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Abstract

Modern Portfolio Theory (MPT) is based upon the classical Markowitz model which uses variance
as a risk measure. A generalisation of this approach leads to mean-risk models, in which a return distri-
bution is characterised by the expected value of return (desired to be large) and a ”risk” value (desired
to be kept small). Portfolio choice is made by solving an optimisation problem, in which the portfolio
risk is minimised and a desired level of expected return is specified as a constraint. The need to penalise
different undesirable aspects of the return distribution led to the proposal of alternative risk measures,
notably those penalising only the downside part (adverse) and not the upside (potential). The downside
risk considerations constitute the basis of the Post Modern Portfolio Theory (PMPT). Examples of such
risk measures are lower partial moments, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR).
We revisit these risk measures and the resulting mean-risk models. We discuss alternative models for
portfolio selection, their choice criteria and the evolution of MPT to PMPT which incorporates: utility
maximisation and stochastic dominance.

1 Introduction and Motivation

Portfolio selection is well known as a leading problem in finance; since the future returns of assets are not
known at the time of the investment decision, the problem is one of decision-making under risk. A portfolio
selection model is an ex-ante decision tool: decisions taken today can only be evaluated at a future time,
once the uncertainty regarding the assets’ returns is revealed.
Formally, the problem can be stated as follows: given a set of n assets in which we may invest, how to divide
now an amount of money W amongst these assets, such that, after a specified period of time T , to obtain a
return on investment as high as possible?
The future returns of the assets are random variables; let us denote these by R1, . . . Rn. A portfolio is
denoted by x = (x1, . . . xn) where xj is the fraction of the capital invested in asset j, j = 1 . . . n. (x1, . . . xn

are called ”portfolio weights”; these are the required investment decisions).
To represent a portfolio, the weights (x1, . . . xn) must satisfy a set of constraints that form a set X of feasible
decision vectors. The simplest way to define a feasible set is by the requirement that the weights are non-
negative and sum to 1 (meaning, buy to hold and and short selling is not allowed). For this basic version of
the problem, the set of feasible decision vectors is

X = {(x1, . . . xn)|
n∑

j=1

xj = 1, xj ≥ 0, ∀j = 1 . . . n}. (1)

(In fact, X may be a general linear programming (LP) feasible set given in a canonical form as a system of
linear equations, without changing the analysis.)
The return of a portfolio x = (x1, . . . xn) is a random variable, denoted by Rx, and its dependence on
individual asset returns is expressed by the relation:
Rx = x1R1 + . . . + xnRn.
Three main issues arise, leading to three main research areas:

1. How is the distribution of the random returns represented?

2. How to choose between payoff distributions?

3. Once an investment decision is made, when / how to rebalance it?

It is usual in portfolio selection to represent the random returns as discrete random variables, given by
their realisations under a specified number S of states of the world (scenarios), with some corresponding
probabilities of occurrence p1, . . . , pS .
(We denote the S possible outcomes of the random return Rj , j = 1 . . . n, by r1j , . . . , rSj . Thus, the return
Rx of a portfolio x is a discrete random variable with S possible outcomes R1x, . . . RSx, occurring with
probabilities p1, . . . , pS , where Rix = x1ri1 + . . . + xnrin, for all i = 1 . . . S.)
How to obtain such a discrete representation is beyond the scope of this paper; the interested reader may
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find a good review in [16].

This paper tries sets out to address the question 2 which is posed above. The (discrete joint) distribution
of the random returns R1, . . . , Rn is considered to be known: we denote by rij the return of asset j under
scenario i, i = 1 . . . S, j = 1 . . . n. We consider only single-period investment problems; thus, the third
question posed above is also out of the scope of this paper.
The well established models for choosing among payoff distributions are: mean-risk models and expected
utility maximisation / stochastic dominance. They first define a preference relation (choice criterion) among
random variables. Based on this choice criterion, the investment decisions are taken by solving optimisation
problems. In the rest of the paper we consider in detail formulation of such decision problems.
This paper gives a review of the available models for choice and of the risk measures used in portfolio
selection. It is known that some models, although theoretically questionable, are widely used in practice
by the finance community. Other models, although popular and justified by the research community, have
not been much applied in practice. Lastly, there are models that are theoretically sound, but difficult to
implement. We do not intend to plead for a particular approach, but just give an objective summary of
what is available in portfolio choice and outline the new directions.

The rest of the paper is structured as follows. Section 2 presents a historical background on models for
choice under risk. In Section 3, mean-risk models and risk measures are presented. We review variance
and alternative risk measures, their advantages and disadvantages. The corresponding optimisation models
are formulated. Section 4 concerns the expected utility approach. In Section 5 stochastic dominance is
introduced and its role in portfolio selection is explained. Conclusions and new directions are presented in
Section 6.

2 Historical background

The starting point in modeling choice under risk is utility theory, whose basic idea dates from at least 1738
(see [6], translation of a paper originally published in 1738). In [6], Bernoulli assumed that individuals
possessed a utility function for outcomes and thus a utility value for random variables can be inferred, which
could order the random variables. However, he did not prove it to be a rational criterion for making choices.
It was only in the 1940’s and in an economic context when it was proved that the expected utility axioms
implied the existence of an ”expected utility rule” for random variables, which is a rational criterion for
ordering them. More than any others, von Neumann and Morgenstern’s work ([29]) introduced the expected
utility concept to decision theory.
In spite of its theoretical and intuitive appeal, expected utility theory has had little applicability in practice,
mostly because the choice of an appropriate utility function is somewhat subjective.
Mean-risk models were first proposed in the early fifties in order to provide a practical solution for the
portfolio selection problem. It is much easier to rank random variables and make choices just using a few
numbers of attributes (statistics) describing the payoff distributions considered. This idea lies at the heart
of mean-risk models, in which distributions are described by just two parameters (”mean”, i.e. expected
value of return and ”risk”). In his seminal work ”Portfolio Selection”, Markowitz ([25]) proposed variance
as a risk measure. Moreover, he introduced it in a computational model, by measuring the risk of a portfolio
via the covariance matrix associated with individual asset returns; this leads to a quadratic programming
formulation. This was far from being the final answer to the problem of portfolio selection. For example,
a natural question is to ask is how meaningful are the solutions obtained with this model and what is the
best measure of risk. Variance as a risk measure has been criticized, mostly for its symmetric nature and for
the lack of consistency with axiomatic models of choice (stochastic dominance). Since then, alternative risk
measures have been proposed.
Asymmetric risk measures have been proposed since symmetric risk measures do not intuitively point to
risk as an undesirable result (a ”bad outcome”). Symmetric risk measures penalise favourable (upside)
deviations from the mean (or from any other target) in the same way they penalise unfavourable (downside)
deviations. Aware of these criticisms, Markowitz ([26]) himself proposed the semi-variance as a risk measure.
Independently of Markowitz, Roy ([44]) proposed as a risk measure the Safety-First Criterion (which is the
probability that the portfolio return falls below a predefined disaster level). This was the first occurrence of
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the so-called ”below target” risk measures. Lower partial moments were introduced in the 1970’s by Bawa
and Fishburn ([5], [12]). They constitute the generalized case for ”below target” risk measures. Fishburn
([12]) developed the (α, τ) model, which is a mean-risk model using lower partial moments as a risk measure.
The target semi-variance is one example of risk measure in the category of lower partial moments.
Nevertheless, symmetric risk measures were not abandoned. Yitzhaki ([53]) introduced and analysed the
mean-risk model using the Gini’s mean difference as a risk measure. Konno and Yamazaki ([18]) analysed
the complete model using mean absolute deviation (MAD) as a risk measure. Using MAD was just one
of the attempts to linearize the portfolio optimisation procedure ([47]), following the pioneering work of
Sharpe ([46]). Until late seventies and early eighties computational methods for the solution of large scale
quadratic programs were not well developed ([34]). Today, though solving quadratic programming problems
is no longer difficult, MAD remains an alternative to the mean-variance model.
Asymmetric risk measures were brought into attention again by Ogryczak and Ruszczynski ([31], [32]). They
analysed the mean-risk model using central semi-deviations, with semi-absolute deviation and semi-variance
as special cases. Central semi-deviations differ from lower partial moments due to the fact that the target
for the outcomes is not fixed, but distribution-dependent (the expected value).

An important step was the introduction of risk measures concerned only with extremely unfavourable results,
or, in other words, with the left tail of a distribution. In 1993, in the G-30 Report ([30]), Value-at-Risk
(VaR) was proposed, with the precise task of answering the question: ”how much can be the loss on a given
horizon with a given probability?” The report helped shape the emerging field of financial risk management
and underlined the importance of measuring risk for regulatory purposes, not only as a parameter in a model
of choice. Since then, VaR has become the most widely used risk measure for regulatory purposes, especially
since 1994, when JP Morgan introduced its free service ”Risk Metrics” ([28]). However, VaR has several
drawbacks; for example, it fails to reward diversification (since it is not sub-additive) and it is difficult
to optimise (since it is not a convex function of the portfolio weights x1, . . . , xn). In order to overcome
these difficulties, recent research on risk measures focused on proposing axiomatic characterizations of risk
measures and proposing new risk measures that satisfy these axioms.
In 1997, Artzner, Delbaen, Eber and Heath ([4]) introduced the concept of coherence as a set of desirable
properties for risk measures concerned with the tail of distribution.
Among the most important coherent risk measures is Conditional Value-at -Risk (CVaR) ([39], [40]), named
Expected Shortfall by some authors ([1]). Enhanced CVaR measures were proposed in [24].

