287 research outputs found

    Small Tile Sets That Compute While Solving Mazes

    Get PDF
    We ask the question of how small a self-assembling set of tiles can be yet have interesting computational behaviour. We study this question in a model where supporting walls are provided as an input structure for tiles to grow along: we call it the Maze-Walking Tile Assembly Model. The model has a number of implementation prospects, one being DNA strands that attach to a DNA origami substrate. Intuitively, the model suggests a separation of signal routing and computation: The input structure (maze) supplies a routing diagram, and the programmer's tile set provides the computational ability. We ask how simple the computational part can be. We give two tiny tile sets that are computationally universal in the Maze-Walking Tile Assembly Model. The first has four tiles and simulates Boolean circuits by directly implementing NAND, NXOR and NOT gates. Our second tile set has 6 tiles and is called the Collatz tile set as it produces patterns found in binary/ternary representations of iterations of the Collatz function. Using computer search we find that the Collatz tile set is expressive enough to encode Boolean circuits using blocks of these patterns. These two tile sets give two different methods to find simple universal tile sets, and provide motivation for using pre-assembled maze structures as circuit wiring diagrams in molecular self-assembly based computing.ISSN:1868-896

    The behaviour of two sub-species of the striped mouse Rhabdomys: the role of phylogeny and the environment

    Get PDF
    MSc., Faculty of Science, University of the Witwatersrand, 2011The role of phylogeny and environmental influences on behaviour were investigated in two sub-species of Rhabdomys dilectus: R. d. chakae and R. d. dilectus. I compared populations of the two sub-species that occur about 70 km apart in superficially similar grasslands, south of Johannesburg (Walkers Fruit Farms) and at Irene in Gauteng Province, South Africa. The vegetation characteristics of the localities were assessed by measuring aerial cover, cover density, amount of dead material, and the maximum and minimum plant height. I studied the maintenance (non-social) and social behaviour of the sub-species in captivity. Three maintenance behaviours were studied: diel activity in an open arena, activity in an enclosed maze and in a modified plus maze. Social behaviour was studied by investigating the stress response of juvenile males after removal from their family groups and being placed in a plus maze, and the tolerance of unfamiliar same-sex consub-specifics in staged dyadic encounters. My results indicate that there were differences in the vegetation at the localities, most notably in the level of cover, which was greater at Irene (R. d. dilectus) than at Walkers Fruit Farms (R. d. chakae). Both sub-species displayed similar activity profiles (diurnal and crepuscular) and similar levels of activity in an enclosed maze. However, R. d. dilectus showed high levels of anxiety in an open arena and in a plus maze. The sub-species showed similar social behaviours: males of both sub-species that were removed from their family groups at the onset of weaning showed a lower stress response compared to the social sister species R. pumilio. Social interactions of same-sex intra-sub-specifics were mostly similar between the sub-species but there were slight discrepancies in behaviour associated with mating. Surprisingly, there were higher levels of amicability in all dyads than predicted by the solitary lifestyle of the two sub-species in nature. Behavioural differences (anxiety response) may be due to divergence in allopatry because of differences in vegetation characteristics. The similarities in activity profile and social behaviours could be explained by phylogenetic inertia or by similar selection pressures in similar environments

    Small tile sets that compute while solving mazes

    Get PDF
    We ask the question of how small a self-assembling set of tiles can be yet have interesting computational behaviour. We study this question in a model where supporting walls are provided as an input structure for tiles to grow along: we call it the Maze-Walking Tile Assembly Model. The model has a number of implementation prospects, one being DNA strands that attach to a DNA origami substrate. Intuitively, the model suggests a separation of signal routing and computation: the input structure (maze) supplies a routing diagram, and the programmer’s tile set provides the computational ability. We ask how simple the computational part can be. We give two tiny tile sets that are computationally universal in the Maze-Walking Tile Assembly Model. The first has four tiles and simulates Boolean circuits by directly implementing NAND, NXOR and NOT gates. Our second tile set has 6 tiles and is called the Collatz tile set as it produces patterns found in binary/ternary representations of iterations of the Collatz function. Using computer search we find that the Collatz tile set is expressive enough to encode Boolean circuits using blocks of these patterns. These two tile sets give two different methods to find simple universal tile sets, and provide motivation for using pre-assembled maze structures as circuit wiring diagrams in molecular self-assembly based computing

    Pervasive Gaming: Testing Future Context Aware Applications

    Get PDF
    More and more technical research projects take place that weave together elements of real and virtual life to provide a new experience defined as pervasive. They bank on the development of mobile services to drive the expansion of pervasive applications and in particular pervasive games. Using geolocalisation, local networks and short range radio frequencies technologies like RFID or other tagging technologies, pervasive games rely on a close relationship to the environment and thus explore the space between fiction and reality. This is their main quality but possibly their main weakness as the development relies on the production of specific contents in relation to the context of use. In this article, we propose to explore what this entirely new paradigm for game design implies in terms of production and how to overcome the limitations due to this dependency of contents and context. Based on our experience of three pervasive games developed within research projects on adhoc wifi (ANR-Safari and ANRTranshumance) and RFID networks (ANR-PLUG), this paper presents different options to reducing the cost of content production relying on either traditional editors or grass root contributions.pervasive games, content production, game design, geolocalised technologies.

