782 research outputs found

    Best effort measurement based congestion control

    Get PDF
    Abstract available: p.

    Voice technology and BBN

    Get PDF
    The following research was discussed: (1) speech signal processing; (2) automatic speech recognition; (3) continuous speech understanding; (4) speaker recognition; (5) speech compression; (6) subjective and objective evaluation of speech communication system; (7) measurement of the intelligibility and quality of speech when degraded by noise or other masking stimuli; (8) speech synthesis; (9) instructional aids for second-language learning and for training of the deaf; and (10) investigation of speech correlates of psychological stress. Experimental psychology, control systems, and human factors engineering, which are often relevant to the proper design and operation of speech systems are described

    Intelligent Routing for Software-Defined Media Networks

    Get PDF
    The multimedia market is an industry with an ever-growing demand coupled with strict requirements. Be it in live streaming services or file content broadcast, multimedia providers need to deliver the best possible quality in order to meet their costumer’s requirements and gain or keep their trust. Multimedia traffic has a high impact on networks and, due to its nature, is sensitive to congestion or hardware failure. Thus, it is frequently that multimedia providers resort to third-party software to monitor quality parameters. Skyline Communications’ DataMiner® offers network monitoring, orchestrating and automation capabilities across a broad range of applications and environments. These features are enabled by the emergence of Software-Defined Networking (SDN) which provides a global view of networks and the ability to change network properties through software applications. This contrasts with traditional networks which are rigid, static and difficult to scale-up. An application that greatly benefits from the global network view of SDN is routing optimization. Through routing optimization, a network can effectively deliver more traffic by efficiently balancing load across the different links and paths between end points of a service, reaching an increased performance in data transport. This dissertation comes to light with the goal of optimizing DataMiner’s routing mechanism by exploring the routing optimization possibilities enabled by its SDN-like architecture. Both link cost optimization-based and Machine Learning (ML) approaches are evaluated as possible solutions to Skyline’s problem and several experiments were conducted to compare them and understand their impact on network performance while transporting multimedia streams.O mercado audiovisual é uma indústria onde a procura está em constante crescimento, bem como a exigência. Tanto durante transmissões ao vivo como de conteúdo multimédia pré-gravado, os provedores de multimédia necessitam de garantir a melhor qualidade possível para corresponderem aos requisitos dos seus clientes e conquistarem ou manterem a sua confiança nos seus serviços. O tráfego multimédia tem um forte impacto nas redes que o transportam e, graças à sua natureza, é bastante sensível a congestão ou a falhas de equipamento. Por este motivo, é frequente os provedores de multimédia recorrerem a aplicações externas para monitorização de parâmetros de qualidade. O DataMiner®, desenvolvido pela Skyline Communications, oferece a capacidade de monitorizar e orquestrar redes de transporte de multimédia bem como de automatizar as suas funcionalidades num vasto conjunto de enquadramentos e ambientes. Tais funcionalidades são oferecidas pelo aparecimento de SDN que permite que se tenha uma visão global de uma rede e que se altere de forma flexível as suas definições através de aplicações. As características de redes deste tipo contrastam fortemente com as redes tradicionais marcadas pela sua rigidez, estaticidade e dificuldade de expansão. Uma área que beneficia bastante com a visão global de redes oferecida pela tecnologia de SDN é a otimização do transporte de dados. Desta forma, uma rede consegue transportar mais dados de forma eficiente através do balanceamento da carga a que é submetida pelas diferentes ligações entre elementos e caminhos que conectam pontos de entrada e saída da mesma, atingindo altos níveis de desempenho. A presente dissertação surge da intenção da Skyline de otimizar o seu algoritmo de encaminhamento através da exploração de métodos alternativos introduzidos pela tecnologia de SDN. Tanto métodos baseados em otimização do custo de ligações da rede como em aprendizagem automática são avaliados como possíveis soluções para o problema proposto e diversas simulações são conduzidas para as comparar e averiguar o seu impacto no desempenho de redes de transporte de dados multimédia