Since it has been often argued that describing a distribution by just two parameters involves great loss of
information, there have been attempts to improve on classical mean-risk models by using three parameters
(instead of two) in order to characterise distributions ([17], [14], [15], [43]).
In spite of the amount of research on risk measures and mean-risk models, the question of which risk measure
is most appropriate is still open. Furthermore, the theoretical soundness of the mean-risk models continues
to be questioned.

The concept of stochastic dominance (SD) or stochastic ordering of random variables was inspired by earlier
work in the theory of majorization ([27]), that is, ordering of real-valued vectors. It has been used since
the early 1950’s, in the fields of statistics (see for example [22]). In economics, stochastic dominance was
introduced in the 1960’s; Quirk and Saposnik ([37]) considered the first order stochastic dominance relation
and demonstrated the connection to utility functions. Second order stochastic dominance was brought to
economics by Hadar and Russel ([13]) and third order stochastic dominance by Whitmore ([50]). A detailed
discussion is given in ([19]). Second order stochastic dominance (SSD) is generally regarded as a meaningful
choice criterion in portfolio selection, due to its relation to models of risk-averse economic behaviour. The
theoretical attractiveness of stochastic dominance, but also its limited applicability due to computational
difficulty, has been widely recognised (see [51] and references therein). Generally, stochastic dominance has
not been considered able to deal with situations where the number of possible choices (i.e. random variables
to be compared) was infinite; thus, until very recently, it has not been considered a valid alternative to
portfolio construction but just a powerful concept for analysis and investigation.
During the last few decades, one of the major concerns in decision-making under risk has been finding a
way to combine the computational ease of mean-risk models with the theoretical soundness of stochastic
dominance. Most of the efforts in this direction have been in finding risk measures consistent with stochastic
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dominance rules, meaning that the efficient solutions of the corresponding mean-risk models are also efficient
with respect to stochastic dominance rules and thus optimal for important classes of decision-makers. Risk
measures consistent with SD were proposed in [12], [31], [32], [53], [52].
In the last few years, new models for portfolio selection that use SSD as a choice criterion (and are compu-
tationally tractable) have been proposed ([7], [8], [42], [10]).

3 Mean-risk models and risk measures

With mean-risk models, return distributions are characterised and compared by considering two scalars for
each distribution. One scalar is the expected value (mean); large expected returns are desirable. The other
scalar is the value of a ”risk measure”. Loosely speaking, a risk measure is a function that associates to each
distribution a number which describes its ”riskiness”; obviously, small risk values are desirable. Preference
among distributions is defined using a trade-off between mean and risk.
In what follows, E(·) denotes the expected value operator.

Definition 1 Consider two feasible portfolios x = (x1, . . . xn) and y = (y1, . . . yn) with returns Rx and
Ry respectively. In the mean-risk approach with the risk measure denoted by ρ, the random variable Rx

dominates (is preferred to) the random variable Ry if and only if: E(Rx) ≥ E(Ry) and ρ(Rx) ≤ ρ(Ry)) with
at least one strict inequality.

Alternatively, we may say that portfolio x is preferred to portfolio y.

The intention is to find those portfolios that are non-dominated with respect to the preference relation
described above; meaning, there is no other feasible portfolio that can improve on both mean return and
risk.
Formally: A feasible portfolio x = (x1, . . . xn) is non-dominated in the mean-risk approach (risk measure
denoted by ρ) if, for any other feasible portfolio y, we cannot have both E(Rx) ≤ E(Ry) and ρ(Rx) ≥ ρ(Ry),
unless E(Rx) = E(Ry) and ρ(Rx) = ρ(Ry).
Thus, a non-dominated portfolio (called also an ”efficient” portfolio) has the lowest level of risk, for a given
mean return (and the highest mean return, for a given level of risk.)
The efficient portfolios are obtained by solving optimisation problems, that can be formulated in three
alternative ways. The most common formulation is based on the use of a specified minimum target on the
portfolio’s expected return while minimising the portfolio’s risk:

min ρ(Rx)
Subject to: E(Rx) ≥ d and x ∈ X

(2)

where d represents the desired level of expected return for the portfolio (chosen by the decision-maker).
Varying d and repeatedly solving the corresponding optimisation problem identifies the minimum risk port-
folio for each value of d1. These are the efficient portfolios that compose the efficient set. By plotting the
corresponding values of the objective function and of the expected return respectively in a risk-return space,
we trace out the efficient frontier.

An alternative formulation, which explicitly trades risk against the return in the objective function, is:

max E(Rx)− λρ(Rx) (λ ≥ 0)
Subject to: x ∈ X

(3)

Varying the trade-off coefficient λ and repeatedly solving the corresponding optimization problems traces
out the efficient frontier.
Alternatively, we can maximise the portfolio expected return while imposing a maximum level of risk.

1Solving (2) without the constraint on the expected return identifies the absolute minimum risk portfolio. Denote by d1 the
expected return of this portfolio. On the other hand, the maximum possible expected return of a portfolio formed with the
considered assets is obtained by investing everything in the asset with the highest expected return. Denote by d2 this highest
expected return among the component assets. Obviously, d should be varied between d1 and d2. Choosing d less than d1 will
only result in the absolute minimum risk portfolio. Choosing d higher than d2 results in infeasibility.
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One of these efficient portfolios should be chosen for implementation.

The specific portfolio depends on the investor’s taste for risk: there are low risk - low return portfolios, as
well as medium risk - medium return and high risk - high return portfolios.

How to measure risk and the choice of an appropriate risk measure in portfolio selection have been subject
of continuous research and much debate. It is obvious that the risk measure used plays an important role in
the decision-making process; portfolios chosen using different risk measures can be quite different.

Risk measures can be classified into two categories.
Risk measures that consider the deviation from a target form the first category. (In [2], they are called ”risk
measures of the first kind”). The target could be fixed (e.g. a minimal acceptable return), distribution-
dependent (e.g. the expected value) or even a stochastic benchmark (e.g. an index). Such risk measures
can only have positive values. These risk measures can be further divided into: symmetric (two-sided) risk
measures and asymmetric (one-sided, downside, shortfall) risk measures. Symmetric risk measures quantify
risk in terms of probability-weighted dispersion of results around a pre-specified target, usually the expected
value. Measures in this category penalize negative as well as positive deviations from the target. Commonly
used symmetric risk measures are variance and MAD. Asymmetric risk measures quantify risk according
to results and probabilities below target values. Only the cases in which the outcomes of are less than the
target value are penalised. It has been argued that this is much more in accordance with the intuitive idea
about risk, as an undesirable result, an ”adverse” outcome (see for example the experimental study [49], in
which it is concluded that most investors associate risk with failure to attain a specific target). The global
idea about downside risk is that the left-hand side of a return distribution involves risk while the right-hand
side contains better investment opportunities. Among asymmetric risk measures, lower partial moments and
central semi-deviations are of great importance.
The risk measure in the second category consider the overall seriousness of possible losses. They are some-
times called ”tail risk measures” because they only consider the left tail of distributions, corresponding to
largest losses. Only a certain number of worst outcomes are taken into consideration (this number depends
on a specified confidence level α, e.g. if α = 0.05 only the worst 5% of the outcomes are considered). Com-
monly used risk measures in this category are Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR).
The values of these risk measures can be both positive and negative .

In what follows, we review some of the most commonly used risk measures.

3.1 Variance

Historically, variance was the first risk measure used in portfolio selection. Markowitz ([25]) introduced
the mean-variance approach, which was later generalised to mean-risk models. Moreover, he introduced a
computational model to find the efficient portfolios in this approach.
Variance has been widely used in statistics as an indicator for the spread around the expected value. Its
square root, the standard deviation, is the most common measure of statistical dispersion.
The variance of a random variable Rx (denoted by σ2(Rx)) is defined as its second central moment: the
expected value of the square of the deviations of Rx from its own mean (σ2(Rx) = E[((Rx − E(Rx))2].)
Among the properties of variance, the one used in calculating the variance of a linear combination of random
variables is of particular importance:

σ2(aR1 + bR2) = a2σ2(R1) + b2σ2(R2) + 2abCov(R1, R2) (4)

where R1, R2 are random variables, a, b are real numbers, and Cov(R1, R2) is the covariance of R1 and R2:
Cov(R1, R2) = E[(R1 − E(R1))(R2 − E(R2))].

Relation (4) above is particularly useful in the context of portfolio optimisation. It allows us to express
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the variance of the portfolio return Rx = x1R1 + . . . + xnRn, resulting from choice x = (x1, . . . , xn) as:

σ2(Rx) =
n∑

j=1

n∑

k=1

xjxkσjk (5)

where σjk denotes the covariance between Rj and Rk.
Thus, the portfolio variance is expressed as a quadratic function of the required decisions x1, . . . , xn.

A mean-variance efficient portfolio is found as the optimal solution of the following quadratic program (QP):

min
n∑

j=1

n∑

k=1

xjxkσjk (MV)

such that: x ∈ X,
n∑

j=1

xjµj ≥ d

where µj = E(Rj) is the expected return of asset j, j = 1, . . . , n and d is a target expected return for the
portfolio (chosen by the decision maker). The last constraint in the above QP imposes a minimum expected
value d for the portfolio return.
It may be noticed that the mean-variance model does not require the whole set of scenario returns {rij , i =
1 . . . S, j = 1 . . . n} as parameters, but only the expected returns and the covariances between the component
assets.

