
Università degli Studi di Ferrara

Janus: a recon�gurable system

for scienti�c computing

Dottorato di Ricerca in Matematica-Informatica

Coordinatore prof.ssa Zanghirati Luisa

XXI ciclo - Anni 2006/2008

� Settore Scienti�co Disciplinare INF/01 �

Dottorando Tutore

Mantovani Filippo Tripiccione Ra�aele

A Manuela

Contents

Introduction 1

1 Introduction to recon�gurable computing 5

1.1 General purpose architectures . 6

1.2 Domain-speci�c architectures . 7

1.3 Application-speci�c architectures . 8

1.4 Programmable logic, FPGA . 9

1.5 Recon�gurable Computing . 11

1.5.1 Pervasiveness of RC . 13

1.5.2 The Hartenstein's point of view 13

1.5.3 Man does not live by hardware only 14

1.6 Non exhaustive history of RC . 15

1.6.1 Common features . 16

1.6.2 Fix-plus machine (Estrin) . 17

1.6.3 Rammig Machine . 17

1.6.4 Xputer (Hartenstein) . 18

1.6.5 PAM, VCC and Splash . 19

1.6.6 Cray XD1 . 21

1.6.7 RAMP (Bee2) . 21

1.6.8 FAST (DRC) . 22

1.6.9 High-Performance Recon�gurable Computing: Maxwell and Janus 23

2 Monte Carlo methods for statistical physics 29

2.1 Statistical Physics . 29

2.1.1 Spin Glass . 33

2.1.2 Edward-Anderson model . 35

2.1.3 The Potts model and random graph coloring 36

2.2 Monte Carlo in general . 38

2.2.1 Markov processes . 38

2.2.2 Markov chains . 39

i

CONTENTS

2.2.3 Metropolis algorithm . 40

2.2.4 How to use the Metropolis algorithm for spin systems 42

2.2.5 Another MC algorithm: the heat bath 43

2.2.6 Parallel tempering techniques 44

2.3 Numerical requirements . 45

2.3.1 Implementation and available parallelism 46

2.3.2 Techniques on a general purpose processor 47

2.3.3 Random numbers . 49

3 Janus architecture at large 57

3.1 Janus project . 58

3.2 Questions leading Janus's development 59

3.2.1 Why many nodes on a board? 60

3.2.2 Why an Input/Output processor? 60

3.2.3 How are organized communications between Janus boards and

Janus host? . 61

3.2.4 How are organized communications within a Janus board? . . . 64

3.2.5 Why a nearest neighbours network? 66

3.2.6 Why do boards have no direct link among them self? 67

3.2.7 Why only 17 nodes per board? 68

3.2.8 Why do the nodes have no o� chip memory? 68

3.2.9 Which clock frequency and why? 69

3.3 SP �rmware: spin glass . 70

3.3.1 Parallelism . 70

3.3.2 Algorithm Implementation . 71

3.4 SP �rmware: parallel tempering . 74

3.5 SP �rmware: graph coloring . 77

3.5.1 Memory organization . 77

3.5.2 Janus limitations in graph coloring 80

4 Architectural details of Janus 85

4.1 FPGA: di�erent �avours . 85

4.2 Structure of a Janus board . 87

4.2.1 SP . 88

4.2.2 IOP . 89

4.2.3 PB . 91

4.2.4 Janus box . 92

4.3 The IOP in depth . 93

4.3.1 Clock handling: topClock . 94

4.3.2 Double data rate: iddrBus and oddrBus 95

ii

CONTENTS

4.3.3 Message routing: StreamRouter 96

4.3.4 Memory controller: memExt . 97

4.3.5 SP recon�guration interface: mainProgInt 99

4.3.6 SP communication: spInt . 101

4.3.7 Synchronization device: syncInt 102

4.4 SP �rmwares for Janus test . 103

4.5 Engineering problems . 106

5 Performance and results 111

5.1 Useful concepts . 111

5.1.1 About the equilibrium . 111

5.1.2 Correlation . 112

5.1.3 Order parameters: magnetization and overlap 113

5.2 First run details . 114

5.3 Janus performance . 116

5.4 Physics results overview . 119

5.4.1 Non-equilibrium dynamics of a large EA spin glass 119

5.4.2 The 4-state Potts model and its phase structure 122

Conclusions 129

A Notes on the IOP communication strategy 133

A.1 Overview of the IOP structure . 133

A.2 First idea: the stu� byte . 134

A.2.1 Which stu�-value? . 134

A.2.2 Performance problem . 135

A.3 Second idea: the tagged stream . 136

A.3.1 Remarks . 136

A.4 Third idea: the encapsulated stream 136

A.4.1 Pros and cons . 137

Ringraziamenti 139

iii

Introduction

The widespread di�usion of �eld programmable gate arrays (FPGA) and their re-

markable technological developments have allowed recon�gurable computing to play

an increasingly important role in computer architectures. This trend should be very

evident in the �eld of high performance, as the possibility to have a huge number of

gates that can be con�gured as needed opens the way to new approaches for compu-

tationally very intensive tasks.

Even if the recon�gurable approach has several advantages, its impact so far has

been limited. There are several reasons that may explain why recon�gurable comput-

ing is still in a corner:

i) the costs in terms of time and the speci�c technical skills needed to develop

an application using programmable logic is by far higher than those associated

to programming an application in an appropriate programming language, even

considering a reasonable amount of (possibly platform-speci�c) optimization for

performance;

ii) strictly correlated with the point above, software tools performing a (more or

less) automatic and transparent transitions from a conventional computer ap-

proach to a recon�gurable computing structure are still in an embryonic phase

and in a too fragmentary stage of development;

iii) the interface between recon�gurable devices and standard processors is often not

standard and therefore almost any project developing a system housing an FPGA

side by side to a conventional architecture de�nes a new data-exchange protocol,

so even the simplest communication primitives cannot be standardized. While

this lack of standardization does provide opportunities for those willing (and

able to) consider innovative designs, it is only perceived as a further obstacle for

any attempt to provide a standard development environment for recon�gurable

systems.

In spite of these drawbacks, there are several areas of computational sciences where

the recon�gurable approach is able to provide such a large performance boost as to

1

Introduction

provide adequate compensation to the disadvantages described above. Hardware re-

sources of recent FPGA generations allow us to map complex algorithms directly

within just one device, con�guring the available gates in order to perform a computa-

tionally heavy tasks with high e�ciency. In some cases, moreover, these applications

have computing requirements that are large enough to justify even huge development

e�orts.

A paradigmatic example of this situation is the study of a particular class of theo-

retical physics models called spin glasses performed using Monte Carlo methods. The

algorithms relevant in this �eld are characterized by i. large intrinsic parallelism that

allows one to implement a trivial SIMD approach (i.e. many Monte Carlo update

engines within a single FPGA); ii. relatively small size of the computational data

base (∼2 MByte), that can be fully stored into on-chip memories; iii. large use of

good quality random numbers (up to 1024 per clock cycle); iv. integer arithmetic and

simple logic operations. Careful tailoring of the architecture to the speci�c features

of the algorithms listed above makes it possible to reach impressive performance lev-

els: just one FPGA has the same performance as ∼ 1000 standard PC with a recent

state-of-the-art processor (this will be explained in details in chapter 5).

The Janus project was started approximately 3 years ago in order to harvest all the

potential advantages o�ered by recon�gurable computing for spin-glass simulations.

Janus is a collaboration among the Spanish Universities of Zaragoza, Madrid and

Extremadura, the BIFI Institute of Zaragoza and the Italian Universities of Ferrara

and Roma I with the industrial partnership of the Eurotech Group. The main aim

of the project is to build an FPGA based supercomputer strongly oriented to study

and solve the computational problems associated to the simulation of the spin systems

introduced above.

Janus is a system composed of three logical layers. The hardware layer includes

several (16 in the �rst system, deployed in December 2007) boards each housing 17

FPGA-based subsystem: 16 so-called scienti�c processors (SPs) and one input/output

processor (IOP). A standard PC (called the Janus host) connects to up to two Janus

boards and controls their functionalities via the IOP module.

At the software layer we �nd the communication libraries, developed in order to

allow the user to interface his applications with Janus, and the physics libraries, a

set of routines written in C that simpli�es the operations of setting up of a lattice

spin simulation on Janus. By we also developing these libraries, in some sense we

de�ne an interface between our FPGA-based system and a general purpose processor-

based computer. We obviously need such an interface to operate our machine, but

we concede that in this way we give our fair contribution to increasing the entropy of

recon�gurable computing interfaces (on the other hand, since we deal with statistical

physics, we know very well that decreasing entropy is a more formidable tasks than

2

Introduction

writing a PhD thesis).

The third layer is composed of the �rmware for the FPGAs running the simula-

tion codes, that is the set of parametric SP �rmware that implements di�erent spin

models and the IOP-based �rmware that includes several IO interfaces, a memory

controller, a con�guration controller driving the con�guration of the SPs and several

debug interfaces. All these �rmware modules are handcrafted in VHDL. No automatic

translation tools from high level languages to hardware description languages has been

used, since we consider optimization of the usage of logic resources and computational

performance as our primary goal.

The Janus project started in 2004 with preliminary meetings between Italian re-

searchers and the Spanish group that built in the '80s another FPGA based machine,

called Spin Update Engine (SUE). During my laurea degree I studied spin models and

implemented a Monte Carlo simulation engine on an FPGA: this initial experiment,

that we named SuperSUE, assessed the viability and the expected performances of a

smassively parallel system based on latest generation FPGAs based.

In summer 2006 the Eurotech group assembled the �rst three prototype Janus

boards, using Xilinx Virtex-4 LX160 FPGAs. One year later, the �rst Janus rack,

powered by 256 Xilinx Virtex-4 LX200 based computational nodes was tested. Accep-

tance tests on this large system ended before Christmas 2007 and in march 2008 we

performed the �rst large scale run (a simulation stretching uninterruptedly for over 25

days with just one system crash of a couple of hour due to severe weather conditions

that caused a power failure). The results of this run were reported in our application

for the 2008 Gordon Bell Prize. Unfortunately, at least one Gordon Bell referee made

the argument that only �oating point performance is relevant for that award.

The Janus installation in Zaragoza was o�cially unveiled in June 2008, and, since

then, has been always in operation, running several physics codes.

I was involved in all the phases of the project. In details during my �rst two

PhD years I was involved at the hardware layer of the project, developing the overall

hardware design of the system, working on the detailed structure of all its subsystems

and developing procedures for hardware tests. This period was characterized by a

strong interaction with engineers of the Eurotech group, the company that actually

built our hardware. Another relevant work of this period was the development of the

�rmware for the IOP and some �rmwares modules for the SPs, that we needed to test

all implemented hardware functionalities. The �nal period of my PhD studies was

dedicated to realize a complete test bench in order to validate the system as it was

assembled.

I also worked on some preliminary studies for the Janus implementation of an

e�cient �rmware for random graph coloring.

This thesis has 5 chapters, structured as follows:

3

Introduction

In Chapter 1 I review basic concepts of recon�gurable computing and I include a

non exhaustive history of the projects that marked developments in this area.

Chapter 2 is an introduction to the physics concepts and simulation algorithms

for which Janus has been designed and built. I introduce the Edward-Anderson spin

model, the graph coloring problem and the Monte Carlo algorithms used to investigate

them (Metropolis, Heat Bath and Parallel Tempering).

Chapter 3 is dedicated to a general discussion of the Janus architecture. I brie�y

describe hardware components and then I discuss a set of important architectural

questions that I handled during the development of Janus prototypes.

In Chapter 4 I highlight selected signi�cant details about the Janus basic hard-

ware elements, about the IOP and SP �rmware and a brief description of the test

environment developed to check the Janus boards.

Chapter 5 is a short review of the most important physics results obtained so far

with Janus, including a detailed analysis of performances.

My work is wrapped up in the concluding chapter.

4

When you got nothing, you got nothing to lose.

Bob Dylan

1
Introduction to recon�gurable computing

Research in the architecture of computer systems has always played a central role in

the computer science and high performance computing communities. The investigation

goals vary according to the target applications, the price of the �nal equipment, the

programmability and the scalability of the system and many others.

Until a few years ago for processors to be used in parallel machines for high-per-

formance computing the focus was placed on high clock rates, parallelism of di�erent

chips and high communication bandwidth at the expense of power. Recently, however,

attention has focused on multi core and many core architectures with the aim of taking

advantage of the presence on-chip of more than one complex calculation unit, adding

to the historical problem of the needs of bandwidth between chips the new challenge

of a careful handling of parallelism among cores within a single chip.

On the other hand in the embedded systems environment the governing factor

during development is in many cases the price of the �nal equipment and the main

aim is to use optimized components in order to contain costs and optimize power

consumption. A small microcontroller is used, for instance, to control data acquisition

from sensors and provide data to a collector system at a very low frequency. In those

systems the architectures are focused on containing power consumption and costs and

are in some cases carefully tailored for speci�c areas.

A third example in which the architecture plays a key role is the environment in

which some speci�c duties should be executed extremely e�ciently depending on a

small set of constraints. An example could be a rover used to explore a given area: its

5

Chapter 1. Introduction to recon�gurable computing

architecture will be carefully tailored to the speci�c application of image collection,

elaboration and transmission and, at the same time, to obstacle detection.

We consider the three examples given above as illustrating of the big scenario of

the architectures that can be analyzed by splitting it in three main groups:

- general purpose architectures based on the Von Neumann computing paradigm;

- domain-speci�c architectures designed for class of applications having common

features;

- application-speci�c architectures developed for only one speci�c application;

1.1 General purpose architectures

In 1945, the mathematician John Von Neumann demonstrated in a study of compu-

tation [1] that is possible to have a simple �xed architecture able to execute any kind

of computation, given a properly programmed control, without the need for hardware

modi�cation. The Von Neumann contribution was universally adopted and quickly

became the groundwork of future generations of high-speed digital computers. One of

the reasons for the acceptance of the Von Neumann approach is its simplicity of pro-

gramming that follows the sequential way of human thinking. The general structure

of a Von Neumann machine as shown in Figure 1.1 consists of:

- A memory for storing program and data. Harvard architectures contain two

parallel accessible memories for storing program and data separately.

- A control unit (also called control path) featuring a program counter that holds

the address of the next instruction to be executed.

- An arithmetic and logic unit (also called data path) in which instructions are

executed.

A program is coded as a set of instructions to be executed sequentially, instruction

after instruction. At each step of the program execution, the next instruction is

fetched from the memory at the address speci�ed in the program counter and decoded.

The required operands are then collected from the memory before the instruction is

executed. After execution, the result is written back into the memory. In this process,

the control path is in charge of setting all signals necessary to read from and write to

the memory, and to allow the data path to perform the right computation. The data

path is controlled by the control path, which interprets the instructions and sets the

control signals accordingly to execute the desired operation.

In general, the execution of an instruction on a Von Neumann computer can be

done in �ve cycles: Instruction Read (IR) in which an instruction is fetched from the

6

1.2 Domain-speci�c architectures

Figure 1.1 � A scheme of the Von Neumann computer architecture (source [2]).

memory; Decoding (D) in which the meaning of the instruction is determined and the

operands are localized; Read Operands (R) in which the operands are read from the

memory; Execute (EX) in which the instruction is executed with the read operands;

Write Result (W) in which the result of the execution is stored back to the memory.

In each of those �ve cycles, only the part of the hardware involved in the computation

is activated. The rest remains idle. For example if the IR cycle is to be performed, the

program counter will be activated to get the address of the instruction, the memory

will be addressed and the instruction register to store the instruction before decoding

will be also activated. Apart from those three units (program counter, memory and

instruction register), all the other units remain idle.

Decades of research in computer architectures developed techniques to optimize

the organization of processors as the ones described above. The extraction of the

instruction level parallelism, the so called pipelining, the multiple issue architectures,

the branch prediction or the optimized instruction scheduling are only a few examples

of the breakthroughs in this subject. For an exhaustive overview of architectural

optimizations see [3].

1.2 Domain-speci�c architectures

A domain-speci�c processor is a processor tailored for a class of algorithms. As men-

tioned in the previous section, the data path is tailored for an optimal execution of a

common set of operations that mostly characterizes the algorithms in the given class.

Also, memory access is reduced as much as possible. Digital Signal Processor (DSP)

are among the most used domain-speci�c processors.

A DSP is a specialized processor used to speed-up computation of repetitive, nu-

merically intensive tasks in signal processing areas such as telecommunication, multi-

7

Chapter 1. Introduction to recon�gurable computing

media, automobile, radar, sonar, seismic, image processing, etc. The most often cited

feature of DSPs is their ability to perform one or more multiply accumulate (MAC)

operations in single cycle. Usually, MAC operations have to be performed on a huge

set of data. In a MAC operation, data are �rst multiplied and then added to an

accumulated value. The normal Von Neumann computer would perform a MAC in

10 steps. The �rst instruction (multiply) would be fetched, then decoded, then the

operand would be read and multiply, the result would be stored back and the next

instruction (accumulate) would be read, the result stored in the previous step would

be read again and added to the accumulated value and the result would be stored

back. DSPs avoid those steps by using specialized hardware that directly performs the

addition after multiplication without having to access the memory.

Because many DSP algorithms involve performing repetitive computations, most

DSP processors provide special support for e�cient looping. Often a special loop or

repeat instruction is provided, which allows a loop implementation without expending

any instruction cycles for updating and testing the loop counter or branching back to

the top of the loop. DSPs are also customized for data with a given width according to

the application domain. For example if a DSP is to be used for image processing, then

pixels have to be processed. If the pixels are represented in Red Green Blue (RGB)

system where each colour is represented by a byte, then an image processing DSP will

not need more than 8 bit data path. Obviously, the image processing DSP cannot be

used again for applications requiring 32 bits computation.

This specialization of DSP's functions increases the performance of the processor

and improves device utilization, but reduces the execution e�ciency of an arbitrary

application.

1.3 Application-speci�c architectures

Although DSPs incorporate a degree of application-speci�c features such as MAC and

data width optimization, they still hide the Von Neumann approach and, therefore,

remain sequential machines. Their performance is limited. If a processor has to be

used for only one application, which is known and �xed in advance, then the processing

unit could be designed and optimized for that particular application. In this case, we

say that the hardware ��ts� itself to the application. This kind of approach is useful,

for instance, when a processor has to perform tasks de�ned by a standard, such as

encoding and decoding of an audio/video stream.

A processor designed for only one application is called an Application-Speci�c

Processor (ASIP). In an ASIP, the instruction cycles (IR, D, R, EX, W) are eliminated:

there is no fetch of instructions because the instruction set of the application is directly

implemented in hardware, or, in other words the algorithm to perform is hardwired in a

8

1.4 Programmable logic, FPGA

custom processor. Therefore a data stream works as input, the processor performs the

required computation and the results can be collected at the outputs of the processor.

ASIPs use a spatial approach to implement only one application. The gates build-

ing the �nal processor are con�gured so that they constitute all the functional units

needed for the computation of all parts of the application. This kind of computation

is called spatial computing [4]. Once again, an ASIP that is built to perform a given

computation cannot be used for other tasks other than those for which it has been

originally designed.

ASIPs are usually implemented as single chips called Application-Speci�c Integrated

Circuit, ASIC, or using devices housing programmable logic. This approach arose in

the late '80's with the widespread commercial availability of recon�gurable chips called

Field Programmable Gate Arrays, FPGAs.

1.4 Programmable logic, FPGA

The FPGA is a regularly tiled two-dimensional array of logic blocks. Each logic block

includes a Look-Up Table (LUT), a simple memory that can store an arbitrary n-input

boolean function. The logic blocks communicate through a programmable intercon-

nection network that includes both nearest neighbor as well as hierarchical and long

path wires. The periphery of the FPGA contains I/O blocks to interface between

the internal logic blocks and the I/O pins. This simple, homogeneous architecture has

evolved to become much more heterogeneous, including on-chip memory blocks as well

as DSP blocks such as multiply/multiply-accumulate units.

There are several sorts of FPGAs, including those that can be programmed only

once, but the application-speci�c architectures may require that the device can be

recon�gured on-the-�y during a run or between separate runs to obtains di�erent be-

haviours. Depending on the needs of the applications it is possible to use devices

basing their recon�guration on SRAM (faster) or FLASH (slower) but this is only a

technological detail. In both cases this means that the con�guration of the FPGA,

the object code de�ning the algorithm loaded onto the device, is stored in an on-chip

storage device. By loading di�erent con�gurations into this con�guration device, dif-

ferent algorithms can be executed. The con�guration determines the boolean function

computed by each logic block and the interconnection pattern between logic and I/O

blocks.

FPGA designers have developed a large variety of programmable logic structures

for FPGAs since their invention in the mid-1980's. For more than a decade, much of

the programmable logic used in FPGAs can be generalized as shown in Figure 1.2.

The basic logic element generally contains some form of programmable combinational

logic, a �ip-�op or latch, and some fast carry logic to reduce the area and delay costs

9

Chapter 1. Introduction to recon�gurable computing

Figure 1.2 � A generic programmable logic block (source [5]).

for implementing carry logic. In our generic logic block, the output of the block is

selectable between the output of the combinational logic or the output of the �ip-�op.

The �gure also illustrates that some form of programming, or con�guration, memory

is used to control the output multiplexer; of course, con�guration memory is used

throughout the logic block to control the speci�c function of each element within the

block.

In addition to the relatively �ne-grained con�gurability provided by FPGAs and

similar devices, the drive to reduce the power, area, and/or delay costs of �ne-grained

recon�gurability has led to a number of what may be called coarse-grained recon-

�gurable logic devices. Instead of providing con�gurability at the level of individual

gates, �ip-�ops or look-up tables (LUTs), these coarse-grained architectures often pro-

vide arithmetic logic units (ALUs) and other larger functions that can be combined

to perform computations. In the extreme, the functions might be as large as micro-

processor cores such as in the Raw chip from MIT [6].

With their introduction in 1985, FPGAs have been an alternative for implement-

ing digital logic in systems. The earlier use of the FPGAs were to provide a denser

solution for glue logic within systems, but now they have expanded their applications

to the point that it is common to �nd FPGAs as the central processing devices within

systems. The reason of their increased di�usion and use lies mainly in the available

resources embedded within a single chip: most of the FPGA family of the main brand

o�ers in fact today not only logic resources, but also embedded memories, DSP block,

high speed IO pins, hardwired IP core for the interface with PCI or other standard com-

munication protocol. Compared with application-speci�c integrated circuits (ASICs),

FPGAs have several advantages for their users, including: quick time to market, be-

ing a standard product; no non-recurring engineering costs for fabrication; pre-tested

silicon for use by the designer; and reprogrammability, allowing designers to upgrade

10

1.5 Recon�gurable Computing

or change logic through in-system programming. By recon�guring the device with a

new circuit, design errors can be �xed, new features can be added, or the function of

the hardware can be entirely retargeted to other applications. Of course, compared

with ASICs, FPGAs cost more per chip to perform a particular function so they are

not good for extremely high volumes. Also, an FPGA implementation of a function is

slower than the �xed-silicon options.

1.5 Recon�gurable Computing

From the discussion in sections 1.1 1.2 1.3, where we introduced three di�erent kinds of

processing units, we can identify two main means to characterize processors: �exibility

and performance.

The computers based on Von Neumann paradigm are very �exible because they

are in principle able to compute any kind of task: therefore we refer to them with

the terminology general purpose processors. Although there are many kind of opti-

mizing procedures and tricks their general purpose orientation has a cost in terms of

performance: for instance, the �ve steps (IR, D, R, EX, W) needed to perform one

instruction becomes a major drawback, in particular if the same instruction has to be

executed on huge sets of data; moreover their intrinsic sequential structure is useful

for the programmer because it is similar to the human thought process but is a natural

hindrance for a possible parallel computing approach for some applications. With this

architecture we have thus a high level of �exibility because the hardware structure is

�xed and, in many cases, is hidden to the programmer by the compiler that play the

role to ��t� the application in the hardware in order to be executed. We could use the

catchphrase: with general purpose processors the application must always �ts in the

hardware.

On the other side the application-speci�c architectures bring high performance

because they are optimized for a particular application. The instruction set required

for that application can then be built in a chip, but we pay a high cost in terms

of �exibility. In this case the important goals are the performance of the processor

and the hardware is shaped by the application. From this is possible we can invent

the opposite catchphrase: in presence of application-speci�c architectures the hardware

always �ts in the application.

Between these two extreme positions, general purpose processors and application-

speci�c processors, there is, architecturally speaking, an interesting space in which we

�nd di�erent types of processors. We can classify them depending on their performance

and their �exibility.

If we consider, after this analysis, the features of the FPGAs introduced brie�y in

section 1.4 we can easily see that they allow us to implement hardware architectures

11

Chapter 1. Introduction to recon�gurable computing

that merge the �exibility of a general purpose processor and the performance of an

application-speci�c processor with the comfort of the recon�gurability. In other words,

the boost that FPGA technology gives to researchers studying the architectures a

powerful tool to try to e�ciently �ll the space between general purpose and application-

speci�c processors. We consider therefore FPGAs as the way to build a recon�gurable

hardware or recon�gurable device or Recon�gurable Processing Unit, RPU, in analogy

with the Central Processing Unit, CPU. Following this, the study of computation using

recon�gurable devices is commonly called Recon�gurable Computing.

For a given application, at a given time, the spatial structure of the device will be

modi�ed such as to use the best computing approach to speed up that application.

If a new application has to be computed, the device structure will be modi�ed again

to match the new application. Contrary to the Von Neumann computers, which are

programmed by a set of instructions to be executed sequentially, the structure of

recon�gurable devices are changed by modifying all or part of the hardware at compile-

time or at run-time, usually by downloading a so called bitstream into the device. In

this sense we call con�guration or recon�guration the process of changing the structure

of a recon�gurable device respectively at star-up-time or at run-time.

Other than this di�erence of approach the major operative di�erences between

recon�gurable and processor-based computing are:

- The FPGA is con�gured into a customized hardware implementation of the ap-

plication. The hardware is usually data path driven, with minimal control �ow;

processor-based computing depends on a linear instruction stream including loops

and branches.

- The recon�gurable computer data path is usually pipelined so that all function

units are in use every clock cycle. The microprocessor has the potential for

multiple instructions per clock cycle, but the delivered parallelism depends on

the instruction mix of the speci�c program, and function units are often under-

utilized.

- The recon�gurable computer can access many memory words in each clock cycle,

and the memory addresses and access patterns can be optimized for the appli-

cation. The processor reads data through the data cache, and e�ciency of the

processor is determined by the degree to which data is available in the cache

when needed by an instruction. The programmer only indirectly controls the

cache-friendliness of the algorithm, as access to the data cache is hidden from the

instruction set architecture.

- The FPGA has in principle no constraints about the size of data words: the

words of the data path can have arbitrary length. Using the general purpose

architectures the length of the data words is �xed and the programmer has no

�ne control on it.

12

1.5 Recon�gurable Computing

To summarize, recon�gurable computing is concerned with decomposing applications

into spatially parallel, tiled, application-speci�c pipelines, whereas the traditional gen-

eral purpose processor interprets a linear sequence of instruction, with pipelining and

other forms of spatial parallelism hidden within the microarchitecture of the processor.

Progress in recon�guration has been amazing in the last two decades. This is

mostly due to the wide acceptance of the Field Programmable Gate Array (FPGAs)

that are now established as the most widely used recon�gurable devices.

1.5.1 Pervasiveness of RC

There are two main �elds in which the recon�gurable computing has been mostly

accepted, developed and used: embedded computing and scienti�c computing.

There are social reasons for that analyzed in [7]: people with expertise developing

embedded systems have hardware background and see in FPGAs a cheap solution to

develop custom systems with the possibility to �x with new �rmware releases their

projects so that the development and the update of an FPGA-based system is easier

and faster than with other components. Also this category of people with hardware

background is in many cases familiar with hardware description languages and with

hardware implementation techniques and can obtain impressive boost of performance

with a relative low prices and power consumption.

From scienti�c computing come problems often with very special requirements and

in many cases it is possible to implement their algorithms directly within an FPGA.

Depending on the project the FPGAs can be con�gured as the co-processor of a general

purpose processor or a main-custom processor. A limiting factor for to this kind of

project comes often from the absence of a speci�c hardware background of the people

involved: in some cases in fact the need to develop a design using hardware description

languages can require a long development period and a drastic change of the paradigm

of programming. Because of this some groups and companies develop and sell tools for

the translation of standard codes, like C, for instance, to various hardware description

language. These automatic tools of translation can speed up and make easier the

development process, but sometimes have big limitations on the code structures that

can be translated and the extraction of parallelism may not always be e�cient.

1.5.2 The Hartenstein's point of view

The most common architectural approach in computer science is the Von Neumann

paradigm and the most used processors are based on the general purpose architec-

tures. The recon�gurable computing approach requires a deep change of programming

paradigm in comparison with the Von Neumann: R. Hartenstein starting from 1990

gave a formalisation of it in [8, 9, 10]. Theoretically speaking, there is in the RC

13

Chapter 1. Introduction to recon�gurable computing

environment a di�erent view of the software and the hardware. In the Von Neumann

approach the hardware resources are �xed, only one source code is needed and the

compiler processing it generates an instruction-stream to be stored in the program

memory waiting the scheduled time to be executed.

The RC approach requires two di�erent type of source code, con�gware and �owware.

Con�gware is commonly written using some abstraction of an hardware description

language and is synthesised using a tool that translates the code describing the custom

architecture into logic gates, maps it on the FPGA resources and produces as output

a so called bitstream, a con�guration �le to properly set up the FPGA resources.

Flowware is code written with a high level programming language generating a stream

of data used as input for the custom architecture implemented within the FPGA. As

sometimes the platform housing the recon�gurable device is not a �standard� mother

board with �standard� communication protocols, the �owware implements also com-

munication interfaces and other features useful for the system. Recon�gurable systems

require moreover that con�guration/recon�guration of the logic is performed external

to the device: in some cases a PROM is used to set up the recon�gurable device on

boot, but it is useful to have the possibility to recon�gure the devices �on the �y�.

This require that �owware is able to perform this task too. Figure 1.3 summarize the

theoretical schemes of two approach: Von Neumann and recon�gurable computing.

Figure 1.3 � On the left the organization of Software Engineering in the classic Von

Neumann point of view; on the right a schema of the Con�gware Engineering theorized

by Hartenstein (adapted from [7]).

1.5.3 Man does not live by hardware only

On the theoretical side Hartenstein tries to formalize the principles of recon�gurable

computing. Following this idea and thanks to the increasing resources o�ered by the

FPGAs many people built therefore systems based on programmable logic and many of

14

1.6 Non exhaustive history of RC

these projects developed interfaces to connect general purpose architecture and FPGA

based systems [11, 12, 13, 14] trying to de�ne a standard interface in order to:

- access recon�gurable hardware resources without introducing undesirable depen-

dencies on hardware;

- avoid client code changes whenever the hardware is revised;

- leave the programmer free to know or ignore the hardware details of interfaces

or low level protocols;

- develop a set of libraries optimized for scienti�c computing and reprogrammable

logic based coprocessors [12].

All these e�orts are focused on solving a basic problem coming from recon�gurable

computing and formalized by Hartenstein: which is the way to e�ciently use the

huge degrees of freedom coming from the FPGA while maintaining programmability

accessible to a large part of the computer science community?