    Performance measurement methodology for integrated services networks

    Get PDF
    With the emergence of advanced integrated services networks, the need for effective performance analysis techniques has become extremely important. Further advancements in these networks can only be possible if the practical performance issues of the existing networks are clearly understood. This thesis is concerned with the design and development of a measurement system which has been implemented on a large experimental network. The measurement system is based on dedicated traffic generators which have been designed and implemented on the Project Unison network. The Unison project is a multisite networking experiment for conducting research into the interconnection and interworking of local area network based multi-media application systems. The traffic generators were first developed for the Cambridge Ring based Unison network. Once their usefulness and effectiveness was proven, high performance traffic generators using transputer technology were built for the Cambridge Fast Ring based Unison network. The measurement system is capable of measuring the conventional performance parameters such as throughput and packet delay, and is able to characterise the operational performance of network bridging components under various loading conditions. In particular, the measurement system has been used in a 'measure and tune' fashion in order to improve the performance of a complex bridging device. Accurate measurement of packet delay in wide area networks is a recognised problem. The problem is associated with the synchronisation of the clocks between the distant machines. A chronological timestamping technique has been introduced in which the clocks are synchronised using a broadcast synchronisation technique. Rugby time clock receivers have been interfaced to each generator for the purpose of synchronisation. In order to design network applications, an accurate knowledge of the expected network performance under different loading conditions is essential. Using the measurement system, this has been achieved by examining the network characteristics at the network/user interface. Also, the generators are capable of emulating a variety of application traffic which can be injected into the network along with the traffic from real applications, thus enabling user oriented performance parameters to be evaluated in a mixed traffic environment. A number of performance measurement experiments have been conducted using the measurement system. Experimental results obtained from the Unison network serve to emphasise the power and effectiveness of the measurement methodology

    Resource allocation and scalability in dynamic wavelength-routed optical networks.

    Get PDF
    This thesis investigates the potential benefits of dynamic operation of wavelength-routed optical networks (WRONs) compared to the static approach. It is widely believed that dynamic operation of WRONs would overcome the inefficiencies of the static allocation in improving resource use. By rapidly allocating resources only when and where required, dynamic networks could potentially provide the same service that static networks but at decreased cost, very attractive to network operators. This hypothesis, however, has not been verified. It is therefore the focus of this thesis to investigate whether dynamic operation of WRONs can save significant number of wavelengths compared to the static approach whilst maintaining acceptable levels of delay and scalability. Firstly, the wavelength-routed optical-burst-switching (WR-OBS) network architecture is selected as the dynamic architecture to be studied, due to its feasibility of implementation and its improved network performance. Then, the wavelength requirements of dynamic WR-OBS are evaluated by means of novel analysis and simulation and compared to that of static networks for uniform and non-uniform traffic demand. It is shown that dynamic WR-OBS saves wavelengths with respect to the static approach only at low loads and especially for sparsely connected networks and that wavelength conversion is a key capability to significantly increase the benefits of dynamic operation. The mean delay introduced by dynamic operation of WR-OBS is then assessed. The results show that the extra delay is not significant as to violate end-to-end limits of time-sensitive applications. Finally, the limiting scalability of WR-OBS as a function of the lightpath allocation algorithm computational complexity is studied. The trade-off between the request processing time and blocking probability is investigated and a new low-blocking and scalable lightpath allocation algorithm which improves the mentioned trade-off is proposed. The presented algorithms and results can be used in the analysis and design of dynamic WRONs

    Improved algorithms for TCP congestion control

    Get PDF
    Reliable and efficient data transfer on the Internet is an important issue. Since late 70’s the protocol responsible for that has been the de facto standard TCP, which has proven to be successful through out the years, its self-managed congestion control algorithms have retained the stability of the Internet for decades. However, the variety of existing new technologies such as high-speed networks (e.g. fibre optics) with high-speed long-delay set-up (e.g. cross-Atlantic links) and wireless technologies have posed lots of challenges to TCP congestion control algorithms. The congestion control research community proposed solutions to most of these challenges. This dissertation adds to the existing work by: firstly tackling the highspeed long-delay problem of TCP, we propose enhancements to one of the existing TCP variants (part of Linux kernel stack). We then propose our own variant: TCP-Gentle. Secondly, tackling the challenge of differentiating the wireless loss from congestive loss in a passive way and we propose a novel loss differentiation algorithm which quantifies the noise in packet inter arrival times and use this information together with the span (ratio of maximum to minimum packet inter arrival times) to adapt the multiplicative decrease factor according to a predefined logical formula. Finally, extending the well-known drift model of TCP to account for wireless loss and some hypothetical cases (e.g. variable multiplicative decrease), we have undertaken stability analysis for the new version of the model

    Throughput degradations for single packet messages

    Full text link
    • …
    corecore