3.2 Mean Absolute Deviation

The mean absolute deviation of a random variable Rx is defined as the expected value of the absolute values
of the deviations from the mean: MAD(Rx) = E[|(Rx − E(Rx)|].
MAD is also a common measure of statistical dispersion; conceptually, it is very similar to variance. In the
practice of portfolio selection, it was introduced mainly because the mean-variance model was difficult to
solve for large data sets, due to the quadratic objective function (5). Using MAD instead of variance overcame
this problem since the mean-MAD model is a linear program (LP). At present, with modern solvers, large
quadratic programming (QP) models can be routinely solved. Nevertheless, using MAD as a risk measure
remains an alternative to the classical mean-variance model. For a detailed analysis of the mean-risk model
using the MAD measure, see [18]. The mean-MAD model can be formulated as follows:

min
1
S

S∑

i=1

yi (MAD)

Subject to:
n∑

j=1

(rij − µj)xj ≤ yi, ∀i ∈ {1 . . . S}

n∑

j=1

(rij − µj)xj ≥ −yi, ∀i ∈ {1 . . . S}

yi ≥ 0, ∀i ∈ {1 . . . S}
n∑

j=1

µjxj ≥ d; x ∈ X.

For this model, in addition to the decision variables x1, . . . , xn representing the portfolio weights, there are
S decision variables yi, i = 1 . . . S representing the absolute deviations of the portfolio return Rx from its
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expected value, for every scenario i ∈ {1 . . . S} :

yi =|
n∑

j=1

(rij − µj)xj |, ∀i ∈ {1 . . . S}.

3.3 Lower Partial Moments and Central Semideviations

Sometimes, the use of a symmetric risk measure may lead to counter-intuitive results; we illustrate this with
an example.

Consider a mean-risk model with a symmetric risk measure such as the variance and two random variables
Rx and Ry. Rx has one certain outcome W0. Ry has 2 outcomes: W0 and W1, each with equal probability.
Let W1 > W0. Obviously Ry should be preferred since it yields at least as much as Rx. However, according
to a mean-variance model, neither one is preferred, since, although Rx has a smaller expected value, it also
has zero risk.

Asymmetric or below-target risk measures provide a better representation of risk as an undesirable outcome.
Lower partial moments is a generic name for asymmetric risk measures that consider a fixed target.

Lower partial moments measure the expected value of the deviations below a fixed target value τ . They are
described by the following formulation:

Let τ be a predefined (investor-specific) target value for the portfolio return Rx and let α > 0. The lower
partial moment of order α around τ of a random variable Rx with distribution function F is defined as:

LPMα(τ,Rx) = E{[max(0, τ −Rx)]α} =
∫ τ

−∞
(τ − r)α dF (r) (6)

Often the ”normalised version” is considered in the literature: LPMα(τ,Rx) = [E{[max(0, τ −Rx)]α}] 1
α .

The role of τ is unambiguous; every decision-maker sets his own target below which he does not want the
return to fall (τ = 0, i.e. no losses, is the most common example). The role of α is not so straightforward.
In [12], Fishburn analysed the mean-risk model with the risk measure defined by the lower partial moment
of order α around τ , which he called the (α, τ) model. He proved the connection between the choice of α
and the decision-maker’s feelings about falling short of τ by various amounts:

Proposition 1 Let d > 0, Rx a degenerate random variable having the only possible outcome (τ − d) with
probability 1 and Ry a non-degenerate random variable with the same mean (i.e. E(Rx) = E(Ry) = τ − d)
having τ as one of the outcomes. For example, let the possible outcomes for Ry be τ and τ − 2d, each of
them with probability 0.5. Then:

• Rx is preferred to Ry in the (α, τ) model if and only if α > 1.

• Ry is preferred to Rx in the (α, τ) model if and only if α < 1.

• There is indifference between Rx and Ry in the (α, τ) model if and only if α = 1.

In other words, if the main concern is failure to meet the target without particular regard to the amount, the
decision maker (DM) is willing to take a risk in order to minimise the chance that the return falls short of
τ . In this case, choosing a small α for measuring risk is appropriate. If small deviations below the target are
relatively harmless when compared to large deviations, the DM prefers to fall short of τ by a little amount
than to take a risk that could result in a big loss. In this case, a larger α is indicated. To summarise, α is a

parameter describing the investor’s risk-aversion. The larger α, the more risk-averse is the investor.

We provide the formulation of the most commonly used below-target risk measures using the (α, τ) formu-
lation:
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1. Safety First: when α → 0.

SF (Rx) = LPMα→0(τ, Rx) = E{[max(0, τ −Rx)]α→0}

SF is a shortfall probability which measures the chances of the portfolio return falling below some
predefined disaster level τ : SF (Rx) = P (Rx < τ).

2. Expected Downside Risk: when α = 1.

LPM1(τ,Rx) = E[max(0, τ −Rx)]

3. Target Semi-Variance: when α = 2.

LPM2(τ, Rx) = E{[max(0, τ −Rx)]2}

Central semi-deviations are similar to the lower partial moments; however, they measure the expected value
of the deviations below the mean (while the lower partial moments measure the expected value of the same
deviations below a fixed target value).
The central semi-deviation of order α (α = 1, 2, . . .) of a random variable Rx is defined as:

CSDα(Rx) = E{[max(0, E(Rx)−Rx)]α}. (7)

The most famous risk measures in this category are those obtained for α = 1: the absolute semi-deviation,
and for α = 2: the semi-variance (Semi-variance was first introduced by Markowitz (1959)).

• The absolute semi-deviation: δ−(Rx) = E[max(0, E(Rx)−Rx)]

• The standard semideviation: σ−(Rx) = [E{[max(0, E(Rx)−Rx)]2}] 1
2

A detailed analysis of these measures is given in [31], [32].

Remark 1 The sum of the deviations below the mean is equal to the sum of the deviations above the mean,
which implies that
MAD(Rx) = 2 · δ−(Rx). Thus, the absolute semi-deviation measure and the MAD measure are equivalent,
in the sense that both measures provide exactly the same ranking of random variables.

We present below the formulation of the mean-target semivariance model (meaning, the risk measure involved
is the lower partial moment of order 2 around a fixed target return τ) . For this model, in addition to the
decision variables x1, . . . , xn representing the portfolio weights, there are S decision variables, representing
the magnitude of the negative deviations of the portfolio return Rx from τ , for every scenario i ∈ {1 . . . S}
(

n∑
j=1

rijxj is the portfolio return under scenario i):

yi =





τ −
n∑

j=1

rijxj , if
n∑

j=1

rijxj ≤ τ ;

0, otherwise.
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The mean-target semivariance formulation is as follows.

min
1
S

S∑

i=1

y2
i (M-TSV)

Subject to:

τ −
n∑

j=1

rijxj ≤ yi, ∀i ∈ {1 . . . S}

yi ≥ 0, ∀i ∈ {1 . . . S}
n∑

j=1

µjxj ≥ d; x ∈ X.

Obviously, if the objective function in (M-TSV) is replaced by 1/S
∑S

i=1 yi we obtain the mean-expected
downside risk formulation.

The mean-semivariance formulation is similar to (M-TSV); however, instead of the fixed target τ , there is

the distribution dependent target E(Rx) =
n∑

j=1

xjµj , where µj is the expected return of asset j, j = 1 . . . n.

Thus, for this formulation, in addition to the variables x1, . . . xn, there are S decision variables, representing
the magnitude of the negative deviations of the portfolio return Rx from its expected value, for every scenario
i ∈ {1 . . . S}:

yi =





n∑
j=1

(µj − rij)xj , if
n∑

j=1

rijxj ≤
n∑

j=1

µjxj ;

0, otherwise.

min
1
S

S∑

i=1

y2
i (M-SV)

Subject to:
n∑

j=1

(µj − rij)xj ≤ yi, ∀i ∈ {1 . . . S}

yi ≥ 0, ∀i ∈ {1 . . . S}
n∑

j=1

µjxj ≥ d; x ∈ X.

While in theory the order α can take any positive value, in practice it seems reasonable to implement α = 1
(which leads to a linear program) or α = 2 (which leads to a quadratic program). Other values of α would
result in an optimisation problem that is more difficult to solve.

3.4 Value-at-Risk

Let Rx be a random variable describing the return of a portfolio x over a given holding period and A% =
α ∈ (0, 1) a percentage which represents a sample of ”worst cases” for the outcomes of Rx. Values of α close
to 0 are of interest (e.g., α = 0.01 = 1% or α = 0.05 = 5%).
The calculation of Value-at-Risk (VaR) at level α of random variable Rx (or of portfolio x) indicates that,
with probability of at least (1−α), the loss2 will not exceed VaR over the given holding period. At the same
time, the probability of loss exceeding VaR is strictly greater than α.

2The loss is considered relative to 0: negative returns are considered as positive losses. Thus, the ”loss” associated with the
random variable Rx is described by the random variable −Rx.
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Mathematically, the Value-at-Risk at level α of Rx is defined using the notion of α-quantiles. Below there are
stated definitions and properties regarding quantiles, which are important in understanding the definition of
VaR. In the definitions below, F is the cumulative distribution function of the random variable Rx.

Definition 2 An α-quantile of Rx is a real number r such that
P (Rx < r) ≤ α ≤ P (Rx ≤ r).

Definition 3 The lower α-quantile of Rx, denoted by qα(Rx) is defined as
qα(Rx) = inf{r ∈ R : F (r) = P (Rx ≤ r) ≥ α}.

