59,276 research outputs found

    Partial Information Breeds Systemic Risk

    Full text link
    This paper considers finitely many investors who perform mean-variance portfolio selection under a relative performance criterion. That is, each investor is concerned about not only her terminal wealth, but how it compares to the average terminal wealth of all investors (i.e., the mean field). At the inter-personal level, each investor selects a trading strategy in response to others' strategies (which affect the mean field). The selected strategy additionally needs to yield an equilibrium intra-personally, so as to resolve time inconsistency among the investor's current and future selves (triggered by the mean-variance objective). A Nash equilibrium we look for is thus a tuple of trading strategies under which every investor achieves her intra-personal equilibrium simultaneously. We derive such a Nash equilibrium explicitly in the idealized case of full information (i.e., the dynamics of the underlying stock is perfectly known), and semi-explicitly in the realistic case of partial information (i.e., the stock evolution is observed, but the expected return of the stock is not precisely known). The formula under partial information involves an additional state process that serves to filter the true state of the expected return. Its effect on trading is captured by two degenerate Cauchy problems, one of which depends on the other, whose solutions are constructed by elliptic regularization and a stability analysis of the state process. Our results indicate that partial information alone can reduce investors' wealth significantly, thereby causing or aggravating systemic risk. Intriguingly, in two different scenarios of the expected return (i.e., it is constant or alternating between two values), our Nash equilibrium formula spells out two distinct manners systemic risk materializes

    Portfolio optimization based on downside risk: a mean-semivariance efÂżcient frontier from Dow Jones blue chips

    Full text link
    To create efficient funds appealing to a sector of bank clients, the objective of minimizing downside risk is relevant to managers of funds offered by the banks. In this paper, a case focusing on this objective is developed. More precisely, the scope and purpose of the paper is to apply the mean-semivariance efficient frontier model, which is a recent approach to portfolio selection of stocks when the investor is especially interested in the constrained minimization of downside risk measured by the portfolio semivariance. Concerning the opportunity set and observation period, the mean-semivariance efficient frontier model is applied to an actual case of portfolio choice from Dow Jones stocks with daily prices observed over the period 2005¿2009. From these daily prices, time series of returns (capital gains weekly computed) are obtained as a piece of basic information. Diversification constraints are established so that each portfolio weight cannot exceed 5 per cent. The results show significant differences between the portfolios obtained by mean-semivariance efficient frontier model and those portfolios of equal expected returns obtained by classical Markowitz mean-variance efficient frontier model. Precise comparisons between them are made, leading to the conclusion that the results are consistent with the objective of reflecting downside riskPla Santamaría, D.; Bravo Selles, M. (2013). Portfolio optimization based on downside risk: a mean-semivariance ef¿cient frontier from Dow Jones blue chips. Annals of Operations Research. 205(1):189-201. doi:10.1007/s10479-012-1243-xS1892012051Aouni, B. (2009). Multi-attribute portfolio selection: new perspectives. INFOR. Information Systems and Operational Research, 47(1), 1–4.Arenas, M., Bilbao, A., & Rodríguez, M. V. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133, 287–297.Arrow, K. J. (1965). Aspects of the theory of risk-bearing. Helsinki: Academic Bookstore.Ballestero, E. (2005). Mean-semivariance efficient frontier: a downside risk model for portfolio selection. Applied Mathematical Finance, 12(1), 1–15.Ballestero, E., & Pla-Santamaria, D. (2004). Selecting portfolios for mutual funds. Omega, 32, 385–394.Ballestero, E., & Pla-Santamaria, D. (2005). Grading the performance of market indicators with utility benchmarks selected from Footsie: a 2000 case study. Applied Economics, 37, 2147–2160.Ballestero, E., Pérez-Gladish, B., Arenas-Parra, M., & Bilbao-Terol, A. (2009). Selecting portfolios given multiple Eurostoxx-based uncertainty scenarios: a stochastic goal programming approach from fuzzy betas. INFOR. Information Systems and Operational Research, 47(1), 59–70.Ben Abdelaziz, F., & Masri, H. (2005). Stochastic programming with fuzzy linear partial information on time series. European Journal of Operational Research, 162(3), 619–629.Ben Abdelaziz, F., Aouni, B., & El Fayedh, R. (2007). Multi-objective stochastic programming for portfolio selection. European Journal of Operational Research, 177(3), 1811–1823.Bermúdez, J. D., Segura, J. V., & Vercher, E. (2012). A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Sets and Systems, 188, 16–26.Bilbao, A., Arenas, M., Jiménez, M., Pérez- Gladish, B., & Rodríguez, M. V. (2006). An extension of Sharpe’s single-index model: portfolio selection with expert betas. Journal of the Operational Research Society, 57(12), 1442–1451.Chang, T. J., Yang, S. Ch., & Chang, K. J. (2009). Portfolio optimization problems in different risk measures using genetic algorithm. IEEE Intelligent Systems & Their Applications, 36, 10529–10537.Haugen, R. A. (1997). Modern investment theory. Upper Saddle River: Prentice-Hall.Huang, H. J., Tzeng, G. H., & Ong, C. S. (2006). A novel algorithm for uncertain portfolio selection. Applied Mathematics and Computation, 173(1), 350–359.Konno, H., Waki, H., & Yuuki, A. (2002). Portfolio optimization under lower partial risk measures. Asia-Pacific Financial Markets, 9, 127–140.Lin, C. M., Huang, J. J., Gen, M., & Tzeng, G. H. (2006). Recurrent neural network for dynamic portfolio selection. Applied Mathematics and Computation, 175(2), 1139–1146.Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7, 77–91.Ong, C. S., Huang, J. J., & Tzeng, G. H. (2005). A novel hybrid model for portfolio selection. Applied Mathematics and Computation, 169(2), 1195–1210.Pendaraki, K., Doumpos, M., & Zopounidis, C. (2004). Towards a goal programming methodology for constructing equity mutual fund portfolios. Journal of Asset Management, 4(6), 415–428.Pérez-Gladish, B., Jones, D. F., Tamiz, M., & Bilbao-Terol, A. (2007). An interactive three-stage model for mutual funds portfolio selection. Omega, 35(1), 75–88.Pratt, J. W. (1964). Risk aversion in the small and in the large. Econometrica, 32(1–2), 122–136.Sharpe, W. F. (1994). The Sharpe ratio. The Journal of Portfolio Management, 21(1), 49–58.Sortino, F. A., & Van der Meer, V. (1991). Downside risk. The Journal of Portfolio Management, 17(4), 27–31.Speranza, M. G. (1993). Linear programming model for portfolio optimization. Finance, 14, 107–123.Steuer, R., Qi, Y., & Hirschberger, M. (2005). Multiple objectives in portfolio selection. Journal of Financial Decision Making, 1(1), 5–20.Steuer, R., Qi, Y., & Hirschberger, M. (2007). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152, 297–317.Vercher, E., Bermúdez, J. D., & Segura, J. V. (2007). Fuzzy portfolio optimization under downside risk measures. Fuzzy Sets and Systems, 158, 769–782