A �rst approach to solve it is to completely ignore the programmability and the gen-

eralization of the design in order to obtain the best performances from the logics: this

approach is commonly adopted by groups or projects developing e�cient application-

speci�c architectures that are not interested in developing a general purpose machine,

but only a performance oriented custom machine.

The second opposite approach comes from groups and projects studying systems

oriented to a large enough set of applications and in which the availability of as friendly

a programming environment as possible can justify a considerable loss of performance.

1.6 Non exhaustive history of RC

Like most technologies, recon�gurable computing systems are built on a variety of

existing technologies and techniques. It is always di�cult to pinpoint the exact mo-

ment a new area of technology comes into existence or even to pinpoint which is the

�rst system in a new class of machines. Popular scienti�c history often gives simple

accounts of individuals and projects that represent a turning point for a particular

technology, but in reality the story is usually more complicated.

The large number of exotic high-performance systems designed and built over a

very short time makes this area particularly di�cult to document, but there is also

a problem speci�c to them. Much of the work was done inside various government

agencies, particularly in the United States, and was never published. In these cases,

all that can be relied on is currently available records and publications.

15

Chapter 1. Introduction to recon�gurable computing

1.6.1 Common features

Recon�gurable systems are distinguished from other cellular multiprocessor systems.

Array processors, in particular Single Instruction Multiple Data Processors (SIMD),

are considered architecturally distinct from recon�gurable machines, in spite of many

similarities. This distinction arises primarily from the programming techniques. Ar-

ray processors tend to have either a shared or dedicated instruction sequencer and

take standard instruction-style programming code. Recon�gurable machines tend to

be programmed spatially, with di�erent physical regions of the device being con�g-

ured at di�erent times. This necessarily means that they will be slower to reprogram

than cellular multiprocessor systems but should be more �exible and achieve higher

performance for a given silicon area.

Although FPGA-based systems are very di�erent each others, it is possible to

extract some shared features concerning both architectures of systems housing recon-

�gurable devices and architecture of designs within the FPGAs.

The systems using FPGA are in many cases con�gured as master-slave systems: a

general purpose architecture works as master, runs the �owware and handles commu-

nications with the slave system with one or more recon�gurable devices. In general

slave systems are custom boards housing in addition to one or more FPGAs other

components like for instance external memory, communications devices, special I/O

devices etc. Although the structure of the system housing recon�gurable logics could

change among di�erent projects, the global scheme of a system involved FPGAs can

be summarize in general as show in Figure 1.4.

Figure 1.4 � A generic recon�gurable system is composed by a Slave System hous-

ing a programmable device (FPGA) and a Master System allowing the (re-)con-

�guration of the programmable device and handling the communications with it.

As said before, recon�gurable devices are programmed spatially, thus di�erent re-

gions have di�erent tasks and each region can be programmed (con�gured) in di�erent

times. Despite this large degree of freedom, some constraints coming from the chip

vendors are �xed for the developer: position of the I/O blocks, distribution of internal

memories, clock drivers and clock trees are common problems for a developer using

FPGA. Moreover, even if a programmer �nds the infrastructure already built, a �xed

structure is forced by the design of the system housing the FPGA so that some areas

of the chip are reserved for logic blocks performing speci�c task, as for instance I/O

16

1.6 Non exhaustive history of RC

interfaces or memory controllers. A common feature of all recon�gurable computing

projects is therefore the presence of some kind of spatial constraints.

1.6.2 Fix-plus machine (Estrin)

In 1959, Gerald Estrin, a computer scientist of the university of California at Los

Angeles, introduced the concept of recon�gurable computing. The following fragment

of an Estrin publication in 1960 [15] on the �x-plus machine, de�nes the concept of

recon�gurable computing paradigm.

�Pragmatic problem studies predicts gains in computation speeds in

a variety of computational tasks when executed on appropriate problem-

oriented con�gurations of the variable structure computer. The economic

feasibility of the system is based on utilization of essentially the same hard-

ware in a variety of special purpose structures. This capability is achieved

by programmed or physical restructuring of a part of the hardware.�

To implement this vision, Estrin designed a computing system, the �x-plus machine,

that like many recon�gurable computing systems available today, was composed of a

�xed architecture (a proto-general purpose processor) and a variable part consisting of

logic operators that could be manually changed in order to execute di�erent operations.

1.6.3 Rammig Machine

In the year 1977, Franz J. Rammig, a researcher at the university of Dortmund pro-

posed a concept for editing hardware [16]. The goal was:

�investigation of a system, which, with no manual or mechanical inter-

ference, permits the building, changing, processing and destruction of real

(not simulated) digital hardware.�

Rammig realised his concept by developing a hardware editor similar to today's FPGA

architecture. The editor was build upon a set of modules, a set of pins and a one-to-one

mapping function on the set of pins. The circuitry of a given function was then de�ned

as a string on an alphabet of two letters (w = wired and u = unwired). To build the

hardware editor, selectors were provided with the modules' outputs connected to the

input of the selectors and the output of the selectors connected to the input of the

modules. The overall system architecture is shown in Figure 1.5.

The implementation of the {wired, unwired} property was done through a pro-

grammable crossbar switch, made upon an array of selectors. The bit strings were

provided by storing the selector control in registers, and by making these registers ac-

cessible from a host computer, the PDP11 in those days. The modules were provided

17

Chapter 1. Introduction to recon�gurable computing

Figure 1.5 � Structure of the Rammig Machine (source [2]).

on a library board similar to that of Estrin's Fix-Plus. Each board could be selected

under software control. The mapping from module I/Os to pins was realized manually,

by a wiring of the provided library boards, i.e. �xed per library board.

1.6.4 Xputer (Hartenstein)

The Xputer's concept was presented in early 1980s by Reiner Hartenstein, a researcher

at the University of Kaiserslautern in Germany [8].

The goal was to have a very high degree of programmable parallelism in the hard-

ware, at the lowest possible level, to obtain performance not possible with the Von

Neumann computers. Instead of sequencing the instructions, the Xputer would se-

quence data, thus exploiting the regularity in the data dependencies of some class of

applications like image processing, where repetitive processing is performed on a large

amount of data. An Xputer consists of three main parts: the data sequencer, the data

memory and the recon�gurable ALU, rALU, that permits the run-time con�guration

of communication at levels below instruction set level. Within a loop, data to be pro-

cessed were accessed via a data structure called the scan window. Data manipulation

was done by the rALU that had access to many scan windows. The most essential

part of the data sequencer was the generic address generator, GAG, that was able to

produce address sequences corresponding to the data of up to three nested loops. An

rALU subnet that could be con�gured to perform all computations on the data of a

scan window was required for each level of a nested loop.

The general XPuter architecture is presented in Figure 1.6. This shows the real-

ization of the XPuter as a map oriented machine, MoM [17]. The overall system was

made upon a host processor, whose memory was accessible by the MoM. The rALU

subnets received their data directly from local memory or from the host main memory

via the MoM bus. Communication was also possible among the rALUs via direct serial

18

1.6 Non exhaustive history of RC

Figure 1.6 � General architecture of the XPuter as implemented in the Map oriented

Machine (MOM-3) prototype.

connections. Several XPuters could also be connected to provide more performance.

For executing a program, the hardware had to be con�gured �rst. If no recon-

�guration took place at run-time, then only the data memory would be necessary.

Otherwise, a con�guration memory would be required to hold all the con�gurations

to be used at run-time.

The basic building block of the recon�gurable ALU was the so-called recon�gurable

datapath unit, rDPU. Several rDPUs were used within an rALU for data manipulation.

Each rDPU had two registered inputs and two registered outputs with a data width

of 32 bit. Input data were provided either from the north or from the west, while

the south and east were used for the output. Besides the interconnection lines for

the rALUs, a global I/O-Bus is available for the connection of designs to the external

world. The I/O bus was principally used for accessing the scan windows.

The control implemented a program that is loaded on recon�guration to control

di�erent units of the rALU. Its instruction set consisted of instructions for loading the

data as well as instructions for collecting results from the �eld. Application of the

XPuters was in image processing, systolic array and signal processing.

1.6.5 PAM, VCC and Splash

In the late 1980s, PAM, VCC, and Splash, three signi�cant general-purpose systems

using multiple FPGAs, were designed and built. They were similar in that they used

multiple FPGAs, communicated to a host computer across a standard system bus,

and were aimed squarely at recon�gurable computing.

The Programmable Active Memories, PAM, project [18] at Digital Equipment Cor-

poration (DEC) initially used four Xilinx XC3000-series FPGAs. The original Perle-0

board contained 25 Xilinx XC3090 devices in a 5×5 array, attached to which were four

independent banks of fast static RAM (SRAM), arranged as 64K×64 bits, which were

19

Chapter 1. Introduction to recon�gurable computing

controlled by an additional two XC3090 FPGA devices. This wide and fast memory

provided the FPGA array with high bandwidth. The Perle-0 was quickly upgraded

to the more recent XC4000 series. As the size of the available XC4000-series devices

grew, the PAM family used a smaller array of FPGA devices, eventually settling on

2 × 2. Based at the DEC research lab, the PAM project ran for over a decade and

continued in spite of the acquisition of DEC by Compaq and then the later acquisition

of Compaq by Hewlett-Packard. PAM, in its various versions, plugged into the stan-

dard PCI bus in a PC or workstation and was marked by a relatively large number of

interesting applications as well as some groundbreaking work in software tools. It was

made available commercially and became a popular research platform.

The Virtual Computer from the Virtual Computer Corporation, VCC, [19] was per-

haps the �rst commercially available recon�gurable computing platform. Its original

version was an array of Xilinx XC4010 devices and I-Cube programmable intercon-

nect devices in a checkerboard pattern, with the I-Cube devices essentially serving as

a crossbar switch. The topology of the interconnection for these large FPGA arrays

was an important issue at this time: With a logic density of approximately 10K gates

and input/output (I/O) pins on the order of 200, a major concern was communica-

tion across FPGAs. The I-Cube devices were perceived as providing more �exibility,

although each switch had to be programmed, which increased the design complexity.

The �rst Virtual Computer used an 8× 8 array of alternating FPGA and I-Cube de-

vices. The exception was on the left and right sides of the array, which exclusively

used FPGAs, which consumed 40 Xilinx XC4010 FPGAs and 24 I-Cubes. Along the

left and right sides were 16 banks of independent 16 × 8K dual-ported SRAM, and

attached to the top row were 4 more banks of standard single-ported 256K × 32 bits

SRAM controlled by an additional 12 Xilinx XC4010 FPGAs. While this system was

large and relatively expensive, and had limited software support, VCC went on to o�er

several families of recon�gurable systems over the next decade and a half.

The Splash system [20, 21], from the Supercomputer Research Center (SRC) at

the Institute for Defense Analysis, was perhaps the largest and most heavily used

of these early systems. Splash was a linear array consisting of XC3000-series Xilinx

devices interfacing to a host system via a PCI bus. Multiple boards could be hosted in a

single system, and multiple systems could be connected together. Although the Splash

system was primarily built and used by the Department of Defense, a large amount

of information on it was made available. A Splash 2 [22] system quickly followed and

was made commercially available from Annapolis Microsystems. The Splash 2 board

consisted of two rows of eight Xilinx XC4010 devices, each with a small local memory.

These 16 FPGA/memory pairs were connected to a crossbar switch, with another

dedicated FPGA/memory pair used as a controller for the rest of the system. Much of

the work using Splash concentrated on defense applications such as cryptography and

20

1.6 Non exhaustive history of RC

pattern matching, but the associated tools e�ort was also notable, particularly some

of the earliest high-level language (HLL) to hardware description language (HDL)

translation software targeting recon�gurable machines. Speci�cally, the data parallel

C compiler and its debug tools and libraries provided recon�gurable systems with a

new level of software support.

PAM, VCC, and Splash represent the early large-scale recon�gurable computing

systems that emerged in the late 1980s. They each had a relatively long lifetime

and were upgraded with new FPGAs as denser versions became available. Also of

interest is the origin of each system. One was primarily a military e�ort (Splash),

another emerged from a corporate research lab (PAM), and the third was from a small

commercial company (Virtual Computer). It was this sort of widespread appeal that

was to characterize the rapid expansion of recon�gurable computing systems during

the 1990s.

1.6.6 Cray XD1

While the number of small recon�gurable coprocessing boards would continue to pro-

liferate as commercial FPGA devices became denser and cheaper, other new hardware

architectures were produced to address the needs of large-scale supercomputer users.

Unlike the earlier generation of boards and systems that sought to put as much recon-

�gurable logic as possible into a single uni�ed system, these machines took a di�erent

approach. In general, they were traditional multiprocessor systems, but each pro-

cessing node in them consisted of a very powerful commercial desktop microprocessor

combined with a large commercial FPGA device. Another factor that made these

systems unique is that they were all o�ered by mainstream commercial vendors.

The �rst recon�gurable supercomputing machine from Cray, the XD1 [23], is based

on a chassis of 12 processing nodes, with each node consisting of an AMD Opteron

processor. Up to 6 recon�gurable computing processing nodes, based on the Xilinx

Virtex-2 Pro devices, can also be con�gured in each chassis, and up to 12 chassis can be

combined in a single cabinet, with multiple cabinets making larger systems. Hundreds

of processing nodes can be easily con�gured with this approach.

1.6.7 RAMP (Bee2)

Around 2005 the choice of the computer hardware industry to focus production on

single-chip multiprocessors gave a boost to the idea of developing a system able to

simulate highly parallel architectures at hardware speeds. The Research Accelerator

for Multiple Processors, RAMP, is the open-source FPGA-based project that arose

from this idea [24, 25]: its main aim is to develop and share the hardware and software

necessary to create parallel architectures.

21

Chapter 1. Introduction to recon�gurable computing

The computational support of RAMP project is the system BEE2 [26] using Xilinx

Virtex-2 Pro FPGAs as primary and only processing elements. A peculiarity of this

system is the PowerPC 405 embedded on the FPGA that makes it possible to minimize

latency between microprocessor and recon�gurable logic while maximizing the data

throughput. Moreover the BEE2 system is an example of an FPGA-based system that

does not require explicitly a master system checking over the tasks of the recon�gurable

logic: each FPGA embeds in fact general purpose processors able to control itself.

Each BEE2 compute module consists of �ve Xilinx Virtex-2 Pro-70 FPGA chips,

each directly connected and logically organized into four compute FPGAs and one

control FPGA. The control FPGA has additional global interconnect interfaces and

control signals to the secondary system components, while the compute modules are

connected as a 2× 2 mesh.

The architecture of the BEE2 leaves some degrees of freedom and using the 4X

In�niband physical connections, the compute modules can be wired into many network

topologies, such as a 3D mesh. For applications requiring high-bisection-bandwidth

random communication among many compute modules, the BEE2 system is designed

to take advantage of commercial network switch technology, such as In�niband or

10G Ethernet. The compute module runs the Linux OS on the control FPGA with a

full IP network stack. Moreover each BEE2 system is equipped with high bandwidth

memories (DDR, DDR2) and other I/O interfaces.

As well as being a hardware architecture project, RAMP aims to support the

software community as it struggles to take advantage of the potential capabilities of

parallel microprocessors, by providing a malleable platform through which the software

community can collaborate with the hardware community.

1.6.8 FAST (DRC)

FPGA-Accelerated Simulation Technologies (FAST) [27], is a today's project devel-

oped by the University of Texas at Austin that attempts to speed up the simulation

of complex computer architectures. It gives a methodology to build extremely fast,

cycle-accurate full system simulators that run real applications on top of real operating

systems. Current state of the project allows one to boot unmodi�ed Windows XP ,

Linux 2.4 and Linux 2.6 and run unmodi�ed applications on top of those operating

systems at simulation speeds in the 1.2 MIPS range, between 100 and 1000 times faster

than Intel's and AMD's cycle-accurate simulators (e.g. which is fast enough to type

into Microsoft Word). I knew people of this project during my visit at the University

of Texas in summer 2008.

The hardware platform used to develop this project is a DRC development system

(DS2002). This machine contains a dual-socket motherboard, where one socket con-

tains an AMD Opteron 275 (2.2GHz) and the other socket contains a Xilinx Virtex-4

22

1.6 Non exhaustive history of RC

LX200 (4VLX200) FPGA. The Opteron communicates to the FPGA via HyperTrans-

port. The functional model runs on the Opteron and the timing model runs on the

FPGA. DRC provides libraries to read and write from the FPGA. Interesting feature

regarding the hardware platform is the fact that an FPGA uses a standard socket of

a general purpose processor and not custom interfaces.

1.6.9 High-Performance Recon�gurable Computing: Maxwell

and Janus

The high-performance computing �eld is traditionally dominated by clusters of general

purpose processors and a common approach of the scientists is to �nd a machine as fast

as possible to run a given code, if possible with no changes of it. This approach do not

require in principle an understanding of the architecture or the hardware features of

the machine running the code. On the other hand it is known that code optimization

with respect to architectural details improves the performance of applications.

Despite that there are studies about the viability of recon�gurable supercomputing

[28] and some projects with relevant results in this �eld.

The FPGA High Performance Computing Alliance (FHPCA) [29] was established

in 2004 and is dedicated to the use of Xilinx FPGAs to deliver new levels of compu-

tational performance for real-world industrial applications. Led by EPCC, the super-

computing centre at The University of Edinburgh, the FHPCA is funded by Scottish

Enterprise and builds on the skills of Nallatech Ltd, Alpha Data Ltd, Xilinx Develop-

ment Corporation, Algotronix and ISLI.

Maxwell [30, 31, 32] is a high-performance computer developed by the FHPCA

to demonstrate the feasibility of running computationally demanding applications on

an array of FPGAs. Not only can Maxwell demonstrate the numerical performance

achievable from recon�gurable computing, but it also serves as a testbed for tools and

techniques to port applications to such systems.

The unique architecture of Maxwell comprises 32 blades housed in an IBM Blade

Center. Each blade comprises one 2.8 GHz Xeon with 1 Gbyte memory and 2 Xilinx

Virtex-4 FPGAs each on a PCI-X subassembly developed by Alpha Data and Nallat-

ech. Each FPGA has either 512 Mbytes or 1 Gbyte of private memory. Whilst the

Xeon and FPGAs on a particular blade can communicate with each other over the

PCI bus (typical transfer bandwidths in excess of 600 Mbytes/s), the principal com-

munication infrastructure comprises a fast Ethernet network with a high-performance

switch linking the Xeons together and RocketIO linking the FPGAs. Each FPGA has

4 RocketIO links enabling the 64 FPGAs to be connected together in an 8×8 toroidal

mesh. The RocketIO has a bandwidth in excess of 2.5 Gbits/s per link.

Together these two principal interconnect subsystems enable the e�cient imple-

23

Chapter 1. Introduction to recon�gurable computing

mentation of parallel codes where there is a need both for intensive numerical process-

ing and for fast data communication between the cooperating processing elements.

The Parallel Toolkit developed by EPCC supports the decomposition of a numer-

ically intensive application into a set of cooperating modules running on the array of

Xeons in much the same way that many applications can be decomposed to run on a

cluster of PCs. Each module can then be further analysed to identify the numerical

�hot spots� which are then implemented on the FPGAs taking advantage of the fast

RocketIO linking the FPGAs for fast communications. The implementation of the

numerically intensive parts of the applications is accomplished using a combination of

tools such as DIME-C from Nallatech, Handel-C from Celoxica and VHDL available

from several vendors including Xilinx.

Janus is a project among universities of Italy and Spain with the main goal to

realize a FPGA-based parallel system optimized a speci�c class of statistical physics

simulations. Janus is composed of 256 Xilinx Virtex-4 FPGA organized in sets of 16

each connected via raw-ethernet Gigabit channel to a standard PC.

Both these projects give to the computer science community an e�cient proof that

recon�gurable computing can be used in order to obtain high performance machines

as with a general purpose environment, in the Maxwell case, as in a very special and

application speci�c case, in the Janus case. I discuss in depth details of Janus in the

next chapters.

24

Bibliography

[1] J. von Neumann, First Draft of a Report on the EDVAC,

http://www.zmms.tu-berlin.de/~modys/MRT1/2003-08-TheFirstDraft.pdf.

1.1

[2] C. Bobda, Introduction to Recon�gurable Computing: Architectures, Algorithms

and Applications, Springer (2007). 1.1, 1.5

[3] J. L. Hennessy, D. A. Patterson, Computer Architecture. A quantitative Approach

(Fourth Edition), published by Morgan Kaufmann (2007). 1.1

[4] A. DeHon, J. Wawrzynek, Recon�gurable Computing: What, Why, and Implica-

tions for Design Automation, Proceedings of the 36th ACM/IEEE conference on

Design automation, pp. 610 - 615 (1999). 1.3

[5] M. Gokhale, P. S. Graham, Recon�gurable Computing: Accelerating Computation

with Field-programmable Gate Arrays, Birkhäuser (2005). 1.2

[6] E. Waingold et al., Baring it all to Software: The Raw Machine, Computer, vol.

30, n. 9, pp. 86-93 (1997). 1.4

[7] R. Hartenstein, Why we need Recon�gurable Computing Education, Introduction,

opening session of the �rst International Workshop on Recon�gurable Computing

Education, Karlsruhe (2006). 1.5.1, 1.3

[8] R. Hartenstein, A. Hirschbiel, and M.Weber, Xputers - an open family of non Von

Neumann architectures, in 11th ITG/GI Conference on Architektur von Rechen-

systemen, VDE-Verlag (1990). 1.5.2, 1.6.4

[9] R. Hartenstein, Data-stream-based Computing: Models and Architectural Re-

sources, Informacije Midem (Ljubljana), vol. 33, part 4, pp. 228-235 (2003). 1.5.2

[10] R. Hartenstein, The von Neumann Syndrome, invited paper �Stamatis Vassiliadis

Memorial Symposium�, Delft, The Netherlands, (2007). 1.5.2

25

http://www.zmms.tu-berlin.de/~modys/MRT1/2003-08-TheFirstDraft.pdf

BIBLIOGRAPHY

[11] J. J. Koo et al., Evaluation of a high-level-language methodology for high-

performance recon�gurable computers Proceedings of the IEEE 18th Interna-

tional Conference on Application-Speci�c Systems, Architectures and Processors

(ASAP), pp. 30-35 (2007). 1.5.3

[12] S. Mohl, The Mitrion-C Programming Language Mitrionics Inc. (2005).

http://www.mitrionics.com/ 1.5.3

[13] G. Genest, R. Chamberlain, R. Bruce, Programming an FPGA-based Super Com-

puter Using a C-to-VHDL Compiler: DIME-C, Adaptive Hardware and Systems

AHS 2007, pp. 280-286 (2007). 1.5.3

[14] P. Waldeck, N. Bergmann, Dynamic hardware-software partitioning on recon-

�gurable system-on-chip, Proceedings of 3rd IEEE International Workshop on

System-on-Chip for Real-Time Applications, pp. 102-105 (2003). 1.5.3

[15] G. Estrin and R. Turn, Automatic assignment of computations in a variable struc-

ture computer system, IEEE Transactions on Electronic Computers, vol. 12, n. 5,

pp. 755-773 (1963). 1.6.2

[16] F. J. Rammig, A concept for the editing of hardware resulting in an automatic

hardware-editor, in Proceedings of 14th Design Automation Conference, New Or-

leans, pp. 187-193 (1977). 1.6.3

[17] R. Hartenstein et al., MOM-map-oriented machine-a partly custom-designed ar-

chitecture compared to standard hardware, in Proceedings of CompEuro '89., pp.

7-9 (1989). 1.6.4

[18] P. Bertin, D. Roncin, and J. Vuillemin, Introduction to programmable active mem-

ories, in Systolic Array Processors, Prentice Hall, pp. 301-309 (1989). 1.6.5

[19] S. Casselman, Virtual computing and the Virtual Computer, Proceedings of IEEE

Workshop on FPGAs for Custom Computing Machines, pp. 43-48 (1993). 1.6.5

[20] M. Gokhale et al., Splash: A recon�gurable linear logic array, International Con-

ference on Parallel Processing, pp. 526-532 (1990). 1.6.5

[21] M. Gokhale et al., Building and Using a Highly Parallel Programmable Logic

Array, Computer, Volume 24, Issue 1, pp. 81-89 (1991). 1.6.5

[22] D. A. Buel, et al., Splash 2 FPGAs in a Custom Computing Machine, IEEE

Computer Society Press, Los Alamitos, California (1996). 1.6.5

[23] J. S. Vetter et al., Early Evaluation of the Cray XD1, Proceedings of 20th Inter-

national Parallel and Distributed Processing Symposium (2006). 1.6.6

26

http://www.mitrionics.com/

BIBLIOGRAPHY

[24] J. Wawrzynek, D. Patterson et al., RAMP: Research Accelerator for Multiple

Processors IEEE Micro, vol. 27, n. 2, pp. 46-57 (2005). 1.6.7

[25] A. Krasnov et al., RAMP Blue: A Message-Passing Manycore System in FPGAs,

International Conference on Field Programmable Logic and Applications, pp. 54-

61 (2007). 1.6.7

[26] C. Chang, J. Wawrzynek, R. W. Brodersen, BEE2: A High-End Recon�gurable

Computing System, IEEE Design and Test of Computers, vol. 22, n. 2, pp. 114-125

(2005). 1.6.7

[27] D. Chiou et al., FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-

System, Cycle-Accurate Simulators, Proceedings of the 40th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 249-261 (2007).

http://users.ece.utexas.edu/~derek/FAST.html 1.6.8

[28] S. Craven, P. Athanas, Examining the Viability of FPGA Supercomputing,

EURASIP Journal on Embedded Systems, vol. 2007, n. 93652 (2007). 1.6.9

[29] http://www.fhpca.org 1.6.9

[30] R. Baxter et al, High-Performance Recon�gurable Computing the View from Ed-

inburgh, Proceedings AHS2007 Conference Second NASA/ESA Conference on

Adaptive Hardware andSystems, Edinburgh (2007).

http://www.fhpca.org/download/HPRC.pdf 1.6.9

[31] R. Baxter et al, The FPGA High-Performance Computing Alliance Parallel

Toolkit, Proceedings AHS2007 Conference Second NASA/ESA Conference on

Adaptive Hardware andSystems, Edinburgh (2007).

http://www.fhpca.org/download/PTK.pdf 1.6.9

[32] R. Baxter et al., Maxwell a 64 FPGA Supercomputer, Proceedings AHS2007 Con-

ference Second NASA/ESA Conference on Adaptive Hardware andSystems, Ed-

inburgh (2007).

http://www.fhpca.org/download/RSSI07-Maxwell.pdf 1.6.9

27

http://users.ece.utexas.edu/~derek/FAST.html
http://www.fhpca.org/download/HPRC.pdf
http://www.fhpca.org/download/PTK.pdf
http://www.fhpca.org/download/RSSI07-Maxwell.pdf

They tried to take me to a doctor, but its too late for me.

Then they took me to a preacher that they saw on their tv

who said that for a small donation my lost soul would be saved

I said I don't think so preacher, I'll come back another day.

Bon Jovi

2
Monte Carlo methods for statistical physics

This chapter is about the use of computers to solve problems in statistical physics.

In particular, it is about Monte Carlo methods, which form the largest and most

important class of numerical methods used for solving statistical physics problems.

In the opening section, I look �rst at what we mean by statistical physics, giving

a brief overview of the discipline called statistical mechanics with special care to two

examples: the Edward-Anderson model and the Potts model applied to the problem of

a random graph coloring. These two models are in fact implemented with impressive

boost of performances on the Janus supercomputer. The material presented here is

largely inspired by references [1, 2] and [3].

In section 2.2 I introduce Monte Carlo methods in general and I explain how they

can be used to explore statistical mechanics problems.

The last section will be dedicated to the computational features of Monte Carlo

implementation on a standard architecture. A special care will be given to the problem

of random numbers generation.

2.1 Statistical Physics

Statistical mechanics is primarily concerned with the calculation of properties of con-

densed matter systems. The crucial di�culty associated with these systems is that

they are composed of very many parts, typically atoms or molecules. These parts

are usually all the same or of a small number of di�erent types and they often obey

29

Chapter 2. Monte Carlo methods for statistical physics

quite simple equations of motion so that the behaviour of the entire system can be

expressed mathematically in a straightforward manner. However the complexity of

the problem makes it impossible to solve the mathematics exactly. A standard ex-

ample is that of a volume of gas in a container. One litre of, for instance, oxygen at

standard temperature and pressure consists of about 3 × 1022 oxygen molecules, all

moving around and colliding with one another and the walls of the container. One

litre of air under the same conditions contains the same number of molecules, but

they are now a mixture of oxygen, nitrogen, carbon dioxide. The atmosphere of the

Earth contains 4 × 1024 litres of air, or about 1 × 1044 molecules, all moving around

and colliding with each other and with the environment. It is not feasible to solve

Hamilton's equations for these systems because there are too many equations, and yet

when we look at the macroscopic properties of the gas, they are very well-behaved and

predictable. Clearly, there is something special about the behaviour of the solutions

of these many equations that �averages out� to give us a predictable behaviour for

the entire system. For example, the pressure and temperature of the gas obey quite

simple laws although both are measures of rather gross average properties of the gas.

Statistical mechanics attempts to avoid the problem of solving the equations of motion

and to compute these gross properties of large systems by treating them in a proba-

bilistic fashion. Instead of looking for exact solutions, we deal with the probabilities of

the system being in one state or another hence the name statistical mechanics. Such

probabilistic statements are extremely useful, because we usually �nd that for large

systems the range of behaviours of the system that have a non negligible probability

to occur is very small; all the reasonably probable behaviours fall into a narrow range,

allowing us to state with extremely high con�dence that the real system will display

behaviour within that range.

The typical paradigm for the systems we will be studying in this section is one of

a system governed by a Hamiltonian function H which gives us the total energy of the

system in any particular state. We only consider systems that have discrete sets of

states each with its own energy, ranging from the lowest, or ground state energy E0

upwards, E1, E2, E3, ... , possibly without limit.

If the system were in insulation energy would be conserved, which means that the

system would stay in the same energy state all the time (or if there were a number

of degenerate states with the same energy, maybe it would make transitions between

those) However there is another component to our paradigm, and that is the thermal

reservoir. This is an external system which acts as a source and sink of heat, constantly

exchanging energy with our Hamiltonian system in such a way as always to push

the temperature of the system, de�ned as in classical thermodynamics, towards the

temperature of the reservoir. In e�ect the reservoir is a weak perturbation on the

Hamiltonian, which we ignore in our calculation of the energy levels of our system,

30

2.1 Statistical Physics

but which pushes the system frequently from one energy level to another. We can

incorporate the e�ects of the reservoir in our calculations by giving the system a

dynamics, a rule whereby the system changes periodically from one state to another.

The exact nature of the dynamics is dictated by the form of the perturbation that

the reservoir produces in the Hamiltonian. However, there are a number of general

conclusions that we can reach without specifying the exact form of the dynamics, and

we will examine these �rst.