Definition 4 The upper α-quantile of Rx, denoted by qα(Rx) is defined as
qα(Rx) = inf{r ∈ R : F (r) = P (Rx ≤ r) > α}.

The set of α-quantiles of Rx is denoted by
Qα(Rx) = {r ∈ R : P (Rx < r) ≤ α ≤ P (Rx ≤ r)}.
Obviously, the set of α-quantiles of Rx may be written as:
Qα(Rx) = {r ∈ R : P (Rx ≤ r) ≥ α, P (Rx ≥ r) ≥ 1− α}.
The following two results are proven in [21].

Proposition 2 The set of α-quantiles of Rx is a closed and non-empty interval whose left and right ends
are qα(Rx) and qα(Rx) respectively.

Proposition 3 Qα(Rx) = −Q1−α(−Rx),
where, for a general set A, we define −A = {−a : a ∈ A}.

The Proposition 3 above states that the α-quantiles of Rx are the (1 − α) - quantiles of −Rx. From this
result it follows immediately that:

qα(Rx) = −q1−α(−Rx) (8)
qα(Rx) = −q1−α(−Rx) (9)

Definition 5 The Value-at-Risk at level α of Rx is defined as the negative of the upper α-quantile of Rx:
V aRα(Rx) = −qα(Rx).

The minus sign in the definition of VaR is because qα(Rx) is likely to be negative, but when speaking of
”loss”, absolute values are considered.
Considering (9), VaR can be also defined as: V aRα(Rx) = q1−α(−Rx).
Thus,

V aRα(Rx) = −qα(Rx) = q1−α(−Rx). (10)

In (10), VaR is expressed as a return. It can be expressed in terms of monetary value once the initial
monetary value of the portfolio x is given; for example, if V aRα(Rx) = 0.1, then, expressed as a monetary
value, VaR is 10% of the intial investment value.

Remark 2 V aRα(Rx) = q1−α(−Rx) means that
V aRα(Rx) = inf{r ∈ R : P (−Rx ≤ r) ≥ 1− α}.
This explains why VaR is referred to as ”the maximum portfolio loss with probability (at least) (1− α)”.
On the other hand, the lower (1− α)-quantile q1−α(−Rx) can be expressed as:
q1−α(−Rx) = sup{r ∈ R : P (−Rx < r) < 1 − α} (see [21]). Since P (−Rx < r) < 1 − α, it follows
that P (−Rx ≥ r) > α. Thus, sometimes VaR is referred to as ”the minimum loss with probability strictly
exceeding α.”

If the cumulative distribution function F is continuous and strictly increasing, qα(Rx) is simply the unique
value of r satisfying F (r) = α (see Figure 1).
This is not always the situation. The equation F (r) = α may have no solutions (see Figure 2) or multiple
solutions (see Figure 3).

12



Figure 1: A continuous and strictly increasing cumulative distribution function

Figure 2: The equation F (r) = α has no solutions.

13



Figure 3: The equation F (r) = α has multiple solutions.

Remark 3 Although the calculation of V aRα indicates that with probability at least α = A% the losses will
exceed this value, VaR fails to measure the extent of losses beyond the confidence level. It is incapable of
distinguishing between losses that are just a little bit worse and losses that can be overwhelming.

We consider now the special case when the random variable Rx is discrete, with a finite number of possible
outcomes. As presented in the Introduction, this is the representation used for random returns in order to
lead to tractable portfolio optimisation models. In this case F (the cumulative distribution function of Rx)
is a step function; thus, the equation F (r) = α can have either no solutions or an infinity of solutions (see
Figure 4).
Assume we have m possible states (m scenarios) with probabilities p1, . . . , pm (strictly positive and their sum
equals 1). Then, the distribution of Rx is concentrated in finitely many points r1, . . . , rm, with probabilities
p1, . . . , pm. Without loss of generality, we can assume that these points are in ascending order, so we have
r1 ≤ r2 ≤ . . . ≤ rm. Then:
F (r) = 0, for r < r1;
F (r) = p1 + . . . + pk−1, for r ∈ [rk−1, rk), ∀k ∈ {2 . . . m};
F (r) = 1, for r ≥ rm.
There are two possible cases:

1. Equation F (r) = α has no solutions. In this case, there is a unique k ∈ {1 . . . m} such that p0 + . . . +
pk−1 < α < p0 + . . . + pk, with the convention p0 = 0. Then, {r : P (Rx < r) ≤ α} = {r1, . . . , rk} and
{r : P (Rx ≤ r) ≥ α} = {rk, rk+1, . . . , rm}. Thus, there is just one α-quantile: rk. V aRα(Rx) = −rk.
For example, in Figure 4, α ∈ (p1 + p2, p1 + p2 + p3), so V aRα(Rx) = −r3.

2. Equation F (r) = α has an infinity of solutions. In this case, there is a unique k ∈ {1 . . . m} such that
α = p1+ . . .+pk. {r : P (Rx < r) ≤ α} = {r1, . . . , rk+1} and {r : P (Rx ≤ r) ≥ α} = {rk, rk+1, . . . , rm}.
Thus, the set of α-quantiles is [rk, rk+1]. The upper α-quantile is rk+1 and thus V aRα(Rx) = −rk+1.

The two cases above are briefly described as follows:

Proposition 4 Consider a discrete random variable Rx with m possible outcomes r1 ≤ r2 ≤ . . . ≤ rm

occurring with probabilities p1, . . . , pm. For every α ∈ (0, 1), there is an unique index kα ∈ {1 . . . m} such
that

kα−1∑

k=0

pk ≤ α <

kα∑

k=0

pk.
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Figure 4: The distribution function of a discrete random variable.

(with the convention p0 = 0).
In this case, V aRα(Rx) = −rkα .

Remark 4 Notice the discontinuity in the behaviour of VaR with respect to the choice of confidence level
α ∈ (0, 1): it could have big jumps for a slight variation of α. For example, in Figure 4, V aRα(Rx) is the
same for any choice of α in an interval of the form [p1+p2+. . .+pk−1, p1+p2+. . .+pk) (V aRα(Rx) = −rk),
but, when α = p1 + p2 + . . . + pk, V aRα(Rx) = −rk+1.

Thus, calculating the VaR of a given portfolio x with a return Rx can be done as follows:

• If Rx is assumed to have a specific continuous distribution (the most notable case is the normal
distribution), VaR is found as the α-quantile of the given distribution.

• If the distribution of Rx is obtained by simulation, thus represented as discrete, with a finite number
of outcomes, then VaR is one of the worst possible (depending on the confidence level α) outcomes of
Rx.

Although widely used in finance for evaluating the risk of portfolios, VaR has several undesirable properties.
It is not a subadditive measure of risk (see Section...)
which means that the risk of a portfolio can be larger than the sum of the stand-alone risks of its components
when measured by VaR - see [4] for more details and see [48] for examples showing the lack of subadditivity
of VaR. In addition, VaR is not convex with respect to choice x, thus it is difficult to optimise with standard
available methods ([20], [23] and references therein). (Convexity is an important property in optimisation
and in particular it eliminates the possibility of a local minimum being different from a global minimum
([38])). In spite of considerable research in this regard, optimising VaR is still an open problem. For heuristic
algorithms on VaR optimisation, see for example [20], [23] and references therein. Thus, the main use of
VaR is for regulatory purposes rather than as a parameter in a model of choice.

3.5 Conditional Value-at-Risk

As before, let Rx denote the random return of a portfolio x over a given holding period and A% = α ∈ (0, 1)
a percentage which represents a sample of ”worst cases” for the outcomes of Rx (usually, α = 0.01 = 1% or
α = 0.05 = 5%).
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The definition of CVaR at the specified level α is the mathematical transcription of the concept ”average
of losses in the worst A% of cases” ([1]), where the ”loss” associated with Rx is described by the random
variable −Rx.
CVaR is approximately equal to the average of losses greater than or equal to VaR (at the same confidence
level α); in some cases, the equality is exact.

If there exists a unique r such that P (Rx ≤ r) = α, the situation is simple: VaR is the negative of r and
CVaR is the expected loss given that the loss is greater than VaR. If Rx is a continuous random variable,
this is always the situation. (Also in the case of multiple values of r such that P (Rx ≤ r) = α, CVaR is the
conditional expectation of losses beyond VaR ([1]).
In the case that there does not exist a value r such that P (Rx ≤ r) = α (see for examples Figure 2
and Figure 4), an α-quantile qα(Rx) is considered. However, P (Rx ≤ qα(Rx)) > α and thus the ”excess
probability” P (Rx ≤ qα(Rx)) − α, corresponding to qα(Rx), is extracted from the conditional expectation
of outcomes below the α-quantile. The formal definition of CVaR is stated below:

Definition 6 The Conditional Value-at-Risk at level α of Rx is defined as:

CV aRα(Rx) = − 1
α
{E(Rx1{Rx≤qα(Rx)})− qα(Rx)[P (Rx ≤ qα(Rx))− α]} (11)

where

1{Relation} =

{
1, if Relation is true;
0, if Relation is false.

(thus, Rx1{Rx≤qα(Rx)} is obtained from Rx by considering only the outcomes below the upper α-quantile
qα(Rx).)

Remark 5 In [1] it is shown that in the definition (11) above, qα(Rx) may be replaced by any α-quantile;
the quantity CV aRα(Rx) depends only on the distribution of Rx and the level α considered.

