
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

High performance reconfigurable computing with cellular automata

Murtaza, S.

Publication date
2010

Link to publication

Citation for published version (APA):
Murtaza, S. (2010). High performance reconfigurable computing with cellular automata.
[Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/high-performance-reconfigurable-computing-with-cellular-automata(570d7b31-9800-453f-bd36-2fcfa556089e).html

Chapter 6

CA on Multiple FPGA Enabled PC*

If the logic resources available within the chip limit the number of possible PEs within

our implementation, then could we attempt to push this limit outside the chip, that is,

have another chip in parallel? FPGAs operate at a clock speed of more than one order

of magnitude slower than microprocessors [50]. Will this provide enough room for the

exchange of data between the multiple FPGAs running parallel over the host interface?

These questions motivated us to port our implementation to a multiple FPGA setups for

further performance investigations. In this chapter we look into multiple FPGA enabled

PC based CA implementations where the concept of latency hiding [56] is exploited. It also

focuses on a dual FPGA enabled PC setup for performance measurements. A dual FPGA

enabled PC should provide a realistic view on the feasibility of implementing multiple

FPGA based CA accelerators.

∗This chapter is based on: S. Murtaza and A.G. Hoekstra and P.M.A. Sloot, ‘Performance of floating-

point based Cellular Automata Simulations using a dual FPGA system’, submitted. Initial results based

on this chapter’s dual FPGA-based implementation were presented at the Second International Workshop

on High-Performance Reconfigurable Computing Technology and Applications (Austin, Texas, 2008) and

published in [77].

Figure 6.1: Multiple FPGA enabled PC setup.

Chapter5/Chapter5Figs/EPS/multiFPGA-PC.eps

52 | CA on Multiple FPGA Enabled PC

Figure 6.2: Rectangular lattice (with x columns and y rows) divided along y-axis into F -chunks.

Each chunk is processed by a dedicated FPGA based LBM engine.

6.1 Multiple FPGA Enabled PC

Applying Equation (3.9) to our single FPGA enabled D2Q9 LBM implementation (with

system parameters k = 1/10, τc = 675, and τr ≈ 1.1, see Section 5.3 for details) guarantees

our system to be compute bound as long as the system implementation has p ≤ 61.

FPGA logic resources available on our single FPGA enabled system (see Appendix 10 for

hardware details) limited our implementation to a maximum of sixteen PEs (i.e. p = 16

LBM cores). With these limitations imposed by the available logic resources, we were able

to achieve barely 27% of the theoretical possible p PEs for our LBM hardware accelerator

implementation. To port a single FPGA based LBM implementation to a multiple FPGA

enabled PC system, required modifications both within hardware and the software cores

of our existing implementation. The multiple FPGA enabled PC system is composed of a

host PC with multiple FPGA boards connected via PCI interface as shown in Figure 6.1.

Each FPGA board includes multiple on-board memory banks as shown in Figure 3.1.

For CA implementation, the resulting computing system’s PC does all the pre- and post-

processing and FPGA boards are connected as coprocessors for CA computations. With

this multiple FPGA enabled PC based CA accelerator system, the host machine initially

describes the problem to be solved, and downloads all the relevant information (chunk of

CA lattice data) to each of the FPGA’s on-board source memory bank. Once initialised,

the FPGAs start computing, and the host machine keeps track of the overall lattice

computations (that is, completion of each iteration and boundary exchange across the

FPGA boards) via interrupts from the host accessible control registers available on each

of the FPGA.

Chapter5/Chapter5Figs/EPS/latticeGrid.eps

6.1. Multiple FPGA Enabled PC | 53

Each FPGA processing
bulk data respectively

HostPC downloads update
boundary data to FPGAs

Each FPGA processing
boundary data respectively

HostPC updating
boundary data

FPGA−1 FPGA−2

Step−0

Step−1

Step−2

Step−3

CA lattice decomposed

Boundary processing

FPGA Processing

HostPC Processing

Figure 6.3: Dual FPGA enabled PC computation model: System initialisation (step-0): host

machine decomposes the CA lattice into two halves and downloads each half to the respective

FPGA’s source memory bank. Boundary processing (step-1): Each FPGA starts with processing

boundary data and signals the host via an interrupt. Bulk processing (step-2) FPGA’s continue

processing bulk data cells and in parallel the host machine updates boundary data across the two

FPGA boards. Boundary download (step-3): With the completion of the whole lattice iteration

computation, host machine downloads the updated boundary data to each of the FPGA’s source

memory bank.