Suppose our system is in a state µ. Let us de�ne R(µ→ ν)dt to be the probability

that it is in state ν a time dt later. R(µ→ ν) is the transition rate for the transition

from µ to ν. The transition rate is normally assumed to be time independent and we

will make that assumption here. We can de�ne a transition rate like this for every

possible state ν that the system can reach. These transition rates are usually all we

know about the dynamics, which means that even if we know the state µ that the

system starts o� in, we need only wait a short interval of time and it could be in any

one of a very large number of other possible states. This is where our probabilistic

treatment of the problem comes in. We de�ne a set of weights wµ(t) which represent

the probability that the system will be in state µ at time t. Statistical mechanics deals

with these weights, and they represent our entire knowledge about the state of the

system. We can write a master equation for the evolution of wµ(t) in terms of the

rates R(µ→ ν) thus:

dwµ
dt

=
∑
ν

[wν(t)R(ν → µ)− wµ(t)R(µ→ ν)] (2.1.1)

The �rst term on the right-hand side of this equation represents the rate at which

the system is undergoing transitions into state µ the second term is the rate at which

it is undergoing transitions out of µ into other states. The probabilities wµ(t) must

also obey the sum rule

∑
µ

wµ(t) = 1 (2.1.2)

for all t, since the system must always be in some state. The solution of Equation

2.1.1, subject to the constraint 2.1.2, tells us how the weights wµ vary over time.

We must now consider how the weights wµ relate to the macroscopic properties of

the system which we study. If we are interested in some quantity Q, which takes the

value Qµ in state µ, then we can de�ne the expectation of Q at time t for our system

as

〈Q〉 =
∑
µ

Qµwµ(t). (2.1.3)

31

Chapter 2. Monte Carlo methods for statistical physics

Clearly this quantity contains important information about the real value of Q that

we might expect to measure in an experiment. For example, if our system is de�nitely

in one state τ then 〈Q〉 will take the corresponding value Qτ . And if the system is

equally likely to be in any of three states, and has zero probability of being in any other

state, then 〈Q〉 is equal to the mean of the values of Q in those three states. However,

the precise relation of 〈Q〉 to the observed value of Q must be considered more closely.

There are two ways to look at it. The �rst is to imagine having a large number of

copies of our system all interacting with their own thermal reservoirs and making

transitions between one state and another all the time. 〈Q〉 is then a good estimate of

the number we would get if we were to measure the instantaneous value of the quantity

Q in each of these systems and then take the mean of all of them. This is a conceptually

sound approach to de�ning the expectation of a quantity. However this de�nition is not

closely related to what happens in a real experiment. In a real experiment we normally

only have one system and we make all our measurements of Q on that system, though

we probably don't just make a single instantaneous measurement, but rather integrate

our results over some period of time. There is another way of looking at the expectation

value which is similar to this experimental picture. This is to envisage the expectation

as a time average of the quantity Q. Imagine recording the value of Q every second

for a thousand seconds and taking the average of those one thousand values. This will

correspond roughly to the quantity calculated in Equation 2.1.3 as long as the system

passes through a representative selection of the states in the probability distribution

wµ, in those thousand seconds. Obviously we will get an increasingly accurate �t

between our experimental average and the expectation 〈Q〉 as we average over longer
and longer time intervals. Conceptually there is a weakness in this approach as we

do not have a rigorous de�nition of what we mean by a �representative selection of

the states�. There is no guarantee that the system will pass through anything like a

representative sample of the states of the system in the time during which we observe

it. It could easily be that the system only moves from one state to another on longer

time scales and so it remains in the same state for all of our measurements. Or maybe

it changes state very rapidly, but because of the nature of the dynamics spends long

periods of time in small portions of the state space. This can happen for example if

the transition rates R(µ→ ν) are only large for states of the system that di�er in very

small ways, so that the only way to make a large change in the state of the system is

to go through very many small steps. This is a very common problem in a lot of the

systems. Another potential problem with the time average interpretation of 2.1.3 is

that the weights wµ(t), which are functions of time, may change considerably over the

course of our measurements, making the expression invalid. For equilibrium systems

the weights are by de�nition not time-varying, so this problem does not arise. Despite

these problems however, this interpretation of the expectation value of a quantity is

32

2.1 Statistical Physics

the most widely used and most experimentally relevant interpretation. The calculation

of expectation values is one of the fundamental goals of statistical mechanics, and of

Monte Carlo simulation in statistical physics.

2.1.1 Spin Glass

Spin glass materials are diluted magnetic materials with long range interactions with

oscillating signs, that can be accurately described by statistical mechanical models

where the quenched couplings have zero average and are randomly distributed: they

have played a crucial role in the development of a new paradigm [4]. Recently the

replica symmetry breaking (RSB) solution of the mean �eld theory has been proven to

be correct [5, 6], but many of its implications, already at the mean �eld level, have yet

to be unveiled, and its relations with realistic models of three dimensional materials

are not yet clear.

This paradigm is of remarkable interest for at least four di�erent reasons. First

the theoretical structure that emerges from the RSB is very complex and very new,

di�erent from the most part of typical features of physical systems. Second it sheds at

least some lights on materials in the universality class of spin glasses (that is far larger

of the one including magnetic samples). Third it will hopefully allow us to advance in

our understanding of structural glasses [7], where in the absence of quenched disorder

it is the intrinsic complexity of the Hamiltonian which dynamically induces frustration.

Fourth it allows us to analyze (and sometimes to brilliantly solve) a large number of

non physics problems: optimization, �nancial markets and complex networks can be

studied thanks to the tools and algorithms created for studying spin glasses.

The typical Hamiltonian is

H = −
∑

Jijsisj , (2.1.4)

where the s variables are the basic degrees of freedom of the model and can take the

values ±1 (models where the variables are de�ned on a µ dimensional spheres are for

example also of interest), i and j are sites of a D dimensional lattice (typically simple

cubic) and the couplings J are quenched random variables de�ned on the links of the

lattice (among �rst neighboring sites in D dimensions or among all couples of sites for

the mean �eld theory) that can take both signs and have a zero average (they can be

for example ±1 with equal probability or normal variables).

We consider a spin glass system as a collection of spins (i.e. magnetic moments)

that presents a frozen disordered low temperature state, instead of the uniform or

periodic pattern usually found in magnetic systems. In order to produce such a state,

two key ingredients turn out to be necessary: frustration (i.e. competition among the

di�erent interactions between magnetic moments, so that they cannot be all satis�ed

simultaneously) and disorder in the form of quenched randomness (i.e. each interaction

33

Chapter 2. Monte Carlo methods for statistical physics

term has a roughly equal a priori probability to be ferromagnetic or antiferromagnetic,

and its value is �xed on experimental times).

Figure 2.1 � Example of frustration in a 2D Ising spin system.

Figure 2.1 shows a simple case of frustration. In this example we consider four

interacting Ising spins, represented by arrows pointing up or down (the only two avail-

able states for an Ising spin). The interaction values J are depicted as positive or

negative on the bonds, indicating respectively a ferromagnetic or antiferromagnetic

interaction between the spins connected by the bond. Two spins coupled by a positive

interaction J > 0 tend to align themselves parallel to each other, while an antiferro-

magnetic interaction tends to favor an anti-parallel alignment. Figure 2.1 shows a case

where the competition between the interactions makes it impossible to minimize the

energy of all the bonds at the same time. The system is thus said to be frustrated.

The other feature of a spin glass system is the disorder usually given by the cou-

plings J distributed with a given probability distribution or by an external random

�eld applied to the system.

The appearance of many competing con�gurations in spin glasses is caused by the

random distribution of interactions within the system. To explain the presence of

di�erent types of interactions within a single sample of material it is instructive to

consider the �rst kind of glassy systems studied. These were mostly diluted solutions

of magnetic impurities of a transition metal (such as Fe or Mn) in non-magnetic (noble)

metal hosts (as Au or Cu).

The impurities cause a magnetic polarization of the surrounding electrons of the

host metal. This interaction oscillates rapidly with the distance, producing a polariza-

tion �eld which is positive at some distances and negative at others. The surrounding

impurity moments interacts with this magnetic �eld and try to align themselves in

accordance to it. Because of the oscillatory behavior of these magnetic �elds, and the

random placement of the impurities in the host, some of the interactions end up being

positive, and thus favor parallel alignment of the spins, while some others are negative,

preferring antiparallel alignment. This, together with the variable distance between

34

2.1 Statistical Physics

impurities, results in a set of random, competing interactions.

2.1.2 Edward-Anderson model

This model was introduced by Edwards and Anderson in 1975. One of their most

important contributions consisted in being able to capture the very essence of the spin

glass phenomenon within a model apparently simple and beautifully minimal, and

yet o�ering a rich and complex phenomenology at the same time. This boosted the

theoretical work on the �eld, and paved the way for other simpli�ed models.

Figure 2.2 � Three dimensional cubic lattice. The magnetic moments, placed in all

lattice nodes, are Ising-like variables ±1 (i.e. up/down). In this case the interactions

between nearest neighbors (represented by continuous lines in the �gure) are taken from

a bimodal distribution, and can be either ferromagnetic (+) or antiferromagnetic (-)

(source [3]).

The Edwards-Anderson (EA) model is de�ned on a regular three dimensional cubic

lattice of size L, usually with periodic boundary conditions and with the spins Si lying

on the V = L3 sites i of the lattice (see Figure 2.2). Its Hamiltonian can be written

as

H = −
∑
〈i,j〉

Jijsisj , (2.1.5)

where 〈i, j〉 means that the sum is performed only over nearest neighbors, and the

interactions Jij are independent random variables. In general the precise form of the

distribution of the Jij is not very important, as far as it produces a disordered and

frustrated system, but typically one uses either a Gaussian distribution with mean J0

and standard deviation unity

P (Jij) =
1√
2π
e−(Jij−J0)/2, (2.1.6)

35

Chapter 2. Monte Carlo methods for statistical physics

or a double delta distribution with zero mean

P (Jij) =
1

2
[δ(Jij − 1) + δ(Jij + 1)]. (2.1.7)

The spins si are classicalm-component vectors (here indicated with bold font). The

simplest version of the model considers the case with m = 1, the so-called Ising model,

but a lot of theoretical work has been done also with m = 2 (the XY model), m = 3

(the Heisenberg model) and even higher number of components. In the literature the

name Edwards-Anderson models is often used to indicate exclusively the version with

Ising-like (i.e. m = 1 and si = ±1) spins and nearest neighbors interactions. We will

usually refer to this model in the following sections, and will therefore use the scalar

notation si for the spin, instead of the vectorial si .

The EA model can be easily generalized to accommodate the contribution of an

external magnetic �eld h whose value can vary randomly from one point of the lattice

to another. It is indicated as hi (as a function of the site i) and the resulting generalized

Hamiltonian function is

H = −
∑
〈i,j〉

Jijsisj −
∑
i

hisi . (2.1.8)

The apparent simplicity of the EA model, yet showing such a rich behavior, moti-

vated a lot of researchers to develop alternative models to help advancements in spin

glass theory. Many variations and di�erent models have been introduced and studied

during the last decades, such as, for instance the Sherrington-Kirkpatrick (SK) model

[8, 4] in which each spin interacts with all others spins and not only with the nearest

neighbours.

2.1.3 The Potts model and random graph coloring

The standard p-state Potts glass model is de�ned by the Hamiltonian

H = −
∑
〈i,j〉

Jijsisj , (2.1.9)

where si ∈ {1, 2, ..., p}, and the couplings {J} are random values. As it appears,

an energy term −Jij is gained (or lost, depending on the sign of Jij) if the two spins

are in the same state, while the contribution is zero for spin in di�erent states. The

spins lie on a three-dimensional lattice of linear size L.

It is common to rede�ne the Hamiltonian by making use of the simplex represen-

tation of the Potts spins [9] which maps the p states of the (scalar) spins si to vectors

si in a (p − 1)-dimensional space, pointing to the corners of a p − simplex2 . The p

vectors de�ned in this way satisfy the relation

sasb =
pδab − 1

p− 1
(2.1.10)

36

2.1 Statistical Physics

where a and b are scalar Potts states (thus a, b ∈ {1, 2, ..., p}).
This choice leads to the modi�ed Hamiltonian

H = −
∑
〈i,j〉

J ′ijsisj , (2.1.11)

which is analogous to a vector spin model in (p− 1) dimensions, with the substantial

di�erence that the spin vectors can take only a discrete set of values. Furthermore,

except for the case with p = 2 (which is just the EA-Ising model), given a spin si its

inverse −si is not allowed.
The simplex Hamiltonian is commonly used to study this class of models, since it

helps to de�ne the relevant observables and order parameters. The couplings Jij are

usually drawn from a Gaussian or a bimodal distribution, as for the EA model. It is

not clear whether the choice on the distribution leading the disorder does a�ect or not

the system behavior. It has been suggested [10] that the Gaussian and the bimodal

Potts glass might belong to di�erent universality classes, though numerical simulations

like those in [11] and [12] show incompatible results and a quite di�erent behavior.

The Potts model is relevant not only because it represents a generalization of EA

model but also because it is an alternative formulation of the coloring problem on a

random graphs. A random graph is obtained by starting with a set of n vertices and

adding edges between them with a given di�erent probability distributions. The Erdös-

Rényi model for the random graphs is a common model [13, 14] in which the graph

is denoted as G(V,E), a set of V vertices and E edges occurring with a probability

p. For any graph G = (V,E), the set E of edges of G may be understood as a binary

relation on V . This is the adjacency relation of G, in which vertices a and b are related

precisely if {a, b} ∈ E, so ab is an edge of G. Conversely, every symmetric relation R

on V gives rise to (and is the edge set of) a graph on V (see [15] for an exhaustive

review). If we consider a set of p colors and we assume that each vertex has one of

these colors, we can de�ne a con�ict in a colors con�guration when two node connected

by an edge (adjacent vertices) have the same color. The coloring problem consists of

�nding a color con�guration of V , the set of the vertices, so that each vertex has a

color and each edge has no con�icts. The reader can surely guess that also in the

coloring problem there may exist the sort of frustration close to the de�nition given

in Figure 2.1.

Analytic work [16] and numerical studies in [17] [18] prove that there exist inter-

esting relations between the Potts model studying glassy systems in physics and the

Erdös-Rényi model solving the coloring problem on random graphs. The basic idea

of this equivalence is given in Figure 2.3: the p states of a spin in a Potts model

correspond to p colors of a vertex in a random graph model. Therefore it is possible

to de�ne a Hamiltonian function as in 2.1.9 for a random graph too and to study a

random graph with techniques similar to the ones used for spin systems. The only

37

Chapter 2. Monte Carlo methods for statistical physics

Figure 2.3 � Analogy between random graph coloring problem and Potts model.

di�erence lies in the geometry of the lattice: in a spin system the lattice is regular and

each spin has a �xed number of neighbours with which it interacts (in a 3D lattice the

neighbours are 6); by contrast in a random graph the number of adjacent nodes of a

given node is given by a distribution of probability and is not �xed.

From the perspective of the scientist studying the random graph problem, this

feature related to the topology of the system is not constrictive and approaching a

random graph with spin model techniques is useful and interesting because it allows

one to discover and prove important properties of random graphs. On the other hand,

if we look at the topology of the system with the eyes of the computer scientist, we

note immediately that while in spin system the regular lattice can be very e�ciently

mapped into a two-dimensional structure (i.e. a memory in a computer), an irregular

structure of information as given by the random graph problem represents a non trivial

challenge if we think about the manner to e�ciently store and access data in a memory.

I studied this kind of problems during the prototyping phase of the Janus system

[19] as described in details in Section 3.5.

2.2 Monte Carlo in general

2.2.1 Markov processes

Markov processes are stochastic processes whose futures are conditionally indepen-

dent of their pasts given their present values. More formally, a stochastic process

{Xt, t ∈ T }, with T ⊆ R, is called a Markov process if, for every s > 0 and t,

(Xt+s|Xu, u 6 t) ∼ (Xt+s|Xt) (2.2.1)

In other words, the conditional distribution of the future variable Xt+s, given the

entire past of the process {Xu, u 6 t} , is the same as the conditional distribution of

Xt+s given only the present Xt. That is, in order to predict future states, we only

need to know the present one. Property (2.2.1) is called the Markov property.

38

2.2 Monte Carlo in general

Depending on the index set T and state space E (the set of all values the {Xt}
can take), Markov processes come in many di�erent forms. A Markov process with a

discrete index set is called a Markov chain. A Markov process with a discrete state

space and a continuous index set (such as R or R+) is called a Markov jump process.

2.2.2 Markov chains

Consider a Markov chain X = {Xt, t ∈ N} with a discrete (that is, countable) state

space E . In this case the Markov property (2.2.1) is:

P (Xt+1 = xt+1 |X0 = x0, ..., Xt = xt) = P (Xt+1 = xt+1 |Xt = xt) (2.2.2)

for all x0, ..., xt+1 ∈ E and t ∈ N. We restrict ourselves to Markov chains for which

the conditional probability

P (Xt+1 = j |Xt = i), i, j ∈ E (2.2.3)

is independent of the time t. Such chains are called time-homogeneous. The probabil-

ities in (2.2.3) are called the (one-step) transition probabilities of X. The distribution

of X0 is called the initial distribution of the Markov chain. The one-step transition

probabilities and the initial distribution completely specify the distribution of X. If

we consider the product rule of probability for any sequence of events A1, A2, . . . , An,

P (A1 · · ·An) = P (A1)P (A2|A1)P (A3|A1A2) · · ·P (An|A1 · · ·An−1) , (2.2.4)

using the abbreviation A1A2 · · ·Ak ≡ A1∩A2∩· · ·∩Ak and the Markov property 2.2.1

we obtain

P (X0 = x0, . . . , Xt = xt) =

= P (X0 = x0)P (X1 = x1|X0 = x0) · · ·P (Xt = xt|X0 = x0 . . . Xt−1 = xt−1)

= P (X0 = x0)P (X1 = x1|X0 = x0) · · ·P (Xt = xt|Xt−1 = xt−1)

(2.2.5)

Since E is countable, we can arrange the one-step transition probabilities in an array.

This array is called the (one-step) transition matrix of X denoted by T . For example,

when E = {0, 1, 2, . . . } the transition matrix T has the form

T =


p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
...

...
...

. . .

 (2.2.6)

Note that the elements in every row are positive and sum up to unity. Another con-

venient way to describe a Markov chain X is through its transition graph. Figure 2.4

39

Chapter 2. Monte Carlo methods for statistical physics

Figure 2.4 � A transition graph: each numbered circle represents a state and each

directional link between states has a probability w that is the probability that the system

passes from a given state to another (following the arrow direction). The transition

graph A can be split in 2 independent Markov chains, B and C. Moreover the chain D

can be reduced to the chain E because no transitions are possible from a state of E to

a state of D. Markov chain E is instead irreducible (adapted from [20]).

shows a graph in which each node is a state and the edges link vertices with non-zero

transition probability. For instance, if we are in state 2 at a given time t, the con-

�guration at time t + 1 could be state 4, with probability w24 = 1
3
, or state 7, with

probability w27 = 1
15
, or to stay in state 2, with probability w22 = 3

5
. From properties

of the probability we assume that ∑
j

wij = 1 (2.2.7)

and the probability to be in a given state i at a given time t+ 1 is

pi(t+ 1) =
∑
j

pj(t)wji, (2.2.8)

where pj(t) is the probability to be in the state, j, at the previous time, t; wji represents

the probability to evolve from state j to state i in the last time step. From (2.2.7) and

(2.2.8) we obtain again (2.2.5) in the form

pi(t+ 1)− pi(t) =
∑
j

pj(t)wji −
∑
j

pi(t)wij (2.2.9)

and from this form the compact matrix notation used in (2.2.6) follows.

2.2.3 Metropolis algorithm

In this section I review the powerful generic method, called Markov chain Monte

Carlo (MCMC), for approximately generating samples from an arbitrary distribution.

This is typically not an easy task, in particular when X is a random vector with

40

2.2 Monte Carlo in general

dependent components. The MCMC method is due to Metropolis et al. [21]. They

were motivated by computational problems in statistical physics, and their approach

uses the idea of generating a Markov chain whose limiting distribution is equal to the

desired target distribution. There are many modi�cations and enhancement of the

original Metropolis algorithm, most notably the one by Hastings [22]. Nowadays, any

approach that produces an ergodic Markov chain whose stationary distribution is the

target distribution is referred to as MCMC or Markov chain sampling [23]. The most

prominent MCMC algorithms are the Metropolis-Hastings and the Gibbs samplers,

the latter being particularly useful in Bayesian analysis. Finally, MCMC sampling is

the main ingredient in the popular simulated annealing technique [24] for discrete and

continuous optimization.

The main idea behind the Metropolis-Hastings algorithm is to simulate a Markov

chain such that the stationary distribution of this chain coincides with the target

distribution. To motivate the MCMC method, assume that we want to generate a

random variable X taking values in X = 1, . . . ,m, according to a target distribution

{πi} , with
πi =

bi
C
, i ∈X , (2.2.10)

where it is assumed that all bi are strictly positive, m is large, and the normalization

constant C =
∑m

i=1 bi is di�cult to calculate. Following Metropolis et al. [21], we

construct a Markov chain {Xt, t = 0, 1, . . . } onX whose evolution relies on an arbitrary

transition matrix Q = (qij) in the following way:

- When Xt = i, generate a random variable Y satisfying P (Y = j) = qij, j ∈ X .

Thus, Y is generated from the m-point distribution given by the i-th row of Q.

- If Y = j, let

Xt+1 =

j with probability αij = min{πjqji

πiqij
, 1} = min{ bjqji

biqij
, 1}

i with probability 1− αij
(2.2.11)

It follows that {Xt, t = 0, 1, . . . } has a one-step transition matrix P = (pij) given by

pij =

qijαij if i 6= j

1−
∑

k 6=i qikαik if i = j
(2.2.12)

Now it is easy to check that, with αij as above,

πipij = πjpji, i, j ∈X .

In other words, (2.2.12) satis�es the detailed balance, and hence the Markov chain

is time reversible and has stationary probabilities {πi}. Moreover, this stationary

distribution is also the limiting distribution if the Markov chain is irreducible and

41

Chapter 2. Monte Carlo methods for statistical physics

aperiodic. Note that there is no need for the normalization constant C in (2.2.10) to

de�ne the Markov chain. The extension of the above MCMC approach for generating

samples from an arbitrary multidimensional probability density function f(x) (instead

of n,) is straightforward. In this case, the nonnegative probability transition function

q(x, y) (taking the place of qij above) is often called the proposal or instrumental func-

tion. Viewing this function as a conditional probability density function one also writes

q(y|x) instead of q(x, y). The probability α(x, y) is called the acceptance probability.

The original Metropolis algorithm [21] was suggested for symmetric proposal functions,

that is, for q(x, y) = q(y, x). Hastings modi�ed the original MCMC algorithm to allow

non-symmetric proposal functions. Such an algorithm is called a Metropolis-Hastings

algorithm. We call the corresponding Markov chain the Metropolis-Hastings Markov

chain. In summary, the Metropolis-Hastings algorithm, which, like the acceptance-

rejection method, is based on a trial-and-error strategy, is comprised of the following

iterative steps.

Metropolis-Hastings Algorithm

Given the current state Xt:

1. Generate Y ∼ q(Xt, y).

2. Generate U ∼ U(0, 1) and deliver

Xt+1 =

Y if U 6 α(Xt,Y)

Xt otherwise,
(2.2.13)

where

α(x, y) = min{ρ(x, y), 1} with ρ(x, y) =
f(y)q(y, x)

f(x)q(x, y)
. (2.2.14)

By repeating Steps 1 and 2, we obtain a sequence X1,X2 . . . of dependent random

variables, with Xt approximately distributed according to f(x), for large t.

Since this algorithm is of the acceptance-rejection type, its e�ciency depends on

the acceptance probability α(x, y). Ideally, one would like q(x, y) to reproduce the

desired probability distribution function f(y) as faithfully as possible. This clearly

implies maximization of α(x, y). A common approach [23] is to �rst parameterize

q(x, y) as q(x, y; θ) and then use stochastic optimization methods to maximize this

with respect to θ.

2.2.4 How to use the Metropolis algorithm for spin systems

The Metropolis algorithm consists of a set of rules derived from the energy of a given

con�guration on a 3D EA lattice of side L.

42

2.2 Monte Carlo in general

Let {si} with i = 1, ..., L3 a con�guration of a three-dimensional lattice of spins

(indicated with s as usual). The energy of the con�guration {si} is given by

E({si}) = −
∑
〈i,j〉

siJijsj (2.2.15)

We consider now a spin si, we propose a change for it s′i (remember that in EA model

variables have only two values s ∈ {+1,−1}) and we calculate the energy of the

con�guration {s′i}
E({s′i}) = −

∑
〈i,j〉

s′iJijsj (2.2.16)

If the energy change ∆E = E({s′i})−E({si}) is negative the new state is automatically

accepted, while if the energy value grows the new state is accepted only with a certain

probability. In practice, the probability of accepting a con�guration change is:

P (si → s′i) =

1 if E({s′i}) < E({si})

e−β∆E if E({s′i}) > E({si})
(2.2.17)

The probability P (si → s′i) from Eq. (2.2.17) is then compared with a random value

r in order to decide whether to accept or reject the proposed state change s′. This

ends a spin update; once all L3 have been updated we say that a Monte Carlo sweep

(MCS) has completed. Is important to note that the site to be updated can be chosen

randomly or following a given order and the new value obtained after the update is

used for the following updates (i.e. it is not necessary to retrieve a copy of whole old

system until the end of a MCS).

2.2.5 Another MC algorithm: the heat bath

In the case of the heat bath algorithm we directly select the new value of the spin with

a probability proportional to the Boltzmann factor and regardless of the value of the

spin lying in the site we are updating.

The probabilities to assign to a given spin si the new value +1 or −1 is de�ned as

PHB(si = +1) =
e−βE+

e−βE+ + e−βE−
, (2.2.18)

PHB(si = −1) = 1− PHB(si = +1) (2.2.19)

where E+ and E− are the local energies of the two spin con�gurations for spin si
pointing up (si = +1) or down (si = −1), respectively.

In detail, we consider a site i of the lattice and we calculate its local energy as the

sum of the values of its nearest neighbors (weighted by the related couplings J)

Ei =
∑
〈j〉

sjJij

43

Chapter 2. Monte Carlo methods for statistical physics

Using Ei we calculate the probability PHB(si) as in 2.2.18 and compare it with a

random number R. If R 6 PHB(si) then we assign +1 as new value of the spin, else

the new value will be −1.

As the calculation of the new value of a spin si does not depend on the current

value of si, a few terms of the energy function change and computational load is lower.

This method is most useful in circumstances where the Metropolis-like approach

described in Section 2.2.4 has a very low acceptance rate, i.e. when a new spin pro-

posed in the Metropolis algorithm is accepted with very low probability. The e�ect

is that using Heat Bath some systems reach a particular state of equilibrium, called

thermalization, with fewer Monte Carlo steps than with Metropolis.

2.2.6 Parallel tempering techniques

The free energy landscapes of complex systems are characterized by many local minima

which are separated from each other by energy barriers. In studying such systems,

we have to take into account of each con�guration for these local minima and the

�uctuation around it. The characteristic time in which the system escapes from a

local minimum, however, increases rapidly as temperature decreases. This situation

causes �hardly-relaxing� problem in using conventional Monte Carlo simulations based

on a local updating (see Figure 2.5 for a graphical representation of this situation).

Various new algorithms have been proposed in the last years to overcome this

problem (see [25] for a review). In 1996 Hukushima and Nemoto [26] proposed a

method called parallel tempering, previously called also replica exchange [27, 28], in

which M non-interacting replicas of the system are simulated simultaneously at a

range of temperatures {T1, T2, . . . , TM}. After a �xed number of Monte Carlo sweeps

a sequence of swap moves, the exchange of two replicas at neighbouring temperatures,

Ti and Ti+1, is suggested and accepted with a probability

p(Ei, Ti → Ei+1, Ti+1) = min{1, exp(∆β∆E)} (2.2.20)

where ∆β = 1/Ti+1 − 1/Ti is the di�erence between the inverse temperatures and

∆E = Ei+1−Ei is the di�erence in energy of the two replicas. At a given temperature,

an accepted swap move e�ects a global update as the current con�guration of the

system is exchanged with a replica from a nearby temperature. For a given replica,

the swap moves induce a random walk in temperature space. This random walk allows

the replica to overcome free energy barriers by wandering to high temperatures where

equilibration is rapid and returning to low temperatures where relaxation times can be

long. The simulated system can thereby e�ciently explore complex energy landscapes

that can be found in frustrated spin systems and spin glasses.

Recently Katzgraber et al. in [29] proposed a way to maximize the e�ciency of

parallel tempering Monte Carlo by optimizing the distribution of temperature points

44

2.3 Numerical requirements

Figure 2.5 � Energy landscape of a complex system such as spin glass. The con�gura-

tion A (circle) is trapped in a minimum. A low temperature makes transitions between

con�gurations with large energy di�erences unlikely; by moving the con�guration to a

higher temperature we increase the probability to escape from the local minimum.

in the simulated temperature set such that round-trip rates of replicas between the

two extremal temperatures in the simulated temperature set (i.e. T1 and TM) are

maximized. The optimized temperature sets are determined by an iterative feedback

algorithm that is closely related to an adaptive algorithm, introduced in [30], that

explores entropic barriers by sampling a broad histogram in a reaction coordinate

and iteratively optimizes the simulated statistical ensemble de�ned in the reaction

coordinate to speed up equilibration.

Katzgraber's work allows one de facto to automatize the process of temperature

swap needed by parallel tempering method so that temperature points are sampled

near the bottleneck of a simulation.

2.3 Numerical requirements

From previous sections the theoretical infrastructure that holds the simulations im-

plemented on the Janus supercomputer should be clear. In this section I introduce

the computing requirements of them and we will see in detail the reasons leading us

to implement some algorithms of statistical physics such as the EA model and Potts

model, directly in hardware, using the recon�gurable computing approach explained

in Chapter 1.

Special attention will be paid to the generation of random numbers and its imple-

mentation in hardware because the Monte Carlo simulations are strongly dependent

on it: a typical run requires in fact ∼ 1010 · L3 random numbers.

45

Chapter 2. Monte Carlo methods for statistical physics

for (k=0 ; k<SIDE; k++) {
for (j=0 ; j<SIDE; j++) {

for (i=0 ; i<SIDE; i++) {
// calculating the index of the LUT
idx = spin [(i+1)% SIDE][j][k] * Jx[(i+1)% SIDE][j][k] +

spin [(i-1)% SIDE][j][k] * Jx[(i-1)% SIDE][j][k] +
spin [i][(j+1)% SIDE][k] * Jy[i][(j+1)% SIDE][k] +
spin [i][(j-1)% SIDE][k] * JY[i][(j-1)% SIDE][k] +
spin [i][j][(k+1)% SIDE] * Jz[i][j][(k+1)% SIDE] +
spin [i][j][(k-1)% SIDE] * Jz[i][j][(k-1)% SIDE] ;

// comparing a random number with the value
// of the HBT look up table of index 'idx'
if (rand() < HBT(idx)) {

spin [i][j][k] = +1 ;
} else {

spin [i][j][k] = -1 ;
}

}
}

}

Code 2.1 � Heat Bath C code

2.3.1 Implementation and available parallelism

In previous sections I presented the theoretical models in which part of the physics

community is interested and I gave an overview of the �tools� used to study them, but

we still have the question How? : how do we write a Monte Carlo simulation for spin

lattice? In frame Code 2.1 I present a non-optimized C code of a simulation to run

the Heat Bath algorithm.

Inspection of Code 2.1 shows some features that are shared with other spin models

implementation (such as Edward-Anderson and Potts):

- The code kernel has a regular structure, associated with regular loops. At each

iteration the same set of operations is performed on data stored at locations

whose addresses can be predicted in advance.

