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DistributedH∞ State Estimation for Stochastic
Delayed 2-D Systems with Randomly Varying
Nonlinearities over Saturated Sensor Networks

Jinling Liang, Zidong Wang, Tasawar Hayat and Ahmed Alsaedi

Abstract

In this paper, the distributedH∞ state estimation problem is investigated for the two-dimensional (2-D) time-

delay systems. The target plant is characterized by the generalized Fornasini-Marchesini 2-D equations where both

stochastic disturbances and randomly varying nonlinearities (RVNs) are considered. The sensor measurement outputs

are subject to saturation restrictions due to the physical limitations of the sensors. Based on the available measurement

outputs from each individual sensor and its neighboring sensors, the main purpose of this paper is to design distributed

state estimators such that not only the states of the target plant are estimated but also the prescribedH∞ disturbance

attenuation performance is guaranteed. By defining an energy-like function and utilizing the stochastic analysis as

well as the inequality techniques, sufficient conditions are established under which the augmented estimation error

system is globally asymptotically stable in the mean squareand the prescribedH∞ performance index is satisfied.

Furthermore, the explicit expressions of the individual estimators are also derived. Finally, numerical example is

exploited to demonstrate the effectiveness of the results obtained in this paper.

Index Terms

Two-dimensional (2-D) systems, distributed state estimation,H∞ index, randomly varying nonlinearities (RVNs),

sensor saturation.

I. INTRODUCTION

The last decade has seen a rapid surge of research interest inboth the theoretical development and practical

applications of sensor networks that are capable of distributed sensing, computing and communication. So far,

sensor networks have found countless successful applications in areas such as environment and habitat monitoring,

health care applications, traffic control, distributed robotics, and industrial & manufacturing automation [7], [11],

[19]–[21]. In a sensor network, the spatially distributed sensor nodes collaboratively process a limited amount of

data for the purpose of sensing, tracking or detecting the target. Through efficient coordination between the densely

deployed sensors, the overall sensor network is able to monitor, detect and estimate the real states of a physical

plant under certain possibly harsh environments such as thebattle-filed surveillance [2], [34]. A distinguished

This work was supported in part by the National Natural Science Foundation of China under Grant 61174136, 61134009 and 61329301,
the Natural Science Foundation of Jiangsu Province of Chinaunder Grant BK20130017, the Programme for New Century Excellent Talents
in University under Grant NCET-12-0117, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany.

J. Liang is with the Department of Mathematics, Southeast University, Nanjing 210096, China.Email:jinlliang@gmail.com
Z. Wang is with the Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom. He

is also with the Communication Systems and Networks (CSN) Research Group, Faculty of Engineering, King Abdulaziz University, Jeddah
21589, Saudi Arabia. Email:Zidong.Wang@brunel.ac.uk

T. Hayat is with the Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan, and is also with the NAAM
Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

A. Alsaedi is with the NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/30340007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SECOND REVISION 2

feature of the signal processing over a sensor network is itscollaborative manner when the large amount of sensors

work together to achieve certain state estimation tasks. This is called the distributed state estimation (or filtering)

problem where each individual sensor in a sensor network locally estimates the system state by utilizing both its

own measurement and its neighboring sensors’ measurementsaccording to the given topology [22], [23], [35].

The smooth operation of a sensor network relies heavily on the communications between the sensor nodes.

With the ever-increasing number of sensor nodes and size of the sensor field, the limited communication resources

would become a major concern. For example, most nodes are nowbattery-powered and most of the communication

is carried out through wireless channels of limited bandwidth. As such, the resulting communication constraints

would unavoidably deteriorate the performance (e.g. for distributed state estimation) of the sensor networks. Such

network-induced problems include, but are not limited to, packet dropout, communication delays, sensor saturation

and nonlinear disturbances. Due to the random variation of the network load and monitoring conditions, the network-

induced phenomena often occur in a probabilistic way [8], [9], [43], [46]. So far, the problems of randomly occurring

packet dropout and communication delays have gained much research interest, see [13] for a survey. Nevertheless,

the randomly varying nonlinearities and the sensor saturations have received relatively less research attention despite

their importance in practical engineering, and the relevant results have been scattered. For example, the distributed

average set-membership filtering problem has been investigated in [48] over sensor networks with sensor saturation,

where the estimation error is required to achieve the bounded consensus. The random nature of the sensor saturations

has been examined in [12] for the distributed filtering problem where the issue of successive packet dropouts has

also been addressed.

On another research forefront, due primarily to their theoretical significance and practical insights, the two-

dimensional (2-D) discrete systems have been stirring a recurring research interest in the past few decades [1],

[3], [25], [37], [38], [45]. As discussed in [39], 2-D systems have been playing an increasingly important role in

mathematical modeling in many areas such as image processing, seismographic data processing, thermal processes

and water stream heating. A variety of 2-D state-space models have been studied, among which the Fornasini-

Marchesini (FM) first and second models as well as the Roessermodel have proven to be most popular. Up to now,

almost all fundamental behaviors of 2-D systems have been investigated and a rich body of literature has appeared

that contributes largely to the better understanding of how2-D systems are controlled. For example, some earlier

results can be found in [18], [30] for the stability analysisproblem, for 2-D systems has been investigated in [18],

[30], in [14], [15], [32], [40], [41] for the controller/filter design problems and in [17] for the model approximation

problem. Recently, in [26], [27], the state estimation problem has been extensively tackled for 2-D systems subject

to network-induced phenomena including missing measurements, sensor saturation, sensor delays and randomly

occurring nonlinearities.

In some sensor network applications such as geographical data processing, power transmission lines and elec-

tromagnetic wave propagation, the 2-D system plays an irreplaceable role when it comes to the modeling issue.

For example, in [47], the spatial-temporal, geographical and environmental factors have been examined for wireless

sensor networks for utilizing the intermittent rechargingopportunities to support low-rate data services. In [49],

the 2-D system has been used for modeling the ad hoc networks with two-dimensional lattices and the percolation

theory has been employed for the connectivity study. As such, four seemingly natural yet interrelated questions

arise as follows. 1) How do we deal with the distributed stateestimation problem for the target plant modeled

by a 2-D system over a sensor network? 2) How do we examine the impact of the network-induced phenomena

(e.g., randomly varying nonlinearites and sensor saturations) on the estimation performance of the sensor networks?

3) What if the target plant is further subject to time-delays, exogenous and stochastic disturbances? 4) Can we

attenuate the effect from exogenous disturbances on the estimation accuracy through a prespecifiedH∞ performance

constraint? Unfortunately, a literature review has revealed that these four questions have remained unanswered till
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now due probably to the mathematical difficulties complicated by the topology structure of the sensor networks,

the stochastic analysis as well as the estimation performance specifications. It is, therefore, the main motivation of

the present research to deal with the aforementioned questions.

In this paper, we aim to deal with the distributedH∞ state estimation problem for a class of stochastic 2-D

systems with RVNs and time-varying delays. We are interested in designing distributed state estimators and then

deriving sufficient criteria under which such kind of estimators do exist.The main contribution of this paper is

threefold: 1) distributed state estimators are designed firstly for the general 2-D target plant such that the states of

the system are estimated in a distributed way, in other words, each sensor estimates the states of the stochastic 2-D

system based on the measurement outputs not only from the sensor itself but also from its neighboring sensors; 2)

an H∞ index is also introduced in the process of state estimation to further characterize the attenuation level of

the estimated output signals against the exogenous disturbances; and 3) a comprehensive 2-D model is proposed

where the RVNs are introduced in the target plant and the sensors saturation case is also considered in the sensor

measurement equations, both of which make the system under consideration more realistic.

The rest of this paper is outlined as follows. In Section II, the distributedH∞ state estimation problem addressed

is formulated and some preliminaries are introduced. In Section III, the global asymptotic stability in the mean

square is investigated for the augmented estimation error system, and theH∞ performance constraint is analyzed.

Furthermore, explicit design schemes are given for the estimator gain matrices. In Section IV, the effectiveness

of the obtained results are demonstrated by an illustrativenumerical example. Finally, conclusions are drawn in

Section V.

