3 research outputs found

    Geometric brownian motion: an alternative to high-frequency trading for small investors

    Get PDF
    High-frequency trading (HFT) involves short-term, high-volume market operations to capture profits. To a large extent, these operations take advantage of early access to information using fast and sophisticated technological tools running on supercomputers. However, high-frequency trading is inaccessible to small investors because of its high cost. For this reason, price prediction models can substitute high-frequency trading in order to anticipate stock market movements. This study is the first to analyze the possibility of applying Geometric Brownian Motion (GBM) to forecast prices in intraday trading of stocks negotiated on two different stock markets: (i) the Brazilian stock market (B3), considered as a low liquidity market and (ii) the American stock market (NYSE), a high liquidity market. This work proposed an accessible framework that can be used for small investors. The portfolios formed by Geometric Brownian Motion were tested using a traditional risk measure (mean-variance). The hypothesis tests showed evidences of promising results for financial management

    Quadratic Investment Portfolio Based on Value-at-risk with Risk-Free Assets: For Stocks of the Mining and Energy Sector

    Get PDF
    The mining and energy sector is still the driving force for economic development and community empowerment, especially around mining and energy activities. Therefore, increased investment in the mining and energy sectors needs to be increased and balanced with stricter safety and environmental policies. This paper aims to formulate a quadratic investment portfolio optimization model, and apply it to several stocks in the mining and energy sectors. In this paper, it is assumed that risk is measured using Value-at-Risk (VaR), so that the optimization modeling is carried out using the quadratic investment portfolio approach to the Mean-VaR model with risk-free assets. Furthermore, the model is used to determine the efficient portfolio surface based on several values of risk aversion levels. Based on the results of the analysis, it is found that an efficient portfolio surface has a minimum portfolio return value with an average of 0.766522 and a VaR risk of 0.038687. In addition, the results of the analysis can be concluded that the greater the level of risk aversion, the smaller the VaR value, which is followed by the smaller the portfolio average value.Keywords: Mining and energy sector, risk free assets, investment, Value-at-Risk, portfolio optimization.JEL Classifications: A12, C61, G11, Q48DOI: https://doi.org/10.32479/ijeep.11165</p

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing
    corecore