- Types of variables are �unusual�: 3D array called spin and J are array of integers,

but the information stored in each variable could be coded in only one (or just

a few) bits. The physical values {+1,−1} can be easily mapped with no loss

of generality on to the set {1, 0}. Moreover data processing is associated with

logical operations performed on bit-variables denoting the site variables.

- If we consider a lattice of L3 spins, the data base associated with the computation

is: L3 bits to store spin informations; 3 · L3 bits to store J informations. Note

that couplings are symmetric, so we do not need to store them for all directions

x+, x−, y+, y−, z+, z−: positive directions x+, y+, z+ are enough. This means that

a typical data base associated with the main computational core of a lattice with

side L = 64 is ∼ 1 Mbit. If we consider the size of the data base, it is important

to remember that a huge quantity of random numbers are needed (see Section

2.3.3 for more details).

46

2.3 Numerical requirements

- If we think of the physical spin variables in set {+1,−1} we can easily calculate

the possible value of the local energy for a given spin si,
∑
〈i,j〉 Jijsj. Assuming

that J ∈ {+1,−1} the possible values for the local energy in the EA model are

only 7: {−6,−4,−2, 0,+2,+4,+6}. This allows a �rst trivial optimization in

order to avoid the calculation of the exponential, e−β∆E; we just read its value

from a look up table (LUT) with 7 entries that can be initialized before the start

of the simulation. It is clear that the use of a LUT is useful when the number of

its entries is not too big: in the case of a Gaussian Potts model, in which J ∈ R
it is impossible to implement it and the calculation of the exponential is required.

Figure 2.6 � Checkerboard organization of a piece of spin lattice. When spins sitting

on white sites are updating, the black ones (nearest neighbours belonging to the 3

directions) should have a �xed value.

What is not explicitly written in the sample Code 2.1 (but easily checked by in-

spection) is that a very large amount of parallelism is available: each site interacts

with its nearest neighbors only, while the correctness of the procedure requires that

when one site is being updated its neighbors are kept �xed. As a consequence, up to

one-half of all the sites, organized in a checkerboard structure as in Figure 2.6, can in

principle be operated upon in parallel. The same sequence of operation is performed

while updating any site, so almost perfect load-balancing is also possible.

2.3.2 Techniques on a general purpose processor

As Monte Carlo algorithms works on discrete lattice, there are some tricks commonly

used to speed up performances and to parallelize them on general purpose architec-

tures.

A basic idea useful on clusters is to split the lattice into sub-lattices that can be

independently updated. This method is well known and has as its main problem the

fact that nodes lying on boundaries have neighbors processed by a di�erent CPU.

Shared memory or exchange of the �halo� nodes are usually solutions for these kinds

of problems.

47

Chapter 2. Monte Carlo methods for statistical physics

In the case of the spin glass simulation we saw e.g. in Figure 2.6 that up to L3/2

spins can be updated concurrently, thus a high level of parallelism is available also

while the update process is running. Today multi-core and SIMD processors are widely

available and, as they can support a high level of parallelism, it seems interesting to

try to port to them using the Metropolis algorithm described above. The technique

used to reach this goal is the multispin coding [31, 32, 33, 34] which stores the states

of several variables (spins in the case of the spin models) in the bits of a single word

of data. So the Monte Carlo algorithm is written in terms of operations which act on

an entire word at a time. The result is that it is possible to perform operations on

several variables at once, rather than performing them sequentially, which improves

the speed of our calculation, thereby giving us better results for a given investment in

CPU time.

We will consider the recently introduced IBM CBE and Intel Nehalem architec-

ture as representative examples of a class of multi-core processors with the following

features:

- a small set of cores are integrated on a single processor.

- Each core support SIMD-like vector instructions operating onW -bit vector data-

words. Each vector data-word can be partitioned in two or more scalar data-words

of di�erent sizes.

- each core has access to a local private memory.

- each core can access data stored on the private memories of the other cores.

- all cores share (arbitrarily) large main memory external to the chip.

- memory accesses and data-transfers can be performed concurrently with compu-

tation.

- memory access performance has a strong dependence on �distance�: latency to

the local memory is constant and small. Access to the local memories of the other

cores has a signi�cantly longer latency, while access to the shared memory is still

much slower.

It is possible to evaluate the performance of a program in terms of spin update

time: the time required to update a single spin of a given system. It is equal to the

wall clock time for a Monte Carlo step divided by L3.

The goal is to exploit the highest possible level of parallelism, so using the highest

granularity of the architecture allows one to update the highest number of spins in

parallel. We need in principle only one bit of the smallest available scalar variable,

the spin, (or few bits in the case of the Potts model), so a large amount of memory

is wasted. For example, if the architecture allows the use of V bytes in parallel, then

7 × V bits are not used, and more generally, if scalar variables are w bit long, then

(w − 1)× V bits are wasted.

48

2.3 Numerical requirements

Taking a di�erent approach, it is possible to use a scalar register of w bits to repre-

sent corresponding spins of w di�erent systems. This technique, called asynchronous

multi-spin coding allows several systems to evolve concurrently. It has no e�ect in

shortening the wall-clock time for the simulation of a single system (it usually even

worsen it!) but is the most e�cient approach when large statistics is needed. Multispin

coding is possible because the algorithm can be coded in such a way that all the op-

erations (that in principle are sums, multiplications and comparisons between integer

numbers) can be mapped to logical bit-wise instructions with a very small overhead.

On the other hand synchronous multi-spin coding is a similar approach in which

the bits in a word represent several spins (or other variables) on the lattice of a single

system so that one multi-spin coded Monte Carlo step updates many sites at once.

This approach has the bottleneck of random numbers that can be generated in parallel:

in average each update process requires, in fact, an independent random number.

Combinations of SMSC and AMSC allow to perform parallel updates of spins of

the same system (with the upper limit of the random numbers generation) and, at

the same time, of spins belonging to di�erent systems, sharing the random numbers

and increasing the statistics. Figure 2.7 shows an example of a multi-spin coding

implementation in which a 128 bit vector is used to perform updates in parallel of 32

systems (AMSC) and for each of them 4 spins are updated in parallel (because we

assume that the multi-core processor considered for this example allows us to generate

4 random numbers in parallel).

Figure 2.7 � Coding of the spins of 32 systems in a vector data word of 128 bit

allowing the parallel updates of 4 set of 32 spins.

2.3.3 Random numbers

The e�ciency of Monte Carlo methods depends largely on the random numbers used

to drive the updates: this determines the imperative need to implement a very reliable

pseudo-random number generator (RNG), that produces a sequence of numbers under

49

Chapter 2. Monte Carlo methods for statistical physics

Figure 2.8 � Generic scheme of the Parisi-Rapuano RNG. In out implementation

we set ip1 = 24, ip2 = 55 and ip3 = 61.

the selected distribution, with no known or evident pathologies. We use the Parisi-

Rapuano shift register method [35] de�ned by the rules:

I(k) = I(k − 24) + I(k − 55)

R(k) = I(k)I(k − 61),
(2.3.1)

where I(k−24), I(k−55) and I(k−61) are 32-bit words of a set, called the wheel that

we initialize with externally generated random values. The index k is incremented at

every step, though its value is de�ned modulo the size of the wheel. I(k) is the new

element of the updated wheel, and R(k) is the generated pseudo-random value. An

implementation of this algorithm is shown in Figure 2.8.

The exact period and other features of this random generator are not known; we

only check that no periodicity appears generating 1013 numbers. If we consider that

Janus produce one random number per clock cycle (note that we produce up to 1024

random numbers but with independents generators) we can estimate a lower limit time

of the random number goodness:

1013 numbers× 16 ns ≈ 44 hours (2.3.2)

to avoid periodicity problems we periodically (every ∼ 106 Monte Carlo updates of

whole lattice equivalent to less than 3 hours) refresh the wheel. Moreover we monitor

physical quantities that are extremely sensitive to random number quality: they have

unpredictable behavior in presence of problems connected with period or correlation so

they are perfect candidates to check the goodness of random numbers. Figure 5.1(b)

for instance shows the graph of the correlation at di�erent temperature after 1019

Monte Carlo steps: in presence of correlation phenomena the correlation function does

not reach a plateaux or presents oscillations that we do not �nd in our studies.

The easy rule described in (2.3.1) implemented via standard programming language

in a function can be called every time we need a random number. However access to

the wheel I has a performance cost but the presence in the new architecture of long

registers (up to 128 bits) allows us to generate 4 · 32-bit random numbers in parallel.

50

2.3 Numerical requirements

From a hardware implementation point of view a wheel uses many hardware re-

sources (in our case where we use the three pointer values 24, 55 and 61 we need to

store 62 numbers), and the random number generator is a system bottleneck, since the

number of updates per clock cycle is determined by how many random values we are

able to produce. A large performance improvement comes from the implementation

of the wheel through logic elements (as opposed to memory blocks), as the former can

be written in cascade structured combinatorial logic that may be tuned to produce

several numbers per clock cycle. We can exploit this feature and use a limited number

of wheels to produce more random numbers (and therefore more updates) per clock.

Remember that to produce one random number we must save the result of the sum of

two values and then perform the XOR with a third value. The wheel is then shifted

and the computed sum �lls the empty position. All this is done with combinatorial

logic, so one can produce various pseudo-random numbers simply replicating these

operations and, of course, increasing logic complexity. A schematic representation of

a simpli�ed case is given in Figure 2.9.

Figure 2.9 � Parallel implementation of the random number generator. For graphical

reason the example shows a wheel generating 3 random numbers in parallel. Duplica-

tion and shift of the pointers allow parallel generation of numbers, but logic complexity

(and use of hardware resources) grows when producing more numbers.

The logical complexity of the implementation depends on the parameters of (2.3.1)

and on the quantity of random numbers that we need. For example to perform N

updates per clock cycle with the EA model we need N random numbers, while 2 ·N
random numbers are needed for the same number of updates of a Potts model. Such a

large number of RNG wheels would saturate easily the FPGA resources, and we would

have to reduce the number N of parallel updates. To avoid this problem we have

implemented the optimized version discussed above, so that each wheel can produce

many random numbers in each cycle. At present we use one wheel to generate up to

96 numbers per clock (so even this way we need more wheels to be active at the same

time, in order to compute all the random values required by the algorithm).

51

Chapter 2. Monte Carlo methods for statistical physics

With respect to the choice of 32-bit random numbers, we have veri�ed that this

word size is su�cient for the models that we want to simulate. Indeed we compare

random numbers with transition probabilities calculated as U = e−β∆Ei where β is the

inverse of the temperature and ∆Ei = Es′i − Esi
energy �uctuation after an update

step calculated as in (2.2.15). Typical values assumed by β are ∼ 1 (see values in

Section 5.2). We can therefore calculate the smallest value U corresponding to the

biggest value of energy variation ∆E:

∆E = 12 → e−12 ≈ 6 · 10−6 (2.3.3)

The number of bits to write the integer representation of ∆E is

Nb(∆E) = log2 6 · 106 ≈ 22 bits .

If we consider an error of 10% the random number should be able to represent a

number roughly hundred times smaller than the smallest energy di�erence, so it needs

Nb(R) = log2 6 · 108 ≈ 29 bits .

Mainly we use on Janus 32 bits to be compliant with standard computer systems.

Other models may require larger (i.e. with more bits) random numbers. Generating

random numbers of larger size (e.g., 40 or even 64-bit) is rather straightforward, at the

price, of course, of a larger resource usage, which implies a reduced number of parallel

updates. Obviously the same problem would a�ect PC simulations as well. Most of

the models studied so far have been simulated with 32-bit random numbers.

52

Bibliography

[1] D. P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical

Physics, Cambridge University Press (2005). 2

[2] M. E. J. Newman, G. T. Barkema, Monte Carlo Methods in Statistical Physics,

Oxford University Press (1999). 2

[3] D. Sciretti, Spin Glasses, Protein Design and Dedicated Computers, PhD thesis,

Instituto de Biocomputación y Física de Sistemas Complejos (2008). 2, 2.2

[4] M. Mézard, G. Parisi and M. A. Virasoro, Spin glass theory and beyond, World

Scienti�c, Singapore (1987). 2.1.1, 2.1.2

[5] F. Guerra, Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model,

Commun. Math. Phys. 233, pp. 1-12 (2003). 2.1.1

[6] M. Talagrand, The Parisi formula, Annals of Mathematics, 163, 221-263 (2006).

2.1.1

[7] G. Parisi, F. Zamponi, Replica approach to glass transition and jammed states of

hard spheres, arXiv:0802.2180v1, (2008). 2.1.1

[8] D. Sherrington and S. Kirkpatrick, Solvable Model of a Spin-Glass, Phys. Rev.

Lett. 35, 1792 (1975). 2.1.2

[9] R. K. Zia and D. J. Wallace, Critical behaviour of the continuous n-component

Potts model, J. Phys. A, 8, pp. 1495-1507 (1975) 2.1.3

[10] J. Banavar and M. Cieplak, Zero-temperature scaling for Potts spin glasses, Phys.

Rev. B 39, 9633 (1989). 2.1.3

[11] M. Scheucher and J. D. Reger, Monte Carlo study of the bimodal three-state Potts

glass, Phys. Rev. B 45, 2499 (1992). 2.1.3

[12] L. W. Lee, H. G. Katzgraber and A. P. Young, Critical behavior of the three- and

ten-state short-range Potts glass: A Monte Carlo study, Phys. Rev. B 74, 104416

(2006). 2.1.3

53

BIBLIOGRAPHY

[13] P. Erdös, A. Rényi, On random graphs, Publicationes Mathematicae, 6, 290-297

(1959). On the evolution of random graphs, Publications of the Mathematical

Institute of the Hungarian Academy of Sciences 5, 17Â61 (1960). 2.1.3

[14] B. Bollobàs, P. Erdös, Cliques in Random Graphs, Math. Proc. Cambridge Phil.

Soc. 80, 3, pp. 419-427 (1976). 2.1.3

[15] B. Bolloboàs, Random Graphs (2nd ed.), Cambridge University Press (2001). 2.1.3

[16] A. D. Sokal, Chromatic polynomials, Potts models and all that, Physica A: Sta-

tistical Mechanics and its Applications, Vol. 279, Issues 1-4, pp. 324-332 (2000).

2.1.3

[17] L. Zdeborová and F. Krzakala, Phase transitions in the coloring of random graphs,

Phys. Rev. E 76, 031131 (2007). 2.1.3

[18] F. Krzakala and L. Zdeborová, Potts glass on random graphs, EPL 81, n. 5, 57005

(2008). 2.1.3

[19] F. Mantovani, Graph Coloring on IANUS, an FPGA Based System, poster pre-

sented at the International Supercomputing Conference 2007 (ISC07), Dresden

(Germany). 2.1.3

[20] E. Marinari et al., Programmazione scienti�ca, linguaggio C, algoritmi e modelli

nella scienza, Pearson Education Italia (2006). 2.4

[21] M. Metropolis et al., Equations of state calculations by fast computing machines,

Journal of Chemical Physics, 21, pp. 1087-1092 (1953). 2.2.3, 2.2.3, 2.2.3

[22] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their

applications Biometrika, 57:92-109 (1970). 2.2.3

[23] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer, New

York, 2nd edition (2004). 2.2.3, 2.2.3

[24] E. H. L. Aarts and J. H. M. Korst, Simulated Annealing and Boltzmann Machines,

John Wiley & Sons, Chichester (1989). 2.2.3

[25] E. Marinari, in Advances in Computer Simulations, ed. J. Kertèsz and I. Kondor,

Springer, 50 (1996). 2.2.6

[26] K. Hukushima and K. Nemoto, Exchange Monte Carlo method and application to

spin glass simulations, J. Phys. Soc. Japan, Vol. 65, 1604 (1996). 2.2.6

[27] R. H. Swendsen and J. S. Wang, Replica Monte Carlo Simulation of Spin-Glasses,

Phys. Rev. Lett. 57, 2607 (1986). 2.2.6

54

BIBLIOGRAPHY

[28] C. J. Geyer, Computing Science and Statistics: Proc. 23rd Symp. on the Interface,

156 (1991). 2.2.6

[29] H. G. Katzgraber et al., Feedback-optimized parallel tempering Monte Carlo, J.

Stat. Mech., P03018, (2006). 2.2.6

[30] S. Trebst et al., Optimizing the ensemble for equilibration in broad-histogram

Monte Carlo simulations, Phys. Rev. E 70, 046701 (2004). 2.2.6

[31] M. Creutz, L. Jacobs and C. Rebbi, Experiments with a Gauge-Invariant Ising

System, Phys. Rev. Lett. 42, 1390 (1979). 2.3.2

[32] R. Zorn, H. J. Herrmann and C. Rebbi, Tests of the multi-spin-coding technique

in Monte Carlo simulations of statistical systems, Computer Physics Communi-

cations, Vol. 23, Issue 4, pp. 337-342 (1981). 2.3.2

[33] G. O. Williams and M. H. Kalos, A new multispin coding algorithm for Monte

Carlo simulation of the Ising model, J. Stat. Phys. 37, pp. 283-299 (1984). 2.3.2

[34] P. M. C. de Olivieira, Computing Boolean Statistical Models, World Scienti�c

(1991). 2.3.2

[35] G. Parisi, F. Rapuano, E�ects of the random number generator on computer

simulations, Phys. Lett. B 157, 301 (1985). 2.3.3

55

We gotta get out while we're young

'cause tramps like us, baby we were born to run.

Bruce Springsteen

3
Janus architecture at large

In this chapter I introduce the Janus project and the FPGA-based system built at the

heart of it. A short introductive section is dedicated to explain the structure of the

system, the main components and their functions.

After highlighting the Janus system the idea is to retrace the architectural questions

that led to the Janus systems and were solved by me and my group in Ferrara during

prototype and development phase of Janus (the main activity of my PhD). Therefore

a relatively long part of this chapter will be dedicated to a detailed overview of the

problems connected to the development of a massively parallel dedicated machine such

as Janus.

The last three sections are dedicated to the hardware implementation of two sta-

tistical physics models: the Edward Anderson spin glass model, the spin model using

the parallel tempering technique and the Potts model on an irregular lattice, the

last one with the main aim to solve the graph coloring problem. The theoretical de-

tails of these problems were introduced in previous chapter, therefore they are here

presented in terms of their implementation in a hardware description language on a

programmable device.

Details about input output, control system, �rmware, VHDL code etc. are post-

poned to the next chapter in order to keep here general ideas strongly connected

with the needs that encourage an heterogeneous group of physicists, mathematicians

and computer scientist to build a dedicated machine not only in order to solve open

problems of statistical physics but also to study new architectural solutions and new

57

Chapter 3. Janus architecture at large

algorithms.

3.1 Janus project

The Janus project is a collaboration between BIFI (Institute for Biocomputation and

Physics of Complex Systems), universities of Spain (Badajoz, Madrid and Zaragoza)

and Italy (Ferrara and Roma 1) with the industrial partnership of Eurotech Group.

The main aim of the project is to build an FPGA based supercomputer strongly

oriented to study and solve the problems related with the spin systems introduced in

Chapter 2.

Figure 3.1 � The Janus rack during the installation for the unveiling in Zaragoza in

Spring 2008.

The Janus supercomputer is a modular system composed of several Janus boards.

Each board houses 17 FPGA-based subsystems: 16 so-called scienti�c processors (SPs)

and one input/output processor (IOP). Janus boards are driven by a PC (Janus host).

The �rst system, deployed in December 2007, is composed by 16 boards and 8 Janus

hosts and is depicted in Figure 3.1 during the �rst installation and the unveiling in

Zaragoza.

The 17 FPGA chips (generically referred to as nodes) are housed in small daughter

cards plugged into a mother board so that the 16 SPs form a 2D nearest neighbour

grid with toroidal enclosure as shown in Figure 3.2a. Figure 3.2b exhibits a board

housed in a Janus case with appropriate cooling systems and cables.

The advantage of using removable modules as opposed to a direct connection of

the FPGA to the main boards, is that it is easy to substitute single nodes in case of

damage. This choice also facilitates a basic idea leading the Janus project: chips are

strongly dependent to the technology progress, so could be possible to upgrade Janus

58

3.2 Questions leading Janus's development

(a) (b)

Figure 3.2 � (a) Topology of a Janus board: each SP communicates with its nearest

neighbours in the plane of the board. (b) Janus board housed in a Janus box.

system with relative small e�ort.

Each SP is connected with the nearest neighbour SP and with IOP via hardwired

dedicated lines creating two networks: a point to point network between IOP and SPs

used for initializations and controls and a 2D toroidal mesh in order to allow trivial

parallelization among SPs.

The host PC play a key role of master device: a set of purpose-made C libraries are

written using low levels of linux operating system in order to access the raw Gigabit

ethernet level (excluding protocols and other unhelpful layers adding latencies to com-

munications). Moreover two software environments are available: an interactive shell

written in Perl mostly used for testing and debugging or short preliminary run and a

set of C libraries strongly oriented to the physicists making relative easy to access the

hardware resources of Janus to peoples with no hardware experience.

3.2 Questions leading Janus's development

The main aim of this section is to give a comprehensive overview of the problems

and challenges that were widely discussed and solved during the 2 years of Janus's

development.

The section is deliberately structured as a set of questions with their respective

answers, mimicking the situations created during internal discussions and collaboration

in Janus's meetings and during poster sessions or conferences talks.

59

Chapter 3. Janus architecture at large

3.2.1 Why many nodes on a board?

There are three primary classes of techniques for creating a parallel algorithm to

perform a simulation on a d-dimensional lattice: trivial parallelization, functional

decomposition and domain decomposition.

Trivially parallel problems are ones which can be split up into separate tasks which

are completely unrelated and can be performed by separate programs running on

isolated processors without the need for inter-processor communication.

For more complicated problems we have two ways to go. Functional decomposition

refers to the breaking up of a task into a variety of di�erent jobs: each processor in

a program which carries out such a task is performing a di�erent type of work, and

the contributions of all the processors put together perform the complete task. We

could imagine for example delegating separate processors in a Monte Carlo calculation

to evaluation of a Hamiltonian or other observable, construction of clusters, updating

lattice variables, or any number of other elementary chores. This however is not a

very common approach to the kinds of calculations needed in parallel systems such as

Janus.

Monte Carlo simulations almost always use domain decomposition, which means

breaking up the calculation into separate simulations of di�erent regions of the sys-

tem under study. Since Monte Carlo simulations are usually concerned with systems

de�ned on a lattice this approach is often quite straightforward to implement. The

processors in such a calculation all perform essentially the same task on di�erent parts

of the lattice, and indeed are often running exactly the same program.

Following this general idea, Janus is structured as a collection of FPGA-based

processors, running the same �rmware, able to process each one a portion of a given

lattice.

3.2.2 Why an Input/Output processor?

In computer science is widely use the concept of loose coupling referring to a relation-

ship in which one module interacts with another module through a stable interface

and does not need to be concerned with internal implementation of other modules. In

this de�nition the term module is su�ciently general to encompass functions of a high

level language, or hardware components such as a CPU or an FPGA. Conversely when

interaction of two modules requires informations about their implementation, we are

in presence of tight coupling.

Systems that do not exhibit tight coupling might experience the following devel-

opmental di�culties:

- Change in one module forces a ripple of changes in other modules.

- Modules are di�cult to understand in isolation.

60

3.2 Questions leading Janus's development

- Modules are di�cult to reuse or test because dependent modules must be in-

cluded.

The basic idea for Janus was to develop a loosely coupled machine in which the

Janus host (intended as a module) should interact with SPs while ignoring in principle

the algorithm implemented within the FPGA. This statement was a guide in the

development of the Janus hardware and for this reason we chose to develop a custom

Input/Output Processor, IOP, to play the key role of a stable interface between the

Janus host and SPs, thus assuring the loose coupling between them.

It is clear that the development of an interface module is not the only way to

e�ciently realize a loosely coupled machine: e.g. Maxwell uses the PCI buses to allow

communications between the general purpose processors and the FPGAs constituting

the system.

The choice of a custom module such as IOP comes from features of the class of

algorithms that we plan to run on Janus: Monte Carlo simulations for spin lattices

requires in fact a small data exchange with relative low latency and very long run

time. If we consider, for instance, a spin lattice of side L = 64, the data to transfer

from the Janus host to the SP in order to start a simulations is: L3 bits for the spins,

3 · L3 bits for the Js, 7 words of 32 bits in order to initialize the LUT of the energies

and 61 words of 32 bits for initializing of the random number generator.

643 + (3 · 643) + (7 · 32) + (61 · 32) ≈ 1Mbits

If we consider the worst case in which each SP run a completely di�erent history to

the others, we have to transfer ∼ 16 Mbit (2 MB) from the Janus host to each of the

FPGA structures storing data. Another Janus requirement could be to upload new

�rmware for the SPs: this requires a transfer of ∼ 5 MB.

So we have that typical bandwidth requirements are of the order of some MB,

therefore relatively small, but what are the latency requirements? Some Monte Carlo

techniques requires that every P Monte Carlo steps spin con�gurations (or alterna-

tively LUT) are changed using a simple rule depending on the temperature (parallel

tempering). In such cases is very important to have a large bandwidth, but much

more important is a low latency in order to exchange e�ciently the con�guration and

so not waste computing time.

3.2.3 How are organized communications between Janus boards

and Janus host?

The programming framework developed for Janus is intended to meet the requirements

of the prevailing operating modes of Janus, i.e. supporting (re)con�guration of SPs,

61

Chapter 3. Janus architecture at large

Figure 3.3 � Framework of an application running on the Janus system.

initialization of memories and data structures within the FPGA, a monitor system

during run, memory interface and some other debug functions.

Applications running on the Janus system can be thought of as split into two sub-

applications, one, called software application SA, written for example in C, and running

on the Janus host. The other, called �rmware application FA, written for example in

VHDL, and running on the nodes of a Janus board. As shown in Figure 3.3, the two

entities, SA and FA are connected together by a communication infrastructure CI,

that is a logical block including physically the IOP and which allows the exchange of

data and performs synchronization operations, directly and in a transparent way.

The CI abstracts the low-level communication between SA and FA applications,

implemented in hardware by the IOP and its interfaces. It includes three main com-

ponents:

- a C communication library linked by the SA,

- a communication �rmware running on the IOP processor, interfacing both the

host PC and the SP processor,

- a VHDL library linked by the FA.

Firmware running on the IOP communicates with the host PC via a dual Gigabit

channel, using the standard RAW-ethernet communication protocol. The choice of

RAW-ethernet is based on the following considerations:

- the standard TCP/IP protocol provides a lot of functionalities which are not

needed by our purposes;

- an hardware implementation of the TCP/IP stack is non trivial, uses far more

hardware resources and is more time critical than a RAW-ethernet implementa-

tion;

- the TCP/IP protocol introduces overheads in the communication.

To guarantee reliability of the communication in the direction IOP to Janus host,

we adopt the Go-back-N protocol [1]. In this protocol, N frames are sent without

waiting for an acknowledge from the receiver. After N frames have been transmitted,

the sender waits for an acknowledge. If the acknowledge is positive it starts to send

62

3.2 Questions leading Janus's development

the next N frames, otherwise it send again the last N frames. The receiver waits for

N frames, and after receiving all the frames sends an acknowledge to the sender. If

some frames are lost, typically dropped by the network card because of CRC error,

or by the Linux operating system because of network bu�er over�ow, the receiver

gets a timeout and send back a not-acknowledge, asking re-transmission of the last

N frames. Using the Go-back-N protocol we reach approximately the 90% of the full

Gigabit bandwidth, transferring messages whose length is of the order of 1 MB, using

the maximum data payload per frame, 1500 bytes, and N = 64, see Figure 3.4.

Figure 3.4 � Measured transfer bandwidth of the IOP processor. Red bullets are for

write operations (Janus host to nodes), blue triangles are for read operations (nodes

to Janus host). The lines are �ts to a simple functional form B(s) =
s

α+ βs
where

s is the message size.

In the other direction we did not adopt any communication protocol since the

IOP interface, barring hardware errors, ensures that no packets are lost. Incoming

frames are protected by standard ethernet CRC code, and errors are �agged by the

IOP processor.

Data coming from the SA application are interpreted by the IOP as commands for

itself, to set, for instance, internal control registers, or are routed to one or more SPs

according to speci�c control information packed together with the data as described in

3.2.4. Data coming from the FA application are packed as burst of N frames, according

to the Go-back-N protocol.

Developers of applications running on the Janus system have to write the SA and

FA relaying on the CI communication infrastructure, to make the two applications

collaborative. A typical SA application con�gures, using the functions provided by the

63

Chapter 3. Janus architecture at large

communication library, the SP processors with the �rmware corresponding to the FA

program, loads input data for the FA application, and it waits for the incoming results.

On the other side, a typical FA application wait for incoming requests, performs some

calculation and sends back the results.

The approach adopted to develop application for the Janus system explained in

this section is to keep deliberately the structure of the IOP as easy as possible in order

to have a low latency stable (and hopefully standard) interface between SA running

on Janus host and FA running on SPs. This approach is coherent to the concept of

loose coupling introduced in 3.2.2 and could allow the use of development toolkits to

automatically decompose an application into cooperating modules.

3.2.4 How are organized communications within a Janus board?

The current �rmware con�guration of the IOP focuses on the implementation of an

interface between SPs and Janus host. Although a programmable device is used to

implement it, IOP is not intended as a recon�gurable processor: it basically allows

streaming of data from the host to the appropriate destination (and back), under the

complete control of the Janus host and its con�guration should remain �xed.

The IOP con�gured structure is naturally split into 2 worlds:

- IOlink block handles the I/O interfaces between IOP and host-PC (Gigabit chan-

nels, serial and USB ports). Its supports the lower layers of the Gigabit ethernet

protocol, ensures data integrity and provides a bandwidth close to the theoretical

limit;

- multidev block contains a logical device associated with each hardware subsystem

that may be reached for control and/or data transfer: there is a memory interface

for the staging memory, a programming interface to con�gure the SPs, an SP

interface to handle communication with the SPs (after they are con�gured) and

several service/debug interfaces.

A block diagram of the IOP is shown in Figure 3.5.

Gigabit ethernet feeds the IOlink with a stream composed of 32 bit words with a

clock period of 8 ns (125 MHz). Internal entities of the IOlink synchronize the stream

and return a 16 bit data stream (dataIn) and a data valid (dvIn) clocked by the main

system clock with a period of 16 ns (62.5 MHz). See section 3.2.9 for more detail about

clock frequencies.

In order to route the input stream coming from IOlink we considered three di�erent

possibilities explained in detail in Appendix A. All three ideas that we considered use

a module Stream Router, SR that scans the data stream, recognizes a �speci�c� semi-

word associated with a device and sets high a valid signal for the device selection

(devSelVal).

64

3.2 Questions leading Janus's development

Figure 3.5 � Schematic logical representation of the IOP processor: on the left the

IOlink that handles the I/O interfaces between IOP and the Janus host PC; on the

right the devices of the multidev including the streamRouter. Each devices is identi�ed

using an ID. The gray bubble including MicroBlaze and �oating point units is a possible

expansion of the IOP.

The common assumption leading the development of a communication system is

therefore that each device on the right side in Figure 3.5 is identi�ed with a bit of a

16-bit word (bitwise mode) used as a mask. The �speci�c� semi-word of the previous

paragraph is also a 16 bit word of the data stream coming from the IOlink that the

SP recognizes and �ags as a bitwise device selector.