In [39] and [40] the Conditional Value-at-Risk at level α of Rx is defined as minus the mean of the α-tail
distribution of Rx, where the α-tail distribution is the one with distribution function defined by:

Fα(r) =

{
F (r)

α , if r < qα(Rx);
1, if r ≥ qα(Rx)

(12)

Fα truly is another distribution function, meaning that it is non-decreasing and right continuous, with
Fα(r) → 0 as r → −∞ and Fα(r) → 1 as r → ∞ ([40]); thus, the α-tail is well defined by (12). This
definition of CVaR is equivalent to (11). The minus sign is because the tail mean is likely to be negative,
but when speaking of ”loss”, absolute values are considered.

Remark 6 To be more precise, in [39] and [40], CVaR is defined in a more general case, by considering a
random variable Lx that describes the loss associated with the decision vector x. If we consider losses only
as negative outcomes of the original random variable Rx and gains only as positive outcomes, i.e. Lx = −Rx

(the most general case), the same definition (11) is obtained.

Remark 7 In several papers (for example [1], [48]), the value defined by (11) is called the ”Expected Short-
fall”. In [1], a value named Conditional Value-at-Risk is defined as the optimum value of an optimisation
problem (see Proposition 6) and it is proved that this value is equal to the Expected Shortfall as defined by
(11). Thus, in [1] it is pointed out that Expected Shortfall and Conditional Value-at-Risk are two different
names for the same concept of the risk measure.

Remark 8 For a discrete random variable Rx, the α-tail is obtained by considering only the outcomes less
than or equal to an α-quantile; the probabilities attached to the outcomes strictly less than the α-quantile are
the original probabilities divided by α and the probability attached to the α-quantile is such that the sum of
all probabilities is equal to one.
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Example 1 Consider the case presented in Figure 4: a discrete random variable Rx with m possible out-
comes r1 ≤ r2 ≤ . . . ≤ rm having probabilities p1, . . . , pm and α ∈ (p1 + p2, p1 + p2 + p3). In this case,
qα(Rx) = qα(Rx) = r3 = −V aRα(Rx).
The α-tail is the random variable which has outcomes r1, r2 and r3 with probabilities p1/α, p2/α and
(α− p1 − p2)/α respectively. CV aRα(Rx) is the negative of the expected value of the α- tail:

CV aRα(Rx) = − 1
α

[r1p1 + r2p2 + r3(α− p1 − p2)]

The same result is obtained following directly the definition (11) of CVaR:
E(Rx1{Rx≤qα(Rx)}) = r1p1 + r2p2 + r3p3.
P (Rx ≤ qα(Rx)) = p1 + p2 + p3.
Thus,

CV aRα(Rx) = − 1
α

[r1p1 + r2p2 + r3p3 + r3(α− p1 − p2 − p3)]

= − 1
α

[r1p1 + r2p2 + r3(α− p1 − p2)].

Example 2 Consider again the case presented in Figure 4, this time with α = p1 + p2 + p3. Then,
qα(Rx) = r3 and qα(Rx) = r4. The α-tail has outcomes r1, r2 and r3 with probabilities p1/α, p2/α and p3/α
respectively. The expected value of the α-tail is minus CV aRα:

CV aRα(Rx) = − 1
α

[r1p1 + r2p2 + r3p3]

Following the definition (11) of CVaR the same value is obtained. Consider first the lower α-quantile qα(Rx)
in this definition:
E(Rx1{Rx≤qα(Rx)}) = r1p1 + r2p2 + r3p3.
P (Rx ≤ qα(Rx)) = p1 + p2 + p3 = α.
Thus, CV aRα(Rx) = − 1

α [r1p1 + r2p2 + r3p3].
Consider now the upper α-quantile qα(Rx) in the definition (11):
E(Rx1{Rx≤qα(Rx)}) = r1p1 + r2p2 + r3p3 + r4p4.
P (Rx ≤ qα(Rx)) = p1 + p2 + p3 + p4 = α + p4.
Thus, CV aRα(Rx) = − 1

α [r1p1 + r2p2 + r3p3 + r4p4 − r4p4] = − 1
α [r1p1 + r2p2 + r3p3].

In some earlier papers, CV aRα is defined as the conditional expectation of losses beyond V aRα. This
definition and the definition (11) of CVaR lead to the same value only in particular situations (e.g. for
continuous distributions) and not in the general case (see Proposition 5 in [40]). To illustrate this, consider
again the case presented in Example 1.

− E[Rx|Rx ≤ −V aRα(Rx)] = −
m∑

k=1

rkP (Rx = rk|Rx ≤ r3)

= −
(

r1
P (Rx = r1)
P (Rx ≤ r3)

+ r2
P (Rx = r2)
P (Rx ≤ r3)

+ r3
P (Rx = r3)
P (Rx ≤ r3)

)

= −r1p1 + r2p2 + r3p3

p1 + p2 + p3
.

In addition,

−E[Rx|Rx < −V aRα(Rx)] = −r1p1 + r2p2

p1 + p2
.

None of the two values above is the same with

CV aRα(Rx) = − 1
α

[r1p1 + r2p2 + r3(α− p1 − p2)].

In [40], the values −E[Rx|Rx ≤ −V aRα(Rx)] and −E[Rx|Rx < −V aRα(Rx)] are called lower CVaR and
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upper CVaR respectively. The same paper presents interesting properties of these risk measures and their
connections with CVaR.

We can summarize the formulae for V aRα and CV aRα in the discrete case as follows:

Proposition 5 (VaR and CVaR for discrete distributions) Assume that the distribution of Rx is con-
centrated in finitely many points r1, . . . , rm, with probabilities p1, . . . , pm. Without loss of generality, we can
assume that these points are in ascending order, so we have r1 ≤ r2 ≤ . . . ≤ rm.
For every α ∈ (0, 1), there is a unique index kα ∈ {1 . . . m} such that

kα−1∑

k=0

pk ≤ α <

kα∑

k=0

pk.

(with the convention p0 = 0).
In this case,

V aRα(Rx) = −rkα

and

CV aRα(Rx) = − 1
α

[
kα−1∑

k=0

pkrk + rkα
(α−

kα−1∑

k=0

pk)].

An important result, proved by Rockafellar and Uryasev ([40]), is that the CVaR of a portfolio x can be
calculated by solving a convex optimisation problem. Moreover, very importantly, CVaR can be optimised
over the set of feasible decision vectors (feasible portfolios) and this is also a convex optimisation problem.
These results are summarised in Proposition 6 below.

Proposition 6 (CVaR calculation and optimisation) Let Rx be a random variable depending on a de-
cision vector x that belongs to a feasible set X as defined by (1) and let α ∈ (0, 1). We denote by the
CV aRα(x) the CVaR of the random variable Rx for confidence level α. Consider the function:

Fα(x, v) =
1
α

E[−Rx + v]+ − v,

where

[u]+ =

{
u, if u ≥ 0;
0, if u < 0.

Then:

1. As a function of v, Fα is finite and convex (hence continuous) and

CV aRα(x) = min
v∈R

Fα(x, v).

In addition, the set consisting of the values of v for which the minimum is attained, denoted by Aα(x), is
a non-empty, closed and bounded interval (possibly formed by just one point), that contains −V aRα(x).

2. Minimising CV aRα with respect to x ∈ P is equivalent to minimising Fα with respect to (x, v) ∈ P × R:

min
x∈P

CV aRα(x) = min
(x,v)∈P×R

Fα(x, v).

In addition, a pair (x∗, v∗) minimises the right hand side if and only if x∗ minimises the left hand side
and v ∈ Aα(x∗).

3. CV aRα(x) is convex with respect to x and Fα is convex with respect to (x, v).

Thus, if the set X of feasible decision vectors is convex, minimising CVaR is a convex optimisation problem.
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In practical applications, the random returns are usually described by their realisations under various scenar-
ios; thus a portfolio return Rx is a discrete random variable. In this case, calculating and optimising CVaR is
even simpler: the two (convex) optimisation problems above become linear programming problems. Indeed,

suppose that Rx has S possible outcomes r1x, . . . , rSx with probabilities p1, . . . , pS , with rix =
n∑

j=1

xjrij ,

∀i ∈ {1 . . . S}, as described in the introductory part (rij is the return of asset j under scenario i). Then:

Fα(x, v) =
1
α

S∑

i=1

pi[v − rix]+ − v =
1
α

S∑

i=1

pi[v −
n∑

j=1

xjrij ]+ − v

Thus, in the formulation of the mean-CVaR model, in addition to the decision variables x1, . . . xn representing
the portfolio weights, there are S + 1 decision variables. The variable v represents the negative of an α-
quantile of the portfolio return distribution. Thus, when solving this optimisation problem, the optimal
value of the variable v may be used as an approximation for V aRα, and, in the case of a unique solution, is
exactly equal to V aRα. The other S decision variables represent the magnitude of the negative deviations
of the portfolio return from the α-quantile, for every scenario i ∈ {1 . . . S} :

yi =




−v −

n∑
j=1

rijxj , if
n∑

j=1

rijxj ≤ −v;

0, otherwise.

The algebraic formulation of the mean-CVaR model is given below:

min v +
1

αS

S∑

i=1

yi (M-CVaR)

Subject to:
n∑

j=1

−rijxj − v ≤ yi, ∀i ∈ {1 . . . S}

yi ≥ 0, ∀i ∈ {1 . . . S}
n∑

j=1

µjxj ≥ d; x ∈ X.

To conclude, CVaR has good theoretical and practical properties:

• It takes into account information about the right tail of the distribution of losses (corresponding to
extreme losses);

• It behaves continuously as a function of α ∈ (0, 1) ([40], [1]);

• It is easy to compute and to optimise; for scenario models, it can be optimised using linear programming
techniques;

• It is coherent in the sense of [4] (see Section....)

