242 research outputs found

    A Survey on FPGA-Based Heterogeneous Clusters Architectures

    Get PDF
    In recent years, the most powerful supercomputers have already reached megawatt power consumption levels, an important issue that challenges sustainability and shows the impossibility of maintaining this trend. To this date, the prevalent approach to supercomputing is dominated by CPUs and GPUs. Given their fixed architectures with generic instruction sets, they have been favored with lots of tools and mature workflows which led to mass adoption and further growth. However, reconfigurable hardware such as FPGAs has repeatedly proven that it offers substantial advantages over this supercomputing approach concerning performance and power consumption. In this survey, we review the most relevant works that advanced the field of heterogeneous supercomputing using FPGAs focusing on their architectural characteristics. Each work was divided into three main parts: network, hardware, and software tools. All implementations face challenges that involve all three parts. These dependencies result in compromises that designers must take into account. The advantages and limitations of each approach are discussed and compared in detail. The classification and study of the architectures illustrate the trade-offs of the solutions and help identify open problems and research lines

    HyperFPGA: SoC-FPGA Cluster Architecture for Supercomputing and Scientific applications

    Get PDF
    Since their inception, supercomputers have addressed problems that far exceed those of a single computing device. Modern supercomputers are made up of tens of thousands of CPUs and GPUs in racks that are interconnected via elaborate and most of the time ad hoc networks. These large facilities provide scientists with unprecedented and ever-growing computing power capable of tackling more complex and larger problems. In recent years, the most powerful supercomputers have already reached megawatt power consumption levels, an important issue that challenges sustainability and shows the impossibility of maintaining this trend. With more pressure on energy efficiency, an alternative to traditional architectures is needed. Reconfigurable hardware, such as FPGAs, has repeatedly been shown to offer substantial advantages over the traditional supercomputing approach with respect to performance and power consumption. In fact, several works that advanced the field of heterogeneous supercomputing using FPGAs are described in this thesis \cite{survey-2002}. Each cluster and its architectural characteristics can be studied from three interconnected domains: network, hardware, and software tools, resulting in intertwined challenges that designers must take into account. The classification and study of the architectures illustrate the trade-offs of the solutions and help identify open problems and research lines, which in turn served as inspiration and background for the HyperFPGA. In this thesis, the HyperFPGA cluster is presented as a way to build scalable SoC-FPGA platforms to explore new architectures for improved performance and energy efficiency in high-performance computing, focusing on flexibility and openness. The HyperFPGA is a modular platform based on a SoM that includes power monitoring tools with high-speed general-purpose interconnects to offer a great level of flexibility and introspection. By exploiting the reconfigurability and programmability offered by the HyperFPGA infrastructure, which combines FPGAs and CPUs, with high-speed general-purpose connectors, novel computing paradigms can be implemented. A custom Linux OS and drivers, along with a custom script for hardware definition, provide a uniform interface from application to platform for a programmable framework that integrates existing tools. The development environment is demonstrated using the N-Queens problem, which is a classic benchmark for evaluating the performance of parallel computing systems. Overall, the results of the HyperFPGA using the N-Queens problem highlight the platform's ability to handle computationally intensive tasks and demonstrate its suitability for its use in supercomputing experiments.Since their inception, supercomputers have addressed problems that far exceed those of a single computing device. Modern supercomputers are made up of tens of thousands of CPUs and GPUs in racks that are interconnected via elaborate and most of the time ad hoc networks. These large facilities provide scientists with unprecedented and ever-growing computing power capable of tackling more complex and larger problems. In recent years, the most powerful supercomputers have already reached megawatt power consumption levels, an important issue that challenges sustainability and shows the impossibility of maintaining this trend. With more pressure on energy efficiency, an alternative to traditional architectures is needed. Reconfigurable hardware, such as FPGAs, has repeatedly been shown to offer substantial advantages over the traditional supercomputing approach with respect to performance and power consumption. In fact, several works that advanced the field of heterogeneous supercomputing using FPGAs are described in this thesis \cite{survey-2002}. Each cluster and its architectural characteristics can be studied from three interconnected domains: network, hardware, and software tools, resulting in intertwined challenges that designers must take into account. The classification and study of the architectures illustrate the trade-offs of the solutions and help identify open problems and research lines, which in turn served as inspiration and background for the HyperFPGA. In this thesis, the HyperFPGA cluster is presented as a way to build scalable SoC-FPGA platforms to explore new architectures for improved performance and energy efficiency in high-performance computing, focusing on flexibility and openness. The HyperFPGA is a modular platform based on a SoM that includes power monitoring tools with high-speed general-purpose interconnects to offer a great level of flexibility and introspection. By exploiting the reconfigurability and programmability offered by the HyperFPGA infrastructure, which combines FPGAs and CPUs, with high-speed general-purpose connectors, novel computing paradigms can be implemented. A custom Linux OS and drivers, along with a custom script for hardware definition, provide a uniform interface from application to platform for a programmable framework that integrates existing tools. The development environment is demonstrated using the N-Queens problem, which is a classic benchmark for evaluating the performance of parallel computing systems. Overall, the results of the HyperFPGA using the N-Queens problem highlight the platform's ability to handle computationally intensive tasks and demonstrate its suitability for its use in supercomputing experiments

