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Abstract

The multimedia market is an industry with an ever-growing demand coupled with strict

requirements. Be it in live streaming services or file content broadcast, multimedia

providers need to deliver the best possible quality in order to meet their costumer’s re-

quirements and gain or keep their trust. Multimedia traffic has a high impact on networks

and, due to its nature, is sensitive to congestion or hardware failure. Thus, it is frequently

that multimedia providers resort to third-party software to monitor quality parameters.

Skyline Communications’ DataMiner® offers network monitoring, orchestrating and

automation capabilities across a broad range of applications and environments. These

features are enabled by the emergence of Software-Defined Networking (SDN) which

provides a global view of networks and the ability to change network properties through

software applications. This contrasts with traditional networks which are rigid, static

and difficult to scale-up.

An application that greatly benefits from the global network view of SDN is routing

optimization. Through routing optimization, a network can effectively deliver more traffic

by efficiently balancing load across the different links and paths between end points of a

service, reaching an increased performance in data transport.

This dissertation comes to light with the goal of optimizing DataMiner’s routing mech-

anism by exploring the routing optimization possibilities enabled by its SDN-like archi-

tecture. Both link cost optimization-based and Machine Learning (ML) approaches are

evaluated as possible solutions to Skyline’s problem and several experiments were con-

ducted to compare them and understand their impact on network performance while

transporting multimedia streams.

Keywords: Multimedia providers, Software-Defined Networking, Routing optimization,

Machine learning
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Resumo

O mercado audiovisual é uma indústria onde a procura está em constante crescimento,

bem como a exigência. Tanto durante transmissões ao vivo como de conteúdo multimédia

pré-gravado, os provedores de multimédia necessitam de garantir a melhor qualidade pos-

sível para corresponderem aos requisitos dos seus clientes e conquistarem ou manterem

a sua confiança nos seus serviços. O tráfego multimédia tem um forte impacto nas redes

que o transportam e, graças à sua natureza, é bastante sensível a congestão ou a falhas

de equipamento. Por este motivo, é frequente os provedores de multimédia recorrerem a

aplicações externas para monitorização de parâmetros de qualidade.

O DataMiner®, desenvolvido pela Skyline Communications, oferece a capacidade de

monitorizar e orquestrar redes de transporte de multimédia bem como de automatizar

as suas funcionalidades num vasto conjunto de enquadramentos e ambientes. Tais fun-

cionalidades são oferecidas pelo aparecimento de SDN que permite que se tenha uma

visão global de uma rede e que se altere de forma flexível as suas definições através de

aplicações. As características de redes deste tipo contrastam fortemente com as redes

tradicionais marcadas pela sua rigidez, estaticidade e dificuldade de expansão.

Uma área que beneficia bastante com a visão global de redes oferecida pela tecnologia

de SDN é a otimização do transporte de dados. Desta forma, uma rede consegue transpor-

tar mais dados de forma eficiente através do balanceamento da carga a que é submetida

pelas diferentes ligações entre elementos e caminhos que conectam pontos de entrada e

saída da mesma, atingindo altos níveis de desempenho.

A presente dissertação surge da intenção da Skyline de otimizar o seu algoritmo de

encaminhamento através da exploração de métodos alternativos introduzidos pela tecno-

logia de SDN. Tanto métodos baseados em otimização do custo de ligações da rede como

em aprendizagem automática são avaliados como possíveis soluções para o problema pro-

posto e diversas simulações são conduzidas para as comparar e averiguar o seu impacto

no desempenho de redes de transporte de dados multimédia.

Palavras-chave: Provedores de multimédia, Software-defined networking, Otimização do

transporte de dados, Encaminhamento, Aprendizagem automática

viii



Contents

Contents ix

List of Figures xii

List of Tables xiv

Glossary xv

Acronyms xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5

2.1 Software-Defined Networking . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Towards Software-Defined Networking . . . . . . . . . . . . . . 5

2.1.2 Software-Defined Networking: A definition . . . . . . . . . . . . 5

2.1.3 OpenFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Virtualization and SDN . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.5 DataMiner’s approach to SDNs . . . . . . . . . . . . . . . . . . . 9

2.2 Software-Defined Media Networks . . . . . . . . . . . . . . . . . . . . . 10

2.3 Traffic forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Traffic forecasting with Neural Networks . . . . . . . . . . . . . 16

2.4 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Routing in SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Optimization-based dynamic routing . . . . . . . . . . . . . . . . 18

2.5 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ix



CONTENTS

2.5.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.4 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . 27

3 System design 38

3.1 Service Resource Manager architecture . . . . . . . . . . . . . . . . . . . 38

3.1.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Resource monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Protocols & Templates . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.4 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Ryu Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Mininet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Deep Q-Network enhancements . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Double Deep Q-Networks . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Deep Q-Networks with Prioritized Experience Replay . . . . . . 45

3.4.3 Dueling Deep Q-Networks . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Solution design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Dynamic weight routing in SRM . . . . . . . . . . . . . . . . . . 46

3.5.2 Dynamic weight routing in the link cost modification simulation 46

3.6 Architecture of the routing optimization mechanism using DRL . . . . 46

4 Implementation 50

4.1 Dynamic weight routing in SRM . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Using automation scripts . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Using a protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Dynamic weight routing in the SDN simulation . . . . . . . . . . . . . . 55

4.2.1 Mininet network . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Ryu controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Deep Reinforcement Learning approach for path selection . . . . . . . . 58

4.3.1 DRL ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Worst-case scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3 Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Results 64

5.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 ARPANET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.2 Real-world media network . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Training settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 DRL agents’ training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.1 Agents’ learning process in ARPANET . . . . . . . . . . . . . . . 69

x



CONTENTS

5.4.2 Agents’ learning process in Network RW . . . . . . . . . . . . . . 73

5.5 Performance comparison between routing solutions . . . . . . . . . . . 74

5.5.1 Link cost optimization techniques . . . . . . . . . . . . . . . . . 74

5.5.2 DRL versus Dijkstra in ARPANET . . . . . . . . . . . . . . . . . . 74

5.5.3 DDQN’s performance in unknown environment conditions . . . 77

5.5.4 DRL versus Dijkstra in Network RW . . . . . . . . . . . . . . . . 77

6 Conclusions and future work 79

6.1 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Request tailoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.2 Traffic forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.3 Complex neural networks . . . . . . . . . . . . . . . . . . . . . . 80

6.2.4 Reward function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.5 Agent optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.6 Problem of topology change . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 82

Annexes

I Annex 1 - Link cost optimization algorithms’ performance 90

II Annex 2 - DRL agents’ performance 91

xi



List of Figures

2.1 SDN fundamental architecture (adapted from [7][12][13][14][15]). . . . . . 6

2.2 OpenFlow switch’s architecture (adapted from [18][19]). . . . . . . . . . . . 7

2.3 Simple Neural Network (NN) with 3 layers (adapted from [62]). . . . . . . 23

2.4 Rectified Linear Unit (ReLU) activation function (adapted from [64]). . . . 24

2.5 Reinforcement Learning (RL) framework (adapted from [69]). . . . . . . . . 26

2.6 Actor-critic methods’ generalized behaviour (adapted from [69]). . . . . . . 30

2.7 Architecture of multimedia traffic control in SDN (adapted from [53]). . . . 31

2.8 Interaction between system components. Red lines represent outputs and

green lines inputs (adapted from [53]). . . . . . . . . . . . . . . . . . . . . . 33

3.1 Transport-Cisco service definition (from DataMiner). . . . . . . . . . . . . . 39

3.2 Overview of a DMA (adapted from [77]). . . . . . . . . . . . . . . . . . . . . 42

3.3 Execution of a group triggered by a timer (adapted from [77]). . . . . . . . 43

3.4 Dynamic Dijkstra’s architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 JSON InputData example (from DataMiner). . . . . . . . . . . . . . . . . . . 51

4.2 Edge resource properties (from DataMiner). . . . . . . . . . . . . . . . . . . 52

4.3 Service Resource Manager (SRM) Routing Manager’s workflow (adapted from

[77]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 SRM Routing Manager implementation. . . . . . . . . . . . . . . . . . . . . 54

4.5 Routing management table (from DataMiner). . . . . . . . . . . . . . . . . . 55

4.6 Ryu controller and Mininet API integration. . . . . . . . . . . . . . . . . . . 56

4.7 Interaction between the environment, the environment engine and the topol-

ogy file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Deep Q-Network (DQN) and Double Deep Q-Network (DDQN) architecture. 61

4.9 Dueling Deep Q-Network (Dueling DQN) architecture (adapted from [86]). In

this figure “N” stands for “N_ACTIONS”. . . . . . . . . . . . . . . . . . . . 62

5.1 Advanced Research Projects Agency Network (ARPANET) topology with blue

entry nodes, red exit nodes and green switches (adapted from [88]). . . . . 65

xii



LIST OF FIGURES

5.2 Network RW topology with blue entry nodes, red exit nodes and green switches. 67

5.3 Comparison of training results between agents in environment setup 1. . . 70

5.4 Comparison of training results between agents in environment setup 2. . . 70

5.5 Comparison of training results between agents in environment setup 3. . . 71

5.6 Comparison of training results between agents in environment setup 4. . . 71

5.7 Comparison of training results between agents in environment setup 1 and

Network RW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.8 Average bitrate of each agent in each setup and Dijkstra’s. . . . . . . . . . . 75

5.9 Average Round-trip-time (RTT) of each agent in each setup and Dijkstra’s. 76

5.10 Number of uncongested requests of each agent in each setup and Dijkstra’s. 76

xiii



List of Tables

4.1 DQN and DDQN network’s layers. . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Dueling DQN network layers. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Agent’s networks layers (DQN and DDQN). . . . . . . . . . . . . . . . . . . 66

5.2 Agent’s networks layers (Dueling DQN). . . . . . . . . . . . . . . . . . . . . 66

5.3 Agent’s networks layers (DQN and DDQN). . . . . . . . . . . . . . . . . . . 67

5.4 Agent’s networks layers (Dueling DQN). . . . . . . . . . . . . . . . . . . . . 68

5.5 Agents parameters in ARPANET. . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Comparison between link cost optimization algorithms and Dijkstra (Mini-

mum Hop Algorithm (MHA)). . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Performance comparison between DDQN (setup 1) and Dijkstra. . . . . . . 77

5.8 Performance of the Deep Reinforcement Learning (DRL) agents compared to

Dijkstra in Network RW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

I.1 Comparison of link cost optimization algorithms in 32 TCP flow requests. . 90

II.1 Performance comparison between DRL agents in 32 TCP flow requests (setup

1, ARPANET). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

II.2 Performance comparison between DRL agents in 32 TCP flow requests (setup

2, ARPANET). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

II.3 Performance comparison between DRL agents in 32 TCP flow requests (setup

3, ARPANET). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

II.4 Performance comparison between DRL agents in 32 TCP flow requests (setup

4, ARPANET). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

II.5 Performance comparison between Dijkstra and DDQN in unseen scenario

settings (setup 1, ARPANET). . . . . . . . . . . . . . . . . . . . . . . . . . . 94

II.6 Performance comparison between Dijkstra and the three agents (setup 1, Net-

work RW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiv



Glossary

API An API, or Application Programming Interface, is a set of method defi-

nitions that facilitate the integration of existing software in the develop-

ment of new applications. xii, xvi, 6, 9, 18, 38, 40, 43, 44, 56

ARP The Address Resolution Protocol is used to discover the addresses of

network devices. 57

CLI The Command Line Interface (CLI) establishes a connection to devices

and sends instructions through text commands. 41

DMA A Dataminer Agent hosts multiple interacting processes. xii, xv, 40, 42,

43, 52

DMS A Dataminer System includes one or multiple DMAs. 40, 41, 43

HTTP The Hypertext Transfer Protocol is a request/response application layer

protocol, with a client-server architecture, that handles distributed, col-

laborative, hypermedia information systems [1]. xvi, 40

IP The Internet Protocol is the Internet’s standard for addressing and rout-

ing data through transport protocols in the form of packets. 10, 11, 39,

40, 44

JSON "JavaScript Object Notation (JSON) is a lightweight, text-based, language-

independent data interchange format." [2]. Its biggest advantage is the

readability it offers due to its structured representation in attribute-value

pairs. xii, 51

xv



GLOSSARY

LINQ "Language-Integrated Query (LINQ) is the name for a set of technolo-

gies based on the integration of query capabilities directly into the C#

language." [3]. 51

MAC address A MAC address is the physical address (i.e. unique identifier) of a ma-

chine in a network. 57

NETCONF The Network Configuration Protocol (NETCONF) defines a way to access

and manipulate network devices’ configuration data. With this protocol,

the device is exposed by means of an API. NETCONF uses XML-encoded

messages [4]. xvi, 9

QoE Quality of Experience is a valuation of network performance from the

user’s perspective. It measures the customer’s satisfaction with the ser-

vice provided. 10, 31, 32, 33

QoS Quality of Service is a valuation of network performance. It takes into

consideration network performance metrics such as bit rate, packet loss,

jitter, throughput, delay and others. 8, 10, 12, 17, 20, 34, 44, 46

RESTCONF RESTCONF is a HTTP-based protocol that provides accessibility to con-

figuration data using concepts defined for NETCONF [5]. 9

TCP The Transmission Control Protocol (TCP) is a connection-oriented com-

munication protocol between a server and a client that is reliable, has

error control and keeps the order of the data sent. xiv, 65, 74, 90, 91, 92,

93, 94

TCP/IP TCP/IP stands for Transmission Control Protocol/Internet Protocol and

is a standard for computer communication on Internet and other net-

works. 12, 65

UI A User Interface is how a user interacts with a product or service. 42, 53,

55

XML XML (Extensible Markup Language) is a markup language for storing

data. xvi, 41, 53

xvi



Acronyms

ANN Artificial Neural Network 22, 23

AR Autoregressive 13, 14

ARIMA Autoregressive Integrated Moving Average 13, 14, 15, 16, 17

ARMA Autoregressive Moving Average 14

ARPANET Advanced Research Projects Agency Network xii, xiv, 35, 36, 65, 66,

69, 73, 74, 78, 81, 91, 92, 93, 94

CNN Convolutional Neural Network 24, 25, 80

COTS Commercial-off-the-shelf 10

DCF DataMiner Connectivity Framework 39, 51, 52, 53, 54

DDPG Deep Deterministic Policy Gradient 31, 32, 33, 34, 35

DDQN Double Deep Q-Network xii, xiv, 44, 45, 58, 61, 64, 66, 67, 69, 72, 73,

75, 77, 94

DL Deep Learning 2, 22, 23, 27, 28, 44, 64

DLC Dynamic Link Cost 18, 19, 20

DLCMI Dynamic Link Cost and Minimum Interference 18, 19, 20

DNN Deep Neural Network 22, 24, 27, 28, 29, 31, 32, 66

DORA Dynamic Online Routing Algorithm 20

DPG Deterministic Policy Gradient 30

DPML DataMiner Protocol Markup Language 41

DQN Deep Q-Network xii, xiv, 28, 29, 30, 31, 44, 45, 48, 58, 61, 64, 66, 67,

69, 72, 73, 75, 81

DRL Deep Reinforcement Learning xiv, 2, 3, 27, 28, 30, 31, 32, 33, 34, 35,

36, 38, 48, 55, 58, 60, 61, 64, 66, 67, 68, 74, 75, 77, 78, 79, 80, 81, 91,

92, 93, 94

DROM DDPG Routing Optimization Mechanism 33, 34

DSP Dynamic Shortest Path 19, 50, 74, 79

xvii



ACRONYMS

Dueling DDQN Dueling Double Deep Q-Network 36

Dueling DQN Dueling Deep Q-Network xii, xiv, 45, 58, 61, 62, 64, 66, 68, 69, 72, 73,

75

DWSP Dynamic Widest Shortest Path 19

DWT Discrete Wavelet Transform 17

ES Exponential Smoothing 14

FD Forwarding Device 6, 7, 20, 32

FFNN Feedforward Neural Network 16, 17, 23, 24, 25, 36

FIFO First-In First-Out 44

GNN Graph Neural Network 16, 17

GRU Gated Recurrent Unit 17, 25, 36

GUID Globally Unique Identifier 39, 52

HD High Definition 10

IDP Infrastructure Discovery and Provisioning 18

ILIOA Improved Least Interference Optimization Algorithm 20

KPI Key Performance Indicator 17

LIOA Least Interference Optimization Algorithm 19, 50, 74, 79

LLDP Link Layer Discovery Protocol 18

LSTM Long Short-Term Memory 17, 25

MA Moving Average 14

MAC Media Access Control 57

MAPE Mean Absolute Percentage Error 12, 15

MCR Master Control Room 10, 11

MDP Markov Decision Process 26, 32

MHA Minimum Hop Algorithm xiv, 19, 50, 74

MIB Management Information Base 40

MIRA Minimum Interference Routing Algorithm 20

ML Machine Learning vii, 2, 3, 18, 21, 22, 27, 28, 61, 81

MLP Multilayer Perceptron 16

MOS Mean Opinion Score 32, 33

MSE Mean Squared Error 24, 63

xviii



ACRONYMS

NFV Network Functions Virtualization 8, 9, 10

NMS Network Management Station 40

NN Neural Network xii, 2, 16, 17, 22, 23, 24, 25

NNE Neural Network Ensemble 16

NSFNET National Science Foundation Network 35, 36

OID Object Identifier 40, 41

ONF Open Network Foundation 5, 7

OSPF Open Shortest Path First 20, 36

OTT Over-the-top 10

PER Prioritized Experience Replay 35, 45, 81

ReLU Rectified Linear Unit xii, 23, 24, 63

RL Reinforcement Learning xii, 2, 21, 25, 26, 27, 28, 31, 44

RNN Recurrent Neural Network 16, 17, 25, 80

RTT Round-trip-time xiii, 64, 65, 75, 76, 78

SD Standard Definition 10

SDI Serial Digital interface 10, 11, 38, 39, 54, 66

SDMN Software-Defined Media Network 1, 3

SDN Software-Defined Networking vii, viii, xii, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11,

17, 18, 19, 20, 21, 31, 32, 35, 38, 41, 43, 68, 79

SGD Stochastic Policy Gradient 30

SLC Static Link Cost 18

SNMP Simple Network Management Protocol 9, 40, 41, 42, 47, 50, 51

SP Shortest Path 19, 35

SPF Shortest Path First 20, 35, 36

SRM Service Resource Manager xii, 9, 10, 11, 18, 38, 39, 40, 43, 46, 52, 53,

54, 55, 56, 60, 80

SSE Sum Squared Error 12

TD Temporal Difference 28

TE Traffic Engineering 2, 17, 24, 34, 35

TL Transfer Learning 81

TSF Time Series Forecasting 12, 16

VNF Virtual Network Function 8, 9

WSP Widest Shortest Path 19, 20

xix





1

Introduction

Skyline Communications, the “global leading supplier of end-to-end multi-vendor net-

work management and OSS solutions for the broadcast, satellite, cable, telco and mobile

industry” [6], exposed a problem to be solved during the time span of this studentship

program.

DataMiner uses a Software-Defined Networking (SDN)-like framework by implement-

ing a centralized point of control, monitoring and orchestration of a customer’s network.

Despite DataMiner’s capability to be applied to all sorts of systems, the multimedia

industry is a big focus of this company, hence the designation in this work’s title of

Software-Defined Media Networks (SDMNs).

In its current state, DataMiner relies on the Dijkstra algorithm to route multimedia

streams between endpoints of a managed video streaming service. Before that service

is deployed, the algorithm finds multiple routes for every target node in the available

network topology and lets the user choose the path he wants his data to go through. Not

only does the user make this choice without real knowledge of the network state, but also

Dijkstra is a naive approach to routing, since its output only considers the cost of the

links and not the network traffic distribution.

Therefore, to create a load-aware, quality-focused, dynamic routing solution capable

of finding optimal routes for these services, an algorithm that considers the network

state when computing its paths is required, for which constantly updated information

about the traffic matrix is essential. This will promote a better utilization of the network

resources, assuring that they are not being under or overused, which represents a loss

of profitability or causes deterioration in the service quality, respectively. However, to

achieve this idealized solution is a problem classified as NP-hard.

Moreover, during an important streaming event, like a sports match or a presidential

election live coverage, it is usual to have network operators working around the clock,

leading to exhaustion and error propensity. Thus, an important action taken by compa-

nies at times like these is to give rest to the operators in preparation of such large-scale

events, leaving the offices nearly empty in its’ eves. To allow this kind of management, a

certain level of automation in processes is required, which opens the solution’s door to
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technologies built with Machine Learning (ML).

1.1 Motivation

Computer networks are highly dynamic and, at times, unpredictable. The most common

approach to perform Traffic Engineering (TE) in these networks is to create complex

traffic models that try to comprehend their behaviour. However, as mentioned before,

to optimally route traffic considering its properties and the networks’ dynamism is a

problem of intractable complexity. Additionally, these traffic models will always be static

and unable to cope with networks’ variability.

ML and related technologies like Neural Networks (NNs) and Deep Learning (DL) are

also a hot topic in today’s industry. A subcategory of ML that is being explored to answer

resource allocation and TE problems is Reinforcement Learning (RL) or, specifically,

Deep Reinforcement Learning (DRL). This is because these DRL-based solutions can

understand the network’s behaviour through experience and without the need to create a

mathematical traffic model, which significantly reduces their complexity.

Moreover, DataMiner’s SDN nature allows for flexible and programmable networks.

Thus, leveraging a global view of the network and its state, decisions and changes can

be made towards the improvement of the services’ performance and applied in a single

point of centralized control.

In this dissertation, we will attempt to combine DataMiner’s SDN-like architecture

with DRL’s applicability to complex routing problems by training the algorithm to make

TE decisions that can be installed in the form of rules through SDN’s capabilities. Such

framework will grant us with the possibility to understand if DRL can be used in a prac-

tical scenario, dissipating doubts that exist on its scalability when network size and/or

traffic load increase.

1.2 Objectives

The goals to be accomplished in this dissertation are as listed:

1. In a first stage, it is expected to understand the fundamentals of routing in software-

defined networks, evaluate Skyline’s requirements for the new solution and investi-

gate ways to transform the current routing mechanism into a dynamic algorithm.