    Continuous-time Mean-Variance Portfolio Selection with Stochastic Parameters

    Full text link
    This paper studies a continuous-time market {under stochastic environment} where an agent, having specified an investment horizon and a target terminal mean return, seeks to minimize the variance of the return with multiple stocks and a bond. In the considered model firstly proposed by [3], the mean returns of individual assets are explicitly affected by underlying Gaussian economic factors. Using past and present information of the asset prices, a partial-information stochastic optimal control problem with random coefficients is formulated. Here, the partial information is due to the fact that the economic factors can not be directly observed. Via dynamic programming theory, the optimal portfolio strategy can be constructed by solving a deterministic forward Riccati-type ordinary differential equation and two linear deterministic backward ordinary differential equations

    Portfolio selection models: A review and new directions

    Get PDF
    Modern Portfolio Theory (MPT) is based upon the classical Markowitz model which uses variance as a risk measure. A generalization of this approach leads to mean-risk models, in which a return distribution is characterized by the expected value of return (desired to be large) and a risk value (desired to be kept small). Portfolio choice is made by solving an optimization problem, in which the portfolio risk is minimized and a desired level of expected return is specified as a constraint. The need to penalize different undesirable aspects of the return distribution led to the proposal of alternative risk measures, notably those penalizing only the downside part (adverse) and not the upside (potential). The downside risk considerations constitute the basis of the Post Modern Portfolio Theory (PMPT). Examples of such risk measures are lower partial moments, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). We revisit these risk measures and the resulting mean-risk models. We discuss alternative models for portfolio selection, their choice criteria and the evolution of MPT to PMPT which incorporates: utility maximization and stochastic dominance

    On the Exact Solution of the Multi-Period Portfolio Choice Problem for an Exponential Utility under Return Predictability

    Full text link
    In this paper we derive the exact solution of the multi-period portfolio choice problem for an exponential utility function under return predictability. It is assumed that the asset returns depend on predictable variables and that the joint random process of the asset returns and the predictable variables follow a vector autoregressive process. We prove that the optimal portfolio weights depend on the covariance matrices of the next two periods and the conditional mean vector of the next period. The case without predictable variables and the case of independent asset returns are partial cases of our solution. Furthermore, we provide an empirical study where the cumulative empirical distribution function of the investor's wealth is calculated using the exact solution. It is compared with the investment strategy obtained under the additional assumption that the asset returns are independently distributed.Comment: 16 pages, 2 figure

    A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function

    Full text link
    In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.Comment: 38 pages, 9 figures, 3 tables, changes: VAR(1)-CCC-GARCH(1,1) process dynamics and the analysis of increasing horizon are included in the simulation study, under revision in Annals of Operations Researc
    • …
    corecore