Another task performed by the SR module is to recognize the other valid data (with

informations for the devices) and forward them with a relevant data valid (dvOut) to

the devices on the right.

The problem of recognizing destination information encoded within the stream

is solved using the so called encapsulate stream protocol : a simple method in which

each message has a header (violet frame in Figure 3.6) giving to the SR the following

informations:

- the �rst word is always the device mask and is associated with a high value of

the devSelVal signal;

- the second and the third word give to the SR the message length that will be

registered and decreased each time that a valid word is processed by SR. When

the length assumes the value zero then delivering of the current message to the

multidev ends and next input data labelled with a valid �ag is always considered

as a new device mask, starting a new message.

An example of stream of data is shown in Figure 3.6.

Figure 3.7 shows the time diagram of the encapsulate stream protocol.

As the masks and the lengths are known at the moment of the message packing and

is not required that they are inserted in the stream at the run time, the encapsulate

65

Chapter 3. Janus architecture at large

Figure 3.6 � Sample of an encapsulate stream.

Figure 3.7 � Time diagram of encapsulate stream.

stream protocol allows us to exploit bu�ers during the message arrangement on Janus

host and assures therefore full bandwidth during the transfer.

A length composed by 32 bit (2 word of 16 bit) requires a 32 bit hardware counter

in the FPGA but allows a stream of ∼ 109 words of 16 bit or, in other words, a

maximal message length of ∼ 8 GB. If we consider uploading to each SP information

about spins and couplings of a 3D lattice of side L = 64 using a single message we

obtain a message size of:

(16 · 4 · 643) + ε ' 2 MB

that is small enough. Note that a length of 16 bit is however too small for a such kind

of data transfer.

As the stream router distinguishes only between words encoding information of the

message destination and words building the message, could arise the question: �What

happens if the machine goes out of control during a transfer?� In fact a stop/abort

command for the machine is not allowed during communication using this protocol,

but the simplicity of the implementation as in the hardware side as in the software

side is a more relevant factor and this is the reason persuading us to use it on Janus.

3.2.5 Why a nearest neighbours network?

As presented in Chapter 2 the spin model simulations considered for the Janus system

require only nearest neighbours interactions, therefore a nearest neighbours network of

processors was the natural choice to implement a trivial partitioning of a given lattice

and consequently an easy way to parallelize.

66

3.2 Questions leading Janus's development

Following this �rst trivial answer, it is possible to think about the historical rea-

sons that guided the Janus collaboration to realize a such network. In view of the

resources available on Virtex-4 LX160 devices used with the �rst prototype of Janus,

we estimated to be able to update ∼ 100 spins in parallel into a single FPGA. This

led us to think that to simulate a big lattice it would be necessary to split it among

di�erent processors in order to increase ∼ 10 times the parallel spin update rate. The

nearest neighbours networks was therefore needed.

However the use of new FPGAs for the production system (we substitute Virtex-4

LX160 with Virtex-4 LX200) and the introduction of some optimizations in the VHDL

code allowed us to increase by about one order of magnitude the number of parallel

updates performed on a single FPGA so that it is possible to update a stand alone

�big� lattice (i.e. up to 803) in a single node.

3.2.6 Why do boards have no direct link among them self?

There are examples of other parallel dedicated machines composed of standard proces-

sor linked with custom processors housed on boards with di�erent features and goals

(see for instance [2, 3]). In many of these cases each custom processor is considered

as a node of a structured network (e.g. ring, mesh, crossbar, torus), therefore a link

among nodes is required and thus, if nodes are housed on main boards, a link among

boards is necessary. In the case of Janus however the development choice was to avoid

a direct board connection.

Estimated performance for a board equipped with 16 FPGA was enough to jus-

tify the costs of the systems and the adding of a back-plane for the board to board

connections would have increased costs, complexity of design and development time

and could not be justi�ed. As described in [4] in fact, development of a custom and

dedicated machine makes sense if performance obtained and development time are

balanced: increasing the complexity of Janus's design in order to add a direct board

to board connection would have entailed a delay of some months to the delivery of the

system while adding a negligible increase to the performance of the system.

Another reason to leave out board to board connection is the costs that would

have a such architectural choice. A goal of the Janus project was in fact to take part

to the Gordon Bell Prize award as an entry in the cost-e�ciency machine section [5].

Cost-control was therefore a weak development guideline.

In the end the building of a backplane would also con�ict to another idea of the

Janus project, that was to build a modular supercomputer able to run in a rack but

that could be in some sense also portable: a Janus board out of the rack is in fact

∼ 30cm × 30cm and can run connected to a common power plug and linked via a

Gigabit cable to a standard laptop.

67

Chapter 3. Janus architecture at large

3.2.7 Why only 17 nodes per board?

In the development phase of a large system such as Janus it is important to consider

the technology factor, by which we mean studying data sheets and application notes

in order to know the limits and thresholds of the technology that one decides to use.

In the case of an FPGA based system the number of nodes housed in a board is

not arbitrary, but arises from a technology factor. Each SP in fact has a set of 10

hardwired lines connecting it with the IOP and a set of 16 di�erential pairs (32 lines

in all) to exchange data with the nearest neighbours. The number of signals hardwired

in a board is very high and many physical layers are required in order to distribute all

the signals with equalized delays and obtain a completely synchronous system. In the

case of Janus the SP and IOP modules are composed of 12 layers while the mother

board needs 16 layers to allow the wiring of signals.

Another limiting factor is the power supply problem. We decided for Janus to

power each board independently via 48V input voltage in order to be compliant with

most standard industrial power supplies, and distribute this voltage on the main board

and convert it to 2.5V for each node using a DCDC converter. On board each node

we convert than 2.5V to 1.2V so that we have both voltages to power I/O and core of

the FPGA. Distribution and conversion of voltages are critical design factors and core

voltage is a very critical limit for the VHDL design implemented on the FPGA.

The development strategy was a good choice for Janus and the use of consolidated

technology makes the project not overly challenging on the engineering side. Outstand-

ing help came moreover from the ability and experience of employees of Eurotech, the

industrial partner of the Janus project.

3.2.8 Why do the nodes have no o� chip memory?

The question of the on chip vs o� chip memory is a never ending story and an open

question in many large systems. New multi-core architectures, for instance Intel's

Nehalem, adopt a cache level shared among cores and a faster (and smaller) cache

level local for each core. Moreover they integrate on chip a memory controller in order

to speed up access and increase bandwidth to main memory.

In the case of a recon�gurable computer each FPGA o�ers at present up to ∼ 5−8

MB of on chip memory. The choice of the Janus collaboration was to consider this

memory as su�cient and take advantage of the very high bandwidth given by the

fact that the memories were within the FPGA. The reason of this drastic direction

is justi�ed by the fact that the data base of spin glass systems is in any case very

small and embedded memories allow Janus to be a reference machine for these models

for next 5 years. Data base of a spin system of lattice L needs in fact a quantity of

memory of ∼ 4 ·L3 bits. If we search values of L solving the constraint 4 ·L3 < 6 MB

68

3.2 Questions leading Janus's development

we found that the biggest lattice that can be stored within an FPGA has L ' 116.

We suggest therefore that on chip memory is not a limiting factor for simulation of

spin systems on Janus.

The presence of staging memories o� chip introduce the problem of bandwidth

between memory and FPGA that added to the low work frequency of Janus raises a

problem of IO bandwidth related to the packaging of the FPGA. To update N spins

per clock cycle we need in fact to access 4 · N bits and if we suppose N = 256 (a

fourth of the current update rate per clock cycle) we should have a bandwidth of 1024

bits per clock cycle. This is impossible to realize because the number of the IO pins

on an FPGA used for Janus is ∼ 1000. Using a double or quadruple data rate 2 or

4 data words per clock cycle are exchanged with the memory and could be possible

to implement an interface with external memory with an acceptable bandwidth and a

limited usage of IO pins, but part of the logic would need to be used to implement it

and the timing constraints would increase the complexity of the synthesis process. It is

remarkable that all this e�ort is required to achieve a fourth of the actual bandwidth.

If the on chip memory seems enough for the high-e�ciency implementation of the

spin models, a problem arises when we try to implement on Janus a model having a

bigger data base or with an irregular structure. Section 3.5 describes a preliminary

implementation of the random graph coloring problem on Janus and are described

some di�culties encountered to store graph informations within embedded memories.

The choice to build computation nodes with no o� chip memory can be viewed

as an easy way to have a high performance machine for spin systems that on the

downside introduces a limiting factor to the recon�gurability and generality of the

Janus supercomputer.

3.2.9 Which clock frequency and why?

The main board of Janus is equipped with a variable frequency oscillator distributing

a clock signal of 62.5 MHz to each daughter board via equalized lines.

The idea was to use for the Janus nodes a clock frequency not too high in order

to keep the synthesis process of the VHDL code relative easy and non challenging in

terms of time constrains. A low frequency moreover allows one to program a Janus

board as a synchronous system and to consider each FPGA synchronous with each of

the others avoiding tricky synchronization process during data transfer among nodes.

A good compromise frequency was 62.5 MHz directly coming from half of the

Gigabit ethernet work frequency (125 MHz). Therefore we distribute to each FPGA a

62.5 MHz clock and then, only on the IOP with a clock multiplier obtained by built-in

Digital Clock Manager (DCM), we obtain the 125 MHz to use for the I/O.

In this way the bandwidth are completely balanced because Gigabit ethernet pro-

duce 32 bit word each clock cycle (8 ns); Janus distribute words of 16 bits for each

69

Chapter 3. Janus architecture at large

clock cycle, but works at half of the frequency (16 ns per clock cycle) so that the

information distribution is balanced.

A posteriori we discovered that the choice of a low frequency played a key role in

the Janus development. High clock frequency combined with very high density designs

produce in fact a nightmare in terms of power consumption of the FPGAs: In some

cases we obtain in fact the switching o� of the chip after few seconds of run. Because

of this we had to improve the power supply when we decide to adopt Virtex-4 LX200

instead LX160 (more details in 4.2.1 and in 4.2.3).

3.3 SP �rmware: spin glass

3.3.1 Parallelism

The guiding line of our implementation strategy is to try to express all the paralleliza-

tion opportunities allowed by the FPGA architecture, matching as much as possible

the potential for parallelism o�ered by spin systems. Let us start by remembering

that, because of the locality of the spatial interaction [6], the lattice can be split in

two halves in a checkerboard scheme (we are dealing with a so-called bipartite lattice

depicted in �gure Figure 2.6), allowing in principle the parallel update of all white (or

black) sites at once. Additionally, one can further boost performance by updating in

parallel more copies of the system. We do so by updating at the same time two spin

lattices (see later for further comments on this point).

The hardware structure of FPGAs allows exploitation of the full parallelism avail-

able in the algorithm, with the only limit of logic resources. As we explain below, the

FPGAs that we use (Virtex-4 LX160 and Virtex-4 LX200, manufactured by Xilinx)

have enough resources for the simultaneous update of half the sites for lattices of up

to 803 sites. For larger systems there are not enough logic resources to generate all

the random numbers needed by the algorithm (one number per update, see below for

details), so we need more than one clock cycle to update the whole lattice. In other

words, we are in the very rewarding situation in which: i) the algorithm o�ers a large

degree of allowed parallelism, ii) the processor architecture does not introduce any

bottleneck to the actual exploitation of the available parallelism, iii) performance of

the actual implementation is only limited by the hardware resources contained in the

FPGAs.

We have developed a parallel update scheme, supporting 3D lattices with L ≥ 16,

associated with the Hamiltonian of (2.1.4). One only has to tune a few parameters to

adjust the lattice size and the physical parameters de�ned in H. We regard this as an

important �rst step in the direction of creating �exible enough libraries of application

codes for an FPGA-based computers.

70

3.3 SP �rmware: spin glass

The number of allowed parallel updates depends on the number of logic cells avail-

able in the FPGAs. For the Ising-like codes developed so far, we update up to 1024

sites per clock cycle on a Xilinx Virtex-4 LX200, and up to 512 sites/cycle for the Xil-

inx Virtex-4 LX160. The algorithm for the Potts model requires more logic resources

and larger memories, so performances lowers to 256 updates/cycle on both the LX200

and LX160 FPGAs.

3.3.2 Algorithm Implementation

We now come to the description of the actual algorithmic architecture, shown in Fig-

ure 3.8.

Figure 3.8 � Parallel update scheme. The spins that must be updated, their neighbors,

the couplings (J) and all other relevant values are passed to the update cells where

the energy is computed. The result is used as a pointer to a Look-up Table (LUT).

The associated value is compared with a random number (RNG), and following the

comparison, the updated spin value is computed.

In short, we have a set of update cells (512 in Figure 3.8): they receive as input all

the variables and the parameters needed to perform all required arithmetic and logic

operations, and compute the updated value of the spin variable. Data (variables and

parameters) are kept in memory and are fed to the appropriate update cell. Updated

values are written back to memory, to be used for subsequent updates.

The choice of an appropriate storage structure for data and the provision of enough

data channels to feed all update cells with the data they need is a complex challenge;

designing the update cells is a comparatively minor task. Hence we describe �rst the

memory structures of our codes, followed by some details on the architecture of the

update cells.

Virtex-4 FPGAs have several small RAM-blocks that can be grouped together to

form bigger memories. We use these blocks to store all data items: spins, couplings,

dilutions and external �elds. The con�gurable logic blocks are used for random number

71

Chapter 3. Janus architecture at large

generators and update cells.

To update one spin of a three dimensional model we need to read its six nearest

neighbors, six couplings, the old spin value (for the Metropolis algorithm) and some

model-dependent information such as a magnetic �eld or a dilution parameter for small

variants of the model. All these data items must be moved to the appropriate update

cells, in spite of the hardware bottleneck that only two memory locations in each block

can be read/written at each clock cycle.

Let us analyze �rst the Ising models, considering for speci�cally the case L = 16.

We choose to use an independent memory of size L3 for each variable. This is actually

divided into smaller memories, arranged so that reading one word from each gives us

all the data needed for a single update cycle. We need 163 = 4096 bits to store all

the spins of one con�guration. We have 16 vertical planes, and save each plane in a

di�erent memory of width 16 bits and height 16 (see Figure 3.9). In this simple case

the logic resources within the FPGA allow us to update one whole horizontal plane in

one clock cycle (because we mix the two bipartite sublattices of two di�erent copies of

the system, see the following discussion), and the reading rate matches requirements,

as we need to read only one word from each of the sixteen memories.

Figure 3.9 � Examples of the spin memory structure: L=16 and L=32.

The con�guration is slightly more complex when the size of the lattice grows and

the update of a full plane in just one clock cycle is no longer possible. In this case we

split each plane into a variable number of blocks NB, adjusted so that all the spins of

each block can be updated in one clock cycle. The number of independent memories is

L/NB, as only these need to be read at the same time. The data words still have width

L, while the height is L × NB to compensate for the reduced number of memories.

Considering L = 32, for example, we have a plane made of 322 = 1024 spins, too large

to be updated in one cycle (in the Xilinx Virtex-4 LX160). We split it in two blocks

of 32 × 16 = 512 spins each. To read 16 lines every clock cycle we store the spins in

72

3.3 SP �rmware: spin glass

16 memories, each of width 32 bits and height 32× 2: the total size of the memory is

still 323 bits.

As already remarked, we simulate two di�erent copies of the system, that we call

replicas in the same FPGA. This trick bypasses the parallelism limit of our MC algo-

rithms (nearest neighbors cannot be updated at the same time, see [4]). We mesh the

spins of the two replicas in a way that puts all the whites of one replica and the blacks

of the other in distinct memories that we call respectively P and Q (see Figure 3.10).

Every time we update one slice of P we handle one slice of whites for replica 1 and one

slice of blacks for replica 2. Obviously the corresponding slice of memory Q contains

all the black neighbors of replica 1 and all the white neighbors of replica 2.

Figure 3.10 � Structure of spin con�guration memories: meshing of replicas.

The amount of memory available in the FPGA limits the lattice size we can simulate

and the models we can implement. In both the Virtex-4 LX160 and LX200 it is possible

to simulate Edwards-Anderson models and some variants in 3D with size up to L = 88

(not all smaller sizes are allowed). Because of the dramatic critical slowing down of the

dynamics of interesting complex spin models these size limits are comfortably larger of

what we can expect to be able study (even with the tremendous power made available

by Janus) in a reasonable amount of (wall-clock) time: memory size is presently not a

bottle-neck (as discussed in 3.2.8).

The lattice meshing scheme is maintained. With our reference FPGAs we can

simulates three dimensional Potts model with at most L = 40 and a four dimensional

Potts model with L = 16.

Things are even more complicated when one considers multi-state variables, as

more bits are required to store the state of the system and all associated parameters.

In the four state Potts model (see next section for details) the site variables need two

bits and the couplings eight bits. In order to keep a memory structure similar to that

73

Chapter 3. Janus architecture at large

outlined before we store each bit in a di�erent memory. For example a lattice with

L = 16 requires 16× 2 memories for the site variables (they were sixteen in the Ising

case), and 16× 8 memories for the couplings.

We now come to the description of the update cells. The Hamiltonian we have

written is homogeneous: the interaction has the same form for every site of the lattice,

and it only depends on the values of the couplings (the �elds and the dilutions, when

model requires them). This means that we can write a standard update cell and

use it as a black box to update all sites: it will give us the updated value of the

spin (provided that we feed the correct inputs). This choice makes it easy to write

a parametric program, where we instantiate the same update cell as many times as

needed.

We have implemented two algorithms: Metropolis and Heat Bath. The update

cell receives as input the couplings, nearest neighbors spins, �eld and dilution and,

if appropriate, the old spin value (for the Metropolis dynamics). The cell uses these

values as speci�ed by (2.1.4) and computes a numerical value between 0 and 15 (the

range varies depending on the model) used as an input to a LUT. The value read

from the LUT is compared with a random number and the new spin state is chosen

depending on the result of the comparison. Once again, things are slightly di�erent

for the Potts model due to the multi-state variables and couplings.

Our goal is to update in parallel as many variables as possible, which means that

we want to maximize the number of cells that will be accessing the LUT at the same

time. In order to avoid routing congestion at the hardware layer we replicate the

LUTs: each instance is read only by two update cells. The waste in logic resources �

the same information is replicated many times within the processor � is compensated

by the ease of the synthesis process.

3.4 SP �rmware: parallel tempering

To perform the parallel tempering algorithm (see Section 2.2.6) within a single FPGA

node we can keep the �rmware of the spin glass almost unchanged. The memory struc-

ture in this case is just a generalization of the standard case. Since the couplings and

all other �elds do not change between replicas, the only additional data that we need

to store within the FPGA memories is the spin con�guration of every con�guration

that we are going to simulate. This is achieved making the RAM Blocks grow in depth

and using this extra space to store the NT (number of temperatures in the parallel

tempering) spin con�gurations, as if we were simulating a lattice of size L3 × NT

instead of L2. Although the information stored in those memories is slightly di�erent

than in the spin glass case.

When simulating only one temperature value we store the spin con�gurations of

74

3.4 SP �rmware: parallel tempering

two replicas in memories P and Q, meshing their black and white nodes, with both

replicas being simulated at the same temperature. Using parallel tempering we want

to simulate NT copies of the same system, each evolving with a di�erent T value, and

thus a di�erent LUT. To keep the con�gurations meshing trick seen before we tangle

together sites belonging to replicas at di�erent temperatures.

Although, in order to obtain the required information about the overlap we need

to simulate two replicas at the same temperature. The only solution in this case is to

simulate exactly the same system and temperatures in a di�erent SP at the same time.

We have already mentioned that the LUTs are replicated in order to have each of them

read only by two update cells. Without parallel tempering there is just one set of LUT,

from the single temperature we are simulating, that is read by all the update cells.

In the case with PT the logic registers store two di�erent sets of values, from the two

temperatures being simulated in parallel. The update cells are properly arranged so

that each can see either one or the other LUT. As a consequence, the spins updated by

each cell will be constantly working with only one of the two available temperatures.

Figure 3.11 � Hardware implementation with and without parallel tempering (simpli-

�ed representation). On the left we show the standard algorithm with a �xed tempera-

ture (i.e. a �xed LUT) and the relevant variables: couplings and spin con�gurations.

The PT (on the right) needs more RAM space to store the extra LUTs and con�gu-

rations, while the J memory is left unchanged. The array BETAINDEX indicates the

simulation temperature of each system (source [7]).

We store all the temperature values and their corresponding pre-calculated LUTs

inside the FPGA, the latter in dedicated RAM blocks (see Figure 3.11). The wo LUT

sets needed by the actual simulation are written also into the LUT registers described

above. An array, called BETAINDEX, keeps track of which system is being simulated

75

Chapter 3. Janus architecture at large

at each temperature. When two con�gurations have been completely updated we move

to another pair of systems, once again each characterized by a (di�erent) temperature

value. The BETAINDEX values of the con�gurations that we are going to study point

to the memory location where the corresponding LUT values are stored. Once these

have been loaded into the LUT register we are ready to simulate the two new copies

of the system.

The PT algorithm requires some new functions (and consequently new hardware

blocks) as well. The �rst addition is related to the calculation (and storing) of the

energy value of each con�guration, necessary for the parallel tempering comparisons

(see equation 2.2.20). This is done by simply running the update algorithm over each

replica, but without actually updating the spin values in memories. Calculating the

energy of a whole lattice takes exactly the same time as updating the same lattice.

Once the energies of all con�gurations has been calculated, the values are used by the

PT for the comparisons.

The other important feature is the calculation of the logarithms of random numbers.

The PT algorithm works by comparing a random value with an exponential, namely

accepting the temperature swap when:

r 6 e∆β∆E with r ∈ [0; 1[. (3.4.1)

In this case we cannot resort to the LUT trick used for the MC updates, since it

would be impossible to pre-calculate all the values of E. On the other hand, calcu-

lating the exponential value during the simulation would dramatically slow down the

performances of the machine. Our best choice is thus to use the alternative equation

ln r 6 ∆β∆E with r ∈ [0; 1[(3.4.2)

exchanging the exponential function for a logarithm [8]. The logarithm operation is

rather slow as well, but we don't need to wait until the simulations are over to start

calculating it: since we need logarithms of random values we can generate these while

the simulations are still running.

When the MC steps of all the systems have been completed, we just have to evaluate

the products E and compare them with the pre-calculated ln r to decide whether to

accept or reject the parallel tempering switch. If this is accepted we exchange the

index values within the BETAINDEX array and move to the next pair of neighboring

temperatures. Once all the temperature pairs have been evaluated we are ready to

start again with the simulations, with each con�guration working at a newly-assigned

(hopefully reshu�ed) temperature.

The PT implementation described in this section is the best choice, for small lattice

sizes, because it is self-contained (within a single SP) and doesn't need too much time-

wasting communications. On the other hand, due to limited FPGA memory resources,

76

3.5 SP �rmware: graph coloring

this implementation works only with smaller lattice sizes (L 6 32) and a limited

number of temperatures (NT 6 128). For larger simulations with more temperatures

it is necessary to change the approach and work with more SPs, but it is not yet

implemented in Janus.

3.5 SP �rmware: graph coloring

The key point of the hardware implementation of the algorithm for graph coloring

is mapping of graph informations (color of each vertex and set of edges) within the

FPGA memories. The update process performed for each vertex is similar to the case

of the spin systems: the Metropolis algorithm is in fact the same. The challenge is

extracting parallelism from from an irregular and unpredictable structure such as a

random graph in order to perform parallel update of some nodes. Figure 3.12 shows a

small example of random graph.

3.5.1 Memory organization

In the case of spin glasses the trick of the bipartite lattice (see Figure 2.6) allows to

update whole set of the spin labelled as white in a single step and then all the black

ones. As random graph is characterized by a non-�xed connectivity, is not possible to

know in advance the number of edges for each vertex (that is equivalent to say that is

not possible to know how many neighbours have each spin in an hypothetic irregular

spin system).

Figure 3.12 � Example of a small random graph. Detailed balance of the Monte

Carlo requires that the state of the neighbour vertices should not change during the

update of a given vertex. In this �gure therefore is possible to update in parallel for

instance vertices 2, 3, 4, 5, 6, but not 1, 2, 3, 4, 5.

The �rst idea is therefore to process the graph structure that we plan to study

in order to �nd his degree of parallelism, i.e. we pre-process the input graph via a

77

Chapter 3. Janus architecture at large

standard PC. This �rst step is performed to obtain a partition of the vertices in k

subsets, Sk, each one containing p non adjacent vertices so that the number of vertices

|V | = k ·p. This rearrangement of the graph assures that each vertex of a set Si has no

neighbours in the same set Si and allows therefore the parallel update of all vertices

of the vertices in Si. This satis�es the detailed balance required by the Monte Carlo

Metropolis algorithm. It is important to note that this operation is in principle not

trivial (and not fast) when the average connectivity grows.

Any way after this preliminary operation we can suppose to have a graph in which

is possible to update in parallel k vertices. The second challenge is represented by the

mapping of graph structure within the memories of the FPGA. The only constraint is

now given my the fact that we want update k vertices at the same time, so we would

access informations related to the k updating vertices as fast as possible. It is clear

that considering V , set of vertices of a given graph, and Ni, set of neighbours of the

i-esim vertex, if we store informations by row in the form {Vi, Nij} with 0 6 i < |V |,
0 6 j < |Ni| we obtain two disadvantages: i) we cannot know in advance width of

the table in which we plan to store graph information (or, in the case of the FPGA,

we cannot give a �xed dimension to a set of memories storing graph informations); ii)

technological limitations connected with FPGA do not allow to access more than two

locations per clock cycle and therefore, with this data organization we cannot take

advantage from the previous parallelism extraction.

Considering to store graph data by columns is possible to take advantage from

the rearrangement performed before. Each vertex has its own adjacency list stored

below itself so that column i contains {Vi, Nij}. Placing such structures one by one

in a row we obtain a set of b blocks, b = int{|V |/k}+ 1, each composed by a variable

number of rows and each row with k elements. First row of the block b0 contains �rst

k vertices, V0, ..., Vk−1 and following g rows the adjacency list ordered by columns,

with g = max{|Ni|, 0 6 i 6 k − 1}; second block b1 start on row g + 1 and contains

Vk, ..., V2k−1 followed by g rows, with g = max{|Ni|, k 6 i 6 2k − 1}, and so on.

In other words for each b so that 0 6 b 6 |V |/k + 1 we calculate

g(b) = max{|Ni| ; bk 6 i 6 k(b+ 1)− 1}.

First row of block b is:

{Vi ; kb 6 i 6 k(b+ 1)− 1}

following lines of block b are:

{Nij ; kb 6 i 6 k(b+ 1)− 1 ; 0 6 j 6 g(b)− 1}

In case that Vi has no neighbours in a given position ij we assume to store a dummy

word that is ignored by update engine. Blocks are stored one below the other and

last row of a block contains a �ag indicating the end of a block. We call this memory

78

3.5 SP �rmware: graph coloring

structure topo-memory because in some sense it give us topological informations about

the graph. It is important to note that in the topo-memory are stored only pointers

and no informations about vertices colors. Pointers stored in the topo-memory point to

locations of another memory structure, called color-memory storing colors of vertices

in a given order (k by k).

A such organization allows to use the topo-memory as a read only memory (we

write it only during initialization phase) and to preform read-write access to the color

memory during the update phase. Another advantage of this organization comes from

the possibility to access informations of a set of k vertices/neighbours in a single clock

cycle (if we neglect the small latency of the internal memories) and update therefore

a set of k vertices in a number of clock cycles comparable with g(b) (that is relatively

small in case of graph with small mean connectivity).

A relevant disadvantage of this organization comes from the fact that we waste a

non negligible part of memory storing dummy informations: in fact in a block with

g(b) = 8 and k = 16 if the other 15 vertices have few or no neighbours we are wasting

many memory locations. This disadvantage is strongly related with graph structure,

but there is no way to optimize it because is intrinsic in the formulation of the problem

of random graph coloring.

Figure 3.13 � Logic blocks of the FPGA implementation of the Monte Carlo update

for a random graph.

Figure 3.13 gives a graphical representation of the hardware implementation of the

graph coloring �rmware. The update engine receives a set of k pointers to k locations

of the color-memory and reads color informations of the current states of the updating

vertices using the addresses received from topo-memory. With the following sets of

pointers coming from topo-memory in set of k starts the update process: each pointer

corresponds to a color of a neighbour and a counter trace the number of color con�icts

generated comparing color of updating vertex with color of his neighbours. k update

engines works in parallel performing therefore the parallel update of k vertices. As

well in the spin system, random number generation play a key role. Con�ict counting

of the current set of k vertices ends when the update engine read the bit indicating

79

Chapter 3. Janus architecture at large

the end of the block from the topo-memory. After that, the Metropolis Monte Carlo

update is performed and the new color of the k vertices is produced and stored in the

color-memory. A new update process can therefore starts. It is clear that a carefully

use of pipelining improve the performance.

3.5.2 Janus limitations in graph coloring

FPGAs allow a large degree of freedom in �rmware design: in the case of the memory

organization described above the idea to have a memory with a system of pointers

and a memory with color informations is amazing if we think that we are working

with hardware. State of the art of the graph coloring studies have however a memory

requirement that seems to be not compatible with Janus.

The device Virtex-4 LX160 have 288 RAM blocks (we studied this prototype im-

plementation on the �rst implementation of Janus). Each RAM block is 16 Kbit and

can be freely con�gured from 16 Kwords × 1 bit-word to 512 words × 36 bit-words as

shown in �gure 3.14.

Figure 3.14 � Available memory setup in a Virtex-4 FPGA

Each word of the topo-memory (TM) is (K logN + 1) bits (the �+1� bit is the bit

indicating the end of the current block). The color-memory (CM) has N
K

4Cm rows1.

Total TM size = (K logN + 1) · N
K
· 4Cm bits

In the case of our �rst implementation:

TM size = (64 · 14 + 1) · 256 · 8 = 897 · 4096 bits

1We consider a number of rows that is 4 times bigger than the average connectivity. This choice

is may be too �conservative�

80

3.5 SP �rmware: graph coloring

Using the Xilinx memory, we need 225 blocks with the con�guration 4K words ×
4 bit-word to build the topo-memory.

Each word of the color-memory use K · logB bits (with logB the number of bits

used to represent a color). The CM has N
K
rows and will be replicate K

2
times in order

to access k vertices data in a single clock cycle (using the dual port con�guration).

Total CM size = K · logB · N
K
· K

2
=
K

2
· logB ·N bits

In our implementation:

CM size = 32 · 2 · 214 = 32 · 32.768 bits

Using the Xilinx memory, we need 4 blocks with the con�guration 512 words × 36

bit-word to build the CM, but we need to replicate the CM structure K/2 times, i.e.

we need 4 · 32 Xilinx RAM blocks to build the complete CM parallel system.

From this very preliminary study we have two conclusions:

1. the total number of bits for the TM and the CM is:

(897 · 4096) + (32 · 32.768) = 3.674.112 + 1.048.576 = 4.722.688

This number is smaller than the total available bits in a Virtex-4 LX160.

2. the total number of blocks needed for TM and CM is: 225 + 128 = 353

This number is bigger than the total number of blocks available in a Virtex-4

LX160.

Balancing of 1 and 2 were the optimum solution, but seems to be di�cult to reach

with the present realization of Janus: embedded memory are in fact the limiting factor

for a more e�cient implementation.

