCP.

As a result of all the aforementioned, it is proposed that DCTCP should be further
studied for wide Internet deployment and especially put in the same links with traffic
from other protocols to see its behaviour. At the same time, further research could
be done also on the Mininet emulator and how to make it more profitable for these
kind of scenarios.
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