2. Use heuristic routing optimization techniques, such as link cost modeling, to im-

prove the current static routing solution by accounting for network load. This

should help develop a better understanding of DataMiner and how to utilize Sky-

line’s resources.

3. Develop a dynamic routing algorithm using DRL that can adjust routes based on

the conditions and changes in the network’s state.
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4. Produce an analysis on how the developed solution compares to the current routing

scheme.

1.3 Contributions

Regarding the actual dissertation’s contributions, we list the following ones:

1. A comprehensive study on routing optimization techniques to support the devel-

oped work, both with and without the use of ML, according to the system’s archi-

tecture.

2. A benchmark of dynamic link cost routing optimization solutions and their com-

parison to Dijkstra.

3. A brand-new routing algorithm based on DRL that accounts for bandwidth reserva-

tion state in each of the network’s links.

4. A detailed analysis of the developed algorithm exploring severe network traffic

conditions, different traffic types and two distinct network topologies, as well as a

comparison between its performance and the baseline solution’s.

1.4 Outline

This report continues with the following structure.

Chapter 2 introduces the related work considered in this dissertation’s development,

starting with brief introductions to the base concepts and tools to be used and followed by

a critical analysis of different approaches applied to solve similar problems in the current

literature. Namely sections on:

1. SDN’s architecture and its relationship with OpenFlow and virtualization.

2. Multimedia content delivery with SDMNs.

3. Different methods for load prediction in software-defined networks.

4. Routing optimization through link cost modeling techniques.

5. The application of ML to routing optimization with emphasis on DRL-powered

solutions.

Chapter 3 details the framework where the developed solution must be implemented,

the required technological tools used to develop and test that solution and its complete

design.

Chapter 4 describes the implementation of the solution presented in Chapter 3.
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Chapter 5 describes the performed simulations and presents the results comparing

the proposed solution to the baseline and other intermediate alternatives.

Lastly, Chapter 6 presents the conclusions on the developed work and points towards

ways to improve and extend it.

4



2

State of the art

2.1 Software-Defined Networking

2.1.1 Towards Software-Defined Networking

A traditional network is embodied by different elements, from multiple providers, known

to be vertically integrated, which means that the control (responsible for traffic routing

decisions) and data (responsible for forwarding traffic at the control plane’s command)

planes are wrapped inside every device in the network [7]. This poses obstacles to net-

works’ evolution since their architecture imposes the updating of every device when a

new feature is added or an existing is removed.

The appearance of the virtualization paradigm and the concept of virtual machines

allowed for a system (i.e. a physical host) to execute a variable number of client operating

systems. This, allied with the advances in memory, storage, and computing power of

computers, led to the appearance of datacenters capable of executing and controlling

thousands of virtual machines [8]. Thus, what was once required to execute in a physical

machine (e.g. running windows) was now being emulated in virtual environments, which

allowed for operation centers to process these environments as files, pausing them and

passing them through physical devices with ease.

This has steered towards a set of network specifications that traditional networks

were not able to cope with. Virtual machines migrate in the physical datacenter network

with great dynamism, while traditional networks are much more static. By enabling

centralized control through software and increasing network scalability, SDN allowed for

the needed dynamism to support the migration to virtual machines in datacenters.

2.1.2 Software-Defined Networking: A definition

In its initial presentation, SDN, standardized and commercialized by the Open Network

Foundation (ONF), was introduced as “A network in which the control plane is phys-

ically separate from the forwarding plane, and a single control plane controls several

forwarding devices” [9].
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In other words, SDN builds upon the idea of separating the control and data planes

in devices, breaking the vertical integration that characterized them up until then. By

making this change, it is possible to have a logically centralized unit, the SDN controller,

managing the activity of many packet Forwarding Devices (FDs) through programming,

while leveraging an abstract view of the network topology. Such separation allows for the

complexity of protocols and routing functions to be dispatched to the controller, reducing

the intelligence required from FDs, consequently lowering their cost, and ultimately

facilitating the management and configuration of the network according to traffic flows

[7][10][11].

2.1.2.1 Software-Defined Networking: Architecture

SDN is organized into three main layers, or planes, as illustrated in Figure 2.1.

Figure 2.1: SDN fundamental architecture (adapted from [7][12][13][14][15]).

In the data plane, the capabilities of each physical device are represented virtually as

resources at the SDN controller’s disposal. Following a flow1 based model, these devices,

or switches, apply to flows the rules and policies sent by the control plane through the

southbound API, using protocols such as OpenFlow [7][11][15][16].

In a scenario with multiple SDN controllers, each one has power over a range of data

plane resources provided by one or more devices (i.e. its control domain). SDN controllers

expose network resources to applications in the application plane through the northbound
API and answer to services’ requests that use them. The advantage of having many SDN

controllers is the resilience they offer in guaranteeing adequate levels of performance,

1Refers to the path of packets with equal source and destination between them.
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scalability and robustness. The coordination of its control domain by an SDN controller

is called orchestration [7][11][15].

The management or administration layer interfaces with each plane, performing re-

source allocation for clients and establishing a direct connection between the data and

application planes [15][16].

2.1.3 OpenFlow

With the decoupling of functions that were once wrapped together came the need to

create an interface that could maintain communication between the control and data

planes. That interface is OpenFlow, which is a protocol also managed by ONF. Mainly,

changes introduced by the OpenFlow protocol occur at the FD level, whose previous

intelligence is now redirected to the SDN controller.

This renewed device, the OpenFlow switch, has two segments separated by an abstrac-

tion layer, a set of flow tables and a secure channel for communicating with the managing

SDN controller [17].

Figure 2.2: OpenFlow switch’s architecture (adapted from [18][19]).

A flow table acts as a group of flows, or flow entries. It is through a flow entry that

each packet crossing the network gets processed, by following the rules of the flow they

belong to. To achieve this purpose, flow entries are described by a few different arguments

[18][20]:

1. Match fields: Used to validate incoming packets through comparison with their

headers, ingress port and metadata. When a packet enters a switch, its header fields

are extracted and crosschecked with the match information of the flow entries inside

the flow table. If the matching is successful, the received packet belongs to the flow

in question and is processed according to its rules.
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2. Actions/Instructions: Describe the instructions given to a packet that passes the

flow table look-up phase.

3. Counters: Important for flow statistics purposes, recording packets received, packet

byte count and flow duration.

4. Priority: Defines the order in which flow entries are organized inside flow tables.

5. Timeouts: Either maximum lifetime or idle time of a flow entry before expiring.

6. Cookie: Describes the filtering the controller demands for the flow entries.

To deal with the possibility of an unmatched packet, a table-miss entry with priority

0 must exist in every flow table specifying how to proceed in such situation. To respond

to this event, the packet may be dropped, matched with a different flow table thanks to

pipeline processing2, or forwarded to the controller [18][20].

To enable the pipeline processing, a group table is required to provide additional

forwarding methods, like broadcast or multipath. Furthermore, a meter table is used for

QoS purposes [18][20].

2.1.4 Virtualization and SDN

A key partner in SDN’s ascension is virtualization. Although these two concepts are

commonly referred to interchangeably, it is wrong mixing them as they have different

purposes and capabilities. Having said that, the combination of SDN and Network Func-

tions Virtualization (NFV) is one of the key factors for the success of both technologies

[21][22].

2.1.4.1 Network Functions Virtualization

NFV is based on replacing network functions, once provided by vendor-specific hardware,

with software-based applications running on virtual machines. These functions are then

assigned to the control of a hypervisor [22][23].

Generically, Virtual Network Functions (VNFs) are obtained through three main com-

ponents [22]:

1. Physical Server: Corresponds to the hardware running the function.

2. Hypervisor: Has a monitoring and managing role. It is the software controlling

function resources.

3. Guest virtual machine: Represents the final product which is a functional software

version of a hardware equipment. Applications can then run on top of this virtual

machine and execute the functionalities it provides.
2Introduced in OpenFlow specification 1.1.0 with the coexistence of multiple flow tables in a single

switch. These tables are linked with each other through pipeline processing.
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2.1.4.2 NFV and SDN integration

SDN and NFV both rely on network abstraction. SDN focuses on decoupling the control

and data planes, separating network control functions from data forwarding functions,

but maintaining the amount of equipment in the network. Contrarily, NFV targets the ab-

straction of each of these functions from the hardware they run on, allowing the network

to expand without adding more devices [16].

Despite their differences, the collaboration of both technologies is greatly beneficial.

SDN helps NFV by connecting VNFs through programmable interfaces which are man-

aged by their orchestrator according to network needs. In regards to SDN, NFV allows for

the implementation of network functions through software, enabling multiple network

architecture possibilities and allowing for their configuration and behaviour to be altered

programmatically [22][23].

2.1.5 DataMiner’s approach to SDNs

Throughout this section, the most strict and pure vision of SDNs has been introduced.

However, the transition from traditional to completely SDN-ready networks is a very

complex process. For that reason, many systems nowadays opt for less radical approaches

to SDN.

An example of these approaches is the Control Plane/Broker SDN, which translates to

networks that maintain the existing control planes in the devices. However, such devices

offer APIs that allow applications to communicate with and operate them [10]. In this

case, a SDN controller, also called orchestration platform, mediates communication be-

tween applications and the network devices. This hybrid SDN model allows for network

programmability through network protocols such as Simple Network Management Pro-

tocol (SNMP), NETCONF, or RESTCONF, that enable the broker to retrieve information

from the devices and manipulate their control planes (e.g. install forwarding rules) [10].

Skyline’s DataMiner supports this and other approaches to SDN. In its specific ar-

chitecture, the roles of both an SDN controller and an orchestration layer are combined

to provide SDN orchestration and encapsulated in Service Resource Manager (SRM), a

DataMiner module that will be explained in more detail in Chapter 3. In this environ-

ment, the controller is responsible for keeping a copy of the network topology, its links

to media devices and the bandwidth of each network link. With this information, it can

calculate efficient paths and install, for instance, static multicast routes in the network’s

devices. This installation relies on the device’s vendor and supported protocols. Then, the

orchestration layer, also called service orchestrator, operates on top of the SDN controller

and allows for resource scheduling, enabling the prediction and allocation of the network

capacity in the future [24].
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2.2 Software-Defined Media Networks

Before the rise of SDN and NFV, the only possible solution for the distribution of multi-

media content was through best-effort internet [25].

Multimedia consumption has gone exponentially upwards in the last few years, with

companies like YouTube, Netflix or HBO being great examples of this demand [26][27].

The dominance of network traffic belongs to video and its impact is getting heavier due

to the improvement of device’s screens, with 4 and 8K resolutions now being common,

which calls for an higher bitrate when compared to Standard Definition (SD) or High

Definition (HD) video [26].

Such high interest in these services, as well as their network load, has posed difficulties

in their transportation, such as bandwidth fluctuations caused by network congestion

[25]. In spite of the various solutions designed to improve the delivery of these contents,

many face problems like network bottlenecks and congestion, related to the lack of a

global network view [25], which affect the quality of service provided (QoS) and the

customer’s quality of experience (QoE). Both QoE and QoS are metrics used to assess the

service quality from a customers’ perspective or through network analysis, respectively.

From the scope of multimedia providers, a network capable of supporting such quality

requirements is expected.

Skyline’s product, DataMiner, is comprised of a set of modules that together provide

control and monitoring of networks in order to meet multimedia providers’ demands.

The SRM module’s goal is to encapsulate automation and orchestration capabilities and

apply them to multiple types of operating infrastructures such as:

1. Automated broadcasting of live or file contents.

2. Remote production of broadcast feed when the video source and the broadcast

production are in different locations.

3. Master Control Room (MCR) automation.

4. Over-the-top (OTT) content delivery (i.e. through shared internet).

5. SDN network control for media IP streams (e.g. using Dijkstra’s algorithm).

Currently, there is an ongoing migration towards ALL-IP broadcast infrastructure,

which means that providers are adopting IP-based technologies for the distribution of

cable services to their managed networks [28]. This is in pursuit of flexibility, agility

and video quality, achieved with less cabling, equipment and bandwidth required for

the media delivery. Such process is not just about replacing traditional Serial Digital

interface (SDI), but also any other cabling out of the IP scope and incorporating the use

of Commercial-off-the-shelf (COTS)3 hardware that supports media of multiple formats

and is easily managed and updated [29].
3Products that are sold and afterwards tailored to the specifications required from them.
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Additionally, IP supports higher resolutions than SDI, handles video, audio and data

separately, and allows for plug-and-play, which is a capability of systems that automati-

cally fetch available sources and destinations in the network, simplifying the installation

and expansion of IP networks [29].

In the way of ALL-IP are a series of challenges, such as the increased number of flows

to monitor, the complexity involved in that task and the possible increase in delay vari-

ation, jitter or latency. Another issue concerning ALL-IP implementations is security.

Since infrastructures are no longer physically static and enclosed, a stronger authentica-

tion mechanism is required to protect media contents [28].

ALL-IP is a great example of SRM’s importance because it revolves around many differ-

ent multi-vendor technologies with distinct characteristics, which calls for the existence

of a flexible monitoring and orchestration platform. This control layer must consider the

resources’ capabilities, constraints, capacities and availability, in order to prevent over-

subscription in blocking or non-blocking topologies [28]. These network properties refer

to the limitations that it imposes in terms of bandwidth. In a blocking topology, the link

bandwidth capacities might be a bottleneck, which requires an operator to account for

and provision them. On the other hand, in non-blocking topologies, the link capacities

are usually much greater than the bandwidth requirements, which allows the operator to

perform given tasks without considering the links’ utilization rates.

In a common MCR, there is a prior booking of resources and a guarantee of capacity

and availability, which is manageable thanks to the blocking nature of the infrastructure.

However, when it comes to live broadcasting, “most uncompressed video-over-IP imple-

mentations are based on a non-blocking infrastructure” [28], which means that broadcast

controllers cannot manage such aspects of the resources, leading to underutilization and

overprovisioning of the infrastructure [28]. Yet, at the same time, in these environments

there is the need for fast switching, which is contradictory to the nature of blocking

infrastructures.

Thus, the combination of SDN controllers to execute fast commands and an orches-

tration layer to coordinate the network resources assuring their bandwidth availability

is crucial to bring blocking infrastructure’s properties (i.e. bandwidth guarantees from

resources) into a non-blocking environment where fast switching is required [28].

2.3 Traffic forecasting

Before diving deeper into this subject, we alert to the fact that this section’s subject is

not crucial to the document’s understanding since it is not used in the solution proposed.

However, it can be useful for a reader who intends to continue this dissertation’s work.

Given this raising demand for multimedia services, it is important that multimedia

providers try to predict and model traffic demands so that they can understand their
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customers’ viewing patterns and optimally provision network resources accordingly. Al-

though currently this task is performed by experienced network operators [30], forecast-

ing network traffic in TCP/IP networks can greatly reduce the gap between the adminis-

trators’ prediction and the real network traffic levels. Such accuracy would, ultimately,

allow for routing, resource allocation or admission control optimization, consequently

improving QoS [30][31].

2.3.1 Time Series Forecasting

Time is a key factor in computer networks since it determines satisfaction, both the

customer’s, measured by delay experienced while consuming multimedia services, or

the provider’s, from an economic perspective. Information flows from these providers

to their customers in packets sent at consecutive time steps, which gives these types of

networks a temporal dependency [31]. As a result, Time Series Forecasting (TSF) is a

popular mathematical process for computer networks’ traffic forecasting, as it acts upon

chronologically ordered variables [30].

A time series consists of a group of observations xt performed sequentially in time and

recorded at specific time steps t [32][33]. These can be further discriminated into discrete

and continuous time series, distinguished by if either we can or cannot enumerate every

time step under analysis. In the latter case, it is common to have continuous variables

digitized into stamped time intervals, originating a discrete time series with minimal

loss of information in the process if the chosen time intervals are sufficiently small [32].

Most applications for TSF are, thus, built from discrete time samples, either naturally

discrete, transformed by sampling from a continuous variable as previously described,

or through aggregation of values over a period of time [32]. An important concept is

that observations in a time series are not independent. Because of the influence that

observations have on each other, the order in which they are registered matters.

A TSF model expects past patterns to repeat in the future, with the time between

an occurrence and its repetition being called lead time h. The accuracy of a time series

predicting model can be measured by the Sum Squared Error (SSE) and Mean Absolute

Percentage Error (MAPE) indicators, which are described by:

et = yt − ŷt,t−h, (2.1)

SSEh =
P+N∑
i=P+1

e2
i , (2.2)

MAPEh =
P+N∑
i=P+1

|ei |
yi ×N

× 100%, (2.3)

with et representing the prediction error at instant t, yt the target value, ŷt,t−h the value

forecast, P the current time and N the number of predictions [30]. The MAPE metric is
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broadly utilized because it assesses the relation between the result of the forecast and the

real value observed.

Through the model’s evaluation, its parameters can be adjusted, and results checked

against actual future observations. This is called out-of-sample behaviour, as opposed to

in-sample fit, in which the fitness of the model is measured by matching the data used for

model estimation with itself [32].

From the analysis of time series, a few types of variations can be extrapolated. These

describe the patterns of the data being monitored and can be listed as [32][33]:

1. Seasonal variation: Periodic patterns at specific segments of the year. An example

is the search for vacation bookings in the summer.

2. Trend: Describes a steady growth or decrease of a value, like some stock market

shares.

3. Other cyclic variation: Cyclic patterns that are verified with different frequency

than a year.

4. Irregular fluctuations: Any other events, such as random observations or unad-

dressed tendencies from the previous bullet points.

Additionally, forecasting types can also be classified with respect to their time span,

starting from real-time (i.e. a few minutes before) to long-term, verified when a forecast

is issued months or even years in advance (e.g. investments) [30].

In the following subsections, the Autoregressive Integrated Moving Average (ARIMA)

and Holt-Winters forecasting methods are presented, whose appliance to computer net-

works has been broadly explored.

2.3.1.1 ARIMA models

ARIMA represents a class of models that integrate different components, hence its name

[34]. Such models emerged from the concept of future values being forecasted from

white noise characteristics and past values [31]. ARIMA is mostly applied to short-term

forecasting [34].

2.3.1.1.1 Autoregressive processes

Autoregressive (AR) models make use of a weighted linear sum of the last p observations,

also called lagged observations, plus a random shock or white noise (i.e. a value from the

distribution with constant variance and zero mean), with p corresponding to the order

of the model. This way, the following elements in the time series are predicted [32][33].

Thus, a time series Xt can be represented by:

Xt = φ1Xt−1 +φ2Xt−2 + ...+φpXt−p +Zt , (2.4)
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where Xn are previous values, φn the associated weights and Zt the white noise.

2.3.1.1.2 Moving average processes

On the other hand, Moving Average (MA) processes use the dependency between an

observation and the associated error by summing the last q weighted shocks to the series’

average value:

Xt = µ+θ1Zt−1 + ...+θqZt−q, (2.5)

where Zt represents each past shock, θj their respective weights and µ the time series’

average value [32][33].

2.3.1.1.3 Autoregressive integrated moving average processes

Ultimately, Autoregressive Moving Average (ARMA) methods combine the two formerly

presented processes by using both a linear combination of the last p observation values

and the last q forecasting errors to predict a future value. Hence its ARMA(p,q) terminol-

ogy. However, most time series are non-stationary4 and so a differentiation is applied to

convert them, turning ARMA(p,q) into ARIMA(p,d,q), where d stands for the number of

differentials performed on the time series [32][33]. This model can be defined as:

φ(B)(1−B)dXt = θ(B)Zt ,

φ(B) = 1 +φ1B+ ...+θpB
p,

θ(B) = 1 +θ1B+ ...+θqB
q,

(2.6)

where Xt denotes the time series, Zt the random shock and φ(B) and θ(B) are polynomials

from the AR and MA processes, respectively. Additionally, B stands for the backward

shift operator that can, from an element of the time series, produce its predecessor.

2.3.1.2 Holt-Winters’ method

Holt-Winters’ method is based on the capture of trends and seasonal variations distin-

guishable from noise by averaging past values observed [30].

To better understand how Holt-Winters’ method works, it is important to study Ex-

ponential Smoothing (ES), the family of methods to which Holt-Winters belongs [33]. A

method has such designation when it produces forecasts through weighted averages of

past observations, considering an exponential decay in their importance as new ones are

recorded [35].

Holt-Winters is a seasonal method that deploys the forecast equation and three smooth-

ing expressions that correspond to the level, trend and seasonal components. Depending

4Stationary time series have constant properties independently of the observation time, as well as the
parameters’ mean and variance. This is a requirement for time series analysis [35].
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on how stable the seasonal variations of the time series are, Holt-Winters’ method pro-

vides two approaches: additive and multiplicative. The additive variant is used for nearly

constant seasonal variations along the series’ duration and is expressed in absolute scale

to the time series [35]. At the end of each year, the seasonal components’ sum should be

close to zero. The Holt-Winters’ additive method is described mathematically as:

ŷt+h|t = lt + hbt + st+h−m(k+1),

lt = α(yt − st−m) + (1−α)(lt−1 + bt−1),

bt = β∗(lt − lt−1) + (1− β∗)bt−1,

st = γ(yt − lt−1 − bt−1) + (1−γ)st−m,

(2.7)

where lt, bt and st stand for the level, trend and seasonal equations, while α, β∗ and γ

correspond to the smoothing parameters, respectively. The letter m is used to state the

seasonality frequency (e.g. if monthly, m = 12) and k = (h− 1)/m [35].

On the other hand, the multiplicative method thrives when applied to increasing

seasonal variations. In this case, the seasonal component is depicted in percentages. At

the time span of one year, the seasonal component will, approximately, amount to m [35].

This variant is described as:

ŷt+h|t = lt + hbt + st+h−m(k+1),

lt = α
yt
st−m

+ (1−α)(lt−1 + bt−1),

bt = β∗(lt − lt−1) + (1− β∗)bt−1,

st = γ
yt

lt−1 − bt−1
+ (1−γ)st−m.

(2.8)

2.3.1.3 TSF techniques and their characteristics

Many studies on the performance of both ARIMA and Holt-Winters have been conducted

([36][37][38]). However, it cannot be stated that one of these models is consistently better

than its peer, since both outperform each other in some cases, while in others it is the

other way around.