Moreover the state of the art of random graph studies requires to be able to ap-

proach graphs of more than 50000 vertices, that is far to the present realization with

Janus.

81

Bibliography

[1] S. Sumimoto et al., The design and evaluation of high performance communication

using a Gigabit Ethernet, proceedings of the 13th international conference on

Supercomputing, 260 (1999). 3.2.3

[2] F. Belletti et al., Computing for LQCD: apeNEXT, Computing in Science &

Engineering, vol. 8, pp. 18-29, (2006). 3.2.6

[3] R. Baxter et al., Maxwell a 64 FPGA Supercomputer, Proceedings AHS2007 Con-

ference Second NASA/ESA Conference on Adaptive Hardware andSystems, Ed-

inburgh, (2007).

http://www.fhpca.org/download/RSSI07-Maxwell.pdf 3.2.6

[4] F. Belletti et al., Ianus: an Adpative FPGA Computer, Computing in Science &

Engineering vol. 8, pp. 41-49 (2006). 3.2.6, 3.3.2

[5] F. Belletti et al., Janus: a Cost E�cient FPGA-Based Monte Carlo Simu-

lation Engine, technical report http://df.unife.it/janus/papers/gbpaper_

sub2.pdf. 3.2.6

[6] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical

Physics, Cambridge University Press (2005). 3.3.1

[7] D. Sciretti, Spin Glasses, Protein Design and Dedicated Computers, PhD thesis,

Instituto de Biocomputación y Física de Sistemas Complejos (2008). 3.11

[8] J. Detrey and F. de Dinechin, Microprocessors and Microsystems 31 (8), 537

(2007). 3.4

83

http://www.fhpca.org/download/RSSI07-Maxwell.pdf
http://df.unife.it/janus/papers/gbpaper_sub2.pdf
http://df.unife.it/janus/papers/gbpaper_sub2.pdf

Welcome to the jungle! We got fun 'n' games, we got evrything

you want, honey, we know the names. We are the people that can

�nd whatever you may need.

Guns N' Roses

4
Architectural details of Janus

In this chapter I will present details of the Janus architecture with special attention

to the structure of the Input Output Processor, IOP.

This chapter is intended as a technical document describing the hardware compo-

nents and the VHDL-coded �rmware: I will introduce brie�y di�erent type of FPGAs

and the basic components of Janus hardware from the point of view of the �mason�

building the real system, activity that I have followed during my whole PhD studies

till the Janus system was �nally up and running.

A relatively large section describes the VHDL entities that enable the IOP hard-

ware; I have designed these entities in the �rst half of my PhD studies. I then introduce

the �rmware/software environment developed to test and validate the Janus hardware.

A �nal short section describes some engineering problems that we encountered and

for which we have to provide �acceptable solutions� during the development of the

system.

The VHDL code developed for the IOP and explained in this section is available

on the Janus web page: http://df.unife.it/janus/ in Tech section.

4.1 FPGA: di�erent �avours

The FPGA market o�ers devices with di�erent features and containing di�erent mixes

of functionalities to suit a relatively wide set of di�erent application areas. The present

technology allows to embed, for instance, a simple microprocessor within an FPGA and

85

http://df.unife.it/janus/

Chapter 4. Architectural details of Janus

have therefore a chip including a general purpose processor able to run an operating

system and, at the same time, a non negligible quantity of con�gurable logic Other

devices, optimized for high speed communications, embed for instance several (at

present 8 to 20) high speed interfaces (e.g. PCI or Gigabit hard-cores). Other FPGAs

o�ers a huge quantity of embedded memory.

The FPGA panorama is therefore various and the choice of a device for Janus was

driven by the simple idea that the only important feature is the availability of memory

and logic elements in order to store lattices as large as possible and to house the highest

number of update engines. Large on chip memory size and many logic elements are

obviously con�icting requirements; each FPGA family o�ers di�erent trade o�s.

Our preliminary prototype was developed in 2005 using a PCI development kit [1]

housing an Altera Stratix S60 FPGA, containing ∼ 57000 logic elements and ∼ 5 MB

of embedded memory1.

Figure 4.1 � Table summarizing main features of Xilinx Virtex-4 FPGA family

(source [2]).

The �rst two Janus prototype boards developed in 2006 had Xilinx Virtex-4 LX160

FPGA while the �nal realization of the system was based on Xilinx Virtex-4 LX200.

Figure 4.1 summarizes the main features of Xilinx Virtex-4 FPGA, that are divided

in three main families: LX, optimized for logic and memories; SX, housing a huge

1Altera Stratix I devices embed memories organized in three di�erent size: 574 blocks, calledM512

RAM, that can be con�gured up to 32 × 18 bits, 292 blocks, called M4K RAM, con�gurable up to

128× 36 bits and 6 blocks, called M-RAM, con�gurable up to 4K × 144 bits.

86

4.2 Structure of a Janus board

number of DSPs; FX, embedding up to two PowerPCs and high speed IO interfaces.

For the aim of Janus the LX family represents the best Xilinx option since we are not

particular interested in DSPs or embedded traditional processors.

The choice between Altera or Xilinx FPGAs has not been fully trivial. To �rst

approximation both families have approximately the same amount of logic elements2,

but a di�erent amount of on chip memory. Altera Stratix-II FPGAs o�er ∼ 8 Mb

(see [3] for details) organized in three degrees of granularity allowing us to e�ciently

exploit only ∼ 50% of it. Conversely Xilinx Virtex-4 LX200 FPGAs have ∼ 6 Mb

(see [4] for details) of embedded memories3 made up of relatively small blocks that

we can use very e�ciently for our design. Fortunately this decision based on technical

features of the devices was also supported by a better price/performance ratio.

4.2 Structure of a Janus board

As described in previous chapters, Janus is a modular system; each Janus board is com-

posed of 16 scienti�c processors, SP, an input/output processor, IOP, and a processing

board, PB, in which SPs and IOP are plugged via high speed Samtech connectors (de-

tails of connectors and modules are shown in Figure 4.2. Each Janus board is also

housed in a box providing power supply and cooling.

Figure 4.2 � Detail of the bottom view of the IOP with the Samtech connectors used

to plug SPs and IOP to the PB.

Description of a Janus component amounts to a large extent to describe the con-

nections of the I/O pins of the FPGA. For this reason I will present in the following

paragraphs the I/O interfaces of each FPGA, that is roughly equivalent to describe

2We consider the largest devices of both FPGA families available when we had to make a �nal

decision: Altera Stratix-II 180 and Xilinx Virtex-4 LX200.
3We neglect in this analysis the so-called distributed memory.

87

Chapter 4. Architectural details of Janus

the structure of a Janus board apart for the power supply system. A paragraph is also

dedicated to the description of the Janus box.

4.2.1 SP

All SPs are directly connected in a mesh (i.e. each board represents a nearest neigh-

bours network with toroidal enclosure) on a 16 lines full duplex di�erential bus (16

di�erential input lines + 16 di�erential output lines). Moreover each SP has a private

single ended full duplex link with the IOP composed of 10 lines.

Other single ended lines reaching the SP from the PB via connectors are:

clock: 2 input clock lines. A common clock frequency is generated by an oscil-

lator on the PB and distributed to all modules; 2 additional FPGA I/O

pins are available for feedback for each input clock; FPGA pins in close

proximity of the clock signals are not used to reduce noise.

syncIn: 4 input lines used by FPGA �rmware for synchronization (the same set

of synchronization signals is shared by 4 SPs).

syncOut: 4 output lines used by FPGA �rmware to send synchronization messages

to the IOP (synchronization signals from SPs to IOP are point to point).

progLine: 21 lines driven by the IOP programming interface in order to con�gure

each SP as needed; we use the select map con�guration mode that re-

quires 8 bits data bus connected with 8 FPGA I/O pins and 13 lines

connected to an equal number of dedicated FPGA pins driving the con-

�guration.

spReset: 2 input lines coding various level of resets.

The rest of the pins used for input/output are dedicated to test points (16 pins),

temperature sensor lying on each daughter card (3 I/O pins + 2 dedicated pins) and

reset button (1 pin). These lines are however on board signals and have no connections

with the PB. Four more dedicated on board pins are used for JTAG con�guration that

we used only during the prototype phase and for hardware debug via Chipscope [5].

More details about con�guration are explained in 4.3.5 and in [6].

The total number of input/output pins4 for the FPGA of each SP are therefore

312, equivalent to ∼ 33% of the I/O pins available. Table 4.1 summarizes pins usage

in an SP module (neglecting power and ground pins).

Part of the SP area houses the 2.5 V to 1.2 V DCDC power modules. This last

stage of power conversion su�ered from several engineering problems, as, in the early

4Exact number calculated in view of the entries of the user con�guration �le UCF used by the

synthesis tool.

88

4.2 Structure of a Janus board

Logical function Pin # & type Direction

Link to SP

North, South, East, West
4× 16 LVDS pairs Output

Link from SP

North, South, East, West
4× 16 LVDS pairs Input

Link to IOP 10 LVCMOS Output

Link from IOP 10 LVCMOS Input

Sync to IOP 4 LVCMOS Output

Sync from IOP 4 LVCMOS Input

Test points 16 LVCMOS Output

Clock 6 LVCMOS
4 Input

2 Output

Reset 3 LVCMOS Input

Temperature sensor
3 LVCMOS

2 dedicated pins

2 InOut + 1 Input

-

JTAG 4 dedicated pins -

Con�guration channels 21 dedicated pins -

Table 4.1 � Pin assignment summary of the SP module.

design phases, we severely underestimated the power needed by our FPGAs. These

problems (and how we solved it) are described in details in Section 4.5).

4.2.2 IOP

The hardware design of IOP is more complex then the SP because this daughter

card performs numerous and various tasks and therefore houses a higher number of

components. Looking at the connectors with the PB, the presence of a 10 bit bus per

direction for each SP requires that a huge number of lines reach the PB.

Components on board are: 2 Gigabit PHYs (model Marvell 88E1111), 1 UART in-

terface chip (model Maxim MAX3381E), 1 USB-bridge (model CP2102), 2 EEPROMs

for FPGA con�guration on boot up (model XCF32PVOG48C), 2 staging memories

(model NEC µPD44321361), 1 temperature sensor (model MAX1617A), 2 JTAG inter-

faces, 1 oscillator generating the clock for Gigabit PHYs, 1 LEMO connector to accept

external clock and 1 reset button. Figure 4.3 shows an the IOP complete schematic

design with its main components.

Pin assignment of the IOP FPGA can be summarized as follows:

- 105 pins dedicated to staging memory: 64 pins for data, 20 pins for address, 2

pins for clocks, 8 pins for parity, 1 pin for write enable and 10 pins for controls.

89

Chapter 4. Architectural details of Janus

Figure 4.3 � IOP schema with highlight of the main components.

- 320 pins used for data transfer with the SPs: 10 pins per direction for each SP.

- 80 pins for synchronization signals: 4 signals reach the IOP from each SP (4×16 =

64) and 4 signals start from IOP and are shared with a set of 4 SPs (4× 4 = 16).

- 8 pins for reset signals shared in the same way as the synchronization signals

above.

- 44 pins for select map con�guration of the SPs. We organize con�guration of SPs

in 2 channels: each channel has a 8 bit data bus and 6 control signals; each SPs

has a chip selection bit (corresponding to 16 pins).

- 48 pins to connect FPGA to Gigabit ports. We use 2 Gigabit links: each one

requires 8 pins for data to send, 8 pins for data to receive and 8 pins for controls.

- 5 pins for temperature sensor: 3 I/O pins + 2 dedicated pins.

- 1 pins for master reset of the FPGA, connected with an on board button.

- 5 pins for serial interfaces: 2 for UART interface and 3 for USB bridge interfaces.

- 8 pins for clock. We accept 2 global clocks coming from PB and for each clock

we need 2 pins for feedback and 1 test point.

- 16 test points.

- 16 dedicated pins for con�guration of the IOP FPGA via JTAG or via EEPROM.

The total number of the I/O pins5 used on the IOP is 654, equivalent to ∼ 65%

of the I/O available. More than 50% (452) of them must be routed to the connectors

because the corresponding signals go to SPs.

5Exact number calculated in view of the entries of the user con�guration �le UCF used by the

synthesis tool.

90

4.2 Structure of a Janus board

4.2.3 PB

The processing board, PB, is apparently the simplest Janus component, because it

does not house complex BGAs and has a low density of components. In spite of that

it performs three critical functions: distribution of power supply, generation of clocks

for all Janus elements, routing of the signals linking IOP with SP and vice versa.

In order to avoid to distribute high currents we decided to feed the PB at a voltage

of 48 V, a standard in the telecom industry. Each SP has an independent DCDC

module (model Powergood ESC4825-15-X) converting from 48 to 2.5 V. The advantage

of this solution lies in the fact that dimensions of these converters are moderate and

e�ciency is high (90% measured during intensive tests). This setup is currently used

very close to its limit performance. We have tested a few �rmware con�gurations

for the SPs for which our converters are not able to supply the required current.

Fortunately this situation was not a real problem for the physics simulation because

with a careful placing of the FPGA resources all the �rmwares becomes compliant with

Janus hardware speci�cation. A new conversion system able to fully support FPGA

resources is therefore under test.(more details in Section 4.5).

Clock distribution is another key point played by the PB. An oscillator is placed

in the middle of the board and 16 bu�ers assure an equalized distribution of the clock

signal to each SP. We decide to combine an oscillator with a con�gurable frequency

multiplier with zero delay and two output (model Cypress CY2302SXC-1) allowing

to generate input frequency divided by 2 or multiplied by 2, 4, 8, 16 with an output

range between 10 MHz and 133 MHz. This design strategy allow to upgrade the clock

frequency of the system simply changing a jumper or replacing the main oscillator

clock.

(a) (b)

Figure 4.4 � (a) ideal 1D enclosure. (b) node replacing that allows the data to cover

always at most 2 steps.

The last important role played by the PB is the routing of the signals linking IOP to

SP and vice versa. As a Janus board is considered a synchronous system with relative

slow frequency, is important to route signals via equalized paths so that, for instance, a

broadcast message starting on the rising edge of the IOP clock reach all the SP FPGAs

at the same time (within tolerance allowed by the devices). This is very relevant for

the routing of the nearest neighbour links, since the most obvious placement of the

91

Chapter 4. Architectural details of Janus

SPs would imply physical paths for the links of widely di�erent lengths as explained

in 1D by Figure 4.4a. We can go around this problem with a simple change in the

placement of the nodes, as shown in Figure 4.4b.

Following this idea the actual position of the SPs in a Janus board are not as in

Figure 4.5a but as in Figure 4.5b6.

(a) (b)

Figure 4.5 � Each SP is represented by a pair of numbers representing the Cartesian

coordinates of the SP in a XY -plane. (a) Cartesian placement of a toroidal mesh.

(b) Placement of the SPs in a Janus board, partially equalizing the length of the paths

between nearest neighbours.

4.2.4 Janus box

Each board is housed in a case providing power supply, plugs connecting to the host

PC and a complex fan system needed remove heat and keep temperature within a

reasonable working range.

Connectors are placed on the back panel of the box and are arranged as shown in

Figure 4.6a. There is a power plug and a power switch and the following interfaces:

two Gigabit plugs, one USB and one RS232 connector and two JTAG interfaces. In the

present system setup only one Gigabit plug and optionally the serial line for debug are

connected. Two JTAG interfaces are available in order to recon�gure independently

the IOP FPGA or the EEPROM placed on the IOP.

Our cooling system is provided by static heat sink of di�erent height placed on

the FPGAs and a system of ten fans arranged in three lines: four at the front, four

in the middle and two on back panel so air �ows from the front to the back. Heat

sinks are placed so that the 4 FPGAs near the front panel, where air has the lowest

6Note that the Y axis does not respect exactly the rules minimizing the path described in previous

paragraph: the reason of that is related with the problems of routing of the signals within the PB.

92

4.3 The IOP in depth

(a) (b)

Figure 4.6 � (a) Back panel of two Janus boxes with the highlight of the available

connectors: USB (1), double Gigabit channel (2), JTAG interfaces to con�gure the

IOP FPGA or the EEPROMs (3), UART (4) and main power switch (5). (b) Janus

box with cooling system.

temperature, have smaller heat sinks, 8 FPGAs placed in the middle of the board have

medium-size heat sinks and 4 FPGAs close to the rear panel in places take advantage

of larger heat sinks. Figure 4.6b shows the whole Janus box with a board full of IOP

and SPs with fans and cooling system while Figure 4.17 shows a graph of the measured

temperature within a Janus box.

4.3 The IOP in depth

In this section I will introduce a detailed description of the IOP �rmware allowing the

Janus user to access hardware resources described in previous section. Development

of the VHDL code for IOP module was driven by some general guidelines described

in 3.2.2. Figure 3.5 shows the outline of the organization of the logical blocks within

the IOP. Basically the data stream coming from the I/O interfaces (UART, USB

or Gigabit) is processed by IOlink block generating a stream of 16 bit words and

one bit �agging the validity of the word. The stream generated from the IOlink is

processed by the streamRouter that detects the word encoding the target device, �ags

it and forwards data words, data valid �ag, and target �ag to all devices of the IOP.

Each device activates itself only if the word �agged by target �ag encodes an ID

corresponding with his own hard coded ID. Such a structure allows us to add devices

on the right side of Figure 3.5 without the need to change the VHDL entities describing

IOlink and StreamRouter and therefore with no changes of the VHDL code of IOlink

and StreamRouter.

This structure can be further developed to provide additional functionalities in the

IOP without changing its overall organization. For instance the IOP might perform

93

Chapter 4. Architectural details of Janus

with very low latency some functions that require data gathered from all SPs an return

its results to the SPs. The added unit performing this function would be accessed by

the host PC through the IOlink and StreamRouter using a new ID. We have started to

study this solution in order to allow a future implementation of the parallel tempering

(see 2.2.6 and 3.4) algorithm that collects temperature information from SPs, performs

the swap algorithm and sends new temperatures to the proper SPs.

Figure 4.7 shows the hierarchy of the VHDL entities in the present IOP �rmware.

I will present in the next paragraphs the main features of some of these entities that

I coded during my PhD: in particular it is interesting to view details about clock

generation, double data rate communications and all the entities included within the

so called multidev box.

Figure 4.7 � VHDL entity hierarchy of the current implementation on the IOP.

4.3.1 Clock handling: topClock

(a) (b)

Figure 4.8 � (a) Interface of the VHDL entity handling IOP clocks. (b) Clock feed-

back in the Janus system.

The Xilinx Virtex-4 FPGA houses 12 Digital Clock Managers (DCMs) that deskew

94

4.3 The IOP in depth

clocks, multiply and divide frequencies, shift and align clock phases and recon�gure

clocks dynamically. Xilinx synthesis tools o�er software support to con�gure DCM in

the form of a parametric black box that can be included in a design like a standard

VHDL component.

The entity topClock, represented in Figure 4.8a, includes one of this DCM driver

and some additional logic in order to generate three di�erent clock frequencies:

sys_clk the system clock with a frequency of 62.5 MHz (16 ns clock period);

gbit_clk the clock for the Gigabit interface: it has a frequency of 125 MHz

(8 ns clock period) and is used in a small part of the IOP design;

phy_clk a 1 MHz clock used by the UART interface;

out_osc_clk a copy of sys_clk connected to a test point.

It is interesting to note that the entity topClock has an input called fb_clk that is

the feedback signal used by DCM to keep on the same phase the input clock osc_clk

and the signal at the end of the on chip distribution tree of sys_clk. This feedback

system and the fact that the input clock source is shared by each FPGA on the board

are enough to assure that data transfers between nodes are synchronous (at least for

the slow frequencies that we use, 62.5 MHz). Figure 4.8b shows the feedback strategy

for the clock.

4.3.2 Double data rate: iddrBus and oddrBus

Figure 4.9 � Input DDR in SAME_EDGE mode (source [4]).

Virtex-4 devices embed dedicated registers placed near FPGA pad to implement

input or output double-data-rate (DDR) registers. This feature is used by instantiating

the IDDR/ODDR primitive. There is only one clock input to the IDDR/ODDR prim-

itive. Falling edge data is clocked by a locally inverted version of the input clock. The

95

Chapter 4. Architectural details of Janus

IDDR/ODDR primitive supports di�erent modes of operation; we use SAME_EDGE

mode for both directions, input and output. Figure 4.9 shows, for instance, input

DDR registers and the signals associated with the SAME_EDGE mode. Figure 4.10

shows the timing diagram of the input DDR using the SAME_EDGE mode.

Figure 4.10 � Input DDR Timing in SAME_EDGE mode (source [4]).

The entities iddrBus and oddrBus are wrappers that instantiate respectively a set

of N IDDR or ODDR Xilinx black boxes in order to obtain a double-data-rate bus of N

bits. We use them in the links between IOP and SPs to double the bandwidth.

Implementation of this technology is useful, but it becomes less reliable when the

logic resource usage of the FPGA exceeds ∼ 85%. In this case in fact the duty cycle

of the system clock becomes appreciably asymmetric: the part of the design working

with rising edge of the clock works �ne because the DCM aligns phase looking at the

rising edge of the input clock and the feedback clock, but 50% duty cycle constraint is

not meet and logic using both edges, such as DDR I/O registers, becomes completely

unstable (see also 4.5).

4.3.3 Message routing: StreamRouter

StreamRouter is a key entity in the IOP architecture (its interface is shown in Fig-

ure 4.11a): all messages coming from IOlink pass trough it and are routed to destina-

tion device following an easy protocol, called encapsulated protocol.

We assume that each target device has a device ID bitwise coded in a 16 bit word,

called devSelMask. Each message starting from host PC (under the form of data

stream) must have an header composed of three words of 16 bits coding respectively:

word #1 → devSelMask coding target device;

word #2→ len #0 less signi�cant 16 bits of the length of the following message (unit

of measurement is 16 bit word);

word #3 → len #1 most signi�cant 16 bits of the length above.

Data following word #3 contains message for the target device. For a graphical repre-

sentation of a message see Figure 3.6 in previous chapter.

StreamRouter decodes information contained in the header, removes words coding

96

4.3 The IOP in depth

(a) (b)

Figure 4.11 � StreamRouter block: (a) interface of the entity, (b) bubble diagram

of the state machine.

the length of the message, forwards it on the data bus reaching the IOP devices with

corresponding data valid �ag and generates a bit �agging the data word that contains

devSelMask (i.e. the target device mask).

These functionalities are implemented via a �nite state machine with 8 states and

2 control signals (input data valid and reset). Behaviour of this state machine is

rather simple. The Initial state is WDEVSEL: the machine waits the ��rst� word of the

stream, that is always the devSelMask. With the �rst data valid the machine passes to

state DEVSEL. While in state DEVSEL, device selection mask is latched and the output

devSelValid is asserted. This requires one clock cycle; then the machine waits in

state WLEN0 for �rst part of the length (less signi�cant 16 bits). When second data

valid arrives the machine goes to state LEN0 in which the length is saved and both

outputs devSelValid and dvOut are deasserted. The same behaviour is required for

states WLEN1 and LEN1 in which the machine latches the second part of the length.

The machine then waits for valid data in state WDATA (outputs are deasserted) and

passes to state DATA with the �rst data valid following the length. In state DATA the

output dvOut is pulled high and the register storing the length decreases on each dvIn

= 1. The machine remains in state DATA until length becomes 0. When length counter

reaches 0, in correspondence with the last valid data the output signal eow (end of

worm) is asserted for one clock cycle and then the machine goes back to WDEVSEL

waiting for a new mask. Figure 4.11b shows the bubble diagram of the streamRouter

state machine.

4.3.4 Memory controller: memExt

IOP houses two memory chips with a data word length of 32 bits and a depth of 1M

words. We organize them in parallel in order to have an addressable space of 1M words

of 64 bits and therefore a larger bandwidth.

97

Chapter 4. Architectural details of Janus

As data coming from StreamRouter are organized in words of 16 bits, the entity

memExt, in case of write command, has to bu�er four words and write them when

bu�er is full. In case of read command, data coming from memory has to be split

in four 16 bit words so the read process from memory cannot be continuous. Entity

memExt implements therefore a state machine controlling these data transfers with the

right timing. Code 4.1 shows the interface of the VHDL entity implementing memory

controller on Janus. Analyzing it, we can identify 3 groups of ports beyond clock and

reset.

entity memExt is
generic (

ID : integer
);
port (

-- IOP main clock (62.5 MHz) and reset
clk : in std_logic;
reset : in std_logic;

-- Ports to/from StreamRouter and I/O
ioDataIn : in std_logic_vector (15 downto 0);
ioDvIn : in std_logic;
ioDevSelV : in std_logic;
ioGbitStop : in std_logic;
ioDataOut : out std_logic_vector (15 downto 0);
ioDvOut : out std_logic;
-- ioEot is high for the last cycle of valid data
ioEot : out std_logic;
ioDriver : out std_logic;

-- Ports to/from Memory
-- Chip Enable to activate/deactivate the NEC memories
-- (not used in this version)
memCe : out std_logic;
-- To activate the burst mode
memAdv : out std_logic;
-- Write enable active high
-- (but the NEC memories use an active low WE)
memWe : out std_logic;
-- Byte enable (not used in this version)
memBe : out std_logic_vector(7 downto 0);
memAddr : out std_logic_vector (19 downto 0);
memDataIn : out std_logic_vector (63 downto 0);
memDataOut : in std_logic_vector (63 downto 0);

-- Ports to/from other devices (= program interface)
progDv : out std_logic;
progStop : in std_logic

);
end memExt;

Code 4.1 � VHDL entity interface of the memory controller on Janus.

First set of ports, with pre�x io, are connected with the streamRouter and the

IOlink: they are ioDataIn with two �ags ioDvIn, indicating that the incoming 16 bit

data word is a valid one, and ioDevSelV, �agging the word containing device target

information; ioGbitStop is a control bit coming from IOlink triggering a break on a

data transmission. ioEot �ags the end of transmission, while ioDriver is the direction

selection for the bidirectional ports at the top of the design (driving inout type ports).

The second set, with pre�x mem, are ports directly connected to the memory chips

98

4.3 The IOP in depth

through the IOBs of the FPGA: memCe is a chip enable used to switch to power

safe mode memories in case of inactivity, memAdv is a control bit used to activate

a burst transfer mode, memWe and memBe are respectively write enable and byte en-

able. memAddr is the memory address for data written via memDataIn or read on port

memDataOut. Note the types of the ports and their names: they are mirrored because

the memories are external to the chip (i.e. memDataOut has the su�x Out because it

is an output for the memory while it is an input port for the IOP).

Third set of ports, with su�x prog is composed of 2 control bits used by pro-

gramming interface to read a con�guration �le, loaded in advance within the external

memory, in order to use it to con�gure one or more SPs.

4.3.5 SP recon�guration interface: mainProgInt

Xilinx FPGAs on the SPs are con�gured in Janus in the SelectMap (8-bit) slave mode

[7]. Programming is performed by the IOP, that sequences all needed signals on the

con�guration interface. The IOP has two independent con�guration interfaces, CI,

called Channel A and channel B respectively, each of which programs a subset of

8 SPs. During a con�guration sequence, an interface con�gures a subset of all SPs

speci�ed by a con�guration mask. This feature allows to con�gure at the same time

all SPs sharing the same con�guration �le (also called bit�le or bitstream). It is

assumed in all cases that the bit�le has been loaded onto the IOP memory before the

con�guration sequence is started.

Figure 4.12 � Timing of a typical FPGA con�guration sequence.

The con�guration sequence is shown in Figure 4.12. In brief

1. prog_b is set to 0, to reset and blank the FPGA. At the same time init_b is

also set to 0.

2. prog_b is set to 1, marking the beginning of the con�guration sequence.

3. init_b is also released (this is a pulled-up open-drain signal). As init_b goes

to 1, the con�guration mode is sampled on the mode pins. We always select

8-bit SelectMap slave mode.

99

Chapter 4. Architectural details of Janus

4. At this point data loading can be started at any time. The FPGA reads the �rst

data byte from the data bus on the �rst positive clock edge after csel is set to

0. In all cases, we change values on the data bus and on csel only at a falling

edge of the con�guration clock.

5. After all data bytes are read on successive clock transitions, the FPGA releases

the done signal, signalling that all data has been received. done is also an open-

drain signal, so it will actually go to logical 1 only if all FPGAs in the set have

been con�gured.

6. After a number of clock cycles have elapsed following the transition of done the

csel signal can be removed.

After a given set of FPGAs have been con�gured according to the sequence described

above, a further set can be con�gured starting from point 4.

The CI receives commands from the streamRouter of the IOP. It also receives data

from the IOP memory, where it is assumed that bitstream data have been loaded in

advance. In normal operation, a command is issued to the CI, followed by a further

command to the memory interface, requesting memory to deliver data to the CI. The

CI goes through its initialization phase and then starts to deliver data bytes, as soon

as they arrive from memory.

A high-level view of the CI, seen as a state-machine in shown in Figure 4.13b.

(a) (b)

Figure 4.13 � Con�guration interface: (a) top level block diagram, (b) high level

state machine.

- At reset, the CI state-machine goes to an initial state that blanks the FPGA

con�guration and delays further con�guration (by keeping both prog_b and

init_b at 0.

100

4.3 The IOP in depth

- As the command firstProg is received, the machine goes to the firstProgSt

state and properly sequences to 1 the signals described below.

- The machine then goes to the progBody states, where all data are sent to the

FPGAs. Data bytes are sent as soon as they are received from memory.

- As soon as all data are received, the machine goes to the progd state, which is

the state where the CI rests during normal operation of the system.

- If more program sequences are necessary on some subset of the FPGAs the state-

machine goes to contProgSt where a con�guration sequence that does not pulses

prog_b and init_b is started. This is triggered by the command contProg.

- Alternatively, all FPGAs can be blanked going again to Initial. This is triggered

by the blank command.

At the block diagram level, the CI can be described in terms of 3 main blocks, as

shown in Figure 4.13a.

- Block memInterface connects the con�guration machine to the memory of the

IOP. It receives memory data words (64 bits) �agged by dataValid on memBus

and, when appropriate delays data transfer from memory by asserting stop.

The block, once started by start, deliver data bytes BYTEDATA and signals data

availability on byteAval. In turn, the con�guration interface signals that a data

has been used (and a new one is needed) over byteUsed.

- Block cmdInterface receives a command stream from the IOP to Host interface.

A command contains one of the three available opcodes, a mask that identi�es

the SP's involved in the con�guration sequence, and a count-value, recording

information on the length of the datastream. cmdInterface understands the

protocol with the Host Interface and forward to the CI the decoded command

(on one-hot wires), the SPs mask (not shown in �gure) and a streamEnd signal

that marks the time-point when the count-value, decreased every time a byteUsed

is received, reaches 0.

- Block Program Interface is the main engine of the system. It implements the

main state-machine and drives all signals for the interface, whose values are

derived by the present state of the machine. The block also contains a time-

base counter, used to divide the clock frequency of the main system clock by 8,

in order to ensure a slow enough frequency for the con�guration signals.

4.3.6 SP communication: spInt

When SPs are con�gured, the entity spInt takes care of communications between host

PC and SPs. Behaviour of this entity is simple because it plays the role of stream

router from IOP to SPs and vice versa. The interface of the VHDL entity has the

101

Chapter 4. Architectural details of Janus

ports with pre�x io (i.e. ports for data exchange with IOlink) organized as described

in 4.3.4, except for ioDriver that is not required here.