Chapter5/Chapter5Figs/EPS/domainDecomv2.eps

54 | CA on Multiple FPGA Enabled PC

6.1.1 Execution Time

In order to determine the execution time for the compute bound CA computation using

multiple FPGA enabled PC, consider the F FPGA enabled PC implementation as shown

in the Figure 6.1 and assume the problem domain is a rectangular lattice of size N (with

x columns and y rows). The host-PC initially divides the LBM lattice into F -chunks (as

shown in Figure 6.2) and downloads all the relevant information (N
F

cells) to each of the

FPGA module’s source memory bank. Once the source memory banks of all of the FPGA

modules are loaded, the FPGAs start computing. Computation within the hardware

part, that is, processing of N
F

cells by each of the FPGA can further be categorised into

the following three distinct phases (see Figure 6.3 for dual FPGA enabled PC system

implementation).

6.1.1.1 Boundary Processing

Each FPGA’s compute engine starts by processing boundary data. With boundary data

being only a small part of the overall lattice (when N ≫ 2xF), the compute engines write

out boundary related results to an additional third memory bank (thus mirroring the

boundary data results independently) available on their respective boards. Immediately

after the completion of processing boundary cells, the compute engine releases the third

memory bank for host DMA. For large system sizes especially when N ≫ p, we can

approximate the ceiling functions behaviour and rewrite Equation (3.10) as:

T1 = τr +

{

N

p

}

τc +
{p

k
− 1

}

τr + τw. (6.1)

Assume that all FPGAs start computing simultaneously, with the initial startup time (τr),

each FPGA starts with processing boundary cells. This combined initial startup time and

processing boundary cells denoted by Tb, can be expressed as

Tb = τr +

{

2x

p

}

τc (6.2)

6.1.1.2 Bulk Processing

During this phase of computation the system relies on the effective use of latency hiding.

Herbordt et al. [56] highlights latency hiding as a basic technique for achieving high per-

formance in parallel applications, and further recommends this as one of the main design

techniques to be exploited in HPC/FPGA applications. Upon completion of boundary

data processing, the compute engines continue processing the bulk lattice cells. Inclusion

of the third memory bank for mirroring boundary data on each of the FPGA module is

assumed to allow latency hiding, that is, the host machine updates the boundary data

6.1. Multiple FPGA Enabled PC | 55

across all of the FPGA modules and the bulk data processing by the compute engines

are done in parallel. As long as the time to process the bulk data (Tk) is larger than the

host machine’s time to update the boundary data (Tu), latency hiding is effective and the

overall execution time remains compute bound. Otherwise the host machine processing

the boundary data across the FPGA boards over the PCI bus dominates the overall ex-

ecution time. If τb is the time to update a boundary cell by the host machine and τd is

the time to download a cell from the host machine to a FPGA or vice versa, execution

time for bulk cells computation can be expressed as max {Tu, Tk}, where (Tk) and (Tu)

are expressed as:

Tk =
1

p

{

N

F
− 2x

}

τc +
{p

k
− 1

}

τr + τw (6.3)

Tu = F {2xτd + 2xτb} (6.4)

6.1.1.3 Boundary Download

With the completion of a next generation computation, each FPGA interrupts the host

machine. Following this the host machine downloads the updated boundary data to each

of the FPGA modules source bank. The time to download boundary cells is expressed as:

Td = F {2xτd} (6.5)

The sum of the above mentioned time durations result in an overall execution time for

the multiple FPGA enabled PC implementation

Tf = Tb + max {Tu, Tk} + Td. (6.6)

The above three steps are repeated in the computation of every single CA iteration and

repeated until the required number of iterations are computed. Once done, the host

machine uploads the whole data from each of the FPGA module’s destination memory

bank for further postprocessing.