ARIMA is a complex model but shows high reliability over a wider set of series than

Holt-Winters. To achieve such high levels of accuracy, ARIMA makes assumptions upon

the data it is presented with. This is a constraint because it makes the model’s results

vary from highly precise when the assumptions are correct, to inaccurate when the as-

sumptions are wrong [36].

On the other hand, Holt-Winters is simple, computationally effective and of low re-

source cost, but tends to show lower levels of accuracy when measured by the MAPE

metric [30][36]. In spite of this, Holt-Winters’ results are still accurate, especially when
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using more complex variations of the native method. It is also recommended that Holt-

Winters’ predictions do not exceed the seasonal cycle of the time series, so that a loss of

accuracy can be avoided [37].

Both ARIMA and Holt-Winters are linear forecasting models, which means that they

are best suited to evaluate datasets where each variable’s behaviour, independently, can

be represented by a straight line, which does not imply that the combination of many

variables must also result in a constant slope. Furthermore, both methods require the

data to be stationary, as mentioned earlier, and self-similar (i.e. at least approximately

similar to the whole), independently of the segment selected for analysis [39].

An alternative approach to traffic forecasting with TSF that is not limited by these

aspects is the use of NNs. NNs can learn from both linear and nonlinear5 inputs and are

noise tolerant, thus being able to establish predictions upon imperfect datasets [41].

2.3.2 Traffic forecasting with Neural Networks

Since this section is of optional reading and NNs are a relevant topic to this dissertation

as a whole, their detailed explanation can be found in Section 2.5.2. However, to give a

broad idea of the topic, NNs are able to detect patterns and extract features from the data

they are fed with, making them a valuable option for traffic forecasting. Additionally, it

is important to note that many variations of NNs exist, with different characteristics and

purposes, such as Feedforward Neural Networks (FFNNs), Recurrent Neural Networks

(RNNs) or Graph Neural Networks (GNNs). A few studies that made use of these types

of networks are hereby presented.

In [30], the authors chose to focus their attention on previous studies that used Mul-

tilayer Perceptron (MLP)6 networks with one hidden layer containing N hidden nodes.

With this approach, the utilization of NNs is approximated to TSF by a technique called

Time Lagged Feedforward Network, where a sliding window concept is applied by building

forecasts based on a predefined number of previous inputs. To improve the model’s accu-

racy, since it is greatly influenced by the randomly generated initial weights, the authors

resorted to the use of a Neural Network Ensemble (NNE), where multiple networks are

trained concurrently, and the result is obtained from averaging all networks’ outputs.

After testing different setups, with distinct numbers of lagged steps, hidden nodes or lead

times7, it could be stated that the NNE approach to forecasting resulted in more accurate

outputs across almost every setup when compared to linear approaches (i.e. ARIMA and

Holt-Winters).

Despite the positive results shown by the use of MLP networks, these face perfor-

mance issues while modelling certain time-dependent dynamic systems. In contrast,

RNNs are suitable for such systems and are explored in [31]. Besides exploiting the

5"Linearity or nonlinearity of a dynamic system is associated with the differential equation that defines
the behaviour of that specific system"[40].

6These networks belong to the feed forward family.
7From online configurations to hours.
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performance of these networks on their own, the authors also evaluate how a joint so-

lution combining both ARIMA and RNNs performs. The goal is to separate the input

data through a Discrete Wavelet Transform (DWT) into low and high frequency compo-

nent batches, ultimately distinguishing nonlinear from linear data, submitted to RNNs

and ARIMA, respectively. The resulting forecasts are then summed, producing the final

forecast. By analysing the results from both ARIMA, RNNs and their combination, the

NNs-based technique surpasses ARIMA in most cases, while their conjugation shows the

best performance.

However, traditional RNNs still have challenges that can be surpassed by Long Short-

Term Memory (LSTM) networks, which are a specific type of RNNs. In [42] and [43], these

networks are explored in a SDN context, which allows for easily collected link statistics.

Both of these works conclude that LSTMs perform significantly better than ARIMA and

Holt-Winters. Additionally, in [42], LSTMs were also found to be a better solution than

FFNNs while using a similar sliding window feeding technique to the one exploited in

[30].

Another kind of RNNs commonly applied to this field are Gated Recurrent Units

(GRUs), which have a similar but simpler architecture when compared to LSTMs. In [44],

GRUs were evaluated against both traditional RNNs and LSTMs and showed oscillatory

results in comparison.

Although these techniques produce good estimations when compared to the tradi-

tional linear methods, computer networks are typically represented as graphs, making the

presented solutions not best suited for their modelling. For this reason, studies ([45][46])

present GNNs as an alternative, since they thrive in processing data represented in graphs.

Both solutions are enclosed in a SDN environment and are capable of transforming net-

work data (i.e. topology, routing list and a traffic matrix defined by the bandwidth be-

tween network nodes) into valuable Key Performance Indicators (KPIs). Through this

methodology, the topological relations between adjacent nodes in the network can be

considered, optimizing the considered KPIs.

2.4 Routing

Once a load prediction model is built, it is easier to use TE concepts to soften the impact of

congested periods and, consequently, optimize the network’s performance. An example of

these techniques is routing optimization, which can be accomplished, for instance, through

the re-routing of traffic from congested links to freer ones (i.e. load balancing through

packet forwarding rules), allowing the network to become more robust and maintain a

higher QoS.

Routing can be static or dynamic in terms of the link costs considered. Static routing

does not take into account fluctuations in the network usability, since the networks’ link

costs are assigned and never altered. This causes an uneven traffic distribution that incites

17



CHAPTER 2. STATE OF THE ART

link congestion and a resource misuse [47]. In dynamic routing, the implemented solu-

tion supports networks’ variability by adjusting its rules according to updated network

conditions, which are available due to periodic link costs and routing tables’ updates.

This dynamic property can be achieved through both linear optimization, where the goal

is to optimize one or multiple network performance metrics (e.g. maximizing network

utilization considering a set of constraints such as the underlying resources’ capacities),

and ML powered solutions.

2.4.1 Routing in SDN

SDN has had a great impact in this particular area by tackling previously existing diffi-

culties. The concept of re-routing traffic is typically translated into a cost increment of

the network’s congested links, forcing the underlying routing algorithm to choose more

vacant connections that ultimately lead to the same destination. The problem with this

is that when the cost of a link is changed, it directly affects many traffic flows, hence

introducing the possibility to negatively influence other segments of the network by the

large-scale necessity to update routing information. Additionally, there was few informa-

tion about traffic flows, which made their identification and the implementation of load

balancing techniques harder [48].

SDN impacts typical routing by providing closed loop control, sending periodic net-

work utilization information to different applications and allowing them to adapt their

rules and, consequently, the network functioning [11]. Furthermore, the network stability

is maintained since the SDN controller has the ability to apply rules to specifically tar-

geted flows [48]. Hence, SDN offers a way to reduce problems such as slow convergence,

complex implementations and lack of adaptability.

In Skyline’s solution, traffic routes are calculated with Dijkstra, which uses a graph

network view to find the shortest path considering the network’s link costs between edges.

Furthermore, these network topologies can be built manually (i.e. in SRM) or discovered

using DataMiner’s Infrastructure Discovery and Provisioning (IDP) application. IDP

searches for devices through network protocols, which are selected according to the de-

vices’ manufacturer and type. In addition, when connected to a device through any API,

IDP also retrieves connectivity information by reading Link Layer Discovery Protocol

(LLDP) data. In this protocol, the different nodes in the network communicate with each

other by advertising their identity and capabilities.

2.4.2 Optimization-based dynamic routing

Throughout this section, a few optimization-based dynamic routing implementations

using different techniques and link cost equations will be explored.

A thorough analysis of existing routing solutions is offered by [49]. The authors start

by dividing existing algorithms into three categories: Static Link Cost (SLC), Dynamic

Link Cost (DLC) and Dynamic Link Cost and Minimum Interference (DLCMI) algorithms.

18



2.4. ROUTING

For static algorithms, the SDN controller determines paths using unchangeable values

as link costs, such as the hop count in Minimum Hop Algorithm (MHA), the inverse of

the link’s bandwidth capacity in Shortest Path (SP), or the link’s bandwidth capacity in

Widest Shortest Path (WSP). These link cost equations can be represented as:

MHA : C(u,v) = 1,

SP : C(u,v) =
1

BW(u,v)
,

WSP : C(u,v) = BW(u,v),

(2.9)

where C(u,v) is the cost of the link that connects nodes u and v and BW(u,v) is its total

bandwidth capacity. In the first two cases, Dijkstra calculates the paths after the costs

are assigned whereas the last algorithm resorts to a reverse version of Dijkstra where the

link with higher cost is selected. Since the links’ costs are always the same, the algorithm

will constantly return the same path for a given edge pair. This offers some advantages

by reducing path computation time, however, when the network load increases, the per-

formance will deeply suffer due to the reasons stated in the last section.

Using the SDN controller’s ability to collect network link’s statistics in real time, such

as bandwidth utilization, it is possible to define dynamic link costs and have them reflect

the network’s current state. Ultimately, the best path between two nodes in the network

will change according to the network’s state. This adaptability reduces congestion by

promoting better load balancing and link utilization. In the presented study, two alter-

natives are introduced as Dynamic Shortest Path (DSP) and Dynamic Widest Shortest

Path (DWSP). These algorithms are improved versions of the aforementioned static alter-

natives, which only differ from using the total link bandwidth capacity to the available

bandwidth at the path’s computation time:

DSP : C(u,v) =
1

RBW(u,v)
,

DWSP : C(u,v) = RBW(u,v),

(2.10)

where RBW(u,v) stands for the available bandwidth between the two nodes.

By adding metrics related to the quantity of flows carried by network links, the DL-

CMI algorithms’ category aims to optimize performance with emphasis on the delay and

packet loss metrics, without sacrificing the bandwidth and throughput benefits of the

DLC algorithms. The Least Interference Optimization Algorithm (LIOA) increments on

DSP’s link cost equation by multiplying it by the number of flows being transported I

and raising the fraction to a constant α:

LIOA : C(u,v) =
(

I(u,v)

RBW(u,v)

)α
. (2.11)
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Therefore, the interference registered between source-destination pairs should de-

crease. The Improved Least Interference Optimization Algorithm (ILIOA) factors in link

utilization in its link cost equation:

ILIOA : C(u,v) = (1−U(u,v))×
I
β
(u,v)

BW
β
(u,v)

+U(u,v) ×
Iα(u,v)

RBW α
(u,v)

,

U(u,v) =
RBW(u,v)

BW(u,v)
×m,

(2.12)

where U(u,v) is the link utilization, m is the number of links and β a constant.

The last DLCMI algorithm is the Minimum Interference Routing Algorithm (MIRA),

which has a very different framework. MIRA maximizes the minimum available band-

width between every pair of nodes in the network by determining the crucial links for an

edge pair and using the least crucial links to the remaining pairs while computing a flow’s

shortest path. However, MIRA requires previous knowledge of source-destination pairs.

Additionally, it entails a lot of processing, making it ineffective, especially in large-scale

networks. In this study’s results, the authors concluded that the DLC and DLCMI algo-

rithm families outperform static approaches, with the exception of MIRA, which showed

high computation times.

In [50], the authors aim for an adaptable flow routing model in SDN-enabled networks.

The first step taken was the definition of the routing metric (i.e. the way link costs are

calculated) as a function of packet loss ratio, bandwidth, end-to-end delay, jitter and

computational efficiency of the processing FD. According to the changes verified in

these parameters, their weights in the cost metric are adjusted towards optimal network

behaviour and QoS. Towards the comparison of their solution to traditional routing

algorithms such as Open Shortest Path First (OSPF)8, the authors used Mininet and Iperf

to generate networks and simulate traffic, respectively. The results obtained greatly

surpassed traditional static weight approaches, especially in the packet loss, delay and

jitter metrics.

Both [51] and [52] explore routing optimization approaches based on using links’

available bandwidth as link costs and targeting network throughput maximization. The

authors of [51] compare the static Shortest Path First (SPF) to MIRA, WSP and Dynamic

Online Routing Algorithm (DORA)9. The study’s results conclude that DORA performs

the best, while MIRA is not adequate in the simulation conditions. Additionally, the

results showed that choosing paths with the most available bandwidth improved perfor-

mance in comparison to the traditional SPF algorithm. The contributions of [52] are the

simulation of both unicast and multicast flows and the use of admission control when the

cost of a path to get to the new node is above a predefined threshold.

8Which relies on Dijkstra.
9Similarly to the its alternatives, DORA aims to minimize network congestion by carefully attributing

paths with given bandwidth constraints to flows, maintaining link utilization balance.
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Traffic flows have fluctuating bit rates, which translates into traffic burstiness that neg-

atively impacts these dynamic routing solutions. Traffic matrices, containing the flows’

information, are also hard to model since the volume of traffic in a network may largely

vary, making its prediction a complex procedure. Additionally, in multimedia services, it

is common to have different users choose different services with different requirements,

which forces the network to support flows with distinct characteristics [53]. Moreover,

these solutions only consider the current network state, making greedy assumptions

while failing to account for future network changes or needs. Thus, all of these dynamic

routing solutions are based on simple ideas, however, given the complexity of computer

networks, these optimization problems often become too difficult, increasing the com-

putational load in the SDN controllers, or unsolvable, which leads to the exploration of

other alternatives.

On the other hand, after training, ML algorithms can quickly calculate near-optimal

routes without requiring an exact mathematical model of the network. Although different

fields of ML can be explored to develop routing solutions, routing is based on deciding a

path from a set of multiple possibilities, a decision that will then have an impact on an

underlying environment that is fed back to influence the selection of new paths, a similar

process to RL’s framework [54].

2.5 Machine Learning

ML qualifies as a subcategory of artificial intelligence where an agent can gather knowl-

edge from sample data, create a mathematical model describing the relationship between

observed inputs and the respective results, and apply its experience in many different

analysis techniques such as forecasting or classification [55].

The sample data that is fed into ML techniques is typically split into two, the training
set and the validation set. Each element of these datasets is called an example10, which

can be further discriminated into labeled or unlabeled, depending on whether or not the

inputs, commonly referred to as features, are assigned to a label (i.e. the value we want to

predict) [55][56].

A resulting model of the input data is produced considering the relationships between

features and labels encountered in the training set in a process called training. After this

step, the validation set is fed to the model in order to accurately assess its performance

when submitted to new unseen data. In case this validation set is unlabeled, applying the

trained model to it is called inference [56].

Given the input data, the resulting trained model can be called a regressor or a classifier.

The first predicts continuous values (e.g. stock market shares), while the latter predicts

discrete values (e.g. distinguishing images of dogs and cats) [56].

According to the characteristics of the training data, ML can be divided into [54][55][57]:

10A combination of feature(s) and, depending on the kind of example, a label.
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1. Supervised learning: Built from labeled examples. From the training data associa-

tions between features and the corresponding label, the model learns how to solve

tasks in a supervised manner.

2. Unsupervised learning: Unlike with supervised learning, in this case, the examples

fed to the ML model are unlabeled, forcing it to find patterns or knowledge by

organizing data in clusters according to their similarity and infer a way to predict

the output of unseen values by associating them to the arranged groups.

3. Semi-supervised learning: As the name suggests, the model receives both labeled

and unlabeled data. The present type of learning is common when the process of

obtaining labels is somewhat "expensive", unlike features, which are abundant.

4. Reinforcement learning: Because it is one of the main topics of this project, this

technique will be extensively described in a following subsection.

2.5.1 Deep Learning

DL is a subcategory of ML that is based on a set of algorithms, mostly organized in mul-

tiple cascaded processing layers performing linear and nonlinear transformations, that

build models capable of representing high-level data abstractions by extracting features

from data they are fed with [58][59].

DL, in spite of belonging to ML, stands out due to its characteristics. A ML model is

fed real-world features as pre-processed data for it to be able to deal with them. Then,

there is a feature extraction and processing layer, the hidden layer, where patterns are

recognized and a final output layer that arranges data according to its goal of either

classification, regression, or others. Contrarily, DL models usually have many hidden

layers, which allows them to receive raw data as input, instead of pre-processed, and

automatically find the most relevant features for its task [59].

Thus, DL is based on more complex networks and requires more data for its train-

ing process, but excuses a degree of human intervention that is required in typical ML.

Despite their differences, both ML and DL rely on either NNs or Deep Neural Networks

(DNNs), if the NNs have a depth11 of more than three.

2.5.2 Neural Networks

NNs emerged from the notion of replicating the biological neurons’ learning process. A

NN, or Artificial Neural Network (ANN) as it can also be called, is expressed as a dynamic

and adaptive computational learning system that is instructed by using interconnected

nodes distributed in layers of abstraction. Such architecture mimics a human brain’s struc-

ture, the neurons’ ability to work together to decipher human senses and how impulses

are propagated [60][61].

11The number of layers.
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Figure 2.3: Simple NN with 3 layers (adapted from [62]).

In the case of the ANNs, the inputs are not human senses but, instead, datasets

containing information retrieved from real-life situations which NNs translate into a

desired and often different output [61]. Given this principle, NNs are being used in

many situations where either image, speech or patterns recognition, data classification or

forecasting is necessary, with applications in various fields like technology, finances, or

medicine [61][63].

The different nodes in a NN’s layer are connected by links and have associated weights
and thresholds. Such weights are updated during the training of a NN for a specific goal,

in order to make it able to perform a task with increasing accuracy. In a NN there are

input, hidden and output layers. Data travels between these types of layers when a node’s

output is above the respective threshold (i.e. node’s excitation) [60].

Thus, in a NN, each node is described by a linear regression model that combines

inputs xi , weights wi , a threshold or bias and the output. An activation function f (x) is

defined and used between the NNs’ layers to determine if whether or not data is passed

forward in the network. This function represents the neuron’s output by applying some

kind of filter to the sum of the weighted inputs and the bias, as equation exemplifies [60].1, if
∑m

i=1wixi + bias ≥ 0

−1, if
∑m

i=1wixi + bias < 0
. (2.13)

A popular activation function in DL models is Rectified Linear Unit (ReLU), described

by Figure 2.4.

Typically, a neuron’s output is the input of one or many nodes in a following layer of

the network and, to this general type of networks, the designation of FFNNs is given [60].

The weight a neuron assigns to each input determines how big of an influence it has on
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Figure 2.4: ReLU activation function (adapted from [64]).

the neurons’ output. Therefore, NN’s parameters (i.e. weights and biases) are regulated

during the training of a NN model to maximize its accuracy by minimizing a given loss
function, such as the Mean Squared Error (MSE):

MSE =
1

2m

m∑
i=1

(ŷ − y)2, (2.14)

where i is the sample’s index, ŷ the predicted value, y the real value and m the total

number of samples, through the back-propagation algorithm. Back-propagation deploys

a nonlinear optimization process called gradient-descent, which differentiates the error

function in relation to the network’s weights and modifies them towards error minimiza-

tion [60]. Its name comes from the direction of its influence, because once the outputs

of the nodes are calculated, in a forward pass, then the derivative of the error for every

parameter is calculated going backwards in the network. This is what a NN’s training

process looks like.

Several types of DNNs can be used in computer networks for diverse applications

besides FFNNs. A few of them are introduced below and some were mentioned in Section

2.3.2 due to their use in traffic forecasting studies.

1. Convolutional Neural Networks (CNNs): These networks are mainly used to pro-

cess image data. Since computer networks’ states are translated to traffic matrices,

which can be viewed as one-dimensional images, this type of networks is popular

for applications such as TE and traffic forecasting [41]. CNNs’ layers use convo-

lutional filters which consist of linear functions applied to the node’s inputs in a

sliding mechanism. Upon the sliding of this filter or weight matrix, the inner prod-

uct between the input and the filter is calculated, allowing to train such filter for

pattern recognition [65]. CNNs also have an important advantage over the more

traditional fully connected FFNNs that is the generation of fewer parameters and
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the consequent avoidance of overfitting12.

2. RNNs: Both FFNNs and CNNs have difficulties while modelling certain time-

dependant dynamic systems. In contrast, RNNs are able to persist information

between steps thanks to the use of feedback loops that build an internal memory

and help find correlations between events [31][66]. However, RNNs suffer from the

vanishing gradient problem that is described by very small gradients incapable of

updating the weights of the nodes and stopping the learning process of the NN or,

at times, its explosion (i.e. large gradients).

3. LSTMs: These networks are a subtype of RNNs that excel at remembering infor-

mation from distant past observations and can solve RNNs’ complications. LSTM

networks are built upon a chain of what are called repeating modules. A module

comprises three gates: an input gate it, an output gate ot and a forget gate ft. An

important concept of LSTMs is the cell state Ct, whose role is to propagate informa-

tion, adding relevant or removing irrelevant pieces according to the gates’ selection

[67][68]. It represents the long-term memory of the model.

4. GRUs: GRU networks have a similar architecture to LSTM networks due to the

existence of gated units controlling the flow of information in a neuron. However,

GRUs do not use a memory unit and, instead, expose the hidden state without

further control. Unlike LSTMs, GRUs only have two gates, a reset gate r, which

merges the new input with existing memory, and an update gate z, responsible for

defining the memory’s importance in the new state. This reduction in the number

of gates allows for fewer parameters.

2.5.3 Reinforcement Learning

RL comes from the approximation of the algorithm’s learning process to the human

behaviour, where knowledge is acquired by performing a certain action and observing

its effect. Ultimately, the goal of a RL model is to understand which actions produce

the best outcome, according to a predefined overall objective. This learning method is

traditionally known as trial-and-error.

Formally, in a RL setup, the input data comes from a dynamic process, called en-
vironment, that is constantly generating relevant data for the model’s objective. From

this configuration, an agent, the RL algorithm, chooses an action at from the action space
of the current state St, an environment snapshot at a discrete time step t [69]. In other

words, given the state of the environment, the agent will choose what to do from a set of

possible actions. Then, the action performed will impact the environment by changing its

conditions, transforming it into a new state St+1 and producing a reward rt. The reward

indicates how the action, taken at a given time step and environment state, influences

12Refers to a model that is too detailed and specific to its training set and does not perform as well when
submitted to different validation sets. It basically means that the model memorized the dataset.
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Figure 2.5: RL framework (adapted from [69]).

the predefined objective of the agent behaviour (i.e. a good action is enforced by a high

reward, while a bad one can have a null or even negative reward, also called a penalty).