Notation. The notation used here is fairly standard except where otherwise stated.Z+ is used to be the set

{0, 1, 2 . . .}. Rn and Rn×m denote then-dimensional Euclidean space and the set of alln × m real matrices,

respectively. For integersm andn with m ≤ n, ⌊m,n⌋ represents the integers set{m,m+ 1, . . . , n} and⌊m,∞)

means the integers set{m,m + 1,m + 2, . . .}. I and 0 stand for the identity matrix and the zero matrix with

appropriate dimensions, respectively. For matrixA ∈ Rn×n, Sym(A) denotes the matrix(A+AT )/2 and ‘∗’ in a

matrix is used to denote the term which is induced by symmetry. The notationX > 0 means that matrixX is real,

symmetric and positive definite.1n stands for the vector inRn with all elements being1s and the Kronecker product

of matricesA andB is represented asA⊗B. The shorthanddiag(A1, A2, . . . , An) means a block diagonal matrix

with diagonal blocks being the matricesA1, A2, . . . , An, and col(Ai)
n
i=1 = col(A1, A2, . . . , An) represents the

column-wise concatenation of the matricesA1, A2, . . . , An. For a complete probability space(Ω,F ,Prob), E{α}

and E{α|β} denote, respectively, the mathematical expectation of thestochastic variableα and the expectation

of α conditional onβ with respect to the given probability measureProb which has total mass1. ‖ · ‖ refers

to the Euclidean vector norm and forν ∈ l2(Z+ × Z+,R
n), define ‖ν‖2l2 =

∑∞
k=0

∑∞
h=0 E{‖ν(k, h)‖

2} −
1
2

∑∞
k=0 E{‖ν(k, 0)‖

2} − 1
2

∑∞
h=0 E{‖ν(0, h)‖

2} which has also been used in [14]. Matrices without explicit

specification are assumed to have compatible dimensions.

II. PROBLEM FORMULATION

Consider a discrete system along two directions described by the general Fornasini-Marchesini state-space model

[16] with time-varying delays and stochastic disturbancesof the following form:

x(k + 1, h + 1) =A1x(k + 1, h) +A2x(k, h+ 1) +D1x(k + 1, h − σ(h)) +D2x(k − τ(k), h + 1)

+ α(k, h)B1f1(x(k + 1, h), x(k, h + 1))

+ (1− α(k, h))B2f2(x(k + 1, h − σ(h)), x(k − τ(k), h + 1))

+ E1ν(k + 1, h) + E2ν(k, h + 1) + ~(x(k + 1, h), x(k, h + 1))ω(k, h) (1)
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with output

z(k, h) = M0x(k, h), (2)

wherek, h ∈ Z+; x(k, h) ∈ Rn is the state vector of the target plant andz(k, h) ∈ Rq is the output of the state

combination to be estimated;Ai, Di, Ei, Bi (i = 1, 2) andM0 are system matrices with compatible dimensions;

the exogenous disturbance inputν(·, ·) ∈ l2(Z+ × Z+,R
p). τ(k) and σ(h) are time-varying positive integers

representing, respectively, the delays along the horizontal direction and the delays along the vertical direction,

which satisfy

τ ≤ τ(k) ≤ τ , σ ≤ σ(h) ≤ σ; ∀k, h ∈ Z+ (3)

whereτ , τ , σ andσ are known positive integers being the lower and the upper bounds of the time-varying delays.

ω(k, h) is a standard random scalar signal on the probability space(Ω,F ,Prob) with

E{ω(k, h)} = 0, E{ω(k, h)ω(k′, h′)} =

{
1, if (k, h) = (k′, h′)

0, otherwise.
(4)

Let (Ω,F , {Fl}l∈Z+
,Prob) be a filtered probability space where{Fl}l∈Z+

is the family of subσ-algebras ofF

generated by{ω(i, j)}i,j∈Z+
. Specifically,Fl is the minimalσ-algebra generated by{ω(i, j)}0≤i+j≤l−1, while F0

is assumed to be some given subσ-algebra ofF independent ofFl for all l > 0.

Moreover,~(·, ·) : Rn × Rn → Rn is the noise intensity function which is assumed to satisfy the following

condition

~
T (u, v)~(u, v) ≤

∥∥∥∥∥H
(

u

v

)∥∥∥∥∥

2

, (5)

whereu, v ∈ Rn andH is a known constant matrix with appropriate dimensions.

The nonlinear functionsfi(·, ·) : Rn × Rn → Rn (i = 1, 2) are subject to the conditionfi(0, 0) = 0 and the

following sector-bounded condition [29]
(
fi(u, v) − fi(ũ, ṽ)− F

(i)
1 ς
)T (

fi(u, v)− fi(ũ, ṽ)− F
(i)
2 ς
)
≤ 0 (6)

with u, v, ũ and ṽ ∈ Rn, ς =
(
(u − ũ)T (v − ṽ)T

)T
andF

(i)
1 = [Fi11 Fi12], F

(i)
2 = [Fi21 Fi22] ∈ Rn×2n are

known constant matrices.

In (1), α(k, h) ∈ R is a Bernoulli distributed white sequence which takes values of either1 or 0 with

Prob{α(k, h) = 1} = ᾱ, Prob{α(k, h) = 0} = 1− ᾱ, (7)

whereᾱ ∈ [0, 1] is a known constant. Obviously, for allk, h ∈ Z+, the stochastic variableα(k, h) has the variance

ᾱ(1 − ᾱ). It is further assumed that in this paperω(k, h) andα(k′, h′) are mutually independent for allk, h, k′,

h′ ∈ Z+.

Remark 1: In the discrete 2-D target plant equation (1), random variable α(k, h) is introduced to account for

the phenomena of nonlinearities varying in a random way induced by, for instance, asynchronous multiplexed data

communication. The concept of RVNs, accounting for the binary switch between two nonlinear functions, has been

firstly proposed in [36] to investigate the synchronizationproblem for the delayed complex networks, which might

reflect more realistic characteristics in complex networks. Such an idea was originated from [44] where stabilizing

control laws have been found for the linear systems with randomly varying distributed delays. Thereafter, such

kind of characterizations has been extensively utilized inliterature for references. For example, the fault detection

problem has been discussed in [10] for the discrete-time Markovian jump systems with incomplete knowledge

of transition probabilities, and the state estimation problem has been addressed in [6] for the discrete time-delay



SECOND REVISION 5

nonlinear complex networks with randomly occurring sensorsaturations and randomly varying sensor delays. It

should be noted that in all the references mentioned above, the systems under consideration are all 1-D, when

referring to the 2-D systems, to the best of the authors’ knowledge, this might be the first few attempts [26].

In this paper, suppose there areN sensors locating spatially around the target plant and letG = (V ,E ) be the

directed graph formed by theN sensors, whereV = {1, 2, . . . , N} denotes the set of labeled sensors,E ⊆ V ×V

is the set of edges and each edge is represented by an ordered pair (i, j), which means that there is information

transmission from sensorj to sensori. Associated with the graphG is the nonnegative adjacency matrixL = [lij ],

which characterizes the interconnection topology of the sensors and is defined as follows:lij > 0 if (i, j) ∈ E ;

lij = 0 otherwise. Sensorj is called one of the neighbors of sensori if (i, j) ∈ E . For all i ∈ V , denote

Ni = {j ∈ V |(i, j) ∈ E }. Moreover, it is assumed that the graphG discussed in this paper is self-connected, i.e.,

lii = 1 for all i ∈ V ; and the dynamics of sensori is of the form

yi(k, h) = g(Cix(k, h)) +Wiν(k, h), i = 1, 2, . . . , N (8)

whereyi(k, h) ∈ Rm is the measured output vector from theith sensor on the target plant,Ci andWi are known

constant real matrices with appropriate dimensions, the nonlinear saturated functiong(·) : Rm → Rm has the

following form

g(u) =
[
g1(u1) g2(u2) · · · gm(um)

]T
(9)

with u = (u1, u2, . . . , um)T ∈ Rm and, forl = 1, 2, . . . ,m, gl(ul) = sign(ul)min{|ul|, ul,max} whereul,max is the

lth element of the saturation level vectorumax.

To facilitate the analysis of the problem discussed in this paper, similar as the technique employed in [24], [42],

it is assumed that there exist two diagonal matricesS1, S2 ∈ Rm×m such that0 ≤ S1 < I ≤ S2 and the saturation

function g(·) in (9) is rewritten as

g(u) = S1u+ g̃(u), (10)

where the nonlinear functioñg(·) : Rm → Rm satisfies the sector condition [5]:̃gT (u)(g̃(u) − Su) ≤ 0 with

S = S2 − S1.