Interface is di�erent if we look at other ports: in this entity in fact for each SP

(indicated as SPxy using as labels the Cartesian coordinates of the referred SP) there

are the following set of ports: for the communication IOP → SPs, dataToSP is the 16

bit data bus starting from IOP and reaching all SPs and dvToSPxy is the data valid

associated with data bus. For the communication SP → IOP, dataFromSPxy is the

data bus coming from SPxy and dvFromSPxy and eotFromSPxy are control bits coding

respectively the validity of the word incoming and the end of transmission relative to

communication with SPxy.

A bubble diagram of the state machine controlling this data �ow is represented in

Figure 4.14.

Figure 4.14 � Bubble diagram of the state machine driving IOP interface to/from

SPs.

4.3.7 Synchronization device: syncInt

When SPs are running, data buses could be busy and therefore SPs could become

unreachable from commands until the end of a run. To avoid the possibility to have

a machine out of control and to have the chance to poll the status of each SP we

implement on the IOP a synchronization interface, syncInt, that, if the SP �rmware

implement a compliant interface, can allow us the behaviour described above.

As described in 4.2.2, there are 4 sets of synchronization buses from IOP to SPs;

each set is shared by 4 SPs: bus_y is connected to SPxy, with x, y ∈ {0, 1, 2, 3} (i.e.
bus_0 is connected to SP00, SP10, SP20, SP30 and so on). Buses from SPs to IOP are

point to point: each SP has its own set of signals. Each bus IOP → SP is composed

of 4 sync signals (spSyncOut_h, with h ∈ {0, 1, 2, 3}) plus 2 reset signals (spReset_k,
with k ∈ {0, 1}); buses SPs → IOP are composed of 4 bits.

102

4.4 SP �rmwares for Janus test

The state machine is represented in Figure 4.15. This �nite state machine is acti-

Figure 4.15 � Bubble diagram of the state machine driving synchronization interface.

vated when a device is selected. First 16 bit word (�agged with a data valid) codes a

bitwise mask selecting the SPs with which it exchanging data. The second valid word

of the stream is a command that can be READ or PULSE.

If the command is READ the state machine switch to state PARAM, in which the

64 bits of synchronization coming from the 16 SPs are registered in a 64 bits register

called snapShot and then reaches 4 states called READ0, READ1, READ2, READ3

in order to send snapShot bits to IOlink, split in words of 16 bits.

If the command is PULSE the state machine passes to state PARAM in which a

16 word containing a parameter is registered in P . Depending on the values of the

registered parameter an impulse is sent to the corresponding SP buses following this

behaviour:

P =0x0001 → pulse a 1 to the line labelled as spReset0

P =0x0002 → pulse a 1 to the line labelled as spReset1

P =0x0010 → pulse a 1 to the line labelled as spSyncOut0

P =0x0020 → pulse a 1 to the line labelled as spSync0ut1

P =0x0040 → pulse a 1 to the line labelled as spSyncOut2

P =0x0080 → pulse a 1 to the line labelled as spSyncOut3

If the SPs implement a synchronization interface able to respond/react to this im-

pulses, the PULSE command can generate di�erent types of reset or di�erent requests

for status information about the running program on the SPs.

4.4 SP �rmwares for Janus test

The development of a complex system such as Janus needs a test phase of the new

hardware in order to verify and stress all components. FPGA, but also I/O interfaces,

memories, double data rate and single data rate communication channels were tested

with a set of incremental checks having the aim of discovering possible assembly faults.

During my PhD I spent several months to develop this test infrastructure that I and

103

Chapter 4. Architectural details of Janus

some other people of the Janus collaboration use during December 2007 to check all

the 19 boards built by Eurotech for the Janus collaboration. The e�ectiveness of this

test suite can be assessed by the fact that in less than one month all Janus boards

were successfully put into operation.

The incremental tests developed, from the simpler to the more complex, are:

01_uart_regs

Performs a reset via the serial interface; reads two con�guration registers; writes a

con�guration register; re-reads the written register.

Coverage: checks components driving serial link.

02_uart_int_mem

Performs a set of write and read operations on an FPGA internal memory via serial

link using sequential patterns and random patterns.

Coverage: check serial link and some FPGA structures.

03_uart_ext_mem

Performs a large set of write and read operations on the external staging memory

via serial link using sequential patterns and random patterns.

Coverage: checks the stability of the serial link and the integrity of the external

memory.

04_gbit_regs

Reads 29 registers of the PHY driving Gigabit link and check their values.

Coverage: checks the PHY integrity.

05_gbit_int_mem

Perform a set of write and read operations on an FPGA internal memory via

Gigabit link using sequential patterns and random patterns.

Coverage: check Gigabit link and some FPGA structures.

06_gbit_ext_mem

Performs a large set of write and read operations on the external staging memory

via Gigabit link using sequential patterns and random patterns.

Coverage: checks the stability of the Gigabit link and the integrity of the external

memory.

07_sync

First performs con�guration of all SPs via IOP con�guration interface with a basic

�rmware, then IOP pulses a value on synchronization lines of each SP; each SP

responds with the old value of the sync register x-ored with the value pulsed from

IOP. When IOP sends a synchronization reset (bit 0) all synchronization lines

from SP to IOP are pulled low; when IOP sends a synchronization reset (bit 1) all

104

4.4 SP �rmwares for Janus test

synchronization lines from SP to IOP are pulled high.

Coverage: checks SPs con�guration and synchronization interfaces.

08_iop_sp_comm

Resets the con�guration �rmware of all SPs, re-con�gures them and then checks

single ended lines IOP ↔ SP writing data coming from host PC in an internal

memory of the SPs. Re-reads data and checks their integrity.

Coverage: checks SPs con�guration and all data and controls lines IOP ↔ SP.

09_loop_2_sdr

Resets the con�guration �rmware of all SPs and re-con�gures them. Initializes with

di�erent values two memories of a pair of neighbours SP_A and SP_B. Following

a start command, two initialized SPs exchange between each other their memory

contents. The host PC polls the status via synchronization signals. When data

transfer SP_A ↔ SP_B ends, host PC dumps the memory contents and cross

checks that data of SP_A are stored onto memory within SP_B and vice versa.

Coverage: checks SPs con�guration and all di�erential pairs SP ↔ SP in all direc-

tions.

10_loop_2_ddr

The same of 09_loop_2_sdr but di�erential pairs SP ↔ SP works in double data

rate mode.

Coverage: check stability of double data rate on di�erential links.

11_loop_full_board

Performs a test of data transfer among all possible ring of SPs on a Janus board.

Coverage: checks stability in case of simultaneous load of all communication lines

on a board.

12_random_wheel

First intensive test in terms of FPGA resources: we implement 37 shift registers

each generating 32 random numbers per clock cycle. We store them in some bu�ers

and we check them after a �xed number of clock cycles. This �rmware requires

∼ 86% of the FPGA logic and ∼ 38% of the embedded RAM. Moreover this test

implement a system to check temperature of the FPGA.

Coverage: checks a complex situation of medium-high load.

13_sg640

Runs the �rst real spin glass simulation performing 640 spin update per clock cycle

on a lattice of 803 spins.

Coverage: checks a typical work load.

105

Chapter 4. Architectural details of Janus

4.5 Engineering problems

Janus is a complex system using non challenging technology: the clock frequencies

are low (62.5 MHz or 125 MHz), most of the data exchanges are synchronous, the

communication interfaces use standard and stable protocols and the integration level

is not too high.

Because of this, its development was straightforward and no really substantial

problems were encountered. The only area in which non trivial engineering problems

had to be faced was associated with power issues. In short, our FPGAs required more

power than we were able to supply, and this fact triggered a sequence of additional

problems that were partly solved, partly swept under the carpet and partly non solved.

As a consequence, today we are in the odd situation in which Janus performances are

limited by power problems. In this section we brie�y summarize these problems and

how we handled them.

Figure 4.16 � Current absorbed by a Janus computing core (measured in Amps) as

a function of logic resource usage.

As mentioned above we found a critical threshold for the current absorbed by

the FPGA in the cases in which the implemented design uses more than ∼ 85% of

the FPGA logic resources (also called slices using the Xilinx lexicon). The graph in

Figure 4.16 shows the current absorbed by the computing cores of each node of a Janus

board (measured in Amps) as a function of logic resource usage. It is interesting to

note that the measurements have been taken with di�erent �rmwares, but all of them

follow basically a linear �tting curve except for the last two points corresponding to the

106

4.5 Engineering problems

largest resource usage of our �rmwares. In the case of these �rmwares it is important

to note that a careful (hand made) placement of the resources within the FPGA has

a non negligible impact on the current absorption.

Three additional problems arose as a consequence of the power problem, and we

had to �nd reasonable solutions to them.

- Current absorption peak implies a power supply problem that in some cases

leads to the FPGA switching o�. Fortunately we discovered this problem during

prototype tests so we solved it with minor modi�cations in the power distribution

circuitries (we added one more power converter from 2.5 V to 1.2 V on the SP

daughter card and more powerful power converters from 48 V to 2.5 V on the

PB).

- Heat removal becomes a serious problem in the case of high density design. Each

Janus box houses indeed a set of 10 fans and each FPGA houses an heat sink but

because of some non optimized design choices (basically related to the placement

of the fans) this set up of the box does not allow an high e�cient heat removal.

Figure 4.17 shows the temperature of the 16 SPs during an intensive run; it is evi-

Figure 4.17 � Map of the temperature within a Janus box.

dent that temperature among modules is not homogeneous. It is remarkable that

the heat problem triggers a vicious circle because temperature increase reduces

the e�ciency of the power supply and therefore these temperatures problems are

strongly related to the discussion above. Fortunately this design imperfections

do not a�ect the performance of the whole system and they do not disadvantage

our simulations.

- We discovered that high supply currents (typical of large designs when they

have a large switching rate) bias clock stability. Figure 4.18 shows in details

107

Chapter 4. Architectural details of Janus

Figure 4.18 � Clocks during a run using an high density design: duty cycle of

the black signal is clearly asymmetric.

a scope snapshot of two clocks observed on two SPs, one running an intensive

�rmware and one running a low density design. The clock becomes asymmetric

and the duty cycle distortion generates errors in the circuitry that uses the double

data rate technology described in 4.3.2. It is remarkable that this asymmetric

behaviour stops immediately when the run ends: this is the reason leading us to

think that this problem is weakly connected with current absorption and power

supply. As we use double data rate only to double the bandwidth between IOP

and SPs we have no e�ective drawbacks because of this: we deactivate the double

data rate communications during the run time period, in which IO data �ow is

relative small, ensuring therefore the correctness of the data transaction.

The engineering problems described above de facto limit the performance of our

system. In principle, by re-engineering part of the system we might solve them; we

expect that, by doing so, clock frequencies approximately two times higher could be

supported by the system, with a corresponding performance increase. We have however

decided not to put these improvements in practice, partly because of their estimated

costs and � even more importantly � because we do not want to delay the use of the

machine for its physics program. Obviously, if a new Janus generation is developed in

the future, we will carefully apply the lessons learned.

108

Bibliography

[1] Altera literature: Development Kits

http://www.altera.com/literature/ug/ug_stratix_pci_pro_kit.pdf 4.1

[2] Xilinx documentation: Virtex-4 Family Overview

http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf

4.1

[3] Altera literature: Stratix II Devices

http://www.altera.com/literature/hb/stx2/stx2_sii5v1_01.pdf 4.1

[4] Xilinx documentation: Virtex-4 FPGA User Guide

http://www.xilinx.com/support/documentation/user_guides/ug070.pdf

4.1, 4.9, 4.10

[5] Xilinx web site:

http://www.xilinx.com/ise/optional_prod/cspro.htm 4.2.1

[6] Xilinx documentation: Virtex-4 FPGA Packaging and Pinout Speci�cation

http://www.xilinx.com/support/documentation/user_guides/ug075.pdf

4.2.1

[7] Xilinx documentation: Virtex-4 FPGA Con�guration User Guide

http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

4.3.5

109

http://www.altera.com/literature/ug/ug_stratix_pci_pro_kit.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.altera.com/literature/hb/stx2/stx2_sii5v1_01.pdf
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/ise/optional_prod/cspro.htm
http://www.xilinx.com/support/documentation/user_guides/ug075.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

But I still haven't found what I'm looking for...

U2

5
Performance and results

In this chapter I will present some relevant physics results obtained with the Janus

supercomputer. In �rst section I summarize some physics concepts useful for the

following discussions. In the second section I describe the features of the �rst run

performed in spring 2008: special care is provided to the performance and the cost of

the Janus system. Third section resumes concepts and results related with the �rst two

important runs of Janus: the simulation of the Edwards-Anderson spin glass model

and the simulation of the Potts model with four states.

Fundamental references for this chapter will be three of the most signi�cant articles

written thanks to the data produced by Janus: [1, 2, 3].

5.1 Useful concepts

5.1.1 About the equilibrium

In section 2.2.5 we look at the Monte Carlo methods as a way to �nd an equilibrium

con�guration for a model systems, but in some cases is interesting to discover the

behaviour of systems which are out of equilibrium using the same tools introduced in

previous chapter (see for instance 2.2.4). In studying these out-of-equilibrium systems

we are commonly interested in one of two things. Either we want to know how the

system relaxes from an initial state to equilibrium at a particular temperature, or we

are studying a system which never reaches equilibrium because it has a driving force

which continually pushes it into states which are far from equilibrium.

111

Chapter 5. Performance and results

The statistical mechanics of out-of-equilibrium systems is a less well-developed �eld

of study than that for equilibrium systems, and there is no one general framework to

guide our calculation such as we had in the equilibrium case. As the subject stands at

the moment at least, each system must be considered independently. In many cases

the mathematical hurdles to formulating an accurate analytic theory of a systems

behaviour are formidable.

For these reasons we decided to use the �rst run of the Janus system to investigate

out-of-equilibrium dynamics (see Sections 5.2 and 5.4 for more details).

5.1.2 Correlation

Even if a system is not ordered, there will in general be microscopic regions in the

material in which the characteristics of the material are correlated. Correlations are

generally measured through the determination of a two-point correlation function

Γ(r) = 〈ρ(0) · ρ(r)〉 (5.1.1)

where r is the spatial distance and ρ is the quantity whose correlation is being mea-

sured.

Below the phase transition, Γ(r) becomes large for all values of r, while it rapidly

decays to zero well above the critical temperature. The function Γ(r) takes into account

all the contributions to the correlation of ρ (for example, ρ can be the state of a spin),

even those due to external �elds. In order to measure only the part of correlation that

is due to internal �uctuations of the observable (e.g. only to the interactions between

spins) we de�ne the connected correlation function

ΓC(r) = 〈ρ(0) · ρ(r)〉 − |〈ρ〉|2 (5.1.2)

where we have discounted the overall alignment of the observable ρ. It is found that,

for T = TC but close to the critical temperature, and for r →∞, this term goes as

ΓC(r) ≈ r(d−1)/2e−r/ξ (5.1.3)

where d is the space dimensionality and ξ is a characteristic length of the system,

known as correlation length associated to the observable ρ.

When approaching the transition temperature TC from above, the interactions

within the system tend to become more and more relevant, and at the same time it

grows also the correlation between spatially well separated points of the system. The

correlation length ξ corresponds to the average distance at which di�erent parts of the

system present a correlation on the values of a given observable ρ: that is, 〈ρ(ri)ρ(rj)〉
is signi�cant for |ri−rj| < ξ but tends to zero for larger distances. Typically ξ diverges

at TC . Equation 5.1.3 implies that the order parameter can normally �uctuate in blocks

of sizes up to ξ, while �uctuations of larger size are rather improbable [4, 5].

112

5.1 Useful concepts

It is also possible to consider correlations that are time-dependent. In this case the

system is prepared in a given initial con�guration and then the simulation is run for

a time tw (called waiting time). After the time tw the con�guration σ(tw) is stored.

From now on after each MC step the following correlation function is measured:

C(t, tw) =
1

N

∑
i

〈σi(t+ tw)σi(tw)〉 (5.1.4)

where 〈. . . 〉 means a thermal average (i.e. an average over di�erent realization of the

thermal noise, but the same initial con�guration) and the bar means an average over

di�erent realization of the bond-disorder [6].

5.1.3 Order parameters: magnetization and overlap

Phase transitions involve an abrupt change of some macroscopic properties of the

system, generally originating from a change in the microscopic structure of the system

under investigation. In the simplest cases this can be signaled by the observation of a

properly de�ned order parameter, i.e some property of the system which is identically

zero in the disordered phase and non-zero in the ordered phase. This change of behavior

when crossing the transition temperature, makes the order parameter a perfect marker

to spot the change of phase in the system when the transition occurs. An order

parameter is thus related to the global symmetries of the system. It is not possible to

give a generic de�nition of an order parameter, and it typically has to be de�ned in

a di�erent way for each physical system of interest. A considerable ingenuity is often

necessary to �nd a good order parameter to characterize a certain phase transition.

An example of order parameter in ferromagnetic materials (i.e. the Ising model)

is the magnetization M = 1/V
∑

imi = 1/V
∑

i〈si〉, where si is the value of the

magnetic moment at position i. The value of M changes from non-zero below the

phase transition, to zero above the critical temperature, and marks the change from

the ferromagnetic to the paramagnetic states.

We have seen that a characteristic of spin glasses is the lack of a uniform ordering,

substituted by a frozen disordered con�guration. This phase seems to possess a non-

zero local spontaneous magnetization mi = 〈si〉 , though the average magnetization

and any staggered magnetization vanish because of the absence of regularity in the

con�guration. Obviously neither of these observables can be used as an order param-

eter. It was noted by Edwards and Anderson that a correct description of the spin

glass phase should re�ect the lack of global orientation spin order in the frozen phase

(despite the local magnetization of the spins).

The �rst proper spin glass order parameter was proposed in the original EA work,

113

Chapter 5. Performance and results

and is thus known as the Edwards-Anderson parameter:

qEA =
1

N

N∑
i=1

〈si〉2 . (5.1.5)

This term vanishes in the paramagnetic phase, but it is non-zero if the local magneti-

zations mi are nonzero: this makes it a good order parameter for the transition from

paramagnetic to spin glass phase. The quantity qEA is actually a particular case of

a more general quantity called overlap, a statistical mechanics tool used to measure

the similarity of two di�erent con�gurations or replicas of a system. Given two spin

con�gurations a and b we de�ne their mutual overlap as:

qab =
1

N

N∑
i=1

sai · sbi , (5.1.6)

and it tells us how correlated a and b are. For example, for two replicas of an Ising

spins model we �nd the following possible values:

qab =


1 if a and b are completely correlated;

−1 if a and b are anti-correlated;

0 if a and b are completely uncorrelated;

(5.1.7)

5.2 First run details

We have followed the Monte Carlo dynamics of three cubic 803 spins lattices (all

initialized with random values, mimicking initial high-temperature conditions) at three

di�erent temperatures below Tc = 1.13 [7], i.e.

T1 = 0.8 = 0.70Tc ,

T2 = 0.7 = 0.62Tc ,

T3 = 0.6 = 0.53Tc .

(5.2.1)

We have performed 1011 Monte Carlo iterations for 96 independent samples at each

temperature (64 for T2). For comparison, the previous largest simulation of the same

model runs for 109 Monte Carlo iterations, for one temperature, 16 samples and a

smaller lattice of 603 sites [8]. The present simulation is altogether ' 2000 times more

compute intensive, allowing to come much closer to experimental time scales.

An interesting feature of the system is the size of the coherent domains. A clever

trick to measure this quantity is to simulate two copies of the system, {σ(1)
i , σ

(2)
i }

(evolving with the same set of couplings) for each samples. We de�ne the overlap

�eld at each lattice site as: qi = σ
(1)
i · σ

(2)
i . The key observation is that, if lattice

points i and j belong to the same coherent domain, qi and qj tend to have the same

114

5.2 First run details

(a) (b)

Figure 5.1 � (a) Plot of the overlap �eld of a sample after 236 Monte Carlo steps

at T = 0.8, corresponding to ' 0.1 sec. The pixel brightness at point (x, y) is the

sum of the positive overlaps for all values of the corresponding z coordinate. (b) Time

correlation function C(t, tw), at T = 0.6 for several values of tw. For comparison, the

longest simulation available before the present one [8] only explored a time window

shown by thin lines; thick lines show the extended time window made possible by Janus

(note that a log-scale in used for the x-axis).

sign. Figure 5.1(a) shows a picture of the system at T1 after a huge number of Monte

Carlo steps. The typical domain size (quantitatively estimated from the data shown

in the �gure) is close to 15 lattice spacings. Previous work [8] reached around 8 lattice

spacing.

A very important physical quantity is the time correlation function C(t, tw) of two

spin con�gurations, one at times tw, the so called waiting time, the other at a later

time, t+ tw. Speci�cally, (with the bar we mean the average over the samples)

C(t, tw) =
1

L3

L3∑
i=1

[σi(t+ tw)σi(tw)] . (5.2.2)

Statistical errors can be computed from the sample to sample �uctuations (hence the

importance of simulating some tenths of samples).

The function C(t, tw) tells us about the memory that the spin con�guration at

time t + tw retains from the spin con�guration at the waiting time, tw. Of course,

C(t = 0, tw) = 1 (perfect memory), while C(t, tw) vanishes for large t (i.e. no memory

of what happened at tw). Once thermal equilibrium is reached, C(t, tw) should be

independent of tw. Figure 5.1(b) shows that this is far from being our case. A detailed

analysis of the behavior of C(t, tw) in our simulation has provided clear indications to

settle a long-standing debate on the best theoretical picture of this process [2].

115

Chapter 5. Performance and results

The simulation was performed in March 2008 on our 16 core Janus system. 6 + 6

cores have been used for T = 0.8 and 0.6 and 4 cores for T = 0.7 . The simulation

has executed almost continuously for approximately 25 days (20 days for simulation

at T = 0.7), apart from a 2 hours outage caused by snow-storm. A further Janus

core was used for checks, extensively verifying the reproducibility of selected segments

of the run. Simulation results (that is spin glass con�guration at appropriate Monte

Carlo times) were written onto disks attached to the Janus-host cluster. All in all

about 4 TBytes of disk space have been used.

All physically relevant averages (such as the overlap, C(t, tw), and many others)

have been computed on line on the Janus-host systems. Averages were computed as

soon as data became available: these tasks are not a computational bottleneck in our

case: just one or two host PCs are necessary to keep up with incoming data.

5.3 Janus performance

In this section, we assess the performance of our system in two di�erent ways:

- the number of e�ective operations per second.

- the speed-up factor (mostly in wall clock time, but also on other relevant metrics)

with respect to processor clusters or �arbitrary� size (i.e., assuming that, for the

given simulation, the optimal number of processor is actually deployed).

Let us �rst consider the number of e�ective operations performed by second. At

each clock cycle (clock frequency is 62.5 MHz), each SP processor updates 800 spins.

On a traditional architecture, this could require at least the following instructions for

each spin:

- 6 loads

- 1 sum (32 bits)

- 2 xor (32 bits)

- 6 sum (3 bits)

- 6 xor (3 bits)

- 1 load LUT

- 1 comp (32 bits)

- 6 updates of address pointers (1 mult, 1 sum)

- 1 store

- jump condition

We want to count only algorithm-relevant operation, so we do not count all load-

/store and address instructions; also, we count the 6 short xor and sum operations

116

5.3 Janus performance

as one each. We end up with 7 equivalent instruction for each spin update (shown in

italic in the list above). This translates into a processing power of 7× 800× 62.5× 106

operations per second, that is 350.0 Giga-ops. Our system operates 256 processors in

parallel, so it performs at the level of 89.6 Tera-ops.

From this (accurately measured) value and the cost �gures provided in [1] we obtain

our price performance ratio of 6.56 ¤ / Giga-ops. This �gure grows to 7.98 ¤ / Giga-

ops if we include the purchase costs of the items donated by our industrial partner.

Using the $ / ¤ exchange rate of 1.566 prevailing on April 4th, 2008, we obtain our

�nal �gure of 10.27 $ / Giga-ops (or 12.50 $ / Giga-ops if the costs of items donated

to the project are included).

Note that our system is also extremely energy e�cient at ' 8.75 Giga-ops / W

(for comparison, the top entry in the Green500 list is rated at 357.23 MFlops/W).

We now compare our performances to those obtained on commercial CPUs, where

spin-glass simulations have been performed so far. This analysis is mostly intended to

show the impact that our machine is going to have on the spin-glass community.

As stated in Section 2.3.2, the SMSC is the elective technique to handle Monte

Carlo simulation of large spin glass systems. The AMSC is only useful when dealing

with smaller lattice sizes, where equilibrium properties are investigated instead of slow

dynamics behavior, and a large set of sample statistics is needed.

The �gures given below refer to carefully programmed routines written in C, run-

ning on an IntelR© Core 2 DUO 64 bit CPU 2.4 GHz. In the multi-spin coding im-

plementation we also had some advantage in using C compilers supporting 128 bit

extended integer data types on 64 bit architectures (as the gcc 4.x releases do). A

further warning is associated to the fact that multi-spin coding e�ciency on tradi-

tional CPUs critically depend on whether the size of the simulated lattice is an integer

multiple or divisor of the CPU basic data word. While we cannot claim that our imple-

mentations are optimal, our judgment is that further optimization would not improve

performance by factors larger than 2 or 3, marginally a�ecting the qualitative picture

that we are outlining.

Our SMSC routine performs at 7.0 ns/spin average update rate when simulating

an L = 80 system. The AMSC routines available to us allows a 0.77 ns/spin update

rate, almost independently of the lattice size on modern CPUs equipped with large

cache memories. By contrast, our FPGA implementation performs at 0.020 ns/spin

for the L = 80.

Table 5.1 reports the total CPU time, the wall clock time and an estimate of the

total energy needed to accomplish the task of performing the 1011 Monte Carlo steps

presented in the sections above, in various cases of di�erent sample statistics (256

samples is the case relevant for physics, as discussed above). The three columns refer

respectively to Janus, to PCs using AMSC, and to PCs using SMSC. We assumed,

117

Chapter 5. Performance and results

Janus 1 PC AMSC 1 PC SMSC

samples 1 1(128) 1

Wall clock time 24 d 310 y 24 y

Accumulated CPU time 24 d 310 y 24 y

Energy 85 MJ 900 GJ 70 GJ

Janus 2 PCs AMSC 256 PC SMSC

samples 256 256 256

Wall clock time 24 d 310 y 24 y

Accumulated CPU time 18 y 620 y 6200 y

Energy 22 GJ 1.8 TJ 18 TJ

Table 5.1 � Processing time for 1011 Monte Carlo steps on a 3D lattice of 803 points.

when estimating performances scaling with available resources, that Janus is limited to

256 nodes (SPs), while for PCs we assumed availability of in�nite resources (a cluster

of the optimal number of processor is assumed to be available). We consider a 100 W

power consumption for a standard PC and round the �gure for Janus at 40 W.

Comments on �gures in the table may be summarized by the following considera-

tions:

- in spite of its high �time per spin� e�ciency, AMSC would have not permitted

at all to accomplish our task;

- SMSC is the best choice on standard PCs; however estimated wall clock time in

this case is long enough to discourage even the most patient researcher.

- for this application, commercial CPUs largely su�er from having a �xed architec-

tures, as SMSC would greatly bene�t of a �exible architecture as the Janus' one:

we have checked that the time ratios for PCs with SMSC and Janus increase by

a factor four when passing from L = 64 systems to L = 80 ones.

- as the table shows, the wall clock time in a PC cluster is largely independent of

the size of the cluster itself, as scaling quickly saturates because a small part of

the available parallelism is instantiated;

- our simulation on Janus corresponds to ' 104 CPU-years.

- our simulation is extremely energy e�cient: using the numbers of Table 5.1

and standard �gures in the oil industry [9], we estimate that Janus has used

approximately 15 barrels of oil for our simulation campaign, to be compared

with ' 12000 that would be needed if PCs were used.

118

5.4 Physics results overview

5.4 Physics results overview

After its commissioning, acceptance and reliability tests in April 2008, the large Janus

installation in Zaragoza was immediately used for two large scale simulations.

In the �rst simulation (whose results were also used for our submission to the 2008

Gordon Bell Prize), we studied the long term (in Monte Carlo time) evolution of a

large (803) Edwards-Anderson spin glass at several temperatures clearly below the

critical one. In this type of simulation, the physical focus is not on measuring physical

observables at the statistical equilibrium (reaching equilibrium for such a large system

is still out of question even for Janus); rather, we want to pinpoint several speci�c

features of how the system drifts within its con�guration space as it tries to move

toward more energetically favourable con�gurations. This is a relevant subject of

study, since several conjectures have been made, so it is important to compare with

experimental data.

In the second large simulation, we studied the 4-state Potts model (in 3D). In this

case, a much smaller lattice (163) was used and a serious attempt has been done to

bring the system into statistical equilibrium. In this case the ultimate goal of the

simulation was to characterize the structure and to measure the main parameters of

the phase transition of the system.

I describe in more details both simulations and their main physical results in the

following.

5.4.1 Non-equilibrium dynamics of a large EA spin glass

The results discussed in this section have been published in [1], where special attention

is given to the computational aspects of the simulation and in [2, 10] where the results

of the physical analysis are considered in details.

Below their glass temperature, experimental spin glasses are perennially out of

equilibrium. The understanding of their sophisticated dynamical behavior is a long

standing challenge both to theoretical and to experimental physics. On the simulation

side, it is only possible to bring to statistical equilibrium very small systems, so if

we study these small systems, we may expect that our �ndings are strongly a�ected

by �nite-size e�ects. On the other hand, several theoretical models try to highlight

correlations between the structure of the equilibrium con�gurations of a large spin glass

and the dynamics according to which that system slowly drifts toward equilibrium. If

we study numerically a large spin glass system out of equilibrium we may therefore

hope to extrapolate information on its equilibrium properties. In this sense, the two

approaches are complementary ways to study these systems.

The standard (experimental and numerical) approach to the study of an out-of-

equilibrium spin glass is the so-called direct quench. In these experiments, the spin

119

Chapter 5. Performance and results

glass is cooled as fast as possible to the working temperature below the critical one,

T < Tc. It is let to equilibrate for a waiting time, tw, its properties to be probed

at a later time, t + tw. For instance one may cool the spin glass in the presence of

an external �eld, which is switched o� at time tw. The so called thermoremanent

magnetization decays with time, but the larger tw is, the slower the decay.

In fact, there is strong evidence that, if the cooling is fast enough, the thermore-

manent magnetization depends upon t and tw only through the combination t/tw, for

a very large time window.

The time evolution is believed to be caused by the growth of coherent spatial

domains. Great importance is ascribed to the size of these domains. Domain size is

characterized by the coherence length ξ(tw), which can be measured experimentally

and has to be correctly estimated from numerical simulation. Therefore, in a large

simulation, one has to measure observables that lead to the de�nition and evaluation of

ξ(tw). This is the main raw-data of the simulation, that can then be used to compare

with theoretical expectation. In the rest of this section I focus on this work.

We simulated the dynamics of the Edwards Anderson model, de�ned in (2.1.5).

The system was simulated on a lattice of linear size L = 80 and on a smaller lattice

with L = 40, at several temperatures below and above the critical temperatures (which

is not known with high precision but was estimated in previous works to be close to

Tc ' 1.1). Several samples of the systems were simulated and a huge number of

Monte Carlo steps (up to 1011) was performed. The parameters of our simulation are

summarized in table 5.2.