The value of the reward is measured by the objective function, which compares the effect of

the actions taken to the agent’s target behaviour, evaluating its error. During the training

process, the error returned by the objective function should be minimized, teaching the

agent how to choose the best action.

An important concept about RL is the Markov property, observed in a Markov Decision

Process (MDP). A MDP has no memory requirement. Thus, it is possible to choose the

best action (i.e. the one that maximizes cumulative rewards) in each and every state,

which are meant to have enough information about the system on their own, without the

need for previous states to judge the actions’ values [69].

Furthermore, RL algorithms can be distinguished by whether or not they use or learn

a model of the environment (i.e. a function that predicts states and rewards). If an agent

has access to a model (i.e. model-based), it can inspect each action’s outcome and choose

the one that is best. While this approach typically has good results, environments are

frequently too complex to be modeled, requiring a lot of time and processing power, and
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that is a strong motivation for the use of ML, specifically RL, over optimization-based

techniques. On the other hand, model-free algorithms are usually easier to develop and

train [70].

RL models can find the best course of actions that allow them to perform their tasks

without prior knowledge of the environment. However, in its traditional form, these

models have elevated convergence times and low convergence rates. Additionally, when

faced with large-scale problems that involve vast state and action spaces, these challenges

intensify [54][71]. To solve these issues, DRL has been developed.

2.5.4 Deep Reinforcement Learning

As the name suggests, DRL is the aggregation of RL with DL. This means that the agent

entity is based on a DL algorithm, specifically, a DNN. Through DNNs, a DRL model

adaptively adjusts its action selection policy based on the experiences it gradually gathers

by observing the effect of past decisions on the underlying environment. The use of such

learning agents improves the learning process of traditional RL, making these models

faster, more versatile and scalable [71]. Once the DNNs are trained, they can receive a

state and action space, estimate the long-term reward of each action, and choose the one

that leads to the highest [54]. In the following subsections, value and policy functions

will be presented, as well as popular categories of model-free DRL algorithms that rely

on them.

2.5.4.1 Value and policy functions

A policy π is a function responsible for either mapping states to a probability distribution

over the range of actions that the agent can choose from (i.e. probabilistic) or produce the

action itself (i.e. deterministic) [69]. In the first case, the considered best actions have an

higher associated probability, which leads to their more frequent selection by the agent.

An important take on this idea is that a DRL model is based on experience, which means

that the higher the number of different actions it chooses, the more knowledge it gathers

and the better it can select an optimal action in the future. This points towards a common

dilemma that is what strategy should the agent follow, either to choose the best action

based on the knowledge it has gathered thus far (i.e. exploitation), or to explore other

options to widen its experience (i.e. exploration). To balance these two concepts, DRL

algorithms use an epsilon-greedy approach, which translates into a dynamic parameter

that decreases during the training of an agent and determines when to choose an action

based on the current agent’s policy, or randomly.

Since the best actions are the ones that lead to the highest rewards, the policy that

maximizes expected rewards is called the optimal policy. However, there are two ways for

the agent to maximize expected rewards: by choosing the best actions in a given state or

learning the most valuable states and take actions that lead to them, a concept that serves

as introduction to value functions [69].

27



CHAPTER 2. STATE OF THE ART

A value function Vπ(s) maps a state to its expected reward, which is the long-term

rewards’ average from being in a state or taking an action in that state, provided that a

certain policy is consistently followed. A special type of value function is the Q-function,

broadly applied to DRL and, specifically, to Deep Q-Networks (DQNs) [69].

2.5.4.2 Deep Q-Networks

A DQN is the combination of Q-learning, a RL algorithm based on the Q-function, with

DNNs. The Q-function is an action-value function Qπ(s,a), to which the input is not only a

state, but a state-action pair that returns the value of taking the input action considering

the input state. These values are called Q-values and are stored in the Q-table. When

Q-learning and DL are brought together, the Q-table takes the form of a DNN [69].

In Q-learning, to optimize the prediction function, the expected return is calculated

by multiplying each reward by a reward coefficient that measures its importance, the

discount factor, and by comparing the result to the actual accumulated rewards observed.

Upon this comparison, the function is updated according to:

Q(St ,At) = Q(St ,At) +α[R(St ,At) +γmaxQ(St+1, a
′)−Q(St ,At)], (2.15)

where the updated Q-value is equal to the current Q-value plus the Temporal Difference

(TD) that separates the predicted future Q-value, calculated by summing R(St ,At) and

γmaxQ(St+1, a
′) (i.e. the reward and the maximum Q-value of all the possible actions),

and its current value Q(St ,At). In this equation, γ is the discount factor and α is the learn-

ing rate13. In other words, the update of the Q-value equals it to the current predicted

Q-value plus the amount of value expected in the future [69].

From the analysis of the Q-function update rule, it can be stated that Q-values ob-

tained from the Q-function will not be constant, since they greatly depend on the rewards

observed. This is due to rewards being commonly unstable, divergent (i.e. a given state-

action pair might result in different outcomes on separate observations) or even sparse in

some applications, which translates into constant function and policy updates. There are

two main techniques that can be used to solve or minimize this problem [71]:

1. Experience replay: This mechanism allows for batch updating in online settings using

a memory system. The algorithm initializes the replay buffer which will continu-

ously store experiences (st , at , rt , st+1) (i.e. transitions described by a state, an action

taken in that state, the reward obtained and the resulting state). Then, at each Q-

function update, a few experiences will be sampled from this buffer and form the

mini-batch used as input to the Q-learning algorithm. From that point on, actions

will be chosen according to a renewed policy, generating new experiences for the

13Used to train ML algorithms.
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replay buffer. This means that, upon the next update, since the sampling of experi-

ences is performed randomly, old and new experiences should get sampled together,

stabilizing the algorithm. When the buffer is full, the oldest transitions are deleted.

2. Target network: A copy of the main DQN Q̂, that has its parameters updated with a

certain lag. This will help stabilizing the back-propagation training process since

the target network will hold off on updating its parameters. Additionally, by using

this network to calculate the target Q-value to train the main DQN, the effect of

recent updates is decreased.

With the addition of these techniques, the DQN algorithm can be summarized by

Algorithm 1 [72].

Algorithm 1 DQN with experience replay and a target network
1: Initialize the replay buffer RB.
2: Initialize the Q-network Q with weights θ.
3: Initialize the target Q-network Q̂ with weights θ′.
4:

5: for episode=1 to T do
6: Choose action at at random or at = argmaxQ∗(st , at ,θ) (i.e. a function that takes an

array, finds the largest value in it, and returns its index) considering the exploration
parameter.

7: Get the resulting state st+1 and reward rt by performing step(at).
8: Store transition (st, at, rt, st+1) in RB.
9: Sample a batch of random transitions from RB and use them to train the DNN

through gradient-descent and the following update rule:

[rt +γmaxQ̂(st+1, a
′;θ′)−Q(st , at;θ)]

2
. (2.16)

10: Make Q̂ = Q every N steps.
11: end for

It is also important to point out that Q-learning is an off-policy algorithm in which, in

contrast to an on-policy algorithm, the policy choice does not affect the process of learning

Q-values. Even if the actions are always chosen at random, with sufficient amounts of data

(i.e. experiences), the algorithm will learn accurate Q-values. However, this methodology

is inefficient and that is why the epsilon-greedy policy is commonly used. On the other

hand, on-policy algorithms learn policies while using them to collect experiences, making

their learning process dependent on the policy they are using [69].

2.5.4.3 Policy gradient methods

Policy gradient methods are on-policy algorithms that dismiss DQN’s use of a policy to

select actions besides predicting action values. Alternatively, these methods train a DNN

to learn a policy itself.
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In policy gradient methods, the resulting network intends to output a probability

distribution over the set of available actions [69]. Thus, these methods aim to optimize

a performance target, usually the expected cumulative reward, by repeatedly adjusting

their policy.

A common policy gradient method is the Stochastic Policy Gradient (SGD). It out-

puts a probability distribution over a set of actions, assigning higher probabilities to the

ones that carry higher Q-values, allowing for a healthy balance between exploration and

exploitation. On the other hand, there is another popular method called Deterministic

Policy Gradient (DPG) that outputs only the action the agent must perform.

2.5.4.4 Actor-critic methods

Given that DQN-based DRL is only viable for control problems with low-dimensional

and discrete action spaces, it cannot be used for continuous control situations where it is

required to find the reward maximizing action at each training epoch [70].

Figure 2.6: Actor-critic methods’ generalized behaviour (adapted from [69]).

In actor-critic algorithms this problem is tackled by combining features from both

value (i.e. Q-value) and policy functions to leverage from both methods’ advantages. As

the name suggests, actor-critic models are split into two parts, an actor network and a

critic network. The actor corresponds to the policy function deciding an action to take,

while the critic reports on the adequacy of the action taken by the actor in a given state.

Through this combination, the value function can stabilize rewards which are then used

to train the policy [69].
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2.5.4.5 Deep Reinforcement Learning for Multimedia Traffic Transport

In this section, a few model-free approaches ([53][70][73][74][75]) to routing optimization

of multimedia traffic in a SDN environment through DRL will be detailed and compared,

in order to discuss the most important aspects in the state of the art of approaches similar

to our proposal.

In [53], because it is directly influenced by multiple other individual metrics and

thanks to its direct relation to the customer’s satisfaction, QoE was considered the most

relevant metric and the solution was developed towards its optimization (i.e. cumula-

tive QoE maximization). In summary, this solution’s contributions are: the capability to

learn how to allocate a clear path with bandwidth guarantee for each flow, QoE mapping

using a DNN for accurate reward measuring and a Deep Deterministic Policy Gradi-

ent (DDPG) implementation, an actor-critic method that thrives in solving continuous

control14 problems over, for example, DQN, and improves the convergence time of tradi-

tional actor-critic implementations.

Figure 2.7: Architecture of multimedia traffic control in SDN (adapted from [53]).

Figure 2.7 exhibits the key components of multimedia traffic control in SDN as pro-

posed in [53]. In this architecture, the SDN controller, given its global view, is responsible

14In RL, continuous control refers to the use of continuous values as the output action.
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for managing the underlying network, collecting data, defining paths and allocating the

required resources for them. The SDN-enabled network is a set of FDs at the controller’s

disposal. The clients consume the services delivered by the network and provide feedback

of their experience. Multimedia providers are the source of the multimedia content.

Typically, clients request services which are delivered to them in the form of flows.

The controller finds paths for each flow crossing the network leveraging its global net-

work view for the paths’ optimization. Then, it transmits synchronization information

to the network (path and bandwidth) so that the FDs can build forwarding tables and

process the upcoming information from multimedia providers. While consuming their

service requests, clients can report their satisfaction to the controller, which is used to

dynamically adapt resources.

The DRL application to this problem was made under the interpretation of a MDP,

with its elements described as:

1. Environment: The combination of the SDN-enabled network, the clients and the

multimedia providers.

2. Agent: Encapsulated in the SDN controller. It will interact with the environment,

observe the effect of its decisions, and learn how to behave through experience,

determining the optimal traffic control policy.

3. State: A snapshot of the environment, in this case, the state of the multimedia flows,

containing bandwidth, delay, jitter and packet loss information (i.e. the traffic

matrix).

4. Action: In this panorama, an action consists of the path reported by the controller

and the bandwidth changes that the network is required to perform on other flows.

Actions should respect network constraints and adjust to the clients’ feedback.

5. Reward: Upon ordaining an action in a given network state, the agent receives from

the environment, specifically, the clients, a reward. In this study, the reward is

measured through QoE, which is evaluated using a Mean Opinion Score (MOS).

Since real time retrieval of this information is difficult due to the lack of constant

interaction with the customers, the authors chose to use a multi-layer DNN in the

flows’ statistics - MOS translation.

To build the agent according to a DDPG method, the authors used a few previously

covered techniques such as a replay buffer and target networks, for both the actor and

critic, to improve the method’s stability. In this particular case, the actor of the primary

network receives as input a state and outputs an action, due to its deterministic property,

hence exploring the current policy. On the other hand, the critic receives the state and

the action choice of the actor and calculates the pair’s value. This value is then fed into

primary actor for training (i.e. gradient-descent) and used in the loss function with the
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Figure 2.8: Interaction between system components. Red lines represent outputs and
green lines inputs (adapted from [53]).

target Q-value calculated by the target critic network and the transition’s reward, hence

updating the critic network’s weights.

The solution developed in this study has reached good results at maximizing the

mean QoE when compared to other selected optimization-based approaches. These were

obtained in multiple topologies of different dimensions and the best results were achieved

when the network size increased, which supports the solution’s scalability. In comparison

to our problem, this work’s motivation is a theoretical routing scenario where the objective

is not only to select a path but also to assign to it a bandwidth value. Thus, this solution

is not applicable to our scenario since, in our case, the bandwidth of flows is user-defined

and cannot be modified. Furthermore, since this study details a simulated problem, the

authors were able to consider the existence of clients and receive feedback from them,

however not specifying how. On the other hand, such feedback is impossible to retrieve in

our framework. The sparsity of that feedback was also considered, however, to overcome

it, the study uses metrics that are also not accessible in our case to obtain a MOS score.

In conclusion, although this work allows us to thoroughly understand how DRL can be

applied to multimedia routing and to prove its efficiency and scalability, our solution

must be different in some respects.

Yu et al. ([73]) also presented a DDPG-based solution called DDPG Routing Opti-

mization Mechanism (DROM). This solution’s model is very similar to the one suggested
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in [53]. However, it has the additional functionality of customizing the network per-

formance parameters considered from only delay to a function of multiple metrics and

changes the action entity to an array of link weights. In this work, a direct comparison

to an implementation of a static weight Dijkstra’s algorithm-based solution is presented.

Accordingly, DROM showed significantly lower delay when selecting the delay as the

performance metric to optimize. In another test, throughput maximization was defined

as the objective function. When compared to two selected throughput maximization so-

lutions, either achieved by link cost optimization and congestion preventive scheduling

or QoS-aware reward functions that implement dynamic routing, DROM outperformed

both. Such results were obtained through OMNET++ and using multiple traffic load

scenarios. Since DROM was able to both reduce delay and improve throughput in all

traffic load configurations, this solution also confirms DRL’s scalability. Contrarily to our

problem’s motivation, this work is motivated by a theoretical scenario. Moreover, this

approach computes the link weights that Dijkstra is supposed to consider when calcu-

lating the shortest paths. To assign updated weights to routers’ interfaces in DataMiner

is a computationally heavy process, thus our solution must be able to dismiss the use of

Dijkstra. For these reasons, this solution is also not entirely applicable to our problem.

Xu et al. ([70]) proposed another alternative to DDPG-based solutions called DRL-

TE, a DRL approach for TE problems. DRL-TE, as opposed to DDPG, promotes TE-

aware exploration and an actor-critic-based algorithm to optimize the agent’s behaviour,

reducing the measured end-to-end delay and increasing the network utility as well as

maintaining or increasing the throughput. The authors also claim that DDPG is not an

effective solution, since its framework does not specify how to explore the environment

and because it uses a uniform experiences’ sampling, ignoring their importance. In this

work, ns-315 is used to simulate and prove that the solution proposed is more effective.

The TE problem on the basis of this work is postulated by the authors as a set of

communication sessions, described by a source, a destination and a group of candidate

paths to route traffic between those endpoints that need to be managed, with the objective

of minimizing end-to-end delay and maximizing the network utility. For this purpose,

the state and action spaces, as well as the reward function, are modelled as follows:

1. State space: A set of throughput and delay tuples from each communication session.

2. Action space: The set of split ratios for all sessions (i.e. the probability of rout-

ing traffic load across each of the candidate paths for all existing communication

sessions).

3. Reward function: The total utility considering all communication sessions, calcu-

lated by the sum of each utility value measured in reference to the end-to-end delay

and throughput.

15“ns-3 is a discrete-event network simulator for Internet systems, targeted primarily for research and
educational use.” [76]
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A relevant contribution introduced in [70] was the use of a baseline TE solution,

like SPF or other link cost optimization algorithms such as those introduced in Section

2.4.1, for exploration while training the DRL agent. DDPG adds random noise to the

action selected by the actor network, contrarily, DRL-TE decides the next action between

abase, proposed by the baseline TE algorithm and a, the output of the actor network,

with probabilities ε, an adjustable parameter that balances exploration and exploitation

(i.e. the epsilon-greedy approach), and (1− ε), respectively. The more epochs the agent

is trained for, the lower ε gets, promoting the choice of optimal actions. Furthermore,

DRL-TE uses Prioritized Experience Replay (PER)16 to improve performance.

DRL-TE was compared to other known technologies, such as SPF and DDPG, using

the end-to-end delay, total network utility and throughput as performance metrics, and

in two common network topologies, National Science Foundation Network (NSFNET)

and Advanced Research Projects Agency Network (ARPANET), as well as a randomly

generated topology. From the results, it can be understood that this approach reduces the

verified end-to-end delay and improves the network utility while, at least, offering com-

parable throughput in multiple distinct traffic scenarios. In comparison to the baseline

DDPG, DRL-TE showed significant improvements.

Once again, this solution applies to a theoretical problem. In this environment, the

real-time end-to-end delay is obtainable and used in the state formulation. However, in

our scenario, this metric is not considerable.

Sun et al. ([75]) introduced ScaleDRL, a DRL-based TE solution for large networks. So

that the scalability of DRL algorithms for TE can be strengthened given the exponential

dimension increase of state and action spaces as network’s size grows, the authors use

pinning control theory to select critical links (i.e. overloaded links). Then, the weights

assigned to those links shall be adjusted by the DRL agent. This is an attempt to improve

the convergence rate of the algorithm, since it will only be controlling a few selected links,

thus reducing the action and state spaces. Once the weights are regulated, the network

paths are generated by a weighted SP algorithm.

Two parts of this solution can be highlighted, the link selection algorithm and the

DRL algorithm. Both reside inside the SDN controller that collects network states and

adapts TE policies. Hence, this solution works online and offline. During the offline

mode, the first aforementioned algorithm computes the critical links. Then, in online

settings, the DRL algorithm adjusts those link’s weights, thus optimizing the paths that

are loaded onto the network switches.

The link selection algorithm signals critical links by measuring their centrality. This

value represents how many times a link is utilized by the paths connecting endpoints of

flows. Once the centrality of all the links is calculated, these values are ordered, and the

middle k are marked as critical.

16A topic covered in Section 3.4.2.
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As for the DRL algorithm, it is based on a typical actor-critic architecture. A particu-

larity of this work’s approach is the use of GRUs to model traffic considering its temporal

characteristics, preceding a two-layer FFNN in both the actor and critic’s structure. As for

the algorithms’ elements, the state consists of the normalized links’ traffic distribution,

the action is a description of critical links and the number of candidate paths for each

flow and the reward is calculated by weighing the maximum link utilization ratio and

the average end-to-end delay of all flows in the network.

The authors ran simulations mostly regarding the average end-to-end delay. ScaleDRL

was compared to both SPF and DRL-TE and resulted in the lowest levels of delay amongst

the three across variable network sizes. In spite of the computational load that this

approach could save by applying the DRL algorithm to only a few selected links, it still

uses Dijkstra as the final step of the solution. Additionally, this approach considers the

average end-to-end latency, which is not at reach in our case.

Previous approaches all have in common the formulation of the problem in a contin-

uous control structure, since they either use link weight arrays as their action ([73][50]),

a path bandwidth continuous value ([53]) or an array of path choice probabilities ([70]).

On the other hand, Chen et al. ([74]) propose a solution, called RL-Routing, which uses

a discrete action space and targets throughput maximization and communication delay

minimization. RL-Routing is formulated as follows:

1. State space: An array of 10 elements, such as the link capacity rate, link throughput

rate, link delay, binary link status (i.e. 1 if up, 0 otherwise), link trust level (i.e.

based on packet loss), switch throughput rates, link-to-switch rate (i.e. maps a

link’s load percentage on a switch), the day of the week and the part of day (i.e. time

intervals of 6 hours).

2. Action space: The agent can choose, for a given communication, from a set of pre-

calculated k-shortest paths between each source-destination pair.

3. Reward function: A sum of the chosen action’s delay and throughput rate.

To train this algorithm, the authors used a multi-agent (i.e. an agent per switch)

Dueling Double Deep Q-Network (Dueling DDQN).

For the development and testing environment, a combination of a Ryu controller to

manage the network, Mininet for network simulation and Iperf for traffic injection was

deployed. For topologies, the authors selected NSFNET and ARPANET. To assess how

the developed solution compares to baseline solutions like OSPF, the reward sum, a file

transmission’s completion time and utilization rate (i.e. the link bandwidth ratio used

for the file transfer) were considered. In either of the simulated topologies, RL-Routing

showed higher rewards and shorter transmission times while maximizing the utilization

rate.
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As mentioned before, unlike the theoretical approaches presented, our solution must

be developed for DataMiner. This real-world nature of our problem increments the im-

portance of optimizing the proposed solution’s computational effectiveness. This study

uses a complex state to characterize the environment, which contributes to the increase

of its CPU usage. Additionally, as was the case of previous approaches, this study also

has access to values that, in our scenario, cannot be considered. Thus, although many

important aspects can be extracted from this solution, some adaptations must be done,

such as the simplification of the state space and change of considered metrics.
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System design

As previously mentioned, this dissertation’s aim is to bring innovation into the scope

of Skyline Communications’ DataMiner, specifically the SRM module, by optimizing its

routing mechanism. Various possibilities on how to complete this goal have been intro-

duced and were on the basis of this project’s solution design. This chapter provides a brief

overview of SRM (only the concepts related to this dissertation’s work) to contextualize

the environment where the developed mechanism is to be applied and how it can be

implemented. It then describes the components of the deployed simulation’s architecture,

developed using the Python Ryu SDN controller connected to the Mininet network simu-

lator via its Python API. Finally, the specific DRL algorithms used or considered when

solving the proposed problem will be presented as well as the solution design.

3.1 Service Resource Manager architecture

DataMiner monitors and controls every device inside a customer’s ecosystem by means

of APIs. SRM takes this idea one step forward by allowing this management process to

be scheduled for some time in the future. This is accomplished by dynamically combin-

ing devices’ functions, instead of entire products, to respond to a given service request

according to their capabilities and capacities.