The initial boundary condition associated with the discrete 2-D target plant (1) is taken as

x(k, h) =





ϕ(k, h), (k, h) ∈ ⌊−τ , 0⌋ × ⌊0, κ1⌋

φ(k, h), (k, h) ∈ ⌊0, κ2⌋ × ⌊−σ, 0⌋

0 (k, h) ∈ ⌊−τ , 0⌋ × ⌊κ1 + 1,∞) or ⌊κ2 + 1,∞)× ⌊−σ, 0⌋

(11)

with ϕ(0, 0) = φ(0, 0), whereκ1 and κ2 are two finite positive integers,ϕ(k, h) and φ(k, h) are vectors with

elements inF0.

The aim of theH∞ state estimation problem addressed in this paper is to estimate the states and the output

signals of the target plant (1). Illuminated by the novel distributed ideas employed in [31], [34], here we construct

the distributed state estimator for sensori as follows:

x̂i(k + 1, h+ 1) =A1x̂i(k + 1, h) +A2x̂i(k, h+ 1) + ᾱB1f1(x̂i(k + 1, h), x̂i(k, h + 1))

+ (1− ᾱ)B2f2(x̂i(k + 1, h − σ(h)), x̂i(k − τ(k), h + 1))

+
∑

j∈Ni

lijK1ij

(
yj(k + 1, h) − S1Cjx̂j(k + 1, h)

)

+
∑

j∈Ni

lijK2ij

(
yj(k, h + 1)− S1Cjx̂j(k, h+ 1)

)
(12)
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with

ẑi(k, h) = Mix̂i(k, h), i = 1, 2, . . . , N (13)

where x̂i(k, h) ∈ Rn is the estimate of the target plant statex(k, h) and ẑi(k, h) ∈ Rq is the estimate of the

output signalz(k, h) on sensori; K1ij , K2ij ∈ Rn×m andMi ∈ Rq×n (i = 1, 2, . . . , N ; j ∈ Ni) are the estimator

gain matrices to be designed. The initial boundary condition for estimator (12) is taken to bêxi(k, h) ≡ 0 for

k ∈ ⌊−τ , 0⌋ or h ∈ ⌊−σ, 0⌋.

Remark 2:The states and the output signals of the target plant (1) are estimated in a distributed way as shown in

(12). To be more specific, the sensori estimates the states of system (1) based on the measurementsnot only from

the sensori itself but also from its neighboring sensorsj ∈ Ni according to the given graph topology. Such kind of

original distributed ideas has been proposed in [31] to solve the data fusion problem where an average consensus

based distributed filter has been utilized to track the average ofN sensor measurements. More recently, by using

a stochastic sampled-data approach, the problem of distributed filtering has been investigated in [34] for sensor

networks. It will be further demonstrated later in the example section that compared with the usual estimation

method, such kind of distributed ideas will make theH∞ attenuation levelγ∗ be much smaller.

By setting x̃(k, h) = (x̃T1 (k, h), x̃
T
2 (k, h), . . . , x̃

T
N (k, h))T with x̃i(k, h) = x(k, h) − x̂i(k, h) (i = 1, 2, . . . , N)

and resorting to the Kronecker product, the state estimation error dynamics can be obtained from (1), (8), (10) and

(12) as follows:

x̃(k + 1, h+ 1) =
(
IN ⊗A1 − K1(IN ⊗ S1)C

)
x̃(k + 1, h) + 1N ⊗D1x(k + 1, h− σ(h))

+
(
IN ⊗A2 − K2(IN ⊗ S1)C

)
x̃(k, h + 1) + 1N ⊗D2x(k − τ(k), h + 1)

+ ᾱIN ⊗B1F1(k, h) + (1− ᾱ)IN ⊗B2F2(k, h) + (1N ⊗ E1 − K1W̃ )ν(k + 1, h)

+ (α(k, h) − ᾱ)
(
1N ⊗B1f1(k, h) − 1N ⊗B2f2(k, h)

)
+ (1N ⊗ E2 − K2W̃ )ν(k, h+ 1)

− K1G(k + 1, h) − K2G(k, h + 1) + 1N ⊗ ~(x(k + 1, h), x(k, h + 1))ω(k, h), (14)

whereC = diag(C1, C2, . . . , CN ), W̃ = col(Wi)
N
i=1, G(k, h) = col(g̃(Cix(k, h)))

N
i=1; Fl(k, h) = col(f̃li(k, h))

N
i=1

(l = 1, 2) with

f̃1i(k, h) =f1(k, h) − f1(x̂i(k + 1, h), x̂i(k, h+ 1)),

f̃2i(k, h) =f2(k, h) − f2(x̂i(k + 1, h− σ(h)), x̂i(k − τ(k), h + 1)),

f1(k, h) =f1(x(k + 1, h), x(k, h + 1)), f2(k, h) = f2(x(k + 1, h − σ(h)), x(k − τ(k), h + 1));

K1 = (lijK1ij)N×N andK2 = (lijK2ij)N×N ∈ Wn×m with Wn×m being defined as

Wn×m = {Ū = [Uij] ∈ R
nN×mN | Uij ∈ R

n×m, Uij = 0 if j /∈ Ni}. (15)

For simplicity, by denoting̃z(k, h) = col(z̃i(k, h))
N
i=1 with z̃i(k, h) = z(k, h) − ẑi(k, h), the output estimation

error dynamics can be derived from (2) and (13) that

z̃(k, h) = Mη(k, h), (16)

whereM = [1N ⊗ M0 − M̃ , M̄ ] with M̄ = diag(M1,M2, . . . ,MN ) and M̃ = col(Mi)
N
i=1, and η(k, h) =

(xT (k, h), x̃T (k, h))T is the augmented state estimation error satisfying

η(k + 1, h+ 1) =A1η(k + 1, h) +A2η(k, h + 1) +D1η(k + 1, h − σ(h)) +D2η(k − τ(k), h + 1) + B1F(k, h)

+ E1ν(k + 1, h) + E2ν(k, h+ 1) + (α(k, h) − ᾱ)B2F(k, h) +H(k, h)ω(k, h), (17)
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whereD1 = (1N+1 ⊗D1)L1 andD2 = (1N+1 ⊗D2)L1 with L1 = [In, 0n×nN ];

A1 = diag(A1, IN ⊗A1 − K1(IN ⊗ S1)C ), A2 = diag(A2, IN ⊗A2 − K2(IN ⊗ S1)C );

B1 =

[
ᾱB1 (1− ᾱ)B2 0 0 0 0

0 0 ᾱ(IN ⊗B1) (1− ᾱ)(IN ⊗B2) −K1 −K2

]
, E1 =

[
E1

1N ⊗ E1 − K1W̃

]
;

B2 =

[
B1 −B2 0 0 0 0

1N ⊗B1 −1N ⊗B2 0 0 0 0

]
, E2 =

[
E2

1N ⊗ E2 − K2W̃

]
;

F(k, h) = col(f1(k, h), f2(k, h),F1(k, h),F2(k, h),G(k + 1, h),G(k, h + 1));

H(k, h) = 1N+1 ⊗ ~(L1η(k + 1, h),L1η(k, h + 1)).

To proceed, the following definition for the distributedH∞ state estimation is introduced.

Definition 1: For all i = 1, 2, . . . , N , the system in (12)-(13) is said to be a distributedH∞ state estimator on

sensori for the target plant (1)-(2) with output measurements (8) ifthe following two statements hold:

(1) for every initial boundary condition in (11), system (14) isglobally asymptotically stable in the mean square

in the case ofν(k, h) ≡ 0, i.e., the trivial solution of (14) is stable in the mean square (in the sense of

Lyapunov) andlimk+h→∞E{‖x̃(k, h)‖} = 0;

(2) for the given scalarγ > 0, under zero-initial condition, i.e.,φ(k, h) = ϕ(k, h) ≡ 0, the output estimation

error system (16) satisfies theH∞ performance constraint, i.e.,‖z̃‖2l2 ≤ γ2‖ν‖2l2 .

The objective of this paper is to find the matricesKlij and Mi (i = 1, 2, . . . , N ; j ∈ Ni; l = 1, 2) of the

distributed state estimator in (12)-(13) for the stochastic 2-D target plant in (1)-(2) withN sensor measurement

outputs (8) such that the state estimation error system (14)is globally asymptotically stable in the mean square

and theH∞ performance constraint is satisfied for the output estimation error system (16).

III. M AIN RESULTS

In this section, we deal with the distributedH∞ state estimation problem formulated in the previous section for

the discrete 2-D system (1)-(2) withN sensor measurement outputs (8).