L T MC steps Ns

80 0.6 1011 96

80 0.7 1011 63

80 0.8 1011 96

80* 0.9 2.8× 1010 32

80 1.1 4.2× 109 32

80* 1.15 2.8× 1010 32

80* 0.7 1010 768

40 0.8 2.2× 109 2218

Table 5.2 � Parameters of our simulations. The overall wall-clock time needed was

less than six weeks. We highlight with * the simulations performed after completion

of [3]. Recall that we take the critical temperature from [11], Tc = 1.109(10). The full
analysis of spin con�gurations was performed o�-line.

We wrote to disk the spin con�gurations at all times of the form [2i/4]+ [2j/4], with

integer i and j (the square brackets stand for the integer part). Hence, our t and tw
are of the form [2i/4]. These spin con�gurations are the starting point for any analysis.

120

5.4 Physics results overview

It is common practice, followed in this work, to de�ne real replicas. These are two

statistically independent systems, {σ(1)
x } and {σ(2)

x }, evolving in time with the very

same set of couplings. Their overlap �eld at time tw is:

qx(tw) = σ(1)
x (tw)σ(2)

x (tw) (5.4.1)

The overlap is the basic quantity from which most observables are derived. For

instance, the spin glass order parameter is

q(tw) =
1

N

∑
x

qx(tw) (5.4.2)

The mean value of q(tw) over many samples vanishes in the non-equilibrium regime,

when the system size is much larger than the coherence length ξ(tw). So the spin glass

susceptibility,

χSG(tw) = Nq2(tw) (5.4.3)

that steadily grows with the size of the coherent domains, is a �rst approximate way

to measure the correlation length. More accurate estimation of the correlation length

are based on so called single time correlation functions

C4(r, tw) =
1

N

∑
x

qx(tw)qx+r(tw) (5.4.4)

The long distance decay of C4(r, tw) can be written according to the following

functional form:

C4((r, tw) =
1

ra
f(r/ξ(tw)) (5.4.5)

In other terms, if we are able to estimate correctly ξ we are in a position to

reliably understand (from numerical or experimental data) the functional behaviour

of f , thereby clarifying the approach to equilibrium of the system.

In order to measure ξ in a model-independent way, we compute the integrals

Ik(tw) =

∫ ∞
0

drrkC4(r, tw) (5.4.6)

If we take (5.4.5) into account, we see that

ξk,k+1 =
Ik+1(tw)

Ik(tw)
∝ ξ(tw) (5.4.7)

In principle this equation is valid for any k. In practice, for small k there is a

systematic error because (5.4.5) is only valid for large values of r. However, if we

increase k (thereby suppressing the contribution of small r to the integral) we meet

larger statistical error. In practice, the best trade-o� is for k = 1 (or, equivalently,

ξ1,2.). This is shown in Figure 5.2a. Using this technique, we are able to measure

121

Chapter 5. Performance and results

(a) (b)

Figure 5.2 � (a) The spatial autocorrelation of the overlap �eld for tw = 220 and

three subcritical temperatures, as computed in our L = 80 lattice. (b) Result of com-

puting ξ1,2 in two di�erent ways for our 96 samples at T = 0.6. In the orange curve

we stop the integration at the cuto� point where relative error of C4 is greater than

one third. In the blue curve we estimate the contribution of the tail from that point

on extrapolating with another �t. The di�erence is small, but with the second method

the power law behavior of ξ1,2(tw) lasts longer.

ξ1,2(tw) (see Figure 5.2b). To check the reliability of our result, we can compare with

the estimate for ξ that we obtain from 5.4.3. The comparison is given in Figure 5.2b,

showing that the two results are consistent but that the measurement based on ratios

of Ik(tw) has much smaller errors.

Based on this preliminary analysis, a large number of physics results have been

derived for our spin glass system. Since the details of the analysis are very technical

in nature, we address the interested reader to the original papers.

5.4.2 The 4-state Potts model and its phase structure

The results discussed in this section have been published in [3, 12]

We have simulated three dimensional cubic lattices with linear sizes L = 4, 6, 8 and

16 (I explain below why simulation of large and small lattices are needed). Because

spin-glass simulations have very long relaxation times, we used the parallel tempering

(PT) algorithm (described earlier in this thesis) to speed up the dynamical process

that brings the system to thermal equilibrium and eventually explores it. Physical

quantities are only measured after the system has been brought to equilibrium.

The Monte Carlo dynamics uses single-spin updates and temperature swaps. The

single-spin updates are carried out with a sequential heat bath (HB) algorithm. We

de�ne a Monte Carlo sweep (MCS) as N sequential trial updates of the HB algorithm

122

5.4 Physics results overview

(i.e. every spin in the lattice undergoes a trial update once). The PT algorithm (ap-

plied to a given realization of the quenched disorder, that we will call a sample) is

based on simulating a number of copies of the system with di�erent values of the tem-

perature but the same interactions (the same set of Jij). Exchanging the temperature

of two copies with adjacent temperatures with a probability that respects the detailed

balance condition is the crucial mechanism of PT. The result is that each copy of the

system drifts in the whole allowed temperature range (that has been decided a priori).

When a copy is at a high temperature it equilibrates fast and so each time it descends

to low temperature it is likely to be in a di�erent valley in the energy landscape.

The simulation of the smaller lattices, with L = 4 and 6, was performed on standard

PCs, while Janus was used to simulate the larger lattices of linear size L = 8 and

L = 16. For this speci�c simulation, one Janus SP processor (one FPGA) is about

103 times faster that an Intel Core2DuoTMprocessor [13]. Janus has allowed us to

thermalize a large number of samples for bigger sizes than would have been feasible

on a standard computer. The computational e�ort behind our analysis amounts to

approximately 6 years CPU time on a 2.4 GHz Intel(R) Core2Duo(TM) processors for

L = 8 and thousands of CPU-years for L = 16.

Data input and output is a critical issue for Janus performance, so we had to

carefully choose how often to read con�guration data; in general, we end up taking

fewer measurements than in simulations on a traditional PC. Having fewer (but less

correlated) measurements does not a�ect the quality of our results. We read and

analyze values of physical observables every 2 × 105 MCS. On the larger lattices, we

perform a PT step every 10 MCS while on the smaller lattices this value is 5. In a

standard computer the PT algorithm takes a negligible amount of time, compared to

a whole MCS. However, in Janus the clock cycles needed by one PT step are more

than those needed for a MCS. For this reason we chose to increase the number of MCS

between two PT steps. However, this number should not be too large, as we do not

want to negatively a�ect the PT e�ciency. A preliminary analysis has been carried

over to test how the PT parameter would a�ect the simulation results, and we have

selected a value that seems to be well optimized (see Table 5.3).

When performing such a large simulation, for which most of the expected results

live in a unknown space it is important to perform reasonable sanity checks on the

results of the simulation.

A standard test that a set of con�gurations are extracted from a thermalized sample

takes a given physical quantity and averages (�rst over the thermal noise and then over

the quenched disorder) over logarithmically increasing time windows. Equilibrium is

reached when successive values converge. We emphasize that it is crucial for time to

be plotted on logarithmic scale.

A typical quantity that is analyzed in this way is the correlation length of the

123

Chapter 5. Performance and results

L Nsamples MCS [βmin, βmax] Nβ NHB Nm

4 1000 3.2× 105 [2.0, 6.0] 9 5 103

6 1000 8× 105 [2.5, 5.0] 7 5 103

8 1000 2× 108 [2.7, 4.2] 16 10 2× 105

16 1000 8× 109 [1.7, 4.1] 32 10 2× 105

Table 5.3 � For each lattice size we show the number of disorder samples that we have

analyzed, the number of MCS per sample, the range of simulated inverse temperatures

β = 1/T , the number of (uniformly distributed) β values used for PT, the number

of MCS performed between two PT steps (NHB), and the number of MCS between

measurements (Nm).

spin-glass order parameter ξ. ξ is obtained by a rather complex set of mathematical

operations, that we describe here (albeit quickly) because this is a central quantity in

the simulation. One starts with a de�nition of the Potts model with p = 4 states in

the so-called simplex representation: the possible spin states are associated to one of

the p unit vectors Sa pointing to the corners of a hyper-tetrahedron in a p − 1 (3, in

our case) dimensional space. The following equality holds:

Sa · Sb =
pδab − 1

p− 1
(5.4.8)

so the Hamiltionian

H = −
∑
〈ij〉

Iijδsi,sj
(5.4.9)

can be written in term of Sa · Sb.
Using this representation for the spins, we de�ne the overlap between two replicas

(S(1)
i and S(2)

i) of the same system in Fourier-space as

qµν(k) = 1/N
∑
i

S
(1)µ
i S

(2)ν
i eikRi (5.4.10)

where Sµi is the i−component of the spin along direction µ. From this quantity, the

spin-glass susceptibility is de�ned as

χq(k) = N
∑
µ,ν

〈|qµν(k)|2〉 (5.4.11)

and, �nally, the correlation lenght is derived as a function of χ evaluated at two speci�c

points in Fourier space (km = (2π/L, 0, 0)):

ξ =
1

2sin(km/2)

(
χq(0)

χq(km)
− 1

)1/2

(5.4.12)

As a check of thermalization, ξ is plotted in Figure 5.3 at the lowest simulated tem-

perature (the hardest case for thermalization). We see that the values of the correlation

124

5.4 Physics results overview

Figure 5.3 � A thermalization test. We show the behavior of the time dependent spin

glass correlation length as a function of Monte Carlo time. We have averaged the

correlation length using a logarithmic binning procedure. We show data for the lowest

temperature simulated for each size.

length reach a clear plateau for all sizes, strongly suggesting that our samples have

reached thermal equilibrium. This analysis also provides useful information about the

number of sweeps that have to be discarded at the beginning of the Monte Carlo. Fi-

nally, the absence of wiggles in the plot, after thermalization has been reached is a fair

indication that the quality of our random numbers in good enough for our simulation.

Once we are reasonably sure that a set of thermalized con�gurations is available,

we can proceed to measure the critical temperature. The most accurate way to do

so is to apply a so-called �nite size scaling analysis. The theoretical background of

this method is too complex to be treated here in details. The relevant point of the

analysis is that when the system is at its critical temperature, its correlation length,

if measured in units of the lattice size is independent of the lattice size. So, when

β ' βcrit, the following relation

ξ(sL, βcrit)

sL
=
ξ(L, βcrit)

L
(5.4.13)

must hold for any value of s. One must remember that this equation is only valid in

the limit in which both L and sL go to in�nity.

Using this approach one measures ξ for several values of β on two lattices of sizes

L and sL and plots the ratios de�ned by (5.4.13). The value of β where the two curves

cross is the critical temperature. A better way to perform this analysis is to repeat

125

Chapter 5. Performance and results

this procedure for several values of the lattice size, since (5.4.13) must be valid for any

value of s. In principle, we expect that all curves meet at the same value of β. In

practice, this does not happen, since � as remarked early � (5.4.13) is only valid for

large lattices (for which we are not able to compute thermalized samples. The best we

can do is to consider the di�erent crossing values for β as a measure of the systematic

error of the procedure.

Figure 5.4 � The spin glass correlation length divided by L as a function of β for

L = 4, 6, 8 and 16. In the inset we magnify the crossing between the L = 8 and

L = 16 curves.

Our results are in Figure 5.4; we plot the correlation length divided by system size

for di�erent lattice sizes as a function of the temperature. According to (5.4.13), data

should cross if there is a transition. There are clear crossings in the data, though these

occur at di�erent temperatures for di�erent sizes. Even though the data represents a

considerable computing e�ort, it is still not enough to be able to extrapolate reliably

the intersection temperatures to in�nite size. Hence our results are consistent with a

second order transition at a �nite temperature (whose value is close to β ' 4), but we

are not able to measure accurately the asymptotic value of βcrit. Full details on this

work are in [3].

126

Bibliography

[1] F. Belletti et al., Janus: a Cost E�cient FPGA-Based Monte Carlo Simulation

Engine, technical report

http://df.unife.it/janus/papers/gbpaper_sub2.pdf. 5, 5.3, 5.4.1

[2] F. Belletti et al., Nonequilibrium spin-glass dynamics from picoseconds to a tenth

of a second, Phys. Rev. Lett. 101, 157201 (2008). 5, 5.2, 5.4.1

[3] A. Cruz et al., The Spin Glass Phase in the Four-State, Three-Dimensional Potts

Model, submitted to Phys. Rev. B (2009). 5, 5.2, 5.4.2, 5.4.2

[4] D. P. Landau, K. Binder A Guide to Monte Carlo Simulations in Statistical

Physics, Cambridge University Press (2005). 5.1.2

[5] D. Sciretti, Spin Glasses, Protein Design and Dedicated Computers, PhD thesis,

Instituto de Biocomputación y Física de Sistemas Complejos, September 2008.

5.1.2

[6] H. Rieger, Nonequilibrium dynamics and aging in the three-dimensional Ising

spin-glass model, J. Phys. A: Math. Gen. 26, 15, pp. 615-621 (1993). 5.1.2

[7] H. G. Ballesteros et al., Critical behavior of the three-dimensional Ising spin glass,

Phys. Rev. B 62, 14237 (2000). 5.2

[8] S. Jimenez et al., Ageing in spin-glasses in three, four and in�nite dimensions, J.

Phys. A: Math. and Gen, vol. 36, pp. 10755-10771 (2003). 5.2, 5.1

[9] A. Tripiccione, private communication. 5.3

[10] F. Belletti et al., An in-depth view of the microscopic dynamics of Ising spin

glasses at �xed temperature, submitted to J. Stat. Phys. (2008). 5.4.1

[11] M. Hasenbusch et al., The critical behavior of 3D Ising spin glass models: univer-

sality and scaling corrections, J. Stat. Mech. L02001 (2008); 5.2

[12] M. Guidetti, Simulating Potts Models on Janus, 10th Granada Seminar (2008).

5.4.2

127

http://df.unife.it/janus/papers/gbpaper_sub2.pdf

BIBLIOGRAPHY

[13] F. Belletti et al., Simulating spin systems on Janus, an FPGA-based computer,

Comp. Phys. Comm., vol. 178, pp. 208-216 (2008). 5.4.2

128

Conclusions

Recon�gurable computing implies a completely di�erent approach to computing with

respect to the well known long-standing Von Neumann model. In place of a �xed

hardware structure that performs a given programmed algorithm, we con�gure un-

committed hardware resources so they behave in such a way that they process a data

stream according to the requirements of a given algorithm.

There are obvious large potential advantages in this approach; the main advan-

tage is the fact that a given budget of functional units (or logical operators) can be

fully con�gured to perform useful work for the considered algorithm. In recent years,

recon�gurable computing has become a viable approach, at the hardware level, as

Field Programmable Logic Arrays (FPGA) have established themselves as a techni-

cally sound, well understood and well supported technological paradigm for real-life

recon�gurable computing. Progress in FPGAs has been dramatic in the last decade

and their pace of development is expected to remain stable in the foreseeable future.

In spite of these encouraging situation, recon�gurable computing is still a niche

area in high-performance computing (and even more so in conventional computing,

with the only possible exception of embedded systems). This is so for reasons that

are probably as obvious as the potential advantages of this technology. In brief, a

recon�gurable devices de�nes a potentially enormous space of possible con�gurations,

in which only a very tiny subspace is the optimal (or maybe, even just satisfactory)

work-point for the implementation of a given algorithm. Locating this work-point is

a non-trivial endeavour for human intervention, that requires very speci�c skills and

long and tedious coding with appropriate Hardware Description Languages. Auto-

matic code-transformation tools, that start from a program written in a traditional

programming language and develop an appropriate con�guration for a recon�gurable

device are the only reasonable approach to make recon�gurable computing widespread

in the computing community, but at present their are hopelessly inadequate. A second

key problem in the area is the lack of well-de�ned, standardized interfaces between

the recon�gurable partition of a system and its host computer.

In this thesis, I have described my work in the framework of a large project (the

Janus project) that again shows the truly huge advantages o�ered by recon�gurable

129

Conclusions

computing for speci�c applications. The developments described here have increased

computing power available to a relevant and well-established application area in sta-

tistical physics by almost three orders of magnitude, rede�ning the state-of-the-art for

Monte Carlo simulations in condensed matter. Quite frankly, Janus has reached these

very important goals because the people that have developed the project (including

the writer of this document) have accepted to go through all the needed, complex

and tedious development steps. From this point of view, this work is frankly gives

very thin contributions to the broad area of making recon�gurable computing easier

to approach. However, Janus had to go around all these hurdles, so Janus experience,

including the de�nition of a reasonably �exible interface between Janus and its host,

may be an useful contribution.

The Janus system was developed by a collaboration of research centers and uni-

versities in Spain (Zaragoza, Madrid and Extremadura) and Italy (Ferrara and Rome)

with the industrial partnership of Eurotech. Its main goal was the development of

an e�cient system for Monte Carlo simulations of frustrated systems in condensed

matter, such as spin glasses. The speci�c computational features of the relevant simu-

lation algorithms is particularly well adapted to the architecture of currently available

recon�gurable devices.

During my PhD studies I have been deeply involved in the several activities asso-

ciated to the project:

- I have contributed to the overall architectural design of the system;

- I have de�ned the architectural structure of the interface between Janus and its

host computer;

- I have developed in all details the �rmware de�ning the Input Output processor

for the system;

- I have de�ned and developed in all details the set of test programs that have been

used to verify the correct behaviour of the Janus hardware;

- I have coordinated the installation and commissioning of the large Janus system

installed in Spain and of the smaller machine in Ferrara;

- I have worked on the development of a Janus-based application for the solution

of the coloring problem in large random graphs. This is an interesting attempt to

adapt recon�gurable hardware to a problem in which addressing is not as regular

as in spin-glasses. Encouraging results have been reached, even if it is clear that

present FPGAs have strong limitations to support these algorithms.

Physics simulations performed using Janus marks a new standard in the simulation

of complex discrete systems by allowing studies that would take centuries on traditional

computers. The system that we have developed has a very large sustained performance,

an outstanding price-performance ratio and an equally good power-performance ratio.

130

Conclusions

Janus is not a small scale laboratory prototype, but a large high-performance system,

able to run large simulations extending the state-of-the-art in the �eld and is an

example of high-performance recon�gurable computing.

131

A
Notes on the IOP communication strategy

This appendix describes three ideas that were considered for the structure of the data

stream protocol used in the communications between Janus and the host PC. These

ideas were discussed within the collaboration and a decision was made taking into

account the robustness of the protocol, the overhead in terms of bandwidth and the

complexity of the corresponding hardware block. This document, largely taken from

an early internal working document, discusses all these issues.

A.1 Overview of the IOP structure

As described in Sections 3.2.3 and 4.3, the IOP made up of the IOlink that plays the

role of the input/output interface and a set of others �objects/devices� with di�erent

functionalities that have to be driven via Gigabit from a host PC. Figure 3.5 shows a

block diagram of the IOP structure.

The IOlink receives as input a 16�bit data stream (dataIn) and a data valid (dvIn)

�agging the 16�bit words that the host PC sends to one of the Janus devices. All of

these use a module, called StreamRouter (SR) that is a VHDL entity with the logical

role to �scan� the data stream in order to recognize a �special� semi-word identifying

the target device and assert a signal (called devSelVal) used to select target device.

Another common assumption of the three communications protocol is also that

each target device is labelled with an ID. The �special� semi-word of the previous

paragraph is therefore a 16-bit mask (bitwise mode) that the StreamRouter recognizes

133

Appendix A. Notes on the IOP communication strategy

and �ags as a bitwise device selector.

StreamRouter analyzed obviously the other valid data words (containing informa-

tions for the devices) and forwards them with the suitable data valid (dvOut) to the

target devices (on the right of Figure 3.5).

A.2 First idea: the stu� byte

In this protocol it is assumed that a special semi-word (having for instance the value

0xAAAA) is inserted into the stream every time we want to send an information coding

the destination of the message. The StreamRouter can therefore easily identify the

�stu� semi-word� and consider the following 16-bit data word as the target devices

where addresses the following message. Is similar to an escape.

If at the time t the valid data coming from the IOlink is Dt = 0xAAAA then the

StreamRouter waits the next data Dt+1 (time t+ 1):

- if Dt+1 = Dt (green frame in the Figure A.1) then the data Dt+1 is not labelled

as a control data and goes to the target device with the value 0xAAAA. The value

of the dvOut is consequently set to high value and the devSelVal is deasserted (see

Figure A.2 for a timing diagram of this case);

- if Dt+1 6= Dt (violet frame in the Figure A.1) then the data coming from the

IOlink is labelled as control-data with the value Dt+1. The value of the devSelV

is set to high and the dvOut is pulled low (see Figure A.3 for a timing diagram);

in this case the data Dt+1 works as a device selection mask (devSelMask).

In both cases the �rst data Dt works as �stu� semi-word�, behaviour that gives the

name to this simple protocol. A typical stream of data is shown in �gure A.1.

Figure A.1 � Example of a stream with stu� byte.

A.2.1 Which stu�-value?

Using this data stream organization the address of a target device cannot have the

same value of the stu� word, or in other words, a mask coding a target device cannot

assume the same value of the stu�: in this case indeed the data Dt+1 is recognized

134

A.2 First idea: the stu� byte

Figure A.2 � Timing diagram in the case of the green frame of Figure A.1.

Figure A.3 � Timing diagram in the case of the violet frame of Figure A.1.

by the StreamRouter as a data of the previous message instead as a mask for a new

message.

This means that one of the 216 = 65536 possible values coded in the data Dt+1

should be used as stu� semi-word and cannot be used as mask to select target devices.

Ideally the mask that does not make sense is the null mask (0x0000) because the null

mask is the mask that selects no device. A natural value for the stu� seems to be

therefore the null mask (0x0000).

On the other hand the stu� should have a value that must be not to frequent in

the data stream in order to not degrade the bandwidth. For the spin-glass simulation

the value 0x0000 could be statistically many present in the data stream. Regular

structures as 0xAAAA or 0x5555 are sure a good stu� (are statistically few present in

the stream) but are �possible� masks.

A solution for this problem could be to implement a software data encoder/decoder

that analyzes the stream on the host PC and converts the stu� from 0x0000 to 0xAAAA

or 0x5555 and vice versa before the transmission.

A.2.2 Performance problem

To implement this data stream protocol the host PC sending data to a Janus device

have to check each outgoing data word to insert the stu� semi-word where/when

needed. This task should be performed run-time with an unde�ned and unpredictable

frequency. This may degrade the performance of the software driving Janus because

135

Appendix A. Notes on the IOP communication strategy

it could not possible to exploit contiguous memory bu�ers to pack data in advance.

A.3 Second idea: the tagged stream

The basic idea of this stream protocol is to introduce a tag before each message from

host PC to a Janus device. This tag distinguishes between command message and

data message. A 16-bit header gives therefore us two di�erent information:

- a tag codifying if the following data words are data or commands;

- a length that the StreamRouter uses as a counter of valid words before to start

to receive a new command.

The data stream is structured as shown in Figure A.4: in case of command message,

the 16-bit word following the header (green in Figure A.4) will be the mask codifying

the target devices.

Figure A.4 � Sample of a tagged stream.

A.3.1 Remarks

In this case the Janus software can perform an e�cient static memory bu�er allocation

because the protocol does not require changes of the message contents. The possible

performance problems introduced with the stu� byte protocol are here therefore solved.

A second comment is related to the logic structure of this stream organization: we

allows indeed the StreamRouter to distinguish between command messages and data

messages, that is not required and in some cases could introduce dependences between

Janus target devices and StreamRouter. Moreover, this protocol could appear as an

overkill for a system such as Janus, because the command messages in Janus are few

and very simple, so they do not require a special class of data exchange.

A.4 Third idea: the encapsulated stream

This third communication protocol proposed to handle the Janus data transaction

can be considered a generalization of the previous one. Each data set to send from

136

A.4 Third idea: the encapsulated stream

the host PC to a Janus device is called message with no di�erence between command

messages and data messages. Each message, moreover has an header (violet frame in

Figure 3.6) that gives to the StreamRouter information about the destination (mask

containing the ID of the target device) and the length of the message. Details of the

protocol are described in 3.2.3 and 4.3.

A.4.1 Pros and cons

We focused our attention on this last protocol and we accept to use it for Janus

because:

- it is relatively simple to realize both the hardware side and the software side.

Sending header information (basically the mask of the target device and the

length of the message) does not require to scan the entire data segment of the

message. As described above this allow us to exploit the allocation of bu�ers into

the memory and to send them with no bandwidth disadvantages.

- a message length of 2 16-bit words means that we need a 32 bit counter into the

FPGA, but allow us a stream of ∼ 109 words of 16 bit (∼ 64 GB). It is remarkable

that a data transmission that load a cubic con�guration with lattice size L = 100

for each FPGA, with their couplings, requires 16× 4× 1003 + ε ∼ 8 MB.

Using this protocol remains in all cases the problem that the Janus system become out

of control until all the data of a requested operation are not delivered. A stop/reset

command of the system is indeed not allowed during a command using this protocol.

137

Ringraziamenti

I am glad to thank all the kind people of the Janus Collaboration, the great team

that has worked by my side during these years and that has taught me with unlimited

patience. The ability of the collaboration to convert chaos into scienti�c results remains

for me forever a formative and beautiful mystery. Thank you!

I gratefully acknowledge the great job done by my two referees, dr. M. Alderighi

and dr. R. Baxter who read an almost in�nite sequence of preliminary drafts and

provided illuminating comments and useful suggestions. Their help de�nitely improved

the quality of my thesis; thank you very much, Monica and Rob.

I am grateful to prof. K. Pingali and prof. F. Wray who kindly opened the doors of

their institutes and welcomed me for very interesting collaboration experiences during

my PhD studies.

During my work I was supported by INFN, IUSS, BiFi and HPC Europe.

Al termine di questi tre anni di avventure vorrei inoltre ringraziare dapprima Lele,

vero Maestro di scienza e pazienza che con la sua umanità e saggezza mi ha mostrato

giorno dopo giorno la via da seguire e con la sua amicizia e �ducia ha fatto di questo

dottorato un'esperienza indimenticabile. È un mondo grande Lele, grazie!

Un caro pensiero e un grande ringraziamento va poi a Fabio, collega corretto e

collaborativo, ma prima ancora compagno di tante avventure, di tante serate, di tante

discussioni e di tanti consigli sinceri.

A Marco, fedele vicino di scrivania, tutta la mia gratitudine per aver sempre soppor-

tato con il sorriso sulle labbra il mio caratteraccio e la mia iper-attività in dipartimento.

Un pensiero a Giorgio, amico e collaboratore del progetto Janus che ha sempre gen-

erosamente fatto il tifo per me e per la collaborazione. Ad Annalisa un gioioso grazie

per la quotidianità che s'è condivisa in questi anni: grazie per esserci sempre stata.

Non potendo citare tutti, ringrazio poi con sincerità tutte le persone che hanno

condiviso con me questo cammino di tre anni: i colleghi del dipartimento, i collabo-

ratori di Eurotech che hanno allietato le mie trasferte in terra friulana, gli amici di

vecchia e vecchissima data che vivono accanto a me o sparsi in giro per il mondo a

rincorrere i loro sogni.

139

Ringraziamenti

Un grazie sincero va poi a mamma Graziana e papà Elio per aver sempre riposto

�ducia nelle mie scelte sopportandole e supportandole: grazie. A mio fratello Fabio e a

Erika riservo un a�ettuoso grazie per avermi sempre fatto guardare in alto, con l'a�etto

e la sincerità che solo loro sanno riservarmi. Grazie anche a Giancarlo, Annamaria e

Carla, che mi hanno �adottato� in tanti momenti speciali.

Manuela, semplicemente grazie!

140

	Introduction
	1 Introduction to reconfigurable computing
	1.1 General purpose architectures
	1.2 Domain-specific architectures
	1.3 Application-specific architectures
	1.4 Programmable logic, FPGA
	1.5 Reconfigurable Computing
	1.5.1 Pervasiveness of RC
	1.5.2 The Hartenstein's point of view
	1.5.3 Man does not live by hardware only

	1.6 Non exhaustive history of RC
	1.6.1 Common features
	1.6.2 Fix-plus machine (Estrin)
	1.6.3 Rammig Machine
	1.6.4 Xputer (Hartenstein)
	1.6.5 PAM, VCC and Splash
	1.6.6 Cray XD1
	1.6.7 RAMP (Bee2)
	1.6.8 FAST (DRC)
	1.6.9 High-Performance Reconfigurable Computing: Maxwell and Janus

	2 Monte Carlo methods for statistical physics
	2.1 Statistical Physics
	2.1.1 Spin Glass
	2.1.2 Edward-Anderson model
	2.1.3 The Potts model and random graph coloring

	2.2 Monte Carlo in general
	2.2.1 Markov processes
	2.2.2 Markov chains
	2.2.3 Metropolis algorithm
	2.2.4 How to use the Metropolis algorithm for spin systems
	2.2.5 Another MC algorithm: the heat bath
	2.2.6 Parallel tempering techniques

	2.3 Numerical requirements
	2.3.1 Implementation and available parallelism
	2.3.2 Techniques on a general purpose processor
	2.3.3 Random numbers

	3 Janus architecture at large
	3.1 Janus project
	3.2 Questions leading Janus's development
	3.2.1 Why many nodes on a board?
	3.2.2 Why an Input/Output processor?
	3.2.3 How are organized communications between Janus boards and Janus host?
	3.2.4 How are organized communications within a Janus board?
	3.2.5 Why a nearest neighbours network?
	3.2.6 Why do boards have no direct link among them self?
	3.2.7 Why only 17 nodes per board?
	3.2.8 Why do the nodes have no off chip memory?
	3.2.9 Which clock frequency and why?

	3.3 SP firmware: spin glass
	3.3.1 Parallelism
	3.3.2 Algorithm Implementation

	3.4 SP firmware: parallel tempering
	3.5 SP firmware: graph coloring
	3.5.1 Memory organization
	3.5.2 Janus limitations in graph coloring

	4 Architectural details of Janus
	4.1 FPGA: different flavours
	4.2 Structure of a Janus board
	4.2.1 SP
	4.2.2 IOP
	4.2.3 PB
	4.2.4 Janus box

	4.3 The IOP in depth
	4.3.1 Clock handling: topClock
	4.3.2 Double data rate: iddrBus and oddrBus
	4.3.3 Message routing: StreamRouter
	4.3.4 Memory controller: memExt
	4.3.5 SP reconfiguration interface: mainProgInt
	4.3.6 SP communication: spInt
	4.3.7 Synchronization device: syncInt

	4.4 SP firmwares for Janus test
	4.5 Engineering problems

	5 Performance and results
	5.1 Useful concepts
	5.1.1 About the equilibrium
	5.1.2 Correlation
	5.1.3 Order parameters: magnetization and overlap

	5.2 First run details
	5.3 Janus performance
	5.4 Physics results overview
	5.4.1 Non-equilibrium dynamics of a large EA spin glass
	5.4.2 The 4-state Potts model and its phase structure

	Conclusions
	A Notes on the IOP communication strategy
	A.1 Overview of the IOP structure
	A.2 First idea: the stuff byte
	A.2.1 Which stuff-value?
	A.2.2 Performance problem

	A.3 Second idea: the tagged stream
	A.3.1 Remarks

	A.4 Third idea: the encapsulated stream
	A.4.1 Pros and cons

	Ringraziamenti