SRM is divided into multiple building blocks that together can ensure that multimedia

services’ requirements are met and monitored throughout their duration. The manage-

ment of these blocks is performed, on a lower level, by dedicated modules, which are

then bundled up and coordinated in the SRM Booking Manager application.

As the name suggests, the SRM Booking Manager is where bookings are submitted. A

booking is a scheduled resource reservation for a certain multimedia service. The book-

ing’s duration comprises three distinct time periods: pre-roll, active and post-roll. During

the pre-roll, resources, such as SDI encoders, SDI decoders, switches, routers, or antennas,

are configured for the specific type of booking requested. The required devices’ functions

for a booking are specified in the service definition, while the configurable parameters of

those functions are stored in profiles [77].
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In the case of this dissertation’s development, the target service definition includes: a

SDI encoder, where the multimedia source is originated and translated to IP, a transport

network, a nested service definition that routes data according to Dijkstra’s algorithm,

and a SDI decoder connected to the exit edge node of the transport network.

Figure 3.1: Transport-Cisco service definition (from DataMiner).

A booking reaches its end when the active time period has elapsed. At that moment,

the reserved resources are released and deconfigured during the post-roll.

3.1.1 Concepts

In SRM, objects are identified by a unique string called Globally Unique Identifier (GUID).

These objects can be of multiple types and managed by different modules. The term

Resource is used to refer to any object managed by the ResourceManager module, such as a

physical device (e.g. Cisco Nexus router), or device components (e.g. a router’s Ethernet

port). When these resources are representations of devices (i.e. when they have a specific

function) they are called FunctionResources. Resources of the same category are arranged

in a collection called ResourcePool [77].

In this dissertation’s use case, a relevant type of resource is a Cisco Nexus router’s

interface. Physical interfaces are represented in DataMiner as DataMiner Connectiv-

ity Framework (DCF) interfaces that are linked through connections. The DCF manages

DataMiner elements’ connectivity through these two main concepts. Virtual interfaces

also exist and represent internal connections of an element. DCF also allows these in-

terfaces to have properties. In the case of the Cisco Nexus routers, each port is split into

receiver (Rx) and transceiver (Tx) interfaces described by status, concurrency, bitrate

capacity, Id, connectivity to other router interfaces, or cost1 properties.

During a multimedia flow transmission, resources are used to perform certain ac-

tions. A description of which resources are in use, how much of their capacity is occupied

and when that use occurs is a ReservationInstance. This definition enables the Resource-

Manager to control the resources’ availability at any point in time and provision their

capacities accordingly. ReservationInstances create Services while they are active, called

ServiceReservationInstances, that typically use a series of connected FunctionResources

[77].

Services are instances of ServiceDefinitions and managed by the ServiceManager. A

ServiceDefinition connects functions to provide a customer with a service description of
1The cost of a link between two interfaces is equal to their cost sum. Then, those link costs, or weights,

are used by the Dijkstra’s algorithm to find the shortest path to route a certain multimedia flow.
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a given type. These functions correspond to FunctionDefinitions that, when instantiated,

form FunctionInstances. The FunctionDefinitions inside a ServiceDefinition are connected

by means of their interfaces’ profiles [77].

Bundling all these terms into the SRM Booking Manager plane, a user places a booking

that belongs to a chosen ServiceDefinition. Additionally, the user selects the resources re-

quired for that ServiceDefinition according to the FunctionDefinitions that it may include.

This action creates a ReservationInstance that indicates the chosen resources’ capacity

usage and utilization time and duration. When that ReservationInstance becomes active

a service is generated, starting the data transmission, typically in the form of a video feed,

according to the ServiceDefinition that it instantiates. This service assures the allocation

of the resources contained in the underlying ReservationInstance.

3.1.2 Resource monitoring

DataMiner interacts with the resources it monitors and/or orchestrates through multiple

types of protocols such as HTTP, SNMP and Serial protocols or dedicated APIs. In this

specific scenario, since this dissertation was proposed to fix a routing problem, the im-

portant values to access are the routers’ metrics, which DataMiner retrieves using SNMP.

Thus, this protocol in particular will be in focus.

SNMP is a broadly recognized and used application layer protocol for monitoring IP

networks’ devices, such as switches, routers, or servers, and managing them by configur-

ing changes to their behaviour according to the information gathered [78].

The SNMP architectural model includes [77][78]:

1. Managed nodes: The network elements, which run a software component, the Agent,
that provides accessibility to the device.

2. Network Management Stations (NMSs): These SNMP entities, also known as Managers,
support both unidirectional and bidirectional requests traded with the managed

nodes. In the scope of DataMiner, it corresponds to the DataMiner Agents (DMAs).

A DataMiner System (DMS) can contain from one to multiple DMAs.

3. Management protocol: Which transports information between SNMP entities (the

network elements and the management stations).

Thus, NMSs communicate with the network elements using the SNMP protocol in

order to inspect or alter their exposed objects by the Management Information Base (MIB),

functionalities that are provided by the SNMP agent. The MIB describes the information

an SNMP Agent exposes in the form of objects or variables. This information is stored in

an hierarchical structure that uses Object Identifiers (OIDs) to refer to each variable in

the tree [78].
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The most recent version of SNMP is SNMPv3, which built on the existent modular

architecture of previous versions in order to define new capabilities, improving its per-

formance, flexibility and security. DataMiner supports every SNMP version [77][78].

The system provided by Skyline to operate and manipulate during this dissertation

was a local installation of DataMiner with interface’s metrics’ values fed by SNMPWALKS
converted to SNMP simulations. A SNMPWALK is a SNMP application that queries

devices for their status information. These requests specify the variables to be retrieved

through their OIDs. In this simulation, the returned values will vary while being confined

to a predefined range. For that reason, these walks provide a given dynamic to the system.

However, this simulation is not reactive to the changes that will be made (i.e. assigning a

path to a booking will not make the bandwidth used by the routers in that path increase

and, consequently, make the cost of the links that connect them follow the same trend).

This issue was surpassed with the development of the external SDN environment.

The interfaces of each router have their metrics detailed in the form of a table, called

ifTable. In some cases, when a metric’s value is frequently changing and it can be beneficial

to predict a future value, trending templates are used. DataMiner uses its Trending
module for this purpose. Moreover, when a monitored device is queried and returns an

abnormal value for a certain property, DataMiner can raise an alarm that informs the user

[77].

After a path for a booking is selected, it needs to be sent to the network devices so

that they know where to route the packets they receive. To accomplish this, the process

depends on the specific vendor of the device in question. However, in most Cisco devices,

which were the ones used in this dissertation, first communication with the device is

established using CLI, then SNMP configurations are declared. Lastly, it is expected that

the device builds the routing tables according to the information provided.

3.1.3 Protocols & Templates

A protocol, or connector, is mostly developed using DataMiner Protocol Markup Language

(DPML), Skyline’s proprietary markup language, similar to XML. A DMS stores protocol

versions that can be used to create elements that follow the behaviour described in them

[77].

An element is a virtual entity that can refer to both physical devices and software pro-

cesses. Considering the example of a Cisco Nexus router, it is represented in DataMiner

as an element. This type of element exposes many resources, which are the router’s in-

terfaces. The router element behaves according to its running protocol which, amongst

other things, defines how DataMiner and the physical device communicate considering

its supported connectivity [77].

A protocol with a SNMP connection, as illustrated in Figure 3.2 (i.e. elements A

and B), describes the logic needed to poll a device through SNMP GET requests, change
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Figure 3.2: Overview of a DMA (adapted from [77]).

parameter values with SNMP SET messages and receive unplanned SNMP traps2. These

capabilities are granted by the SLSNMPManager process running on the DMA. Element

C illustrates an example of an element that is not applied to a physical device but instead

to a software process that coordinates a feature (e.g. logging) [77].

A protocol’s logic is executed by SLProtocol processes. This logic is based on the

interaction of a few components [77]:

1. Parameters: A protocol parameter can be used to represent either a data table, a

table column, an internal logic value such as a counter, or a UI component (e.g. a

button).

2. Groups: They allow the gathering of equal type items, such as parameters, triggers,

or actions.

3. Timers: Responsible for defining the periodic groups’ execution. At the timer’s end

(e.g. every 10 seconds), the group it controls is added to the group execution stack.

The execution time of the group is then defined by the contents of that stack.

4. Triggers: Can, for instance, execute an action.

5. Actions: Define something to do, such as copy values between parameters or incre-

ment a parameter value. Can be activated by triggers or be part of a group.

6. Quick actions: Also called QActions, they are C# code blocks capable of implement-

ing complex logic that is executed by the SLScripting process.

An example of these components’ interaction can be reviewed in Figure 3.3.

A protocol can have a multi-threaded behaviour, allowing for simple actions to execute

on a parallel thread to the main protocol execution thread while it is busy performing a

complex QAction [77].

2Alert messages sent from a devices’ agent to a network management station.
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Figure 3.3: Execution of a group triggered by a timer (adapted from [77]).

3.1.4 Automation

In the Automation module, all automation scripts are saved. An automation script can

either perform a simple change on a resource’s property or be responsible for control-

ling complex sequences of instructions. The SRM Booking Manager triggers multiple

automation scripts that simplify given processes [77].

These scripts can be developed using the built-in tools that create, for instance, if-

else blocks. However, when meant to handle complex tasks, they are written in C#

code. Automation scripts run using an underlying process called SLAutomation. This

process performs method calls answered by a larger scale process (SLNet), which controls

all communication between DMAs and a DMS and its clients. This process answers to

many different other processes, as is the case of the protocols’ QActions process (SLScript-

ing). However, protocols use the SLProtocol object to call those methods and automation

scripts use the Engine object [77].

3.2 Ryu Controller

Ryu is an open-source controller for SDN developed in Python. It supports multiple net-

work devices’ management protocols such as OpenFlow. It also provides a well-defined

and documented API for the development of custom network control applications [79].

A Ryu application extends the ryu.base.app_manager.RyuApp Python class. Its behaviour

is based on observing and generating events, generally triggered by OpenFlow messages.

These events are associated to methods through set_ev_cls decorators that specify which

method is the event handler. These decorators take two arguments, the event type and the

dispatchers’, such as the MAIN_DISPATCHER, when a switch is connected to the Ryu controller,

the DEAD_DISPATCHER when disconnecting or the CONFIG_DISPATCHER when the OpenFlow ver-

sion is agreed on. These dispatchers specify the negotiation phases in which the handler

will be triggered [79].

Since the events represent OpenFlow messages received from connected switches, they

are referenced through the ofp_event class. Each decorated method will have an event as

input. From this, the OpenFlow message object msg can be accessed and from there the

datapath object is available. A datapath instance describes the switch that sent the event

that triggered the OpenFlow message. Besides identifying the source of the OpenFlow

message, from the datapath object other attributes can be retrieved: the ofproto, which

exports OpenFlow definitions and the ofproto_parser, a message encoder and decoder for
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the agreed OpenFlow version. It is with this parser that flow arguments, such as the

match, actions, or instructions, introduced in Section 2.1.3, are created. Then, these are

usually combined in a OFPPacketOut message that is sent to the respective switch using the

send_msg method and according to the datapath.

Multiple events can be received almost simultaneously by the Ryu controller, which

makes it impossible, in some cases, for an event to be fully processed before a new one ar-

rives. To solve this issue, Ryu uses a First-In First-Out (FIFO) queue system that maintains

the order of the events received while they cannot be processed [79].

3.3 Mininet

Mininet is a virtual emulator of physical networks that creates devices such as switches,

routers, or hosts, in a development environment for software-defined networks. These

components behave almost always exactly like the real hardware devices. For that reason,

it is possible to recreate a real network using Mininet, with switches connected through

Ethernet interfaces with a given capacity and delay. To measure the communication

performance between a pair of hosts, a tool such as Iperf 3 can be used. Mininet also

provides a Python API [81].

3.4 Deep Q-Network enhancements

In Section 2.5.4.2, DQNs were introduced as an algorithm capable of combining the

best features of both DL and RL to optimize a Q-function in discrete action settings.

While DQNs are perfectly capable of answering certain problem’s requirements, there

are situations where a DQN is not sufficient. Thus, a few improvements can be added to

the traditional DQN algorithm.

3.4.1 Double Deep Q-Networks

A DQN estimates the Q-value of every state-action pair available. However, a single Q-

network is known for its tendency to over-estimate the value of actions and, therefore,

damage the algorithm’s performance [72][82]. With a typical DQN, the Q-value is calcu-

lated using the sum of the reward and the maximum Q-value, which introduces a positive

bias caused by using the maximum action value as an approximation of the maximum

expected action value (equation 2.15). This occurs because the same samples are used to

select and evaluate an action [72]. Thus, the over-estimation of some actions’ value will

neglect the possibility of other actions being more suitable in certain conditions [82].

Double Deep Q-Networks (DDQNs) implement Double Deep Q-learning by using two

value functions, initialized as a copy of each other, to separately select and evaluate

3Iperf measures the maximum achievable bandwidth on IP networks, reporting on QoS parameters such
as the bandwidth, loss, jitter or end-to-end round-trip-time [80].
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action values. This approach leverages from the target network technique by using it as

the second value function [73]. The difference between DDQNs and traditional DQNs

that use target networks is the way the update function is built. In this case, it is not

the target network selecting the best action to calculate the target Q-value, but rather the

primary network. Thus, this action selected by the main network through argmax will

then be used to estimate the value of the current Q-function using the target network’s Q̂

weights θ′. This process is described by equation 3.1 [73].

In this format, the weights of the second Q-network are updated according to the

weights stored in the target network Q̂, while the target network’s weights θ′ are updated

periodically according to the online weights θ as is done in traditional DQNs. This

process is described by the equation 3.1 [72].

[rj +γQ̂(st+1, argmaxa′Q(st+1, a
′;θ);θ′)−Q(st , at;θ)]

2
(3.1)

3.4.2 Deep Q-Networks with Prioritized Experience Replay

Experience replay has been suggested as a performance improving factor to DQNs. How-

ever, samples are extracted at random from this data structure and not carefully selected.

To take into consideration that some experience transitions hold higher value to the

algorithm’s learning process than others (e.g. transitions with high rewards), PER was

developed. PER allows for a more frequent sampling of priority transitions, characterized

by their recent addition to the replay buffer or low error verified in past transitions. This

mechanism is only effective when the value of transitions can be accurately estimated.

3.4.3 Dueling Deep Q-Networks

Dueling Deep Q-Networks (Dueling DQNs) arise from the decomposition of the state-

action value into two different functions, the state-value function V (s) (i.e. the value of

being in a given state) and action-value (i.e. the value of an action compared to its alter-

natives), or advantage, function A(a) [72][82]. These functions correspond to different

layers in the DQN that combined generate a singular Q-value described as:

Q(s,a;α,β) = V (s;β) +
(
A(s,a;α)−

∑
a′ A(s,a′;α)
|A|

)
, (3.2)

where α and β are the two individual function’s parameters and |A| is the total number

of actions. This division of the Q-value into two functions makes it easier for the DQN to

learn action-values.

3.5 Solution design

Before this dissertation, DataMiner used a static Dijkstra’s algorithm to define the path

that a scheduled booking’s data must follow. Dijkstra runs on top of the Cisco Transport
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block depicted in Figure 3.1, which includes a series of routers’ interfaces capable of

transporting data between edge nodes, and selects the k-shortest paths available for the

data transfer and the customer’s choosing. At this stage, the cost of each interface was

assigned as a copy of its total bandwidth capacity. Besides assigning higher costs to higher

capacity links, which is contradictory to the typical Dijkstra’s approach, once an interface

was created its cost would never change regardless of the network state (i.e. load or node

failure). These were limitations that Skyline intended to overcome. The course of actions

taken to find a solution to this problem can be divided into three phases, which are

broadly detailed in the following subsections.

3.5.1 Dynamic weight routing in SRM

A preliminary solution to the problem proposed was the implementation of a dynamic

Dijkstra, which can be structured as Figure 3.4 displays.

Figure 3.4: Dynamic Dijkstra’s architecture.

This phase’s goal was to promote the familiarization with Skyline’s software, through

the manipulation of network device’s properties, and SRM’s workflow logic, by transform-

ing the existing static link cost solution into a dynamic alternative.

3.5.2 Dynamic weight routing in the link cost modification simulation

The purpose of this simulation was to replicate SRM’s behaviour and extrapolate results

of what is expected to be SRM’s response to the link cost manipulation deployed in terms

of QoS, in order to validate the proposed dynamic routing mechanism.

In this environment, the retrieval of interface metrics is performed by the controller

in five seconds intervals in order to detect network state changes during the Iperf trans-

missions that simulate SRM’s bookings. The controller then updates these costs, recal-

culates paths and when a new communication request arrives the best path is already

pre-calculated. Thus, its framework is in every way like Figure 3.4 details.

3.6 Architecture of the routing optimization mechanism using

DRL

The objective of this work can be summarized in the intent to create a dynamic algorithm

capable of selecting the best path to assign to one or multiple upcoming multimedia
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services (i.e. bookings). Given the nature of the transported content, there were a few

requirements, imposed by Skyline or their software’s architecture, that had to be followed.

When a booking is scheduled, the customer expects to have the full requested capacity

available at any instant of the service’s duration. This makes it difficult to route upcoming

bookings through interfaces that are already partially occupied by other active bookings

by only considering their current available bandwidth, since there are bandwidth fluctua-

tions during the content’s transmission, which could incite the overbooking of interfaces

that are just currently not being fully loaded. Therefore, and contrasting with the first

solution implemented that used interface metrics retrieved from SNMP’s ifTable, in this

case, the interfaces’ available bandwidth is calculated considering the contracted bitrate

of each service.

Thus, the designed model follows a heuristic approach to control the booked band-

width in each interface and is trained to select paths with the lowest reserved bandwidth.

This model is defined as M = ⟨S,A,R⟩, where:

1. S is the state space. A state s is sampled from the state space at time step t and

is represented by a 4-dimensional tensor with dimensions [N,N,k,1], where N

equals the number of hosts n, or edge nodes, in the network and k equals a pre-

computed4 number of paths pnsrc ,ndst that can be used on bookings that connect

nsrc and ndst. The rightmost index of the tensor’s dimensions corresponds to the

selected network representation metric, in this case, the available bandwidth in the

bottleneck link of each path (i.e the link with the smallest available bandwidth),

depicted as abw(nsrc,ndst ,pnsrc ,ndst ).

2. A is the action space. It can be defined as A = {a1, a2, ..., ak}, where k is the number

of pre-computed paths and a = pnsrc ,ndst .

3. R(s,a) is the reward function that translates an action a in state s to a reward value

that is calculated according to the available bandwidth of the paths in the resulting

state. It is defined as:

R(s,a) =



+50, if abw(nsrc,ndst ,pnsrc ,ndst ) ≥ 75

+30, if abw(nsrc,ndst ,pnsrc ,ndst ) ≥ 50

0, if abw(nsrc,ndst ,pnsrc ,ndst ) ≥ 25

−10, if abw(nsrc,ndst ,pnsrc ,ndst ) ≥ 0

−100, if abw(nsrc,ndst ,pnsrc ,ndst ) < 0

,∀(nsrc,ndst) ∈N and pnsrc ,ndst ∈ k.

(3.3)

For each combination (nsrc,ndst) and pnsrc ,ndst , the reward function will increment

or decrement the total reward according to the respective abw(nsrc,ndst ,pnsrc ,ndst ).

This function intends to severely penalize requests that are assigned to use paths

4Using Dijkstra’s algorithm.
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with links that will be overbooked, causing congestion. However, if there was only

a penalty for the specific request that causes a link’s capacity to be overbooked,

the reward function would be neglecting the previous decisions that led to that

network state. Thus, to account for this situation, whenever the links’ utilization

rates are inside predefined ranges that are considered acceptable, positive rewards

are assigned.

Not only this problem formulation tackles the customer-side requirements of the

problem (i.e. complying with the negotiated service requirements), but also significantly

reduces the computational load of both the initial solution, since Dijkstra was executed for

every service and according to this approach it will only be executed before the training of

the DRL algorithm, and of the link cost optimization mechanisms presented that required

interfaces to be periodically updated.

From the existing and introduced families of DRL algorithms, Deep Q-Learning was

selected to achieve this dissertation’s goal due to its simplicity, the extensive studies in

which it has shown good results and, most importantly, the discrete nature of the action

space designed.

To train the DRL algorithm, it must be submitted to multiple environment episodes.

Each of these episodes consists of a set of requests that simulate a service booking and will

generate distinct states and stimulate the agent’s learning. To make the algorithm robust,

the duration of an episode (i.e. the number of simulated requests), the communicating

pairs and the bandwidth reserved for each session can be variable.

Algorithm 2 abstracts from the theoretical approach detailed in Algorithm 1 and

provides a broad idea of how the training process occurs in our solution proposition.

After the replay_buffer and the main model and target_model Q-networks are initialized

with equal weights, as Algorithm 1 specifies, the training loop will run for i episodes, a

number that can be dependent on a multiple number of factors, in this case, mostly the

network’s dimensions. After control variables are initialized to indicate the number of

active communication sessions in the current episode (requests), when an episode must

end (done) and the number of total episode requests (max_requests), a series of requests

are started inside a while loop until the variable done makes it stop. Inside that loop, the

action to perform is selected according to the argmax, which returns the highest value

action considering the current state and model weights. Then, that action is applied to

the environment through the method make_reservation that initializes a simulated reserva-

tion between two endpoints sampled from lists of possibilities, assigns it a predefined or

randomized amount of bandwidth, and allocates it to the path computed. This method

will return the updated state, which will account for the request that was just initialized.

This state will then be evaluated according to equation 3.3 and produce a reward. Af-

terwards, the current transition is added to the replay buffer and the model is updated

using a sample of transitions from the replay buffer and the update rule of the model’s

architecture (e.g. equation 2.16 if it is a basic DQN). Additionally, with a given update

48



3.6. ARCHITECTURE OF THE ROUTING OPTIMIZATION MECHANISM USING

DRL

Algorithm 2 Training environment
1: replay_buf f er← ReplayBuf f er()
2: model←Q_Network()
3: target_model←model
4: for i episodes do
5: requests← 0
6: done← False
7: max_requests←N
8: while not done do
9: action← argmax(model, state) ▷ The action will be received from the model

according to the current state.
10: transf ormed_state←make_reservation(action) ▷ The communications will

occur between edge pairs sampled from a list of possible hosts with a given request
bandwidth.