For brevity, introduce the notations

T1 =
[
In 0n×(n+2(m+n)N)

]
, T2 =

[
0n×n In 0n×2(n+m)N

]
,

T3 =
[
0nN×2n InN 0nN×(n+2m)N

]
, T4 =

[
0nN×(2+N)n InN 0nN×2mN

]
,

T5 =
[
0mN×2n(1+N) ImN 0mN×mN

]
, T6 =

[
0mN×(2n+(2n+m)N) ImN

]
.

From the representation of functionF(k, h) defined in (17), it is easy to see that the following equalities hold:

f1(k, h) = T1F(k, h), f2(k, h) = T2F(k, h); F1(k, h) = T3F(k, h),

F2(k, h) = T4F(k, h); G(k + 1, h) = T5F(k, h), G(k, h + 1) = T6F(k, h). (18)

First, the distributedH∞ state estimation problem is analyzed, and the following theorem provides a key role in

the derivation of our main results.

Theorem 1:Let the scalarγ > 0 and the estimation gain matricesKlij andMi (i = 1, 2, . . . , N ; j ∈ Ni; l = 1, 2)

be given. For alli = 1, 2, . . . , N , the system in (12)-(13) is a distributedH∞ state estimator on sensori for the

target plant (1)-(2) with output measurements (8) if there exist matricesPl > 0 and Ql > 0, positive diagonal
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matrices~δl, ~εl and~θ = diag(θ0, θ1, . . . , θN ), positive scalarsε(l)0 (l = 1, 2) such that the following matrix inequality

holds:

~Ξ =




Ψ 0 Γ

∗ −γ2I2p ~ET (P1 + P2)

∗ ∗ −(P1 + P2)


 < 0 (19)

where ~E = [E1, E2],

Ψ =




Ψ11 0 Ψ13 0

∗ Ψ22 Ψ23 0

∗ ∗ Ψ33 0

∗ ∗ ∗ (P1 + P2)− ~θ ⊗ In


 , Γ =




~AT

~DT

BT
1

0


 (P1 + P2)

with ~A = [A1, A2], ~D = [D1, D2],

Ψ11 =diag((σ − σ + 1)Q1 − P1 +MTM, (τ − τ + 1)Q2 − P2 +MTM)− (I2 ⊗ L T
2 )U

(1)
2 (I2 ⊗ L2)

− ε
(1)
0 (I2 ⊗ L T

1 )Sym((F
(1)
1 )TF

(1)
2 )(I2 ⊗ L1) +

N∑

i=0

θi(I2 ⊗ L T
1 )HTH(I2 ⊗ L1),

Ψ22 =− diag(Q1,Q2)− ε
(2)
0 (I2 ⊗ L T

1 )Sym((F
(2)
1 )TF

(2)
2 )(I2 ⊗ L1)− (I2 ⊗ L T

2 )U
(2)
2 (I2 ⊗ L2),

Ψ13 =
ε
(1)
0

2
(I2 ⊗ L T

1 )(F
(1)
1 + F

(1)
2 )TT1 + (I2 ⊗ L T

2 )U
(1)
1 T3 +

1

2
S,

Ψ23 =
ε
(2)
0

2
(I2 ⊗ L T

1 )(F
(2)
1 + F

(2)
2 )TT2 + (I2 ⊗ L T

2 )U
(2)
1 T4,

Ψ33 =ᾱ(1− ᾱ)BT
2 (P1 + P2)B2 − ε

(1)
0 T T

1 T1 − ε
(2)
0 T T

2 T2 − T T
3 (~ε1 ⊗ In)T3

− T T
4 (~ε2 ⊗ In)T4 − T T

5 (~δ1 ⊗ Im)T5 − T T
6 (~δ2 ⊗ Im)T6;

L2 =[0nN×n, InN ], S = col(L T
1 C̃ T (~δ1 ⊗ S)T5,L

T
1 C̃ T (~δ2 ⊗ S)T6), C̃ = col(Ci)

N
i=1;

U
(1)
1 =

[
~ε1 ⊗

F T

111+F T

121

2

~ε1 ⊗
F T

112+F T

122

2

]
, U

(1)
2 =

[
~ε1 ⊗ Sym(F T

111F121) ~ε1 ⊗
F T

111F122+F T

121F112

2

∗ ~ε1 ⊗ Sym(F T
112F122)

]
;

U
(2)
1 =

[
~ε2 ⊗

F T

211+F T

221

2

~ε2 ⊗
F T

212+F T

222

2

]
, U

(2)
2 =

[
~ε2 ⊗ Sym(F T

211F221) ~ε2 ⊗
F T

211F222+F T

221F212

2

∗ ~ε2 ⊗ Sym(F T
212F222)

]
.

Proof: The notation of functionH(k, h) given in (17) and the constraint condition (5) on the noise intensity

function ~(·, ·) guarantee the validity of the following inequality:

HT (k, h)(~θ ⊗ In)H(k, h) ≤
N∑

i=0

θiξ
T
1 (k, h)(I2 ⊗ L T

1 )HTH(I2 ⊗ L1)ξ1(k, h), (20)

whereξ1(k, h) = col(η(k + 1, h), η(k, h + 1)) and the matrixL1 is defined in (17).

From the definition of functionG(k, h) defined in (14) and the treatment for functiong̃(·) shown in (10), one

knows that for any positive diagonal matrix~δ = diag(δ1, δ2, . . . , δN ), the following inequality holds:

G
T (k, h)(~δ × Im)G(k, h) =

N∑

i=1

δig̃
T (Cix(k, h))g̃(Cix(k, h))

≤
N∑

i=1

δig̃
T (Cix(k, h))SCix(k, h) = G

T (k, h)(~δ × S)C̃x(k, h), (21)
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which ensures the validity of the two inequalities given below:

FT (k, h)T T
5 (~δ1 × Im)T5F(k, h) ≤ FT (k, h)T T

5 (~δ1 × S)C̃ L1η(k + 1, h),

FT (k, h)T T
6 (~δ2 × Im)T6F(k, h) ≤ FT (k, h)T T

6 (~δ2 × S)C̃ L1η(k, h + 1);

where the last two relationships in (18) have been utilized and the matrices~δ1 and~δ2 are the solution for matrix

inequality (19). In a compact form, the above two inequalities can be unified into the following one

FT (k, h)
(
T T
5 (~δ1 ⊗ Im)T5 + T T

6 (~δ2 ⊗ Im)T6
)
F(k, h)

≤ FT (k, h)
(
T T
5 (~δ1 ⊗ S)C̃ L1η(k + 1, h) + T T

6 (~δ2 ⊗ S)C̃ L1η(k, h + 1)
)

= ξT1 (k, h)SF(k, h). (22)

Let ℵ(k, h) =: {η(k+1, h), η(k+1, h−1), . . . , η(k+1, h−σ), η(k, h+1), η(k−1, h+1), . . . , η(k− τ , h+1)}

and consider the following energy-like function

V (k, h) =: V1(k, h) + V2(k, h) =

3∑

i=1

(
V1i(k, h) + V2i(k, h)

)
(23)

with

V11(k, h) =ηT (k, h)P1η(k, h), V12(k, h) =

h−1∑

i=h−σ(h)

ηT (k, i)Q1η(k, i),

V13(k, h) =

h−σ∑

i=h−σ+1

h−1∑

j=i

ηT (k, j)Q1η(k, j); V21(k, h) = ηT (k, h)P2η(k, h),

V22(k, h) =

k−1∑

j=k−τ(k)

ηT (j, h)Q2η(j, h), V23(k, h) =

k−τ∑

j=k−τ+1

k−1∑

i=j

ηT (i, h)Q2η(i, h);

wherek, h ∈ Z+ and positive definite matricesPl andQl (l = 1, 2) are the solution to the matrix inequality (19).