3.6 Axiomatic properties: coherence

The wide use of risk measures for regulatory and reporting purposes, led to a requirement for a formal
specification of the properties that an acceptable risk measure should have.
Coherence is defined as a set of four desirable properties for ”tail” risk measures 3 . Let V be a set of

3Similar desirable properties are defined for ”deviation” risk measures, like variance, in [41].
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random variables, e.g. representing future returns of portfolios. A risk measure ρ : V → R is said to
be coherent if it satisfies the following four conditions:

1. Condition T (translation invariance):

ρ(Z + C) = ρ(Z)− C, ∀Z ∈ V, ∀C constant.

2. Condition S (subadditivity):

ρ(Y + Z) ≤ ρ(Y ) + ρ(Z), ∀Y, Z ∈ V.

3. Condition PH (positive homogeneity):

ρ(λZ) = λρ(Z), ∀Z ∈ V,∀λ ≥ 0.

4. Condition M (monotonicity):

If Z ≤ Y then ρ(Y ) ≤ ρ(Z), ∀Y, Z ∈ V.

Similar desirable properties are defined for ”deviation-type” risk measures, like variance. In ([41])
a new concept, that of ”deviation measures”, is defined. Formally, a deviation measure ρ is a risk
measure of the first kind that satisfies four properties. Two of them are the subadditivity condition
and the positive homogeneity condition stated above. The other two conditions are similar to the
translation invariance and the monotonicity (stated above), but adapted for the case of deviation-type
risk measures:

1.
ρ(Z + C) = ρ(Z), ∀Z ∈ V, ∀C constant.

2.
ρ(Z) ≥ 0, ∀Z ∈ V non-constant random variable and ρ(Z) = 0 otherwise.

4 Expected utility maximisation

In expected utility theory, a single scalar value (the expected utility) is attached to each random
variable. Preference is then defined by comparing expected utilities with a larger value preferred.

A utility function is a real-valued function defined on real numbers (representing possible outcomes of
a random variable, e.g. a portfolio return), which measures the relative value of outcomes.

Expected Utility Theory provides a basis for extending a utility function defined on real numbers
(outcomes) to a utility function defined on random variables. A utility value is assigned to each
random variable in terms of the utility values of its outcomes and the probabilities associated with
these outcomes. The expected utility criterion is applicable to any decision problem under risk, provided
that the decision maker is prepared to make decisions consistent with the Expected Utility Axioms
([51]).

Definition 7 Given a utility function U , the expected utility of a random variable Rx is:

E[U(Rx)] =
∫ ∞

−∞
U(w) dF (w),

where F is the distribution function of Rx.

In the discrete case, if the random variable Rx has the outcomes w1, . . . , wS with probabilities p1, . . . , pS ,
the expected utility of Rx is:
E[U(Rx)] = p1U(w1) + . . . + pSU(wS).
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In this approach, a random variable (or a portfolio) is non-dominated or efficient if and only if its
expected utility is maximal (i.e. there is no other random variable with a greater expected utility).

The next issue to be addressed is the (form of) utility function that should be used, in order that the
expected utility maximization approach leads to rational decisions. The use of utility functions in the
economic context is based on an implied assumption that they reflect the behaviour of investors or
decision-makers (DM). There are progressively stronger assumptions about the behaviour of investors,
which lead to increasing requirements for the properties of the corresponding utility functions.

The first assumption on investors’ behaviour is that they prefer more to less and are hence rational. In
order to reflect this non-satiation attitude, the utility function must be nondecreasing. This is the only
non-arguable condition for utility functions on wealth since all investors are assumed to be rational.

The second aspect to consider is investors’ attitudes towards risk. There are three possible attitudes:
risk-aversion, risk-neutrality and risk seeking, which can be illustrated by the following example, in
which a choice is required between two random variables with the same expected value. The first
random variable is a fair gamble, i.e. it has two possible outcomes w1 and w2, each with probability
0.5. The second random variable is a ”sure thing”, i.e. it has one possible outcome: (w1 + w2)/2, with
probability 1.

If the DM is risk averse, he rejects the gamble, since he does not want to take a risk that, even though it
could result in a higher outcome w1, it could also result in a worse result w2. Thus, the expected utility
of the ”sure thing” is greater for a decision maker who is risk- averse: U

(
w1+w2

2

)
> 1

2 [U(w1)+U(w2)].
If this inequality is true for all possible outcomes w1, w2, then U is strictly concave, meaning that
U [tw1 + (1− t)w2] ≥ tU(w1) + (1− t)U(w2), ∀t ∈ [0, 1], with strict inequality whenever w1 6= w2 and
t ∈ (0, 1) ([51]).

Thus, a risk-averse decision-maker has a strictly concave utility function.4 If the appropriate derivatives
exist, strict concavity is equivalent to U ′ being strictly decreasing, or U ′′ < 0 (see [51] and references
therein). Strict concavity requires that a segment uniting two points on the graph of U lies below the
graph, and this means that the graph of U has a slope that ”flattens” with increasing w, i.e. U ′ strictly
decreasing (see Figure 5).

If the DM is risk seeking, he prefers the gamble: U
(

w1+w2
2

)
< 1

2 [U(w1) + U(w2)]. A risk-seeking
decision-maker has a strictly convex utility function ([51]). Finally, if the DM is risk neutral, he is
indifferent between the gamble and the sure thing: U

(
w1+w2

2

)
= 1

2 [U(w1) + U(w2)], in which case his
utility function is linear.

It is generally assumed that investors are risk averse, which implies a nondecreasing and concave
utility function. This means that, as wealth increases, each additional increment is less valuable than
the previous one.

A further assumption on the behaviour of rational and risk-averse investors is that they exhibit de-
creasing absolute risk-aversion (DARA): they are willing to take more risk when they are financially
secure. A decision-maker manifests DARA if a small gamble becomes more attractive (or at least does
not become less attractive) as his wealth increases. Formally, this is expressed using the notion of risk
premium ([36]).

To reflect this attitude, the utility function must be such that A is a decreasing function of w, where
A = −U ′′

U ′ is the Arrow-Pratt absolute risk aversion coefficient ([36], [51]).

However, the DARA attitude is not so widely accepted in investment, compared to the risk-aversion
attitude ([51]). Thus, it may be argued that A being a decreasing function of w is a strong condition
imposed on utility functions.

A weaker condition imposed on utility functions is to have the third derivative positive: U ′′′ > 0. It
is obvious that this is a necessary condition for decreasing absolute risk aversion. It is not a sufficient

4In many papers and textbooks, this is in fact the definition of a risk-averse decision-maker: as one whose utility function
is concave.
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condition, however: there are functions with a positive third derivative that do not exhibit decreasing
absolute risk aversion ([51]). The effect of U ′′′ > 0, together with U ′ > 0 and U ′′ < 0 is to reduce
the ”concavity” of the utility function while the wealth is increasing. It may be considered as an
intermediate stage between risk aversion and decreasing absolute risk aversion. A decision-maker
whose utility function has a positive third derivative prefers positively skewed distributions ([3], [45]),
thus he manifests what is called a ruin-averse behaviour or prudence ([33]).

In conclusion, the observed economic behaviour is risk-aversion and in order to represent this, utility
functions have to be non-decreasing and concave. This is generally accepted in investment theory.
Further modes of economic behaviour (e.g. decreasing risk aversion, ”ruin-aversion”) that would impose
additional conditions on utility functions (e.g. reducing concavity with wealth level) are less observed
and arguable.

Once a utility function is decided, the non-dominated choices (random variables) are obtained by
solving an optimisation problem in which the expected utility is maximised.

In the portfolio selection problem, we solve an optimisation problem with decision variables x1, . . . , xn:

max E[U(Rx)]
Subject to: (x1, . . . , xn) ∈ X

A major difficulty with the expected utility maximisation is that the specification of a utility function
is a subjective task. Moreover, two utility functions belonging to the same class (e.g. nondecreasing
and concave) could lead to a different ranking of random variables. Stochastic dominance (or stochastic
ordering of random variables) overcomes this difficulty.

5 Stochastic Dominance (SD)

Stochastic dominance ranks random variables under assumptions about general characteristics of utility
functions that follow from prevalent modes of economic behaviour. Stochastic dominance ensures that
all individuals, whose utility functions are in the same class, rank choices in the same way.
In the stochastic dominance approach two random variables are compared by pointwise comparison of
some performance functions constructed from their distribution functions.

For a random variable Rx with a distribution function Fx, we define recursively:

F (1)
x = Fx;

F (k)
x (r) =

∫ r

−∞
F (k−1)

x (t) dt, ∀r ∈ R, for k ≥ 2.

.

Definition 8 Let Fx and Fy be the cumulative distribution functions of Rx and Ry respectively and
k ∈ N, k ≥ 1. Rx is preferred to Ry with respect to k-th order stochastic dominance (denoted:
Rx Â(k) Ry) if and only if: F

(k)
x (r) ≤ F

(k)
y (r), ∀r ∈ R, with at least one strict inequality.

Alternatively, we may say that choice x is preferred to choice y with respect to k-th order stochastic
dominance.

In portfolio selection, of particular importance is the second order stochastic dominance (SSD), due to
its relation to models of risk-averse behaviour, as explained below.
There are progressively stronger assumptions about investors’ behaviour (as described in section 4)
that are used in expected utility theory, leading to first order stochastic dominance (FSD), second
order stochastic dominance (SSD), and third order stochastic dominance (TSD). It is known that:
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• Rx Â(1) Ry if and only if E[U(Rx)] ≥ E[U(Ry)], for every non-decreasing utility function U , with
at least one strict inequality. In this case, all rational investors prefer Rx to Ry.