    Heterogeneity-aware scheduling and data partitioning for system performance acceleration

    Get PDF
    Over the past decade, heterogeneous processors and accelerators have become increasingly prevalent in modern computing systems. Compared with previous homogeneous parallel machines, the hardware heterogeneity in modern systems provides new opportunities and challenges for performance acceleration. Classic operating systems optimisation problems such as task scheduling, and application-specific optimisation techniques such as the adaptive data partitioning of parallel algorithms, are both required to work together to address hardware heterogeneity. Significant effort has been invested in this problem, but either focuses on a specific type of heterogeneous systems or algorithm, or a high-level framework without insight into the difference in heterogeneity between different types of system. A general software framework is required, which can not only be adapted to multiple types of systems and workloads, but is also equipped with the techniques to address a variety of hardware heterogeneity. This thesis presents approaches to design general heterogeneity-aware software frameworks for system performance acceleration. It covers a wide variety of systems, including an OS scheduler targeting on-chip asymmetric multi-core processors (AMPs) on mobile devices, a hierarchical many-core supercomputer and multi-FPGA systems for high performance computing (HPC) centers. Considering heterogeneity from on-chip AMPs, such as thread criticality, core sensitivity, and relative fairness, it suggests a collaborative based approach to co-design the task selector and core allocator on OS scheduler. Considering the typical sources of heterogeneity in HPC systems, such as the memory hierarchy, bandwidth limitations and asymmetric physical connection, it proposes an application-specific automatic data partitioning method for a modern supercomputer, and a topological-ranking heuristic based schedule for a multi-FPGA based reconfigurable cluster. Experiments on both a full system simulator (GEM5) and real systems (Sunway Taihulight Supercomputer and Xilinx Multi-FPGA based clusters) demonstrate the significant advantages of the suggested approaches compared against the state-of-the-art on variety of workloads."This work is supported by St Leonards 7th Century Scholarship and Computer Science PhD funding from University of St Andrews; by UK EPSRC grant Discovery: Pattern Discovery and Program Shaping for Manycore Systems (EP/P020631/1)." -- Acknowledgement

    Enabling Shared Memory Communication in Networks of MPSoCs

    Get PDF
    Ongoing transistor scaling and the growing complexity of embedded system designs has led to the rise of MPSoCs (Multi‐Processor System‐on‐Chip), combining multiple hard‐core CPUs and accelerators (FPGA, GPU) on the same physical die. These devices are of great interest to the supercomputing community, who are increasingly reliant on heterogeneity to achieve power and performance goals in these closing stages of the race to exascale. In this paper, we present a network interface architecture and networking infrastructure, designed to sit inside the FPGA fabric of a cutting‐edge MPSoC device, enabling networks of these devices to communicate within both a distributed and shared memory context, with reduced need for costly software networking system calls. We will present our implementation and prototype system and discuss the main design decisions relevant to the use of the Xilinx Zynq Ultrascale+, a state‐of‐the‐art MPSoC, and the challenges to be overcome given the device's limitations and constraints. We demonstrate the working prototype system connecting two MPSoCs, with communication between processor and remote memory region and accelerator. We then discuss the limitations of the current implementation and highlight areas of improvement to make this solution production‐ready
    • 

    corecore