First, we investigate the stochastic asymptotic stabilitycase (i.e.,ν(k, h) ≡ 0 for k, h ∈ Z+). Define the index

J as follows:

J =:E
{(

V (k + 1, h + 1)− V1(k + 1, h) − V2(k, h+ 1)
)
|ℵ(k, h)

}

=E

{ 3∑

s=1

(∆V1s(k, h) + ∆V2s(k, h))|ℵ(k, h)
}

(24)

with ∆V1s(k, h) = V1s(k + 1, h + 1) − V1s(k + 1, h) and∆V2s(k, h) = V2s(k + 1, h + 1) − V2s(k, h + 1). Then

calculating (24) along the trajectories of the augmented state estimation system (17), one has

E{∆V11(k, h)|ℵ(k, h)} = E

{(
ηT (k + 1, h+ 1)P1η(k + 1, h+ 1)− ηT (k + 1, h)P1η(k + 1, h)

)
|ℵ(k, h)

}
, (25)

E{∆V12(k, h)|ℵ(k, h)} ≤E

{(
ηT (k + 1, h)Q1η(k + 1, h) − ηT (k + 1, h− σ(h))Q1η(k + 1, h − σ(h))

+

h−σ∑

i=h+1−σ(h+1)

ηT (k + 1, i)Q1η(k + 1, i)
)
|ℵ(k, h)

}

≤E

{(
ηT (k + 1, h)Q1η(k + 1, h) − ηT (k + 1, h− σ(h))Q1η(k + 1, h − σ(h))

+

h−σ∑

i=h+1−σ

ηT (k + 1, i)Q1η(k + 1, i)
)
|ℵ(k, h)

}
, (26)
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E{∆V13(k, h)|ℵ(k, h)} =E

{( h+1−σ∑

i=h+2−σ

h∑

j=i

−

h−σ∑

i=h+1−σ

h−1∑

j=i

)
ηT (k + 1, j)Q1η(k + 1, j)|ℵ(k, h)

}

=E

{(
(σ − σ)ηT (k + 1, h)Q1η(k + 1, h)

−

h−σ∑

j=h−σ+1

ηT (k + 1, j)Q1η(k + 1, j)
)
|ℵ(k, h)

}
, (27)

where condition (3) has been utilized to obtain inequality (26). Similarly, we have that

E{∆V21(k, h)|ℵ(k, h)} = E

{(
ηT (k + 1, h+ 1)P2η(k + 1, h+ 1)− ηT (k, h + 1)P2η(k, h + 1)

)
|ℵ(k, h)

}
, (28)

E{∆V22(k, h)|ℵ(k, h)} ≤E

{(
ηT (k, h + 1)Q2η(k, h + 1)− ηT (k − τ(k), h + 1)Q2η(k − τ(k), h + 1)

+

k−τ∑

j=k+1−τ

ηT (j, h + 1)Q2η(j, h + 1)
)
|ℵ(k, h)

}
, (29)

E{∆V23(k, h)|ℵ(k, h)} =E

{(
(τ − τ)ηT (k, h + 1)Q2η(k, h + 1)

−

k−τ∑

i=k+1−τ

ηT (i, h+ 1)Q2η(i, h + 1)
)
|ℵ(k, h)

}
. (30)

Substituting equalities/inequalities from (25)-(30) into (24), one obtains

J ≤E

{[
ηT (k + 1, h+ 1)(P1 + P2)η(k + 1, h + 1) + ηT (k + 1, h)((σ − σ + 1)Q1 − P1)η(k + 1, h)

+ ηT (k, h+ 1)((τ − τ + 1)Q2 −P2)η(k, h + 1)− ηT (k + 1, h − σ(h))Q1η(k + 1, h− σ(h))

− ηT (k − τ(k), h + 1)Q2η(k − τ(k), h + 1)
]
|ℵ(k, h)

}
. (31)

Furthermore, it follows from (17) that

η(k + 1, h+ 1) = ~Aξ1(k, h) + ~Dξ2(k, h) + B1F(k, h) + (α(k, h) − ᾱ)B2F(k, h) +H(k, h)ω(k, h), (32)

whereξ2(k, h) = col(η(k + 1, h − σ(h)), η(k − τ(k), h + 1)) and matrices~A and ~D are defined in (19), which

immediately infers that

E

{
ηT (k + 1, h+ 1)(P1 + P2)η(k + 1, h+ 1)|ℵ(k, h)

}

= E

{[
ξT1 (k, h) ~A

T (P1 + P2) ~Aξ1(k, h) + ξT2 (k, h) ~D
T (P1 + P2) ~Dξ2(k, h) + FT (k, h)BT

1 (P1 + P2)B1F(k, h)

+ 2ξT1 (k, h) ~A
T (P1 + P2)

(
~Dξ2(k, h) + B1F(k, h)

)
+ 2ξT2 (k, h) ~D

T (P1 + P2)B1F(k, h)

+ ᾱ(1− ᾱ)FT (k, h)BT
2 (P1 + P2)B2F(k, h) +HT (k, h)(P1 + P2)H(k, h)

]
|ℵ(k, h)

}
, (33)

where conditions (4) and (7) have been utilized when deriving the above equality.

On the other hand, it follows from condition (6) that for any given scalarsε(1)0 > 0 andε(1)i > 0 (i = 1, 2, . . . , N),

the following inequalities hold:

ε
(1)
0 FT (k, h)T T

1 T1F(k, h) − ε
(1)
0 ξT1 (k, h)(I2 ⊗ L T

1 )(F
(1)
1 + F

(1)
2 )T T1F(k, h)

+ ε
(1)
0 ξT1 (k, h)(I2 ⊗ L T

1 )Sym((F
(1)
1 )TF

(1)
2 )(I2 ⊗ L1)ξ1(k, h) ≤ 0, (34)

ε
(1)
i f̃T

1i(k, h)f̃1i(k, h) − ε
(1)
i (col(x̃i(k + 1, h), x̃i(k, h + 1)))T (F

(1)
1 + F

(1)
2 )T f̃1i(k, h)

+ ε
(1)
i (col(x̃i(k + 1, h), x̃i(k, h + 1)))TSym((F

(1)
1 )TF

(1)
2 )col(x̃i(k + 1, h), x̃i(k, h + 1)) ≤ 0, (35)
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where functionf̃1i(k, h) is defined in (14) and the first relationship in (18) has been utilized. Rewrite theN

inequalities expressed in (35) into a compact form and one obtains

F
T
1 (k, h)(~ε1 ⊗ In)F1(k, h) − 2(col(x̃(k + 1, h), x̃(k, h + 1)))TU

(1)
1 F1(k, h)

+ (col(x̃(k + 1, h), x̃(k, h+ 1)))T U
(1)
2 col(x̃(k + 1, h), x̃(k, h + 1)) ≤ 0 (36)

or in an equivalent form

FT (k, h)T T
3 (~ε1 ⊗ In)T3F(k, h) − 2ξT1 (k, h)(I2 ⊗ L T

2 )U
(1)
1 T3F(k, h)

+ ξT1 (k, h)(I2 ⊗ L T
2 )U

(1)
2 (I2 ⊗ L2)ξ1(k, h) ≤ 0 (37)

where functionF1(k, h) and matrixL2 are defined, respectively, in (14) and (19),~ε1 = diag(ε
(1)
1 , ε

(1)
2 , . . . , ε

(1)
N ) is

the solution of matrix inequality (19), and the third relationship in (18) has been utilized to derive (37).

Similarly, we have

ε
(2)
0 FT (k, h)T T

2 T2F(k, h) − ε
(2)
0 ξT2 (k, h)(I2 ⊗ L T

1 )(F
(2)
1 + F

(2)
2 )TT2F(k, h)

+ ε
(2)
0 ξT2 (k, h)(I2 ⊗ L T

1 )Sym((F
(2)
1 )TF

(2)
2 )(I2 ⊗ L1)ξ2(k, h) ≤ 0 (38)

and

FT (k, h)T T
4 (~ε2 ⊗ In)T4F(k, h) − 2ξT2 (k, h)(I2 ⊗ L T

2 )U
(2)
1 T4F(k, h)

+ ξT2 (k, h)(I2 ⊗ L T
2 )U

(2)
2 (I2 ⊗ L2)ξ2(k, h) ≤ 0, (39)

where~ε2 is the solution of matrix inequality (19), and the second andthe forth relationships in (18) have been

utilized, respectively, to derive (38) and (39).

Now, letting ξ(k, h) = col(ξ1(k, h), ξ2(k, h),F(k, h),H(k, h)), substituting (33) into (31) and combining with

inequalities (20), (22), (34), (37), (38) and (39), we have

J ≤ E

{
ξ(k, h)Ξξ(k, h)|ℵ(k, h)

}
(40)

whereΞ = ~Ψ + Γ(P1 + P2)
−1ΓT and matrix ~Ψ is almost the same as matrixΨ in (19) with only Ψ11 being

substituted by

~Ψ11 =diag((σ − σ + 1)Q1 − P1, (τ − τ + 1)Q2 − P2)− (I2 ⊗ L T
2 )U

(1)
2 (I2 ⊗ L2)

− ε
(1)
0 (I2 ⊗ L T

1 )Sym((F
(1)
1 )TF

(1)
2 )(I2 ⊗ L1) +

N∑

i=0

θi(I2 ⊗ L T
1 )HTH(I2 ⊗ L1).

