3,021 research outputs found

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    Weighted SPSA-based Consensus Algorithm for Distributed Cooperative Target Tracking

    Get PDF
    In this paper, a new algorithm for distributed multi-target tracking in a sensor network is proposed. The main feature of that algorithm, combining the SPSA techniques and iterative averaging ("consensus algorithm"), is the ability to solve distributed optimization problems in presence of signals with fully uncertain distribution; the only assumption is the signal’s boundedness. As an example, we consider the multi-target tracking problem, in which the unknown signals include measurement errors and unpredictable target’s maneuvers; statistical properties of these signals are unknown. A special choice of weights in the algorithm enables its application to targets exhibiting different behaviors. An explicit estimate of the residual’s covariance matrix is obtained, which may be considered as a performance index of the algorithm. Theoretical results are illustrated by numerical simulations

    Joint Centrality Distinguishes Optimal Leaders in Noisy Networks

    Full text link
    We study the performance of a network of agents tasked with tracking an external unknown signal in the presence of stochastic disturbances and under the condition that only a limited subset of agents, known as leaders, can measure the signal directly. We investigate the optimal leader selection problem for a prescribed maximum number of leaders, where the optimal leader set minimizes total system error defined as steady-state variance about the external signal. In contrast to previously established greedy algorithms for optimal leader selection, our results rely on an expression of total system error in terms of properties of the underlying network graph. We demonstrate that the performance of any given set of leaders depends on their influence as determined by a new graph measure of centrality of a set. We define the joint  centralityjoint \; centrality of a set of nodes in a network graph such that a leader set with maximal joint centrality is an optimal leader set. In the case of a single leader, we prove that the optimal leader is the node with maximal information centrality. In the case of multiple leaders, we show that the nodes in the optimal leader set balance high information centrality with a coverage of the graph. For special cases of graphs, we solve explicitly for optimal leader sets. We illustrate with examples.Comment: Conditionally accepted to IEEE TCN

    Stochastic Lyapunov analysis for consensus algorithms with noisy measurements

    Get PDF
    Abstract — This paper studies the coordination and consensus of networked agents in an uncertain environment. We consider a group of agents on an undirected graph with fixed topology, but differing from most existing work, each agent has only noisy measurements of its neighbors ’ states. Traditional consensus algorithms in general cannot deal with such a scenario. For consensus seeking, we introduce stochastic approximation type algorithms with a decreasing step size. We present a stochastic Lyaponuv analysis based upon the total mean potential associated with the agents. Subsequently, the so-called direction of invariance is introduced, which combined with the decay property of the stochastic Lyapunov function leads to mean square convergence of the consensus algorithm. I

    Distributed H ∞ state estimation for stochastic delayed 2-D systems with randomly varying nonlinearities over saturated sensor networks

    Get PDF
    In this paper, the distributed H ∞ state estimation problem is investigated for the two-dimensional (2-D) time-delay systems. The target plant is characterized by the generalized Fornasini-Marchesini 2-D equations where both stochastic disturbances and randomly varying nonlinearities (RVNs) are considered. The sensor measurement outputs are subject to saturation restrictions due to the physical limitations of the sensors. Based on the available measurement outputs from each individual sensor and its neighboring sensors, the main purpose of this paper is to design distributed state estimators such that not only the states of the target plant are estimated but also the prescribed H ∞ disturbance attenuation performance is guaranteed. By defining an energy-like function and utilizing the stochastic analysis as well as the inequality techniques, sufficient conditions are established under which the augmented estimation error system is globally asymptotically stable in the mean square and the prescribed H ∞ performance index is satisfied. Furthermore, the explicit expressions of the individual estimators are also derived. Finally, numerical example is exploited to demonstrate the effectiveness of the results obtained in this paper
    corecore