11: reward← evaluate(transf ormed_state)
12: requests← requests+ 1
13: replay_buf f er← Add(state,action, reward, transf ormed_state)
14: model← update_model(sample(replay_buf f er))
15: if i == update frequency then
16: target_model←model
17: end if
18: if requests == max_requests then
19: done← T rue
20: end if
21: end while
22: end for

frequency, the target model’s weights will match the main model’s. Finally, the number

of requests is incremented and if it has reached the total number of episode requests, the

loop stops and a new episode, with new communication sessions, starts.
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Implementation

In this chapter, the implementation of the solution elements presented in Chapter 3 is

described. The public code of the implementation can be found at https://github.com/

diogomgsimoes/DRL-Network-Path-Selection-For-Multimedia-Traffic-in-SDNs.

4.1 Dynamic weight routing in SRM

The first step consisted in the implementation of a dynamic weight path calculation

protocol by using three distinct link cost equations mentioned in [49] (MHA, DSP and

LIOA). Regardless of the equation, the implementation process was similar.

The selected link cost equations are based on up to three main parameters: the in-

terface’s total bandwidth capacity, its current utilization and the number of transported

flows. While the first two values are gathered from the SNMP ifTable, the latter had to be

introduced into the system.

With the cost metrics chosen, the remaining decision to make was when to update the

interfaces’ cost property. This decision implies major differences in implementation.

4.1.1 Using automation scripts

The first approach regarding the periodicity of the costs’ update was to have it happen at

the start of every new booking. Given this decision, the implementation was conducted

using three different automation scripts:

1. “SRM_AddDcfInterfacesAsResources”: For simplicity, this will be referred to as

Script A. It is the core script in which the routers’ interfaces are added as resources,

specifically FunctionResources, and where their properties can be manipulated.

2. “SRM_NetworkPathSelection”: Script B is responsible for calling auxiliary scripts

that handle the path selection when a booking is being scheduled. It also increments

the number of flows property.

3. “SRM_FlowsNumberDecrement”: Script C is responsible for handling the flows

number decrement when a booking ends.
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Script A is ran manually and receives as input a serialized JSON string, which is then

deserialized into a C# object of the InputData class. In this object, relevant parameters

are specified, such as the capabilities and capacities of the resources, the functions they

embody, the protocol they follow and to which resource pool they will belong. Concern-

ing the model of the interface cost, two parameters are used to refer to ifTable column

indexes, the CostColumnID, which holds an interface’s total bandwidth capacity, and the

BandwidthUtilizationColumnId that refers to an interface’s current utilization level.

{

"Capabilities":[],

"Capacities":[

{

"CapacityValue":55.55,

"ColumnId":null,

"ProfileParameterName":"Bitrate"

}

],

"CostColumnId":2815,

"BandwidthUtilizationColumnId":2816,

"Functions":[

"IP Interface - Tx (Cisco Nexus)",

"IP Interface - Rx (Cisco Nexus)"

],

"ParameterGroupId":1,

"ParameterGroupName":"Interfaces",

"ProtocolName":"CISCO Nexus",

"ResourcePools":[

"Cisco Network"

],

"View":null

}

Figure 4.1: JSON InputData example (from DataMiner).

With the information received from the InputData object, script A instantiates variables

such as the resource pool and functions and fetches the elements that implement the

specified protocol. Then, for each physical interface of those elements, the values of

the SNMP ifTable columns required to calculate the interface’s cost are retrieved. All

these variables are combined in the creation of DCF interfaces, which are then added

as resources if they are not yet registered in the respective resource pool. In case they

already are, using LINQ1’s capabilities, the two resource objects are compared and the

existing resource’s dynamic attributes, such as the interface’s cost, are updated according

to the new resource. Previously, this script’s approach was to replace all existing resources

regardless of their properties, which would cause static user-defined configurations to be

1A C# query syntax.
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lost, such as the connectivity between DCF interfaces. With our approach, this problem

has been surpassed.

The metrics used to calculate an interface’s cost, specifically the current bandwidth

utilization, can take advantage of DataMiner’s trending feature. The GetTrendData method

creates a GetTrendDataMessage request with the DMA Id of the element being processed,

its element Id, the parameter to retrieve and the trending type, in this case, the average

value registered between the also provided start and end times. Then, each cost equation

that uses the available bandwidth metric considers its value as a relationship between

the trend value of the last fifteen minutes, with a weight of 0.25, and the bandwidth

utilization observed at the cost update time, with a weight of 0.75.

While most metrics used to calculate the interfaces costs are retrieved from a device’s

statistics, the number of flows needs to be handled through program logic. When a

resource is added, its number of flows is 0, which will increment and decrement according

to the interface’s utilization.

Script B is responsible for the variable’s increment. During a booking’s scheduling in

the SRM Booking Manager, this script is triggered, allowing the user to select the path he

wants to route his traffic through. The system returns the k-shortest paths between the

user-defined entry and exit nodes (i.e. the encoders and decoders) and the user selects the

checkbox that corresponds to the preferred path. Then, by iterating through that path’s

connections, the interfaces of each node will have their number of flows incremented.

On the other hand, the process of decrementing this variable is very different, hence a

new script had to be created. In the SRM Booking Manager it is possible to set automation

scripts to run when a booking ends, which is the case of Script C. After fetching the ending

reservation instance, if it is a Transport-Cisco booking, the resources that belong to its

transport network, which were stored as a list of GUIDs in the reservation instance upon

scheduling, have the property decremented.

Figure 4.2: Edge resource properties (from DataMiner).

52



4.1. DYNAMIC WEIGHT ROUTING IN SRM

4.1.2 Using a protocol

Script A takes the ifTable’s physical interfaces’ data, creates DCF interfaces and not only

configures their specific properties but also declares their connectivity to each other. Thus,

its execution is a slow process. In the approach detailed in the last section, the intent was

to execute it at booking run time, which caused its scheduling to become inefficient. For

that reason, the script was ported to a protocol format. This way, there was the possibility

to make the update of the resources happen with a given periodicity, making it possible

to minimize the overhead of performing it while scheduling a booking.

A protocol begins with a XML template file where some metadata must be defined,

including the protocol name, in this case, SRM Routing Manager.

Figure 4.3: SRM Routing Manager’s workflow (adapted from [77]).

Besides the periodic link cost update, the protocol also includes the discovery of all

edge nodes (i.e. interfaces of routers that are connected to encoders and decoders). Then,

for each pair of edge nodes, the current shortest path connecting them is calculated and

stored in an UI table parameter depicted in Figure 4.3. This way, when a booking is being

scheduled between certain edges, the best path for that specific pair is always up-to-date

and easily retrievable.

The SRM Routing Manager protocol is structured according to the model from Figure

4.3. The general flow of the protocol is controlled by a timer with a five-minute interval,

at the end of which a group is added to the execution stack. When it comes to this group’s

turn of executing, it will poll an action and run it. Consequently, this action will run a

QAction responsible for impacting the table parameter’s columns, which are, according

to the protocol’s XML definition, parameters on their own.

To recall, before migrating into the protocol solution, the update of the interfaces’

costs was managed by script A. We intended to transfer the logic implemented in that

script to this protocol, however, while in automation scripts the object Engine is used to

make SLNet calls, in protocols, it is replaced by the SLProtocol object. This implied a
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complete code refactoring in order to find methods that deployed equivalent logic to the

script’s.

To calculate the paths, the methodology depicted in Figure 4.4 was implemented.

Retrieve all of the
system's service

definitions

Do they include a
Transport-Cisco block?

Iterate through the service
definitions' Transport-Cisco

blocks and check their edges

NoYes

InputData

Fetches the transport
resources according
to the resource pool

Provides the
resource pool name

Create a
DijkstraSearch object

with the resources

Are they an
entry or exit?

Retrieve the transport
resources connected

to encoders

Retrieve the transport
resources connected

to decoders

Transport service
definitions array

Exit nodes
(decoders)

Entry nodes
(encoders)

Entry Exit

Entry transport
network resources

Exit transport
network resources

Calculate paths considering the
sources, destinations and the

DijkstraSearch object

Add the calculated
paths to the routing
management table

Transport network
resources

Figure 4.4: SRM Routing Manager implementation.

The process begins with the retrieval of every service definition registered in the

system. Then, those service definitions are analysed and if they include a Transport-Cisco

block inside of them, they are added to an array of transport service definitions. For

each of those service definitions, the edges of their Transport-Cisco block are collected

and separated according to whether they correspond to entry or exit nodes. If they are

entry nodes, it means that they are SDI encoders, alternatively, the exit nodes are SDI

decoders. Then, the Transport-Cisco network resources (i.e. DCF interfaces) are collected
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based on their resource pool, which is indicated by the InputData object already presented,

and stored in a list of resources. Using these resources and the entry and exit nodes

discovered, two lists are created that hold the transport resources connected to encoders

and the ones connected to decoders. This is possible due to a property called “Connected

Cisco Interface” that is declared with the same value on both the encoders and decoders

and the interfaces that they are connected to. The resources array is also used to create a

DijkstraSearch object, which specifies the number of paths to calculate, the constraints of

the search, the topology formed by the available resources, amongst other attributes. With

the required inputs gathered, the Dijkstra algorithm can be executed and the list of path

objects returned for each source/destination combination is saved. Using the SLProtocol

object’s FillArray method, the SRM Routing Manager’s table is populated with the service

definition Id (column “Service Definition ID” of the routing management table), its name

(“Service Definition Name”) and the paths calculated (“Resources in Reservation”). These

path objects include the source, destination and the actual path as attributes.

Figure 4.5: Routing management table (from DataMiner).

To finalize the protocol’s task, the path selection at booking scheduling and the num-

ber of flows increment, which were performed in script B, were moved to a different

script. In its current state, when a customer is scheduling a booking, the path selection is

dismissed, the best path for the specified endpoints automatically appears in the UI, and

the interfaces in that path have their number of flows property incremented.

4.2 Dynamic weight routing in the SDN simulation

Recollecting, this simulation was created to test the link cost modifications implemented

in SRM in an environment that is reactive to ongoing services (i.e. that reflects active

services’ bandwidth utilization in the network links’ available bandwidth), which was

not the case of SRM as explained in Section 3.1.2. Furthermore, this system will also be

adapted to test the DRL-based solution and compare it to the dynamic weight routing

approach.

To implement the desired behaviour, the developed system required four components:

a Ryu controller script, a Mininet simulation script that loads a topology from a text file, a

path computation script and a text file that works as a data transfer mechanism between

the controller and simulation scripts.

The controller is constantly monitoring the network state (i.e. the available bandwidth

and the number of flows occupying each link). The update of these metrics is performed

every five seconds. After their values are changed, multiple link cost equations can be

applied in the dynamic weight routing algorithm. These costs are then used in the path
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Figure 4.6: Ryu controller and Mininet API integration.

computation script, which builds a graph from the topology text file and the received

link weights and calculates the current shortest path between each pair of hosts in the

network using NetworkX2. These paths are then stored in the controller. The transport

requests are originated from the simulation script that, after the topology loading, will

perform Iperf commands to inject traffic into the network and simulate video streams.

Using threads and timers, the active communications (i.e. active Iperf sessions) are kept

updated in a list data structure. This list will also be monitored in a thread that will

update the data transfer text file every time changes occur. This will let the controller

know which hosts are communicating and, consequently, allow it to not modify those

paths during an Iperf, in resemblance to SRM’s bookings.

4.2.1 Mininet network

The network is built using Mininet’s Python API. First, a network object was created

from the Mininet class, specifying the connection to a remote controller, the switch type

as OVSSwitch
3 and the link type as TCLink, which allows for the definition of each link’s

bandwidth capacity, delay and loss. Then, a text file describing each connection of the

topology is read. Each line details a connection from either host to switch or between

switches, as well as the bandwidth of the connecting link, while the delay was set to 1

millisecond and the loss to 0 on every link. While each encountered host and switch

are added using the network’s addHost and addSwitch methods, those same devices are

connected through the addLink function. Then, the controller is added, and the network

is started.

2A Python package used to create and manipulate networks. It offers a vast amount of built-in function-
alities, such as the computation of shortest paths.

3“Open vSwitch is a production quality, multilayer virtual switch licensed under the open-source Apache
2.0 license.” [83]
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4.2.2 Ryu controller

For the Ryu controller, a proactive approach was followed. This translates to the pre-

installation of flow rules in the switches before traffic arrives. Such approach allowed

for a significant reduction of the network’s setup time comparing to the Media Access

Control (MAC) learning4 alternative, enabling the emulation of complex and large-scale

topologies. Thus, at the controller’s start of operation, the topology is retrieved from the

same text file mentioned in the last topic and used to build the following dictionary data

structures:

1. adjacency: Holds pairs of connected switches as keys and the port through which

packets must leave the first switch to reach the second as value.

2. host_to_switch_port: A nested dictionary that maps a host’s MAC address and a

switch’s Id to the switch port that connects them.

3. costs: Uses a pair of switches as the key and the cost of the link that connects them

as the value.

4. number_flows: Maps pairs of switches to the number of flows occupying their con-

necting link.

Furthermore, a traffic monitoring system is assembled using two methods, _monitor

and _request_stats. Every five seconds, they send an OFPPortStatsRequest message to each

datapath registered in the controller. Switches are connected to the controller and added

to a list of datapaths by a function decorated with the OFPStateChange event. This method

adds and removes datapaths from the list as they connect or disconnect from the con-

troller. When a switch is establishing a connection with the controller, activating the

OFPSwitchFeatures event, a table-miss flow entry is added, whose importance was detailed

in Section 2.1.3.

The switches that receive the stats request from the monitoring system will return a

message with a stats object. For each stat received whose port matches a port saved in the

adjacency dictionary, the switch pair link’s available bandwidth is calculated, as well as

its cost and number of flows. Due to changes in the links’ costs, the paths between host

pairs must be updated. Once the correct paths are calculated, the existing flow rules are

uninstalled from the switches and replaced with the most recent paths.

Since this controller is proactive, it does not receive packets from the datapaths. This

means that, besides installing the required routing rules, it is also needed to pre-install

ARP rules to both fill the hosts’ ARP tables and let them know where to reach their

destinations and prevent errors such as broadcast storms. This is done in the simulation

script right after the topology is built.

4The name given to the learning of MAC addresses reachability through information in the arriving
packets.
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4.3 Deep Reinforcement Learning approach for path selection

A DQN on its own, as mentioned in Section 2.5.4.2, can be unstable. Therefore, in order

to stabilize the learning process, the replay buffer and target network techniques were

used. Furthermore, the enhanced DDQN and Dueling DQN, algorithms presented in

Section 3.4, were implemented and compared to the basic DQN.

4.3.1 DRL ecosystem

To train these agents, three building blocks are required:

1. Environment (RoutingEnv): Manages the state, action and reward variables fed to the

agents to train on.

2. Environment engine (DRLEngine): Provides the environment with the required logic

to manage the state, action and reward variables.

3. Topology file: Holds the links (i.e. source, destination and link capacity) that char-

acterize a topology.

The interaction between these parts is described in Figure 4.7.

In the green block, the DRLEngine python class is represented. Inside, the grey block

enclosures what belongs to the init method of this class. This method begins with the

initialization of two data structures, the communication_pairs list, containing all the pairs

of hosts that will be communicating during the training process, and the state_helper

dictionary, which will be explained further along this section. With the input of the

topology file, the upload_topology method creates two more dictionaries that represent the

links’ bandwidth capacities (link_bw_capacity) and their current available (i.e. unbooked)

bandwidth (current_link_bw). On the other hand, the build_graph method also uses the

topology file, but to create a NetworkX graph (graph). Lastly, using the graph object,

the calculate_paths method will populate a dictionary (paths) using every pair of hosts

combination as key and the k-shortest paths calculated with the NetworkX package as

value. The blue block inside DRLEngine is responsible for interacting with the RoutingEnv.

On the right, the blue block RoutingEnv depicts the main methods of such class. Its init

method initializes the engine, control variables and the DRL entities observation_space,

action_space and state. The first two are defined according to two OpenAI Gym5 package’s

standard space types, the Box, which is described using the maximum and minimum

values a state can have, and the Discrete, which is a set of integers {1, ..., k}, where k is

the number of possible paths between edges as described in Section 3.6. Additionally,

the state is equal to the result of a DRLEngine method (build_state) that returns a numpy6

multidimensional array with dimensions (N,N,k,1), where k and N are the variables

5OpenAI Gym is a reinforcement learning toolkit for developing and testing algorithms.
6A Python package that offers various mathematical functions and data types.
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Figure 4.7: Interaction between the environment, the environment engine and the topol-
ogy file.

introduced in Section 3.6, which is built considering the paths and current_link_bw data

structures. Every time this method is called, the dictionary state_helper is updated with

the total bandwidth capacity of the bottleneck link of a path, which is used in the state

definition.

During the training phase, the environment’s method step is called repeatedly. Af-

ter receiving an action from the agent, the engine’s make_reservation function is called

to simulate a service reservation. To do so, it will sample a pair of hosts from the

communication_pairs list and fetch the path that connects the nodes of the sampled pair

and has the index of the received action. To manifest this reservation, the link bandwidth

of each connection between switches in the selected path is decreased by the request

bandwidth value. Afterwards, the step method requests an updated state to evaluate the

effect of the placed reservation, using it to calculate the reward according to equation 3.3.

To calculate the available bandwidth percentage required for the reward computation, the

step method consults the engine’s state_helper data structure and divides the bottleneck

link’s available bandwidth by its capacity. When the total number of requests matches

the current episode request index, the step method ends with the return of the variables

59



CHAPTER 4. IMPLEMENTATION

state, reward, done and info
7.

Between episodes, the method reset is invoked to clear the environment’s control

variables. This triggers the reset of the engine’s control variables as well. Additionally,

the state is returned.

This architecture is used to train the agents, however, to evaluate their performance

after being trained, we resort to a variation of the Ryu controller ecosystem introduced in

Section 4.2. The methodology used in that section’s proposal promotes the recomputation

of paths every five seconds, since the link weights are updated with that same frequency.

As mentioned earlier, such approach is unbearable for DataMiner due to the computa-

tional cost of that operation. However, with the solution implementation described in

this section, such update is not required. This is because Dijkstra is only executed once,

at the start of the algorithm’s training, to compute the path possibilities between hosts.

Additionally, this computation is based on an unweighted Dijkstra, which only considers

the number of hops to discover the shortest paths. Furthermore, the state of the network

is kept updated in a centralized data structure that controls the bandwidth availability of

the network devices. Thus, the agent learns which paths to choose based on the variations

in this data structure. This approach also dismisses the need to update interfaces in the

SRM environment. Additionally, to test the DRL agents developed, the environment’s

simulated requests are replaced with Iperf sessions.

4.3.2 Worst-case scenario

The definition of the communicating hosts plays a huge rule in the agents’ training process

efficiency and the performance of the resulting algorithm. To optimize these aspects, an

algorithm to determine the worst-case traffic scenario was developed and used for both

training and simulating the agents.

In this algorithm, the concept of centrality8 is explored, both for nodes and its abstrac-

tion for edges. Thus, the NetworkX package was used to fetch a dictionary that holds

tuples (e.g. "(“S10”, “S15”)") as keys and the edge’s centrality ranking as value. From

this data structure, the k paths calculated for each host pair are iterated by and a score is

assigned to each of them. For each path, this score will be the sum of the centrality of its

links divided by the maximum edge centrality value in the network. The resulting dictio-

nary is then sorted by decreasing value and the host pairs that cause the most congestion

can be extracted from the top item and onwards. This is useful to train robust algorithms

and simulate high load situations where the routing solutions can be thoroughly tested.

7It is a gym environment standard to report something about the step or episode. However, it was not
used in this implementation and always holds the value “{}”.

8Centrality refers to a ranking that is assigned to nodes based on their position in the network. In this
case, a node that is included in the paths that connect multiple host pairs has an higher centrality ranking
than a node that participates in a path between only two hosts.
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4.3.3 Agents

The implementations of the three chosen agents (DQN, DDQN and Dueling DQN) are

based on those from [69], [84] and [85], respectively, and were done using PyTorch, a ML

framework.

The agents interact with the DRL ecosystem presented in Section 4.3.1 through the

step and reset methods. At each training step, the agent selects the action for the service

being initiated, sends it to the DRL ecosystem and receives the updated state, the reward

of the chosen action and a flag to indicate if the episode is over. If it is, it resets the DRL

ecosystem. Internally, the DRL ecosystem manages the remaining data structures.

For DQN and DDQN, the network layers follow the structure summarized in Table

4.1 and illustrated in Figure 4.8.

Table 4.1: DQN and DDQN network’s layers.

Type Input Size Output Size Activation Function

Linear STATE_SIZE l1_out ReLU
Linear l2_in l2_out ReLU
Linear l3_in l3_out ReLU
Linear l4_in N_ACTIONS -

I1

I2

ISTATE_SIZE

N1

N2

N3

Nl1_out = l2_in

Nl2_out = l3_in Nl3_out = l4_in

NN_ACTIONS

N1 N1

N1
N2 N2

Figure 4.8: DQN and DDQN architecture.

Given its architecture, which separates the value and advantage functions, the Dueling

DQN’s layers are organized differently, as Table 4.2 and Figure 4.9 demonstrate. In
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Figure 4.9, the green blocks correspond to the value segment of the Dueling DQN and

the red blocks to the advantage. After calculating the state’s value and the advantage

of each action, the results are aggregated and the Q-value for each state-action pair is

generated (in blue). These Q-values are calculated as the sum of the value function and

the respective advantage subtracted by the average advantage of all actions.

Table 4.2: Dueling DQN network layers.