The well-known Schur Complement Lemma [4] guarantees the validity of Ξ < 0 from the inequality condition

(19), which further leads toJ ≤ 0. After taking mathematical operation again, one gets

E{V (k + 1, h+ 1)} ≤ E{V1(k + 1, h) + V2(k, h + 1)}. (41)

In the following, we show that the trivial solution of (14) with ν(k, h) ≡ 0 is stable in the mean square (the method

used here has been firstly introduced in [28]). For any given scalar ǫ > 0, by resorting to the boundary initial

condition (11), there exists one scalarδ ∈ (0, ǫ) which is small enough such that

max
r∈⌊0,N⌋

∑

(k,h)∈N (r)

E{V (k, h)} ≤ ǫ2 (42)

whenever‖ϕ(k, h)‖ ≤ δ for (k, h) ∈ ⌊−τ , 0⌋ × ⌊0, κ1⌋ and‖φ(k, h)‖ ≤ δ for (k, h) ∈ ⌊0, κ2⌋ × ⌊−σ, 0⌋ in (11),

where the constant positive integerN > max{κ1, κ2} + max{τ , σ} and the index setN (r) =: {(k, h)| k + h =
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r; k, h ∈ Z+}. Moreover, for anyr ≥ N , from the inequality (41), it can be shown that the followinginequality

holds:
∑

(k,h)∈N (r+1)

E{V (k, h)} ≤E

{
V1(r, 0) +

(
V1(r − 1, 1) + V2(r − 1, 1)

)
+ . . .

+
(
V1(1, r − 1) + V2(1, r − 1)

)
+ V2(0, r)

}

=E

{(
V1(r, 0) + V2(r, 0)

)
+
(
V1(r − 1, 1) + V2(r − 1, 1)

)
+ . . .

+
(
V1(1, r − 1) + V2(1, r − 1)

)
+
(
V1(0, r) + V2(0, r)

)}

=
∑

(k,h)∈N (r)

E{V (k, h)}, (43)

which means
∑

(k,h)∈N (r) E{V (k, h)} is non-increasing with respect tor when r ≥ N . It should be noted that

when deriving (43), the initial conditionsϕ(k, h) = 0 for (k, h) ∈ ⌊−τ , 0⌋ × ⌊κ1 + 1,∞) and φ(k, h) = 0 for

(k, h) ∈ ⌊κ2 + 1,∞)× ⌊−σ, 0⌋ in (11) have been utilized. (42) together with (43) guarantee that

λmin(P1 + P2)E{‖x̃(k, h)‖
2} ≤ λmin(P1 + P2)E{‖η(k, h)‖

2} ≤ E{V (k, h)} ≤ ǫ2

holds for any(k, h) ∈ Z+ × Z+, i.e, system (14) is stable in the mean square.

To draw the conclusion that system (14) withν(k, h) ≡ 0 is globally asymptotically stable in the mean square,

we still need to showlimk+h→∞ E{‖x̃(k, h)‖} = 0. The conclusionΞ < 0 in (40) infers that there exists a constant

µ > 0 such that

E{(V (k + 1, h+ 1)− V1(k + 1, h) − V2(k, h + 1))|ℵ(k, h)} ≤ −µE{‖η(k, h + 1)‖2|ℵ(k, h)}.

Taking mathematical expectation on both sides of the above inequality and summing up both sides of it withk, h

varying from0 to N , where integerN is large enough, it is not difficult to obtain
N∑

k=0

N∑

h=0

E{‖η(k, h + 1)‖2} ≤
1

µ

( N∑

k=0

E{V1(k + 1, 0) − V1(k + 1, N + 1)}

+

N∑

h=0

E{V2(0, h + 1)− V2(N + 1, h+ 1)}
)

≤
1

µ

( N∑

k=0

E{V1(k + 1, 0)} +
N∑

h=0

E{V2(0, h + 1)}
)
< ∞ (44)

where the last step holds because of the bounded initial condition (11). From the necessary condition for the

convergent positive series, it can be concluded from (44) that

lim
k+h→∞

E{‖η(k, h)‖} = 0.

Second, we investigate theH∞ performance for the output estimation error system (16) by assuming the zero-

initial boundary condition. To obtain theH∞ estimation information, define the index as follows:

~J =:E
{[ 3∑

s=1

(∆V1s(k, h) + ∆V2s(k, h)) + ~zT (k, h)~z(k, h)− γ2~vT (k, h)~v(k, h)
]
|ℵ(k, h)

}
, (45)

where~z(k, h) = (z̃T (k + 1, h), z̃T (k, h+ 1))T and~v(k, h) = (νT (k + 1, h), νT (k, h+ 1))T .

The augmented state estimation error system (17) can be rewritten as

η(k + 1, h + 1) = ~Aξ1(k, h) + ~Dξ2(k, h) + B1F(k, h) + ~E~ν(k, h)

+ (α(k, h) − ᾱ)B2F(k, h) +H(k, h)ω(k, h),
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where matrix~E is defined in (19), and hence it can be derived that

E

{
ηT (k + 1, h+ 1)(P1 + P2)η(k + 1, h+ 1)|ℵ(k, h)

}

= E

{[
ξT1 (k, h) ~A

T (P1 + P2) ~Aξ1(k, h) + ξT2 (k, h) ~D
T (P1 + P2) ~Dξ2(k, h) + FT (k, h)BT

1 (P1 + P2)B1F(k, h)

+ ~νT (k, h)~ET (P1 + P2)~E~ν(k, h) + 2ξT1 (k, h) ~A
T (P1 + P2)

(
~Dξ2(k, h) + B1F(k, h) + ~E~ν(k, h)

)

+ 2ξT2 (k, h) ~D
T (P1 + P2)

(
B1F(k, h) + ~E~ν(k, h)

)
+ 2FT (k, h)BT

1 (P1 + P2)~E~ν(k, h)

+ ᾱ(1− ᾱ)FT (k, h)BT
2 (P1 + P2)B2F(k, h) +HT (k, h)(P1 + P2)H(k, h)

]
|ℵ(k, h)

}
. (46)

Moreover, it follows from the output estimation error system (16) that

~zT (k, h)~z(k, h) = ξT1 (k, h)diag(M
TM,MTM)ξ1(k, h). (47)

Substituting (46) into (31) and combining with inequalities (20), (22), (34), (37), (38) and (39), we have

~J ≤ E

{
~ξ(k, h)Ξ̃~ξ(k, h)|ℵ(k, h)

}
(48)

where~ξ(k, h) = col(ξ(k, h), ~ν(k, h)) andΞ̃ = diag(Ψ,−γ2I2p)+col(Γ, ~ET (P1+P2))(P1+P2)
−1(col(Γ, ~ET (P1+

P2)))
T . Again from the Schur Complement Lemma [4], it is known that matrix Ξ̃ < 0 if and only if the inequality

condition (19) holds. That is, under the condition (19), it is assured that for all~ξ(k, h) 6= 0,

E{V (k + 1, h + 1)|ℵ(k, h)} <E{[(V1(k + 1, h) + V2(k, h+ 1))− (‖z̃(k + 1, h)‖2 + ‖z̃(k, h + 1)‖2)

+ γ2(‖ν(k + 1, h)‖2 + ‖ν(k, h+ 1)‖2)]|ℵ(k, h)}.

Taking mathematical expectation on both sides of the above inequality, the following inequalities can be obtained:

E{V (k + 1, 0)} =E{V1(k + 1, 0) + V2(k + 1, 0)},

E{V (k, 1)} ≤E{(V1(k, 0) + V2(k − 1, 1)) − (‖z̃(k, 0)‖2 + ‖z̃(k − 1, 1)‖2) + γ2(‖ν(k, 0)‖2 + ‖ν(k − 1, 1)‖2)},

E{V (k − 1, 2)} ≤E{(V1(k − 1, 1) + V2(k − 2, 2)) − (‖z̃(k − 1, 1)‖2 + ‖z̃(k − 2, 2)‖2)

+ γ2(‖ν(k − 1, 1)‖2 + ‖ν(k − 2, 2)‖2)},

...