• Rx Â(2) Ry if and only if E[U(Rx)] ≥ E[U(Ry)], for every non-decreasing and concave utility
function U , with at least one strict inequality. In this case, all rational and risk-averse investors
prefer Rx to Ry.

• Rx Â(3) Ry if and only if E[U(Rx)] ≥ E[U(Ry)], for every non-decreasing and concave utility
function U whose first derivative is convex , with at least one strict inequality. In this case, all
rational, risk-averse and ruin-averse investors prefer Rx to Ry.

(for a proof see [51])

Thus, second order stochastic dominance (SSD) describes the preference of rational and risk averse
investors. Important results regarding SSD may be found in [31], [32].

Another stochastic dominance relation, which is related to decreasing absolute risk aversion (DARA),
is discussed in the literature. Rx dominates Ry with respect to DARA stochastic dominance if and only
if E[U(Rx)] ≥ E[U(Ry)], for every non-decreasing and concave utility function U whose Arrow-Pratt
absolute risk aversion coefficient is a decreasing function of w - see Section 4. The interested reader
may find more in [51]).

Remark 9 SSD is stronger than FSD in the sense that it is able to order more pairs of random
variables. We could have indifference between Rx and Ry with respect to FSD but prefer Rx or Ry with
respect to SSD.
The set of efficient solutions with respect to SSD is included in the set of efficient solutions with respect
to FSD.

An interesting aspect is the connection of SD with lower partial moments (LPM). In [31], [32], Ogryczak
and Ruszczynski pointed out that dominance with respect to k-th order SD relations (k ≥ 2) is
equivalent to dominance with respect to LPM of order k − 1 for all possible targets. To be precise,
they proved that, for a random variable Rx with performance functions F

(k)
x ,

F (k)
x (r) =

1
(k − 1)!

LPMk−1(r,Rx), ∀r ∈ R,∀k ≥ 2. (13)

This means that F
(k)
x measures the under-achievement of Rx with respect to all possible targets. Thus,

finding the efficient solutions with respect to a SD relation is a multi-objective model with a continuum
of objectives.
Relation 13 above leads to a well-known and useful characterisation of SSD:

Rx Â(2) Ry ⇔ E ([t−Rx]+) ≤ E ([t−Ry]+) ∀t ∈ R (14)

where [t−Rx]+ is t−Rx, if Rx ≤ t, and 0 otherwise.
Thus, the SSD dominance may be expressed by comparing expected shortfalls with respect to every
target t:

As a conclusion, theoretically, stochastic dominance relations are a sound choice criterion for making
investment decisions, corresponding to observed economic behaviour. Unfortunately, they are difficult
to apply in practice. The theory requires the decision-maker to take the complete distribution of
outcomes into consideration. Only the comparison of two random variables with respect to SSD
(and in general, to stochastic dominance relations) involves an infinite number of inequalities. Until
recently, portfolio models based on SSD were considered intractable. Recently there have been some
computational breakthroughs in respect of tractable portfolio models that use SSD as a choice criterion.
Several authors proposed formulations and solution methods for such models ([7], [8], [42], [10]).
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6 Risk measures consistent with stochastic dominance

An important research effort has been put into combining the practicality of mean-risk models with
the theoretical soundness of SD relations. This effort mostly resulted in proposal of risk measures that
are consistent with SD relations, in particular with SSD. This consistency guarantees that any efficient
solution chosen by the corresponding mean-risk model is efficient for the whole class of risk-averse
investors.

Definition 9 A risk measure ρ is consistent with the k-th order stochastic dominance (k = 1, 2, 3) if:
Rx Â(k) Ry ⇒ ρ(Rx) ≤ ρ(Ry), for every pair of random variables Rx and Ry.

We are mainly interested in consistency with SSD (thus, when k = 2).
It is well-known that: Rx Â(k) Ry (k = 1, 2) ⇒ E(Rx) ≥ E(Ry) - see for example [51] for a proof.
(In the case of FSD, i.e. k = 1, the inequality is strict.)
Thus, in the case of a risk measure ρ consistent with SSD, Rx Â(2) Ry implies that Rx is preferred
to Rx in the mean-risk model with risk defined by ρ. This implies that the efficient solutions of the
mean-risk model with risk defined by ρ are also efficient with respect to SSD, thus efficient for the class
of risk-averse decision makers. This aspect underlines the importance of risk measures’ consistency
with SSD. (Obviously, consistency with SSD implies consistency with FSD).

– In general, variance is not consistent with stochastic dominance relations, in particular with SSD
(see [51]);

– In general, MAD is not consistent with stochastic dominance relations, in particular with SSD
([51]) - which means that a mean-MAD efficient solutions is not guaranteed to be efficient with
respect to SSD. However, an important part of the mean-MAD efficient frontier (the upper part,
corresponding to high mean - high risk portfolios) represents portfolios that are efficient to SSD
(see [32]);

– Lower partial moments are consistent with stochastic dominance relations. In particular, lower
partial moments of order 2 (with target semi-variance as a special case) are consistent with SSD.
(Lower partial moments of order 1 are consistent with FSD, and lower partial moments of order
3 are consistent with TSD); (see [12]);

– Central semi-deviations (in particular, semi-variance) are not generally consistent with SSD. How-
ever, like in the case of MAD, a large portion of the efficient frontier of the mean-semivariance
model is consistent with SSD;

– VaR (at any confidence level α ∈ (0, 1)) is consistent with FSD but not with SSD ([35])

– CVaR (at any confidence level α ∈ (0, 1)) is consistent with SSD ([35], [52]).

In table 1 the properties of the risk measures discussed so far are summarised. Columns 3 refers to
axiomatic properties of risk measures. As specified in section 3.6, different conditions are required
from deviation-type risk measures (variance, MAD, lower partial moments and central semideviations)
and from tail risk measures (VaR and CVaR). For the first type of risk measures we checked if they
satisfy the conditions of a ”deviation measure” (described in section 3.6). We considered the normalised
versions of variance and semivariance (meaning, standard deviation and semi standard deviation) since
only the normalised versions could satisfy the positive homogeneity condition (required for all types of
risk measures). For the second type of risk measures we checked if they are coherent.

7 Conclusions and new directions

In portfolio selection, a crucial issue is the model used for choosing between payoff (return) distribu-
tions. By far the most accepted and frequently applied approach is given by the mean-risk models, in
which return distributions are characterised by two scalars: the expected value (”mean”) and a risk
value. The risk associated to a return distribution can be quantified in a variety of ways. A common
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Risk measure FSD Consistency SSD Consistency Axiomatic conditions

standard deviation no no X(deviation measure)
MAD no no X(deviation measure)

semi st deviation no no X(deviation measure)
target semi st deviation X X no

VaR X no no
CVaR X X X(coherent)

Table 1: Risk measures and their properties.

approach (and the first one, chronologically speaking) is to use variance as a measure of risk. The
mean-variance model is still the most used by practitioners.
However, variance as a risk measure has been criticised as inappropriate, (due to its symmetric nature,
lack of consistency with stochastic dominance relations). Alternative risk measures were firstly pro-
posed in order to capture risk more intuitively (as an adverse event). Lower partial moments quantify
risk considering only outcomes less than a predefined target. Central deviations are similar, but con-
sider as target the expected value. All these risk measures quantify risk in terms of deviation from a
target (fixed or distribution dependent). A different category of risk measures are the so called ”tail”
risk measures, which consider a small percentage of worst-case scenarios and evaluate the magnitude
of losses under these conditions. Notable examples are VaR and CVaR.
From a computational point of view, the minimisation of most of the risk measures above lead to
tractable optimisation models. For below-target risk measures, mostly order 1 (expected downside
risk) and order 2 (semi-variance) are used. Minimisation of variance and of (target) semivariance are
QP models. Minimisation of MAD, expected downside risk and CVaR are LP models. VaR is the
only risk measure whose minimisation leads to a non-convex program, difficult to solve; thus, although
largely used for evaluating portfolios’ risk (it is a standard in regulation), VaR has not been used as a
parameter in a model for portfolio construction.
The risk measures consistent with axiomatic models for choice under risk (second order stochastic dom-
inance) are lower partial moments and CVaR. They in general are risk measures with good theoretical
and practical properties.

In spite of these risk measures proposed in academia (some of them with good properties and leading
to tractable models), variance is ”the” risk measure used in the practice of portfolio selection.