Type Input Size Output Size Activation Function

Linear STATE_SIZE l1_out ReLU
Linear l2_in l2_out ReLU

Linear (Value) l3a_in l3a_out ReLU
Linear (Value) l4a_in 1 -

Linear (Advantage) l3b_in l3b_out ReLU
Linear (Advantage) l4b_in N_ACTIONS -

I1

I2

ISTATE_SIZE

N1

N2

N3

Nl1_out = l2_in

Nl2_out =

l3b_in

N1

N2

Nl2_out =

l3a_in

N1

N2

Aggregation

V(s)

Nl3a_out =

l4a_in

N1

N2

Nl3b_out =

l4b_in

N1

N2

A(a1)

A(a2)

A(aN)

Q(s, a1)

Q(s, a2)

Q(s, aN)

Figure 4.9: Dueling DQN architecture (adapted from [86]). In this figure “N” stands for
“N_ACTIONS”.

In all cases, the “STATE_SIZE” is equal to the size of the flattened state numpy array

and “N_ACTIONS” corresponds to the number of possible actions the agent can choose
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from (i.e. the number of possible paths between each hosts pair). The sizes of the inner

layers are dependent on the topology the algorithm is applied to. If the network size

increases (i.e. additional edges and possible paths between them), the state flattened

array will contain more values, which means that more nodes will be used in each layer.

Additionally, the chosen activation function for every layer in the models is ReLU.

The agents’ performance depends on the training process they undergo. This process

is reliant on multiple parameters that must be optimized for the environment they are

intended to manage. Those parameters include:

1. α: the algorithm’s learning rate.

2. Initial ϵ: the initial exploration rate.

3. Final ϵ: the final exploration rate.

4. γ : the reward’s discount rate.

5. Replay buffer size: the number of observations stored.

6. Batch size: the number of observations sampled from the replay buffer that are used

to update the agent’s policy.

7. Update steps: the periodicity with which the target network is updated.

8. Epochs: the number of episodes that the agent needs to understand the environ-

ment.

The update of the networks’ weights with the batch of observations sampled from

the replay buffer is based on the MSE loss function. Furthermore, the optimizer selected

to minimize the error of that loss function was Adam, an adaptive stochastic gradient-

descent-based algorithm [87].
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Results

This chapter contains the results obtained during the simulations of the developed DRL

routing solution, the dynamic link cost algorithms and the static weight Dijkstra baseline.

The chapter is divided into sections, which will cover the development and simulation en-

vironment used in this work, the metrics selected to evaluate the algorithms’ performance,

the used topologies and the deployed DRL environments, and the obtained results.

The three DRL agents developed (DQN, DDQN and Dueling DQN) were trained on a

machine with the following specifications:

1. Intel(R) Core(TM) i5-10400F CPU @ 2.90GHz processor,

2. 16 GB RAM,

3. NVIDIA GeForce GTX 1660 SUPER graphics card,

4. 64-bit operating system.

Once trained, the agents were tested in the Ryu controller, Mininet and Iperf en-

vironment against the remaining routing approaches, which do not require a training

phase. This simulation system is implemented in an Ubuntu VMWare virtual machine

with 4 GB dedicated RAM and two dedicated processors from the main system. DL algo-

rithms greatly benefit from strong processors and dedicated graphics cards to speed up

their training phase. This information is useful to understand that, despite the training

duration in the presented system being feasible in a real-world situation, using better

hardware could still greatly reduce it.

5.1 Evaluation metrics

To compare and evaluate the different solutions, three metrics have been selected:

1. Flow’s average bitrate, retrieved through Iperf reports.

2. Flow’s average Round-trip-time (RTT), recorded by Iperf reports.

64



5.2. TOPOLOGIES

3. Number of uncongested flows. This value is calculated by counting the number of

flows that show, when rounded, an average bitrate equal to the amount requested.

Abstracting from the simulation environment, this measure represents the number

of bookings that meet the requested requirements.

These metrics have a strong influence on each other. When a network becomes con-

gested, the bitrate of a flow decreases and the average RTT increases. Moreover, that same

bitrate drop makes the number of uncongested flows also decrease. This happens because

an increasing number of flows to transport in the same links causes an increase in packet

loss. Since traffic is TCP, this will stop the sender’s packet transmission until the lost

packets are re-transmitted. Network congestion is also reflected by high RTT levels that

are caused by packet queuing in the routers that anticipate congested links.

5.2 Topologies

In the following subsections, the two topologies used in this study are presented.

5.2.1 ARPANET

The first network is ARPANET, a pioneer topology for packet-switching networks and

one of the first to implement the TCP/IP protocol stack.
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S2
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H4

S4
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S8

H6

S11

H7
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S17

H11

S18

H12

S19

H13

S20

S6

S5

S7

S10

S9

S14

S15

Figure 5.1: ARPANET topology with blue entry nodes, red exit nodes and green switches
(adapted from [88]).
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To load the topology from Figure 5.1 to Mininet, a text file containing the different

links was written. Each line of this file is a space separated string, such as “S1 S4 100”,

which means that switch 1 is connected to switch 4 through a link with a capacity of 100

Mb. Entry and exit nodes were added to the network in the form of hosts and connected

to selected switches.

Thus, this network contains 13 hosts, 20 switches and 45 links. Given the network

dimensions, the DRL environment state dimension is [N,N,k,1], with N = 13 and k = 5.

The number of paths between each host was chosen through a manual analysis of the

network. A state described by a numpy array with such dimensions, when flattened, is

converted to a 1-dimensional numpy array with [13×13×5×1] = [845] size. Tailoring the

dimensions of the DRL agents’ DNNs to this size, the resulting sets of layers according to

the structures introduced in Sections 4.1 and 4.2 are presented in Tables 5.1 and 5.2.

Table 5.1: Agent’s networks layers (DQN and DDQN).

Type Input Size Output Size Activation Function

Linear 845 1500 ReLU
Linear 1500 700 ReLU
Linear 700 200 ReLU
Linear 200 5 -

Table 5.2: Agent’s networks layers (Dueling DQN).

Type Input Size Output Size Activation Function

Linear 845 1500 ReLU
Linear 1500 700 ReLU

Linear (Value) 700 200 ReLU
Linear (Value) 200 1 -

Linear (Advantage) 700 200 ReLU
Linear (Advantage) 200 5 -

5.2.2 Real-world media network

Since the work in this dissertation was developed in partnership with Skyline Commu-

nications, access was granted to a media network topology that belongs to a real service

provider. For the sake of simplicity and to maintain its confidentiality, this network will

be called Network RW in the remainder of this document. Its structure is depicted in

Figure 5.2.

This topology is uploaded to Mininet in the same format as ARPANET is. In this case,

the hosts represent network edges, which are frequently connected to SDI decoders or

encoders. Such topology poses as a scale up from ARPANET, containing 10 hosts, 98

switches and 131 links.
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Figure 5.2: Network RW topology with blue entry nodes, red exit nodes and green
switches.

Furthermore, the DRL environment state dimension is [N,N,k,1], with N = 10 and

k = 10. Such state, when flattened, is converted to a 1-dimensional numpy array with

[10× 10× 10× 1] = [1000] size. The resulting sets of layers are depicted in Tables 5.3 and

5.4.

Table 5.3: Agent’s networks layers (DQN and DDQN).

Type Input Size Output Size Activation Function

Linear 1000 1800 ReLU
Linear 1800 900 ReLU
Linear 900 300 ReLU
Linear 300 10 -

5.3 Training settings

To optimize the DRL algorithms for this application framework, four distinct environ-

ment setups were designed, picturing different customer profiles.

Setup 1 uses fixed settings per training episode, which recreates a scenario where the

network use is patterned. Therefore, in this setup, it was defined that each episode will

have 32 concurrent requests and that each will require a bandwidth of 15 Mb. These
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Table 5.4: Agent’s networks layers (Dueling DQN).

Type Input Size Output Size Activation Function

Linear 1000 1800 ReLU
Linear 1800 900 ReLU

Linear (Value) 900 300 ReLU
Linear (Value) 300 1 -

Linear (Advantage) 900 300 ReLU
Linear (Advantage) 300 10 -

requests are selected from the worst-case scenario computations. Thus, not only the

number of requests but also the sources and destinations of those requests remain the

same across the whole training process. To recall, these requests are emulated strictly by

a decrease of available bandwidth along their assigned paths, since the training process

occurs without the integration of the SDN controller and Mininet system, as well as Iperf

simulated services.

In order to make the agents more robust and prepare them for irregular network

uses, some randomness was added to the training settings. Setup 2 does that by varying

the number of requests per episode to a random number between 1 and the number of

requests per episode used in the first setup. All other settings remained unchanged.

Setup 3 simulates a tailored network use where some variation may still occur by

turning this completely random approach to the number of requests per episode into a

smoother variation that uses a normal distribution with a central value of 24 requests.

Moreover, the bandwidth used by each communication session is selected randomly from

a set of four possibilities: 5, 10, 15 and 18 Mb.

In the first three scenarios, the order of the hosts communication requests varies,

however, the requests always have the same endpoints. Setup 4 maintains the normal

distribution to determine the number of requests per episode and the bandwidth ran-

domization from scenario 3, and introduces host pairs selection for requests by sampling

from two lists of possible sources and destinations.

In real scenarios, using the DRL algorithms in DataMiner, either an historical record

of bookings will be used or the client will provide information (i.e. expected number of

concurrent bookings, average bitrate per booking, network topology, number of desired

paths per host pair, amongst others) to allow for that same parameter tailoring in the

training environment setup.

5.4 DRL agents’ training

The agents’ performance depends on the training process they are submitted to. This

process is reliant on multiple parameters that must be optimized for each topology the

algorithm is applied to.
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5.4.1 Agents’ learning process in ARPANET

In ARPANET, the training parameters, for all the agent implementations, were configured

as follows:

Table 5.5: Agents parameters in ARPANET.

Parameter Value

α 0.001
Initial ϵ 0.5
Final ϵ 0.01

γ 0.99
Replay buffer size 50000

Batch size 256
Update steps 16

Using this set of parameters, the agents were trained in the four presented setups.

Given the increasing complexity of the different setups, the remaining parameter, which

is the number of epochs, will vary according to the setup configurations. Since setup 1

uses fixed settings, the agents are able to understand the environment faster. However,

in the three remaining agents, more epochs pass before the agents stabilize their rewards.

This increase is more pronounced in setup 2. To summarize, the four setups use 4000,

7000, 5000 and 5000 epochs, respectively. These values were defined by experimentation.

The evolution of the reward along those epochs will be here presented in the form of

plots, which will have the rewards as a function of epochs. However, the first setup will

use a reward sum for each epoch (i.e. the sum of an epoch’s total rewards), while the

remaining setups use the average value of rewards in each epoch. This is due to the fact

that the variation in the number of requests per epoch greatly affects the sum of its request

rewards and, thus, impacts the ability to see the agents’ learning tendencies. By using

the reward average, this problem is diminished. These training sessions took, on average,

from 3 to 5 hours, with DQN and Dueling DQN being on the lower end of the spectrum

and DDQN on the upper. In order to smoothen the plots, averages of batches of epochs

were used. Thus, the real horizontal axis value of each plot is found by multiplying it by

the size of the batch, indicated in the vertical axis.

From the four graphs listed between Figures 5.3 and 5.6, it is possible to conclude

that the DDQN agent has the best performance all around, while the Dueling DQN does

not perform significantly or consistently better than the DQN, despite its theoretical

enhancements presented in Section 3.4.

In the first setup, the three agents can learn and stabilize their return values, which

happens earlier for both DDQN and Dueling DQN, when compared to DQN. However,

while they all begin their training with similar return values (i.e. the variation is mostly

due to randomly assigned initial weights), the DDQN stabilizes the episodes’ returns at

nearly -425, a significant improvement over DQN and Dueling DQN, both stabilizing
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Figure 5.3: Comparison of training results between agents in environment setup 1.
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Figure 5.4: Comparison of training results between agents in environment setup 2.
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Figure 5.5: Comparison of training results between agents in environment setup 3.
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Figure 5.6: Comparison of training results between agents in environment setup 4.

71



CHAPTER 5. RESULTS

at around -525. These values are negative due to the chosen reward function and its

application to a worst-case scenario, where even if the best paths for each request are

chosen, some links will always be overly booked since multiple requests are concurrently

being supported.

The following three setups demonstrate the average reward of each request in an

episode. In these configurations, the resulting plots cannot be as smooth as the first,

since the variable number of requests per episode impacts such average. For instance,

considering an episode with three requests, followed by an episode with ten. To the three

requests in the first episode, bad actions can be chosen (e.g. the best path can be the

one at index 0 and the agent returned 4 instead, for each of the requests), however, three

requests have a low impact on the network state and, thus, even though the actions were

not the best, the reward can be high. On the other hand, given the request concurrency,

if the episode has ten requests, since the actions of the previous requests impact the state

on a current request, the reward limit of request ten is not the maximum possible but the

current maximum considering the already active requests. For this reason, even though

the plots should, and do, still show an increasing tendency, it was expected some higher

variance in the results. Despite these characteristics, DDQN continued showing better

results than the remaining agents, achieving higher average request rewards per episode.

When the results obtained in setup 1 were presented it has been said that the rewards

are negative due to the use of the worst-case scenario requests. In this setup’s episode

requests, the reward is positive in the beginning and starts decreasing as more flows are

allocated due to the increase in congestion. Since our reward function is not linear and

severely penalizes congestion, the requests allocated last result in exponentially lower

rewards. In setups 2 to 4, the average of the episodes’ requests’ rewards presented are

positive. This occurs because the number of requests per episode is lower, leading to

lower congestion and, consequently, higher rewards. This approach does not suffer as

much from an episode’s last requests, which were the ones with the lowest rewards and

that greatly decreased the total rewards achieved in setup 1.

The performance differences between the agents can be explained by their distinct

behaviour as covered in Section 3.4. DDQN’s greater performance can be related to its

use of a double estimator for Q-values, which prevents some actions from overshooting

and getting constantly selected. This provides a better exploration of the network and a

finer tuning of the agent which, in this case, is highly recommended because the order

in which requests happen in an episode, the amount of requests it uses and the request

specifications are variable. With this increased exploration capability, the agent will

be able to test different actions when others have already assumed the best action, an

assumption that might be flawed for the specific network state and incoming request.

Overall, the DDQN agent is more robust. As for Dueling DQN, its decoupling of the state

and action values’ prediction facilitates, in some cases, the learning of action values and

improves its performance in comparison to DQN.
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5.4.2 Agents’ learning process in Network RW

In the second topology, only setup 1 was tested, not just because it is the closest to what

will be applied in real-world situations, but also to keep the study concise. Given the

distinct network dimensions, also the environment specifications are different in this case

(i.e. 24 requests instead of 32 with a 20 Mb requirement instead of 15 Mb). However, the

agents’ parameters are equal to ARPANET’s (Table 5.5). Using the training specifications

previously mentioned, the agents took 4000 epochs and between 6 to 8 hours to learn the

environment.

0 5 10 15 20 25 30 35 40
Epochs

160

180

200

220

240

Su
m

 o
f t

he
 e

pi
so

de
s' 

re
qu

es
ts

 re
wa

rd
s i

n 
ba

tc
he

s o
f 1

00 DQN
DDQN
Dueling DQN

Figure 5.7: Comparison of training results between agents in environment setup 1 and
Network RW.

Figure 5.7 exhibits the training process of the three agents in Network RW. In this

case, the Dueling DQN shows a significantly better reward tendency than what it did in

ARPANET and than DDQN. This can be explained by the topology itself, which allows

for the Dueling DQN to better benefit from the state action values separation. Moreover,

DDQN is still superior to DQN.

Contrarily to what was observed in the learning processes of the different agents

in ARPANET and using setup 1, the rewards achieved in Figure 5.7 are positive. This

indicates that the agents were able to assign paths that are better at avoiding congestion

than in ARPANET. This phenomenon will be further analysed, but it can already be

understood that Network RW has a topology that is more suitable for load balancing

than ARPANET. Additionally, the different environment settings, such as the number
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of requests per episode and their bandwidth utilization, might also positively affect the

agents’ performances.

5.5 Performance comparison between routing solutions

This topic will be divided into four segments:

1. Comparison of static weight Dijkstra to the dynamic link weight techniques studied.

2. Performance evaluation of the three agents trained in ARPANET and the four setups

presented, measured against static weight Dijkstra.

3. Assessment of the best agent’s suitability to unknown environment conditions.

4. Performance evaluation of the three agents trained for setup 1 and Network RW,

compared to static weight Dijkstra.

5.5.1 Link cost optimization techniques

The first simulations conducted involved two selected link cost equations from [49], DSP

and LIOA, which were compared to static weight Dijkstra, specifically MHA. The fol-

lowing results were obtained using 32 180-seconds-long Iperf requests in TCP with a

requirement of 15 Mbits/s bitrate.

Table 5.6: Comparison between link cost optimization algorithms and Dijkstra (MHA).

Metric MHA DSP LIOA
Bitrate (Mbits/s) 9.99 10.50 11.04

RTT (s) 0.331 0.349 0.314
Uncongested requests 6 6 7

From Table 5.6, which compiles the results of Table I.1, found in Annex I, it is possible

to understand that both dynamic solutions show a slight improvement over Dijkstra’s per-

formance. This is explained by how DSP and LIOA can better balance the network traffic

across different paths, avoiding the concentration of all requests in the same popular

links. As such, this will result in higher bitrate levels because there will be less conges-

tion. However, these approaches cannot fully explore the network’s resources capabilities,

which makes them unable to significantly improve on the number of supported requests

without congestion metric. Additionally, this solution does not fit well into DataMiner’s

workflow, since the periodic interfaces’ weight update introduces an undesirably high

computational load into the system, as mentioned earlier in this document.

5.5.2 DRL versus Dijkstra in ARPANET

In this section, the performance of every DRL agent and setup combination is assessed

using the settings presented in Section 5.5.1. With the goal of keeping the text organized
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and uncluttered, the Iperf report results of the DRL agents simulations are enclosed in

tables found under Annex II. Comparison graphs are presented here.
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Figure 5.8: Average bitrate of each agent in each setup and Dijkstra’s.

After an analysis of the results, it can be concluded that DDQN is the best performing

agent across all setups, as was expected due to its better performance in the training

phase.

Regarding the average bitrate, in setups 1 and 2, all the agents outperform Dijkstra.

Additionally, between agents, there is not much difference. In setups 3 and 4, however,

DQN starts to fall back from the remaining agents’ performances and to match Dijkstra’s.

In terms of average RTT, the trend continues. In setups 1 and 2, the DRL agents are

much better than Dijkstra but tend to deteriorate in setups 3 and 4.

The last evaluation metric is the number of uncongested requests. This value’s opti-

mization is the primary goal of this work. In regard to such metric, a strong increase over

Dijkstra, specifically in the DDQN agent, was achieved in setup 1. The DQN and Dueling

DQN agents are also capable of outperforming the baseline routing mechanism in almost

every scenario expect setup 4 (DQN).

A common trend for all metrics and agents is the algorithm degradation in setups 3

and 4, with emphasis in the RTT values. This can be explained by the introduction of

bitrate variation in the agents’ training. Since bandwidth is the indicator of the network

state used in the DRL environment, changes to its value impact the performance of the

agents by making it more difficult for them to understand the underlying network. Setup
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Figure 5.9: Average RTT of each agent in each setup and Dijkstra’s.
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Figure 5.10: Number of uncongested requests of each agent in each setup and Dijkstra’s.
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1 is also clearly the most favourable environment for the algorithms. Setup 2, despite

using a delimited random number of requests per episode, still manages to achieve better

results than the last two, which supports the idea of the bitrate requirement per request

having a stronger influence on the agents’ performance than the number of active sessions.

Based on these observations, it is right to state that this DRL approach to routing

is most suitable for patterned use networks, where the communication sessions usually

occur between the same endpoints and maintain their requirements (i.e. bitrate).

5.5.3 DDQN’s performance in unknown environment conditions

Although the results shown before demonstrate the algorithm’s capability to surpass

Dijkstra’s performance, the requests used to train it are the same as the ones used to test

it. Even though this is fairly close to what will be Skyline’s reality, simulations were also

ran on different settings to evaluate the algorithm’s adaptability. Such settings are:

1. 14 requests.

2. 15 Mbits/s bitrate per request.

3. Hosts 1 and 2 as sources and the hosts 6, 8, 9, 10, 11, 12, and 13 as destinations.

For this test, only the best agent/setup pair was used (i.e. DDQN in setup 1).

Table 5.7: Performance comparison between DDQN (setup 1) and Dijkstra.

Metric Dijkstra DDQN
Bitrate (Mbits/s) 9.93 10.49

RTT (s) 0.365 0.371
Uncongested requests 1 4

From these results, it can be understood that even for unseen data, the developed

algorithm can still make decisions that make it produce better results than Dijkstra.

This test is purely for reference. There can be situations where the best course of

actions is always to choose the path with index 0 between two hosts, which corresponds

to the path Dijkstra would use for that data transport. However, Dijkstra does not scale

that well when congestion or network size increases, which gives a DRL agent a lot of

room to explore.

5.5.4 DRL versus Dijkstra in Network RW

In Table 5.8, the DRL agents’ performance in Network RW and setup 1’s environment

specifications is presented and can be used to understand this routing approach’s ad-

equacy to real-world situations. Such results were obtained through 24 Iperf sessions

between the source hosts and every destination host in the network, with a bitrate re-

quirement of 20 Mbits/s.
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Table 5.8: Performance of the DRL agents compared to Dijkstra in Network RW.

Metric Bitrate (Mbits/s) RTT (s) Uncongested requests
Dijkstra 14.84 0.412 2

DQN 18.88 0.192 12
DDQN 19.12 0.187 15

Dueling DQN 19.20 0.166 16

It is clear that all DRL agents greatly exceed Dijkstra’s performance. In all the devel-

oped agents, the average bitrate of the Iperf requests increases significantly and reaches

levels close to their bitrate requirement. This is possible due to the placing of flows that

start after others are active in more available paths, balancing the load evenly across the

network and allowing the links to not get congested. Consequently, the RTT of these flows

also decreases. These results prove the algorithm’s applicability to real-world situations,

since not only the network capacity is maximized (i.e. more uncongested bookings), but

each request’s bitrate and RTT are optimized.