E{V (2, k − 1)} ≤E{(V1(2, k − 2) + V2(1, k − 1))− (‖z̃(2, k − 2)‖2 + ‖z̃(1, k − 1)‖2)

+ γ2(‖ν(2, k − 2)‖2 + ‖ν(1, k − 1)‖2)},

E{V (1, k)} ≤E{(V1(1, k − 1) + V2(0, k)) − (‖z̃(1, k − 1)‖2 + ‖z̃(0, k)‖2) + γ2(‖ν(1, k − 1)‖2 + ‖ν(0, k)‖2)},

E{V (0, k + 1)} =E{V1(0, k + 1) + V2(0, k + 1)}.

Adding up both sides of the abovek + 2 inequalities withk varying from 0 to N1 ∈ Z+ and considering the
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zero-initial boundary condition, we get the inequality given below:

N1∑

k=0

{ k∑

j=0

E{‖z̃(k − j, j)‖2} −
1

2
E{‖z̃(k, 0)‖2} −

1

2
E{‖z̃(0, k)‖2}

}

≤
N1∑

k=0

{ k∑

j=0

E{V (k − j, j)} −
k+1∑

j=0

E{V (k + 1− j, j)}
}

+ γ2
N1∑

k=0

( k∑

j=0

E{‖ν(k − j, j)‖2} −
1

2
E{‖ν(k, 0)‖2} −

1

2
E{‖ν(0, k)‖2}

)

= E{V (0, 0)} −
N1+1∑

j=0

E{V (N1 + 1− j, j)}

+ γ2
N1∑

k=0

( k∑

j=0

E{‖ν(k − j, j)‖2} −
1

2
E{‖ν(k, 0)‖2} −

1

2
E{‖ν(0, k)‖2}

)

≤ γ2
N1∑

k=0

( k∑

j=0

E{‖ν(k − j, j)‖2} −
1

2
E{‖ν(k, 0)‖2} −

1

2
E{‖ν(0, k)‖2}

)
.

By letting N1 → ∞, we have
∞∑

h=0

∞∑

k=0

E{‖z̃(k, h)‖2} −
1

2

∞∑

k=0

E{‖z̃(k, 0)‖2)} −
1

2

∞∑

h=0

E{‖z̃(0, h)‖2)}

≤ γ2
{ ∞∑

h=0

∞∑

k=0

E{‖ν(k, h)‖2} −
1

2

∞∑

k=0

E{‖ν(k, 0)‖2)} −
1

2

∞∑

h=0

E{‖ν(0, h)‖2)}
}
,

i.e.,

‖z̃‖2l2 ≤ γ2‖ν‖2l2 ,

which completes the proof of Theorem 1.

To derive the explicit design scheme for the distributedH∞ state estimation problem, we still need to introduce

the following lemma whose proof is straightforward and therefore omitted here.

Lemma 1: [33] Let P = diag(P11, P22, . . . , PNN ) with Pii ∈ Rn×n (i = 1, 2, . . . , N) being invertible matrices.

If X = PŪ for Ū ∈ RnN×mN , then we havēU ∈ Wn×m ⇔ X ∈ Wn×m.

We are now ready to deal with the distributedH∞ estimation design problem in the following theorem.

Theorem 2:Consider the target plant (1)-(2) with output measurements(8) and letγ > 0 be a prescribed constant

scalar. For alli = 1, 2, . . . , N , the system in (12)-(13) is a distributedH∞ state estimator on sensori if there exist

matricesPlj > 0 andQl > 0 (j = 0, 1, . . . , N), positive diagonal matrices~δl, ~εl and ~θ = diag(θ0, θ1, . . . , θN ),

matricesMi ∈ Rq×n (i ∈ ⌊1, N⌋), Xl ∈ Wn×m and positive scalarsε(l)0 (l = 1, 2) such that the following matrix

inequality holds:

Φ =




~Ψ 0 Γ̃ Φ14

∗ −γ2I2p Φ23 0

∗ ∗ −(P1 + P2) 0

∗ ∗ ∗ −I


 < 0 (49)
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wherePl = diag(Pl0,Pl) with Pl = diag(Pl1, Pl2, . . . , PlN ) (l = 1, 2), ~Ψ is almost the same as matrixΨ in (19)

with only Ψ11 being substituted by

~Ψ11 =diag((σ − σ + 1)Q1 − P1, (τ − τ + 1)Q2 − P2)− (I2 ⊗ L T
2 )U

(1)
2 (I2 ⊗ L2)

− ε
(1)
0 (I2 ⊗ L T

1 )Sym((F
(1)
1 )TF

(1)
2 )(I2 ⊗ L1) +

N∑

i=0

θi(I2 ⊗ L T
1 )HTH(I2 ⊗ L1),

Φ14 = col( ~MT , 0, 0, 0) with ~M = diag(M,M), Γ̃ = col(Γ̃T
1 , Γ̃

T
2 , Γ̃

T
3 , 0) with

Γ̃1 =

[
(P10 + P20)A1 0 (P10 + P20)A2 0

0 Γ̃122 0 Γ̃124

]
,

Γ̃2 =(P1 + P2)
[
(1N+1 ⊗D1)L1 (1N+1 ⊗D2)L1

]
,

Γ̃3 =

[
ᾱ(P10 + P20)B1 (1− ᾱ)(P10 + P20)B2 0 0 0 0

0 0 Γ̃323 Γ̃324 −X1 −X2

]
,

Φ23 =

[
ET

1 (P10 + P20) (1N ⊗ E1)
T (P1 + P2)− W̃ TX T

1

ET
2 (P10 + P20) (1N ⊗ E2)

T (P1 + P2)− W̃ TX T
2

]
,

where

Γ̃122 =(P1 + P2)(IN ⊗A1)−X1(IN ⊗ S1)C , Γ̃124 = (P1 + P2)(IN ⊗A2)− X2(IN ⊗ S1)C ;

Γ̃323 =ᾱ(P1 + P2)(IN ⊗B1), Γ̃324 = (1− ᾱ)(P1 + P2)(IN ⊗B2).

Moreover, the state estimation gain matrices can be designed as follows:

Kl = (P1 + P2)
−1Xl, l = 1, 2 (50)

and the output estimation gain matricesMi (i = 1, 2, . . . , N) can be obtained directly as the solution of (49).

Proof: By using the Schur Complement Lemma [4] to inequality (49) and noticing the equalities in (50), it

will be concluded that condition (19) holds under the validity of inequality (49). Hence, it follows from Theorem

1 that the result presented in this theorem is also tenable.

Remark 3: In this paper, the distributedH∞ state estimation problem is studied for a class of stochastic 2-D

systems with RVNs and time-varying delays. The main noveltylies in that 1) the proposed 2-D system is general

enough to model the phenomena of RVNs, sensor saturations and time-delays; 2) a new energy-like quadratic

function is employed to analyze the system stability and performance; and 3) intensive stochastic analysis is

conducted to enforce theH∞ performance for the addressed state estimation problem. Itshould be pointed out that

the main results established in Theorem 2 contain all the information about the system parameters, the occurring

probabilities of RVNs, the sensor saturation level as well as the bounds of the time-varying delays.

Remark 4:Note that, for the standard LMI system, the algorithm has a polynomial-time complexity. That is, the

numberN (ε) of flops needed to compute anε-accurate solution is bounded byO(MN 3 log(V/ε)), whereM is

the total row size of the LMI system,N is the total number of scalar decision variables,V is a data-dependent

scaling factor, andε is relative accuracy set for algorithm. Obviously, the computational complexity of the LMI-

based algorithms depends polynomially on the network size and the variable dimensions. In order to reduce the

computation burden, a possible way is to obtain the estimator gains in a node-by-node way. Fortunately, research

on LMI optimization is a very active area in the applied mathematics, optimization and the operations research

community, and substantial speed-ups can be expected in thefuture.

Remark 5: It can be seen from the main results that the feasibility of the developed algorithm for estimator design

would decrease with the increase of the occurring probabilities of randomly varying nonlinearities, the increase of
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Fig. 1. Evolution of the first element of statex(k, h).
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Fig. 2. Evolution of the second element of statex(k, h).

the sensor saturation level, and the increase of the bounds of the interval-like time-varying delays. On the other

hand, if the connectivity of the sensor network is improved,the sparseness issue will be eased and the feasibility

of the proposed estimator design procedure will be enhanced.