A first possible motivation is a somewhat general belief that assets’ returns are normally distributed.
It is known that, if this was the case, then minimising variance leads to exactly the same solutions as
in the case of minimising other risk measures (MAD, central semideviations, CVaR). Thus, there is no
need to replace the (traditional and easy-to-interpret) mean-variance approach5

However, empirical results show that assets’ returns are not normally (or elliptically) distributed ([11]);
particularly, they exhibit longer and fatter tails than in the case of normal distribution.
A second possible motivation could be that, using a different risk measure could lead to results dras-
tically different from the current and traditional approach. More precisely, a portfolio obtained by
minimising an alternative risk measure could have a return distribution with an unacceptably large
variance.
A possible way of overcoming this situation was proposed by us in [43]; the return distributions are
characterised by three statistics: mean, variance and CVaR at a specified confidence level. In this
approach, a portfolio dominates another if its return distribution has greater expected value, smaller
variance and smaller CVaR. The solutions are then found by solving optimisation problems in which

5In fact, the minimisation of these risk measures leads to the same results in a more general framework than the multi-
variate normal distribution: precisely, when the distribution of the assets’ returns belong to the more general class of elliptic
distributions - [9].
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variance is minimised and constraints on the expected return and on CVaR are imposed. Using this
approach, the mean-variance efficient portfolios are not excluded (nor are the mean-CVaR efficient
portfolios); instead, it can be avoided a situation where there is low variance, but high CVaR (or
viceversa: low CVaR, high variance).
Stochastic dominance is another criterion for choice among random returns. As opposed to mean-
risk models, it takes into account the whole distribution of returns. In particular, the second order
stochastic dominance (SSD) is important in portfolio selection, because it describes the preference of
risk-averse investors. The implementation of SSD (and in general, of any stochastic dominance rela-
tion) proved to be a difficult task; however, models for portfolio selection that use SSD as a choice
criterion were recently proposed.

References

[1] C. ACERBI and D. TASCHE, On the coherence of expected shortfall, Journal of Banking and
Finance 26 (2002), 1487–1503.

[2] P. ALBRECHT, Risk measures, John Wiley and Sons, New York, 2004, In: Encyclopaedia of
Actuarial Science, Eds: Teugels, J. and Sundt, B.

[3] F. D. ARDITTI, Risk and the required return on equity, The Journal of Finance 22 (1967), 19–36.

[4] P. ARTZNER, F. DELBAEN, J.M. EBER, and D. HEATH, Coherent measures of risk, Mathe-
matical Finance 9 (1999), 203–228.

[5] V. BAWA, Safety-first, stochastic dominance and optimal portfolio choice, Journal of Financial
and Quantitative Analysis 13 (1978), 255–271.

[6] D. BERNOULLI, Exposition of a new theory on the measurement of risk, Econometrica 22 (1954),
23–36, Translation of a paper originally published in Latin in St. Petersburg in 1738.

[7] D. DENTCHEVA and A. RUSZCZYNSKI, Optimization with stochastic dominance constraints,
SIAM Journal on Optimization 14 (2003), no. 2, 548–566.

[8] , Portfolio optimization with stochastic dominance constraints, Journal of Banking and
Finance 30 (2006), no. 2, 433451.

[9] P. EMBRECHTS, A. MCNEIL, and D. STRAUMAN, Correlation and dependence in risk man-
agement: Properties and pitfalls, Risk Management: Value-at-Risk and Beyond (M. Dempster,
ed.), Cambridge University Press, Cambridge, 1999.

[10] C. FABIAN, G. MITRA, and D. ROMAN, Processing second-order stochastic dominance models
using cutting-plane representations, 2008.

[11] E. F. FAMA, The behaviour of stock market prices, Journal of Business 38 (1965), 34–105.

[12] P.C. FISHBURN, Mean-risk analysis with risk associated with below-target returns, American
Economic Review 67 (1977), no. 2, 116–126.

[13] J. HADAR and W. RUSSELL, Rules for ordering uncertain prospects, The American Economic
Review 59 (1969), 25–34.

[14] C. HARVEY, R. LIECHTY, M. W. LIECHTY, and P. MUELLER, Portfolio selec-
tion with higher moments, 2003, Working Paper, Duke University, available from:
http://ssrn.com/abstract=634141.

[15] P. JORION, Portfolio optimisation with tracking-error constraints, Financial Analysts Journal 59
(2003), 70–82.

[16] M. KAUT and S. WALLACE, Evaluation of scenario-generation methods for stochastic program-
ming, 2003, Stochastic Programming E-Print Series (SPEPS), vol. 14.

[17] H. KONNO, H. SHIRAKAWA, and H. YAMAZAKI, A mean-absolute deviation-skewness portfolio
optimisation model, Annals of Operations Research 45 (1993), 205–220.

[18] H. KONNO and H. YAMAZAKI, Mean-absolute deviation portfolio optimization model and its
application to Tokyo stock market, Management Science 37 (1991), 519–531.

27



[19] Y. KROLL and H. LEVY, Stochastic dominance: A review and some new evidence, Research in
Finance 2 (1980), 163–227.

[20] N. LARSEN, H. MAUSSER, and S. URYASEV, Algorithms for optimisation of Value-at-Risk,
Financial Engineering, E-Commerce and Supply Chain (P. Pardalos and V. K. Tsitsiringos, eds.),
Kluwer Academic Publishers, Norwell, 2002, pp. 129–157.

[21] J. P. LAURENT, Sensitivity analysis of risk measures for discrete distributions, 2003, Available
from: http://laurent.jeanpaul.free.fr.

[22] E. LEHMANN, Ordered families of distributions, Ann. Math. Statistics 26 (1955), 388–419.

[23] S. LEYFFER and J.S. PANG, On the global minimization of the Value-at-Risk, 2005, Available
from: http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:math/0401063.

[24] R. MANSINI, W. OGRYCZAK, and M.G. SPERANZA, Conditional value at risk and related
linear programming models for portfolio optimization, Research Report 03-02, Warsaw University
of Technology, Institute of Control and Computation Engineering, 2002.

[25] H. MARKOWITZ, Portfolio selection, Journal of Finance 7 (1952), 77–91.

[26] , Portfolio selection, John Wiley and Sons, New York, 1959.

[27] A.W. MARSHALL and I. OLKIN, Inequalities: Theory of majorization and its applications, Aca-
demic Press, San Diego, 1979.

[28] J. P. MORGAN, Riskmetrics: Technical report, J. P. MORGAN, New York, 1996.

[29] J. von NEUMANN and O. MORGENSTERN, Theory of games and economic behaviour, Prince-
ton, N. J., Princeton University Press, 1947.

[30] Group of Thirty, Derivatives: Practices and principles, Group of Thirty, Washington, D. C., 1994.

[31] W. OGRYCZAK and A. RUSZCZYNSKI, From stochastic dominance to mean- risk models:
Semideviations as risk measures, European Journal of Operational Research 116 (1999), 33–50.

[32] , On consistency of stochastic dominance and mean- semideviations models, Mathematical
Programming 89 (2001), 217–232.

[33] S. ORTOBELLI, S. RACHEV, S. STOYANOV, F. FABOZZI, and BIGLOVA A., The proper use
of the risk measures in the portfolio theory, International Journal of Theo- retical and Applied
Finance 8 (2005), 1107–1134.

[34] A. F. PEROLD, Large scale portfolio optimisation, Management Science 30 (1984), 1143–1160.

[35] G. C. PFLUG, Some remarks on the Value-at-Risk and the Conditional Value-at-Risk, Probabilis-
tic Constrained Optimization: Methodology and Applications (S. Uryasev, ed.), Kluwer Academic
Publishers, 2000.

[36] J. W. PRATT, Risk aversion in the small and in the large, Econometrica 32 (1964), 122–136.

[37] J. P. QUIRK and R. SAPOSNIK, Admissibility and measurable utility functions, Review of Eco-
nomic Studies 29 (1962), 140–146.

[38] R. T. ROCKAFELLAR, Convex analysis, Princeton University Press, Princeton, N. J., 1970.

[39] R.T. ROCKAFELLER and S. URYASEV, Optimization of Conditional Value-at-Risk, Journal of
Risk 2 (2000), 21–42.

[40] , Conditional Value-at-Risk for general loss distributions, Journal of Banking and Finance
26 (2002), 1443–1471.

[41] R.T. ROCKAFELLER, S. URYASEV, and M. ZABARANKIN, Deviation measures in risk
analysis and optimization, 2002, Research Report 2002-7, Risk Management and Engineering
Lab/Center for Applied Optimization, University of Florida.

[42] D. ROMAN, K. DARBY-DOWMAN, and G. MITRA, Portfolio construction based on stochastic
dominance and target return distributions, Mathematical Programming series B 108 (2006), 541–
569.

28



[43] , Mean-risk models using two risk measures: A multi-objective approach, Quantitative
Finance 7 (2007), 443–458.

[44] A. D. ROY, Safety first and the holding of assets, Econometrica 20 (1952), 431–449.

[45] R. C. SCOTT and P. A. HORVATH, On the direction of preference for moments of higher order
than the variance, The Journal of Finance 35 (1980), 915–919.

[46] W. F. SHARPE, A linear programming approximation for the general portfolio analysis problem,
Journal of Financial and Quantitative Analysis 6 (1971), 1263–1275.

[47] M. G. SPERANZA, Linear programming models for portfolio optimization, Finance 14 (1993),
107–123.

[48] D. TASCHE, Expected shortfall and beyond, Journal of Banking and Finance 26 (2002), 1519–1533.

[49] M. UNSER, Lower Partial Moments as perceived measures of risk: an experimental study, Journal
of Economic Psychology 21 (2000), 253–280.

[50] G.A. WHITMORE, Third-degree stochastic dominance, The American Economic Review 60
(1970), 457–459.

[51] G.A. WHITMORE and M.C. FINDLAY (eds.), Stochastic dominance: An approach to decision-
making under risk, D.C.Heath, Lexington, MA., 1978.

[52] Y YAMAI and T. YOSHIBA, Comparative analyses of Expected Shortfall and Value-at-Risk: Ex-
pected utility maximization and tail risk, Monetary and Economic Studies 20 (2002), 57–86.

[53] S. YITZHAKI, Stochastic dominance, mean variance and Gini’s mean difference, American Eco-
nomic Review 72 (1977), no. 1, 178–185.

29