    Walking, Running, Swimming: An Analysis of the Effects of Land and Water Aerobic Exercises on Cognitive Functions and Neural Substrat

    Get PDF
    In the brain and cognitive reserves framework, aerobic exercise is considered as a protective lifestyle factor able to induce positive effects on both brain structure and function. However, specific aspects of such a beneficial effect still need to be completely clarified. To this aim, the present narrative review focused on the potential brain/cognitive/neural reserve–construction mechanisms triggered by different aerobic exercise types (land activities; such as walking or running; vs. water activities; such as swimming), by considering human and animal studies on healthy subjects over the entire lifespan. The literature search was conducted in PubMed database. The studies analyzed here indicated that all the considered kinds of activities exert a beneficial effect on cognitive/behavioral functions and on the underlying brain neurobiological processes. In particular, the main effects observed involve the cognitive domains of memory and executive functions. These effects appear related to structural and functional changes mainly involving the fronto-hippocampal axis. The present review supports the requirement of further studies that investigate more specifically and systematically the effects of each type of aerobic activity, as a basis to plan more effective and personalized interventions on individuals as well as prevention and healthy promotion policies for the general population

    Non-Fickian dispersion in porous media explained by heterogeneous microscale matrix diffusion

    No full text
    International audienceMobile-immobile mass transfer is widely used to model non-Fickian dispersion in porous media. Nevertheless, the memory function, implemented in the sink/source term of the transport equation to characterize diffusion in the matrix (i.e., the immobile domain), is rarely measured directly. Therefore, the question can be posed as to whether the memory function is just a practical way of increasing the degrees of freedom for fitting tracer test breakthrough curves or whether it actually models the physics of tracer transport. In this paper we first present a technique to measure the memory function of aquifer samples and then compare the results with the memory function fitted from a set of field-scale tracer tests performed in the same aquifer. The memory function is computed by solving the matrix diffusion equation using a random walk approach. The properties that control diffusion (i.e., mobile-immobile interface and immobile domain cluster shapes, porosity, and tortuosity) are investigated by X-ray microtomography. Once the geometry of the matrix clusters is measured, the shape of the memory function is controlled by the value of the porosity at the percolation threshold and of the tortuosity of the diffusion path. These parameters can be evaluated from microtomographic images. The computed memory function compares well with the memory function deduced from the field-scale tracer tests. We conclude that for the reservoir rock studied here, the atypical non-Fickian dispersion measured from the tracer test is well explained by microscale diffusion processes in the immobile domain. A diffusion-controlled mobileimmobile mass transfer model therefore appears to be valid for this specific case

    Tortuosity of porous media: Image analysis and physical simulation

    Get PDF
    Tortuosity is widely used as a critical parameter to predict transport properties of porous media, such as rocks and soils. But unlike other standard microstructural properties, the concept of tortuosity is vague with multiple definitions and various evaluation methods introduced in different contexts. Hydraulic, electrical, diffusional, and thermal tortuosities are defined to describe different transport processes in porous media, while geometrical tortuosity is introduced to characterize the morphological property of porous microstructures. In particular, the rapid development of microscopy imaging techniques has made digital microstructures of porous media increasingly accessible, from which geometrical and physical tortuosities can be evaluated using various image analysis and numerical simulation methods. These tortuosities are defined differently and can differ greatly in value, but in many works of literature, they are used interchangeably. To address this situation, we systematically examine geometrical, hydraulic, electrical, diffusional, and thermal tortuosities from the viewpoints of the definition and evaluation method. For the same porous medium, visible discrepancies are found in the evaluated geometrical and physical tortuosities, depending on the specific definition and the evaluation method adopted. This observation makes it questionable to directly use the geometrical tortuosity as a substitute for physical tortuosities, a common practice in the literature. Thus, the correlations between geometrical and physical tortuosities are further analyzed, which also takes into account the influence of both image size and resolution. From the correlation analysis, phenomenological relations between geometrical and physical tortuosities are established, so that the latter can be accurately predicted by using the former which is much cheaper to evaluate from digital microstructures

    Recent progress in the shape deformation of polymeric hydrogels from memory to actuation

    Get PDF
    Shape deformation hydrogels, which are one of the most promising and essential classes of stimuli-responsive polymers, could provide large-scale and reversible deformation under external stimuli. Due to their wet and soft properties, shape deformation hydrogels are anticipated to be a candidate for the exploration of biomimetic materials, and have shown various potential applications in many fields. Here, an overview of the mechanisms of shape deformation hydrogels and methods for their preparation is presented. Some innovative and efficient strategies to fabricate programmable deformation hydrogels are then introduced. Moreover, successful explorations of their potential applications, including information encryption, soft robots and bionomic systems, are discussed. Finally, remaining great challenges including the achievement of multiple stable deformation states and the combination of shape deformation and sensing are highlighted
    • …
    corecore