IV. I LLUSTRATIVE EXAMPLE

Consider a discrete 2-D delayed system with stochastic disturbances modeled by (1) with the following param-

eters:

A1 =

[
0.12 0.08

0.1 −0.12

]
, A2 =

[
0.05 −0.06

0.04 0.09

]
, B1 =

[
0.04 0

0.08 0.05

]
, B2 =

[
0.2 0.5

0.1 −0.2

]
,

D1 =

[
0.16 0.02

−0.14 0.04

]
, D2 =

[
0.07 −0.02

0.06 0.04

]
, E1 =

[
0.1 0.6

−0.6 0.8

]
, E2 =

[
0.3 0.4

0.05 −0.4

]
.

The time-varying delays in both directions areτ(k) = 3 + 3| sin(k2π)| andσ(h) = 2 + 5| cos(h2π)|, respectively,

with bounds asτ = 6, τ = 3, σ = 7 and σ = 2. For u = (u1, u2)
T , v = (v1, v2)

T ∈ R2, the nonlinearities

f1(u, v) = (0.2u1 + tanh(0.04u1) + 0.2v1 − tanh(0.1v1), 0.2u2 − tanh(0.1u2) + 0.2v2 + tanh(0.04v2))
T and

f2(u, v) = (0.2u1 − tanh(0.1u1) + 0.2v1 + tanh(0.04v1), 0.1u2 + tanh(0.05u2) + 0.2v2 + tanh(0.04v2))
T which

obviously satisfy the conditions in (6) with

F
(1)
1 =

[
0.2 0 0.1 0

0 0.1 0 0.2

]
, F

(1)
2 =

[
0.24 0 0.2 0

0 0.2 0 0.24

]
,

F
(2)
1 =

[
0.1 0 0.2 0

0 0.1 0 0.2

]
, F

(2)
2 =

[
0.2 0 0.24 0

0 0.15 0 0.24

]
.

It is assumed that the nonlinearities are randomly varying with the probabilityᾱ = 0.68. The noise intensity function

~(u, v) = (0.24 tanh u1 + 0.2 tanh v1,−0.15 sin u2 + 0.1 cos v2)
T which is subject to the constraint (5) with

H =

[
0.24 0 0.2 0

0 0.15 0 0.1

]
,

and the matrixM0 for deriving the output signalz(k, h) in equation (2) is taken to be[0.105 − 0.068].

The initial boundary condition associated with system (1) is taken to bex(k, h) = (0.1 tan(k+h), 0.7 sin(kh))T

for (k, h) ∈ ⌊−6, 0⌋ × (0, 13⌋, x(k, h) = (0.8 tanh(k − h), 0.2 cos(k + h))T for (k, h) ∈ (0, 14⌋ × ⌊−7, 0⌋ and
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x(k, h) = (0, 0)T otherwise. Moreover, the exogenous disturbance inputν(k, h) = (6 sin((k+7)(h+8)), 2 cos(k+

h))T for (k, h) ∈ ⌊0, 24⌋ × ⌊0, 23⌋ and ν(k, h) = (0, 0)T otherwise. The corresponding dynamical evolutions of

the statex(k, h) are shown in Figs. 1-2.

The sensor network considered here is represented by a directed graphG = (V ,E ,L) formed by6 sensors, where

the set of edgesE = {(1, 1), (1, 2), (2, 2), (2, 3), (2, 5), (3, 3), (3, 4), (3, 6), (4, 4), (4, 5), (5, 1)(5, 5), (6, 1), (6, 6)}

and the adjacency elements associated with the edges of the graph arelij = 1. The matrices in the output

measurement equation (8) are assumed to be

C1 =

[
−0.3 0.1

−0.1 0.5

]
, W1 =

[
0.15 0

0.3 0.2

]
; C2 =

[
0.1 0.2

0.5 0.15

]
, W2 =

[
0.15 0.65

0 −0.2

]
;

C3 =

[
−0.1 0.17

0.04 0.5

]
, W3 =

[
0.14 0.7

0.07 −0.3

]
; C4 =

[
0.3 0.1

0.5 0.09

]
, W4 =

[
0.19 −0.22

0 −0.19

]
;

C5 =

[
−0.15 0.1

0 0.25

]
, W5 =

[
0.2 0.03

0.14 0.8

]
; C6 =

[
0.25 0

0 0.1

]
, W6 =

[
0.15 0

0.66 0.18

]
.

The matricesS1 and S2 employed for dealing with the nonlinear saturated functiong(·) with saturation level

vectorumax = (6, 8)T are taken to beS1 = diag(0.28, 0.32) andS2 = diag(1.14, 1.09), which easily means that

S = diag(0.86, 0.77).

With the parameters given above, it is aimed to design a distributed state estimator in the form of (12)-(13) for

the stochastic 2-D target plant in (1)-(2) with6 sensor measurement outputs (8). By utilizing the Matlab Toolbox,

it is found that, for the givenH∞ performance indexγ ≥ 2.684, a solution can always be obtained for the matrix

inequality (49) in Theorem 2, which means that the minimum ofthe index for characterizing theH∞ performance

is γ∗ = 2.684. For example, the solution corresponding to the case ofγ = 2.684 is obtained as follows (here only

part of the solution is given for space consideration):ε
(1)
0 = 0.4240, ε(2)0 = 1.2463, θ0 = 1.1367 and

M2 =
[
0.0746 0.0174

]
, M4 =

[
0.0725 0.0184

]
, M6 =

[
0.0752 −0.0088

]
;

P10 =

[
0.7265 0.1308

0.1308 0.3952

]
, P20 =

[
0.3928 −0.0394

−0.0394 0.2607

]
.

Moreover, the state estimation gain matrices can be explicitly designed as follows according to (50) (for the same

reason of space consideration, only part of the block sub-matrices are given):

K111 =

[
−0.2456 −0.0282

−0.4363 −0.4501

]
, K125 =

[
0.1229 0.0583

−0.2466 −0.0256

]
, K161 =

[
−0.0760 0.0626

−0.3339 −0.2271

]
,

K223 =

[
−0.0518 −0.2134

−0.0331 0.3227

]
, K245 =

[
0.4249 0.2376

−0.1825 −0.0270

]
, K251 =

[
−0.8504 −0.0804

−0.0619 0.2170

]
.

It follows immediately from Theorem 2 that for alli = 1, 2, . . . , 6, the system in (12)-(13) is a distributedH∞

state estimator on sensori for the target plant (1)-(2) with output measurements (8).

With the estimator gain matrices given above, to illustratethe effectiveness of the designed estimators with more

visuality, Figs. 3-4 show the dynamical evolutions of the state estimation error̃x1(k, h) for sensor 1, Fig. 5 and

Fig. 6 present the dynamical evolutions of the output estimation errors for sensor 3 and sensor 5 respectively, which

further demonstrate the validity of the results obtained inSection III (for space saving purpose, we only list four

figures here).

Furthermore, it can be shown that the occurring probabilityᾱ of the RVNs does affect the feasibility of the

proposed results. In this example, the effective interval for the feasibility of the matrix inequality (49) is[0.6799, 1].

If we utilize the usual estimation method other than the distributed idea employed here, i.e., each sensor estimates the
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Fig. 3. Evolution of the estimation error̃x11 from sensor 1.
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Fig. 4. Evolution of the estimation error̃x12 from sensor 1.
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Fig. 5. Evolution of the output estimation error̃z3(k, h) from
sensor 3.
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Fig. 6. Evolution of the output estimation error̃z5(k, h) from
sensor 5.

states of the target plant by only its own measured outputs, it can be shown that the minimum index for characterizing

the state estimationH∞ performance isγ∗∗ = 2.763, which further infers that the distributed estimation scheme

makes theH∞ attenuation level smaller.

V. CONCLUSIONS

In this paper, we have addressed the distributedH∞ state estimation problem for the stochastic 2-D systems

with time-varying delays. RVNs have been introduced in the target plant to reflect the nonlinear disturbances which

appear in a probabilistic way and are changeable randomly interms of their types and intensity. Due to the fact

that there is no centralized processor which can capable of collecting all the measurements from the sensors, this

paper has designed the distributed state estimators which estimate the states of the target plant in a distributed

way. More specifically, each individual sensor estimates the states of the target plant based on not only its own but

also its neighboring sensors’ measurements according to certain topology. By using the Kronecker product and the

inequality technique, an energy-like function has been introduced to derive some sufficient criteria under which the

estimation error system is globally asymptotically stablein the mean square and theH∞ performance constraint is
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also guaranteed. Explicit representation of the estimation gains has been given in terms of the solution of certain

matrix inequality. Furthermore, the effectiveness of the proposed design scheme has been checked by a numerical

example.
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