Additionally, the results achieved in Network RW reveal a much more pronounced

improvement than in ARPANET. Network RW, since it belongs to a network operator,

is built to enable load balancing. Thus, between two endpoints, more paths with the

same length (i.e. number of hops) will exist, than in ARPANET. Furthermore, with the

baseline routing algorithm, even though five paths could all have the same cost (i.e. the

same length), the chosen path would still always be the first returned in a Dijkstra search.

This DRL solution, on the other hand, makes better use of the network topology and

distributes traffic along multiple paths. Moreover, Network RW, given the larger scale of

the network, has more path possibilities between nodes, hence the use of k = 10, which

also spikes network exploration and increases its usability.
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Conclusions and future work

6.1 Final remarks

This dissertation explores new approaches to multimedia traffic routing in a SDN environ-

ment. An iterative approach was followed for the developed work. First, dynamic weight

routing algorithms were studied and applied to DataMiner. However, these solutions

entailed a few downsides, such as the high computational load of updating the routers’

interfaces weights and the possible naive use of booked links with low current band-

width utilization. Ultimately, a DRL algorithm was proposed that considers resources’

contracted capacity in the allocation of traffic flows in a distributed and efficient manner.

This way, the full capacities of a network’s resources can be explored while attempting to

increase the number of supported uncongested bookings and, consequently, optimizing

the average bitrate and end-to-end delay verified in active bookings at a certain time

period. This simple and computational efficient solution is expandable, however, the

algorithm hereby presented is already capable of outperforming both static link cost solu-

tions and dynamic link cost optimization algorithms (e.g. DSP and LIOA). These results

were obtained on topologies built with Mininet, using a proactive Ryu controller to install

forwarding rules and Iperf to inject traffic flows into the network. By analysing the Iperf

results, one can conclude that all DRL agents developed can outperform the remaining

routing optimization techniques in the simulated scenarios, both in the number of uncon-

gested bookings, and the average bitrate and end-to-end delay metrics. Such approach

thrives in networks with a well-tailored use, is scalable and can be applied to all sorts of

network topologies.

6.2 Future work

The developed DRL algorithms are, on their own, capable of selecting accurate paths for

given network topologies, considering network utilization levels. However, this disserta-

tion’s work is merely a baseline tool that can be further modified and optimized. There

are several possible approaches on how to progress from this project onwards, which are
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proposed in the following subsections.

6.2.1 Request tailoring

An important factor that impacts the training and, consequently, performance of the DRL

agents is the set of requests used during those processes. The closer the two are, the better

the agents will behave. Thus, one way to achieve this is through communication between

Skyline and their customers. This algorithm will be incorporated in SRM so, when Sky-

line sells its software to a customer, besides retrieving the customer’s physical network

topology specifications, it is crucial to communicate and tune important parameters that

have been mentioned earlier in this document. An alternative to this would be to have an

historical record of services that could be analysed and used to create request templates

for training purposes.

6.2.2 Traffic forecasting

This topic, covered in Section 2.3, can also be a great addition to this solution. One

way to use it is to apply it to the services’ history and have it predict new requests to

be used to train the DRL agents in an online fashion. Not only that, but using traffic

forecasting, it could be feasible to have predicted future services impact a path decision

that is being made at a certain moment. If there was a way to reflect that expected

upcoming communication in the environment state, the achieved performance could be

even better than it is right now.

6.2.3 Complex neural networks

To accomplish what was just proposed, the use of more advanced neural network layers,

such as RNNs or CNNs, could be required. Even in the current solution, a refined neural

network architecture could be explored to see if better results would be achieved.

6.2.4 Reward function

A major component of a DRL algorithm is the reward function used. In the present

solution, such function was defined to target the selection of paths with more available

links. However, besides the room that exists to optimize the presented reward function,

which was designed by experimentation, other factors could be added to it to improve

the agents’ awareness of the impact their choices have on the network. Through actual

network observation, which did not apply to this dissertation’s use case but can for other

situations, metrics like the end-to-end delay of services could be continuously analysed

and taken into consideration in the selection of paths for upcoming requests.

80



6.2. FUTURE WORK

6.2.5 Agent optimization

Despite this dissertation presenting results for three different agents, given the vast range

of options that the field of DRL includes, there were still multiple agents (some of which

are listed in [89]), from the DQN family (e.g. Quantile Regression DQN or Categorical

51-Atom DQN), or others (e.g. actor-critic algorithms’ category), that could be tested and

techniques (e.g. PER and noise) that could be applied to this problem’s solution and be

able to improve the results obtained.

6.2.6 Problem of topology change

The DRL agents presented in this document are trained for specific network topologies.

In this case, migrating from ARPANET to Network RW requires a new training process.

A valuable addition to this solution would be the ability to take a trained agent and apply

it to any kind of topology. One way to achieve this could be through Transfer Learning

(TL), which is a ML field that explores the possibility of using gathered knowledge from

a given problem to apply it to a different but similar situation [90].
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Annex 1 - Link cost optimization

algorithms’ performance

Table I.1: Comparison of link cost optimization algorithms in 32 TCP flow requests.

MHA (Dijkstra) DSP LIOA
Request Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s)
H1 ->H7 13.10 0.320 14.30 0.397 13.54 0.390
H1 ->H8 7.63 0.414 11.30 0.494 15.00 0.282
H1 ->H9 12.00 0.208 12.30 0.286 10.00 0.237

H1 ->H11 13.53 0.226 12.00 0.292 11.87 0.339
H1 ->H12 9.13 0.333 11.24 0.375 7.91 0.413
H1 ->H13 9.34 0.317 10.83 0.370 8.91 0.300
H2 ->H7 10.89 0.282 14.50 0.279 9.36 0.454
H2 ->H8 3.65 0.418 7.59 0.424 10.14 0.296
H2 ->H9 5.69 0.395 7.33 0.401 12.16 0.254

H2 ->H10 9.79 0.432 5.24 0.445 13.90 0.341
H2 ->H11 12.85 0.180 6.27 0.366 10.80 0.265
H2 ->H12 10.05 0.286 10.96 0.285 9.60 0.324
H2 ->H13 9.03 0.381 6.17 0.382 11.25 0.248
H3 ->H7 8.80 0.395 12.10 0.407 13.90 0.397
H3 ->H8 12.00 0.370 11.20 0.382 9.59 0.391
H3 ->H9 8.77 0.366 9.02 0.366 7.63 0.438

H3 ->H10 10.10 0.392 9.89 0.371 11.20 0.327
H3 ->H11 13.48 0.356 11.73 0.353 7.94 0.297
H3 ->H12 14.99 0.397 15.00 0.372 15.00 0.319
H3 ->H13 9.49 0.392 11.00 0.382 6.60 0.441
H4 ->H6 14.99 0.192 15.00 0.221 15.00 0.152
H4 ->H7 5.70 0.387 7.96 0.416 6.36 0.462
H4 ->H8 6.53 0.343 6.00 0.339 12.21 0.320
H4 ->H9 6.51 0.413 5.76 0.414 7.70 0.417

H4 ->H10 6.35 0.424 7.43 0.429 10.00 0.313
H4 ->H11 7.30 0.407 8.97 0.407 10.26 0.297
H4 ->H12 3.53 0.471 7.50 0.443 5.31 0.466
H4 ->H13 4.39 0.427 7.54 0.443 10.00 0.316
H5 ->H6 14.97 0.049 15.00 0.063 15.00 0.039
H5 ->H8 14.99 0.161 15.00 0.140 15.00 0.135

H5 ->H11 14.99 0.225 15.00 0.192 15.00 0.225
H7 ->H6 14.99 0.218 15.00 0.219 15.00 0.161
Average: 9.99 0.331 10.50 0.349 11.04 0.314

Uncongested: 6 6 7
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Annex 2 - DRL agents’ performance

Table II.1: Performance comparison between DRL agents in 32 TCP flow requests (setup
1, ARPANET).

DQN DDQN Dueling DQN
Request Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s)
H1 ->H7 14.77 0.314 14.96 0.267 14.62 0.290
H1 ->H8 9.55 0.348 12.99 0.296 9.69 0.346
H1 ->H9 14.71 0.170 11.78 0.182 12.10 0.266

H1 ->H11 13.69 0.245 14.58 0.190 13.52 0.181
H1 ->H12 14.76 0.261 9.48 0.313 11.45 0.290
H1 ->H13 13.39 0.257 9.53 0.295 11.14 0.283
H2 ->H7 10.69 0.257 14.77 0.244 9.26 0.307
H2 ->H8 6.41 0.328 6.89 0.320 11.86 0.245
H2 ->H9 7.11 0.316 7.33 0.308 8.15 0.299

H2 ->H10 9.24 0.314 9.76 0.307 14.58 0.311
H2 ->H11 13.41 0.140 14.69 0.112 13.37 0.182
H2 ->H12 4.80 0.425 10.17 0.277 11.07 0.262
H2 ->H13 7.69 0.301 8.27 0.298 7.80 0.285
H3 ->H7 14.77 0.317 14.87 0.322 7.63 0.500
H3 ->H8 14.28 0.253 15.00 0.165 9.09 0.306
H3 ->H9 7.08 0.422 9.39 0.310 10.42 0.291

H3 ->H10 13.65 0.311 8.37 0.338 10.54 0.318
H3 ->H11 8.79 0.319 14.87 0.273 10.02 0.315
H3 ->H12 15.00 0.284 14.99 0.325 15.00 0.290
H3 ->H13 10.97 0.349 13.94 0.323 14.78 0.322
H4 ->H6 15.00 0.173 15.00 0.194 15.00 0.151
H4 ->H7 6.12 0.338 5.12 0.365 9.89 0.346
H4 ->H8 7.49 0.269 10.24 0.323 8.86 0.328
H4 ->H9 8.15 0.329 8.53 0.313 9.58 0.265

H4 ->H10 7.03 0.323 8.27 0.314 4.45 0.445
H4 ->H11 8.04 0.322 8.90 0.312 8.43 0.346
H4 ->H12 5.15 0.427 3.73 0.444 4.98 0.431
H4 ->H13 5.11 0.399 7.96 0.317 9.71 0.314
H5 ->H6 15.00 0.025 15.00 0.030 15.00 0.052
H5 ->H8 15.00 0.048 15.00 0.205 15.00 0.099

H5 ->H11 15.00 0.141 15.00 0.238 15.00 0.118
H7 ->H6 15.00 0.146 15.00 0.043 15.00 0.147
Average: 10.84 0.277 11.39 0.268 11.16 0.279

Uncongested: 10 13 9
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Table II.2: Performance comparison between DRL agents in 32 TCP flow requests (setup
2, ARPANET).

DQN DDQN Dueling DQN
Request Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s)
H1 ->H7 12.26 0.300 15.00 0.246 4.23 0.496
H1 ->H8 10.57 0.370 12.32 0.331 15.00 0.283
H1 ->H9 13.20 0.176 11.27 0.192 10.95 0.242

H1 ->H11 13.03 0.203 14.50 0.226 13.16 0.173
H1 ->H12 12.42 0.314 7.98 0.314 9.40 0.351
H1 ->H13 11.34 0.296 8.23 0.300 12.39 0.279
H2 ->H7 12.52 0.255 14.17 0.280 4.71 0.436
H2 ->H8 5.82 0.375 9.18 0.315 9.40 0.321
H2 ->H9 7.99 0.353 6.81 0.383 10.64 0.305

H2 ->H10 9.12 0.385 8.61 0.366 10.24 0.333
H2 ->H11 14.50 0.146 14.68 0.189 14.50 0.138
H2 ->H12 11.72 0.260 9.94 0.290 7.98 0.353
H2 ->H13 7.66 0.341 7.59 0.368 9.26 0.294
H3 ->H7 11.90 0.408 9.71 0.322 12.29 0.304
H3 ->H8 14.59 0.322 13.86 0.295 11.22 0.226
H3 ->H9 11.20 0.366 8.80 0.297 8.10 0.377

H3 ->H10 12.54 0.407 8.93 0.313 9.68 0.387
H3 ->H11 9.59 0.372 15.00 0.273 10.73 0.302
H3 ->H12 15.00 0.376 14.61 0.322 15.00 0.184
H3 ->H13 9.19 0.411 7.20 0.317 12.38 0.312
H4 ->H6 15.00 0.169 15.00 0.105 14.71 0.297
H4 ->H7 6.65 0.336 11.24 0.342 11.51 0.328
H4 ->H8 8.00 0.302 8.18 0.320 9.65 0.253
H4 ->H9 7.81 0.369 6.25 0.382 8.20 0.315

H4 ->H10 6.47 0.369 6.97 0.394 6.52 0.372
H4 ->H11 7.32 0.361 7.40 0.378 9.06 0.307
H4 ->H12 4.71 0.428 6.65 0.322 8.80 0.350
H4 ->H13 6.90 0.373 6.96 0.390 11.25 0.267
H5 ->H6 15.00 0.040 9.29 0.318 15.00 0.054
H5 ->H8 15.00 0.100 15.00 0.146 15.00 0.104

H5 ->H11 15.00 0.193 15.00 0.119 15.00 0.203
H7 ->H6 15.00 0.191 15.00 0.144 15.00 0.216
Average: 10.87 0.302 10.67 0.291 10.97 0.286

Uncongested: 8 9 8
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Table II.3: Performance comparison between DRL agents in 32 TCP flow requests (setup
3, ARPANET).

DQN DDQN Dueling DQN
Request Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s)
H1 ->H7 6.91 0.312 15.00 0.266 12.43 0.297
H1 ->H8 9.05 0.326 9.59 0.411 10.09 0.367
H1 ->H9 10.98 0.209 13.41 0.192 10.92 0.360

H1 ->H11 15.00 0.034 14.60 0.210 8.90 0.431
H1 ->H12 6.36 0.308 9.02 0.325 9.50 0.362
H1 ->H13 6.60 0.307 11.06 0.313 8.26 0.414
H2 ->H7 10.58 0.292 14.70 0.277 7.91 0.396
H2 ->H8 7.39 0.311 5.22 0.430 9.00 0.416
H2 ->H9 12.71 0.169 8.45 0.376 9.20 0.366

H2 ->H10 7.69 0.329 8.23 0.407 8.51 0.363
H2 ->H11 9.79 0.340 14.87 0.136 12.22 0.271
H2 ->H12 2.66 0.527 4.48 0.370 14.87 0.352
H2 ->H13 12.69 0.163 7.44 0.386 8.32 0.333
H3 ->H7 15.00 0.024 12.02 0.411 10.97 0.415
H3 ->H8 9.23 0.329 14.97 0.248 12.39 0.339
H3 ->H9 5.80 0.306 6.85 0.435 8.70 0.440

H3 ->H10 6.62 0.311 7.84 0.461 7.64 0.443
H3 ->H11 7.67 0.290 12.36 0.383 12.80 0.277
H3 ->H12 14.58 0.318 12.04 0.274 14.93 0.421
H3 ->H13 7.15 0.308 9.74 0.303 14.73 0.294
H4 ->H6 15.00 0.042 15.00 0.233 15.00 0.256
H4 ->H7 15.00 0.040 11.78 0.375 9.00 0.324
H4 ->H8 7.73 0.353 7.89 0.303 9.66 0.312
H4 ->H9 7.26 0.302 5.79 0.406 13.50 0.213

H4 ->H10 4.47 0.502 5.86 0.416 5.09 0.480
H4 ->H11 8.61 0.292 7.36 0.402 9.40 0.365
H4 ->H12 9.91 0.318 10.72 0.396 11.35 0.373
H4 ->H13 7.34 0.329 6.23 0.422 6.19 0.428
H5 ->H6 7.63 0.311 14.99 0.131 10.65 0.251
H5 ->H8 12.96 0.045 15.00 0.265 15.00 0.210

H5 ->H11 15.00 0.315 9.41 0.330 15.00 0.236
H7 ->H6 15.00 0.026 15.00 0.214 15.00 0.214
Average: 9.70 0.262 10.53 0.328 10.85 0.344

Uncongested: 7 9 7
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Table II.4: Performance comparison between DRL agents in 32 TCP flow requests (setup
4, ARPANET).

DQN DDQN Dueling DQN
Request Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s)
H1 ->H7 11.28 0.350 11.20 0.347 14.56 0.292
H1 ->H8 8.75 0.448 14.62 0.274 9.06 0.398
H1 ->H9 10.24 0.335 7.65 0.339 14.20 0.175

H1 ->H11 10.47 0.353 10.38 0.235 12.74 0.207
H1 ->H12 13.08 0.347 8.75 0.392 11.71 0.295
H1 ->H13 4.63 0.487 8.81 0.334 10.96 0.281
H2 ->H7 14.60 0.273 8.07 0.367 7.71 0.360
H2 ->H8 7.77 0.393 7.01 0.442 4.88 0.415
H2 ->H9 7.82 0.389 6.67 0.407 7.17 0.389

H2 ->H10 9.87 0.339 11.16 0.360 5.57 0.395
H2 ->H11 11.02 0.327 14.61 0.173 14.69 0.144
H2 ->H12 11.18 0.347 12.07 0.399 11.00 0.267
H2 ->H13 9.12 0.373 8.72 0.296 7.34 0.379
H3 ->H7 10.30 0.361 9.75 0.354 10.55 0.386
H3 ->H8 11.51 0.307 10.48 0.257 10.76 0.363
H3 ->H9 5.70 0.456 9.26 0.345 8.84 0.348

H3 ->H10 6.11 0.473 9.15 0.361 10.15 0.373
H3 ->H11 9.67 0.331 6.56 0.390 10.89 0.341
H3 ->H12 15.00 0.256 15.00 0.325 15.00 0.354
H3 ->H13 10.76 0.370 10.18 0.374 13.27 0.393
H4 ->H6 9.65 0.387 15.00 0.301 15.00 0.145
H4 ->H7 11.36 0.300 10.44 0.372 8.11 0.324
H4 ->H8 8.98 0.335 8.55 0.258 6.96 0.338
H4 ->H9 6.49 0.391 9.09 0.352 5.32 0.402

H4 ->H10 10.34 0.424 6.30 0.482 5.28 0.405
H4 ->H11 6.22 0.387 7.41 0.359 8.87 0.396
H4 ->H12 5.08 0.445 15.00 0.362 10.19 0.379
H4 ->H13 6.49 0.394 11.54 0.355 5.81 0.414
H5 ->H6 15.00 0.153 15.00 0.360 15.00 0.070
H5 ->H8 15.00 0.166 15.00 0.092 15.00 0.141

H5 ->H11 15.00 0.141 15.00 0.109 15.00 0.175
H7 ->H6 15.00 0.155 15.00 0.108 15.00 0.143
Average: 10.11 0.344 10.73 0.321 10.52 0.309

Uncongested: 6 9 8

Table II.5: Performance comparison between Dijkstra and DDQN in unseen scenario
settings (setup 1, ARPANET).

DQN DDQN
Request Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s)
H1 ->H6 7.32 0.355 9.52 0.301
H1 ->H8 8.05 0.376 6.48 0.407
H1 ->H9 10.31 0.350 12.74 0.348

H1 ->H10 8.50 0.421 10.70 0.456
H1 ->H11 14.17 0.385 9.46 0.374
H1 ->H12 10.19 0.376 9.96 0.371
H1 ->H13 13.07 0.354 15.00 0.359
H2 ->H6 8.64 0.320 9.81 0.325
H2 ->H8 7.21 0.347 7.94 0.353
H2 ->H9 9.07 0.390 14.73 0.384

H2 ->H10 8.93 0.408 9.93 0.403
H2 ->H11 9.57 0.392 6.60 0.337
H2 ->H12 9.00 0.421 9.02 0.376
H2 ->H13 14.98 0.218 15.00 0.402
Average: 9.93 0.365 10.49 0.371

Uncongested: 1 3
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Table II.6: Performance comparison between Dijkstra and the three agents (setup 1, Net-
work RW).

Dijkstra DQN DDQN Dueling DQN
Request Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s) Bitrate (Mbits/s) RTT (s)
H1 ->H6 17.27 0.232 19.35 0.070 19.99 0.050 19.92 0.05
H1 ->H7 18.60 0.446 19.99 0.297 19.99 0.079 19.99 0.12
H1 ->H8 16.48 0.474 19.99 0.173 18.96 0.257 20.00 0.12
H1 ->H9 14.43 0.408 19.09 0.083 19.03 0.233 18.91 0.24

H1 ->H10 13.42 0.418 19.99 0.136 19.99 0.062 19.99 0.12
H2 ->H6 13.31 0.362 19.98 0.161 17.61 0.209 19.59 0.12
H2 ->H7 12.72 0.379 16.48 0.266 17.05 0.234 19.51 0.14
H2 ->H8 17.32 0.447 16.99 0.288 19.99 0.238 19.99 0.13

H2 ->H10 13.45 0.344 18.20 0.196 18.19 0.200 18.64 0.15
H3 ->H6 10.80 0.415 18.86 0.194 19.99 0.116 19.99 0.16
H3 ->H7 13.04 0.396 14.77 0.295 19.99 0.138 19.99 0.17
H3 ->H8 19.03 0.486 19.99 0.252 19.98 0.325 19.99 0.23
H3 ->H9 11.04 0.491 18.45 0.171 15.08 0.286 16.84 0.31

H3 ->H10 14.25 0.475 19.99 0.215 19.99 0.245 19.99 0.19
H4 ->H6 13.95 0.348 17.24 0.153 19.92 0.099 18.68 0.13
H4 ->H7 11.93 0.415 16.94 0.275 19.99 0.085 19.82 0.17
H4 ->H8 9.65 0.461 19.99 0.196 16.55 0.238 18.29 0.20
H4 ->H9 11.10 0.482 18.53 0.120 18.24 0.243 16.63 0.27

H4 ->H10 19.99 0.390 19.98 0.212 19.99 0.241 19.99 0.16
H5 ->H6 16.71 0.247 18.81 0.099 19.89 0.057 19.53 0.09
H5 ->H7 19.62 0.455 19.99 0.248 19.99 0.080 19.99 0.10
H5 ->H8 18.39 0.459 19.99 0.211 19.99 0.292 16.99 0.18
H5 ->H9 16.04 0.428 19.57 0.121 18.94 0.266 17.55 0.28

H5 ->H10 13.71 0.423 20.00 0.180 19.63 0.213 19.99 0.16
Average: 14.84 0.412 18.88 0.192 19.12 0.187 19.20 0.166

Uncongested: 2 12 15 16
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