6.1.2 Speedup

For multiple FPGA enabled PC implementation, when Tk ≫ Tu, Tf is expressed as

Tf =
T1

F
+

p

k

{

F − 1

F

}

τr +

{

F − 1

F

}

τw + 2x {F} τd (6.7)

and the obtained speedup is

S =
T1

Tf

=
F

1 + fcomm

, (6.8)

56 | CA on Multiple FPGA Enabled PC

where the total fractional communication overhead fcomm is the sum of: fractional bound-

ary data downloading overhead (fb), fractional PE completion overhead (fpe) and frac-

tional writing memory overhead (fw). Each of the fractional overhead is defined as:

fb = 2x

{

F 2

T1

}

τd (6.9)

fpe =
p

k

{

F − 1

T1

}

τr (6.10)

fw =

{

F − 1

T1

}

τw (6.11)

As long as T1 is big enough, the fractional overheads will be very small and a speedup

very close to F may be expected.

When Tu ≫ Tk, Tf is expressed as

Tf = τr +
2x

p
τc + F {2xτb + 4xτd} (6.12)

and the obtained speedup is

S =
1

1

T1

{

τr +
2xτc

p
+ 2xFτb + 4xFτd

} . (6.13)

6.2 Test Cases and Results

In order to validate multiple FPGA enabled PC based two-dimensional CA accelerator

implementation, we implemented and validated our model for the dual FPGA enabled PC

setup. For porting our single FPGA to the dual FPGA enabled PC implementation, two

of the FPGAs available on Maxwell- a 64 FPGA-based supercomputer (see Appendix 10

for setup details) were used and benchmarked for varying number of square lattice sizes.

For square lattice (that is, x =
√

N) CA simulations and dual FPGA enabled PC setup

(that is, F = 2), the multiple FPGA enabled PC implementation performance model, as

specified in the previous section, simplifies as follows

Tb = τr +

{

2
√

N

p

}

τc (6.14)

Tk =
1

p

{

N

2
− 2

√
N

}

τc +
{p

k
− 1

}

τr + τw (6.15)

Tu = 2
{

2
√

Nτd + 2
√

Nτb

}

(6.16)

6.2. Test Cases and Results | 57

Td = 2
{

2
√

Nτd

}

(6.17)

The overall execution time for the dual FPGA enabled implementation is the sum of the

above mentioned time durations and is expressed as:

T2 = Tb + max(Tu, Tk) + Td. (6.18)

6.2.1 Minimum Required System Size

For square lattice dual FPGA based implementation, the minimum system size (N∗)

required for latency hiding to work successfully is determined when Tu and Tk are equal.

4
√

N {τd + τb} =
1

p

{

N

2
− 4

√
N

}

τc +
{p

k
− 1

}

τr + τw

N∗ =







4 +
4pτd

τc

+
4pτb

τc

+
p

τc

√

16

{

τd + τb +
τc

p

}2

− 2τcτr

k
+

2τcτr

p
− 2τcτw

p







2

6.2.2 Speedup

For dual FPGA enabled PC implementation, when Tk ≫ Tu, T2 is expressed as

T2 =
T1

2
+

{ p

2k

}

τr +
{

4
√

N
}

τd +

{

1

2

}

τw (6.19)

and the obtained speedup is

S =
2

1 + fcomm

, (6.20)

where fractional overheads fb, fpe and fw are defined as:

fb =

{

8
√

N

T1

}

τd (6.21)

fpe =

{

p

kT1

}

τr (6.22)

fw =

{

1

T1

}

τw (6.23)

And as long as T1 is big enough, the fractional overheads will be very small and a speedup

very close to two may be expected.

58 | CA on Multiple FPGA Enabled PC

When Tu ≫ Tk, T2 is expressed as

T2 = τr +

{

2
√

N

p

}

τc + F
{

2
√

N
}

τb + F
{

4
√

N
}

τd (6.24)

and the obtained speedup is

S =
1

1

T1

{

τr +
2
√

Nτc

p
+ 2

√
NFτb + 4

√
NFτd

} . (6.25)

From Equation (6.25), in combination with the fact that in this case N < N∗, we can

conclude that the performance will increasingly deteriorate by the fact that the execution

is communication bound, and the speedup will be much smaller than two. One can even

expect a speed down, that is, and execution time being larger as compared to the single

FPGA enabled execution.

6.2.3 System Parameters

Several test case runs were performed to determine system parameter τd, that is, the time

to upload an LBM cell (each cell includes ten 64-bit words where nine represent the nine

velocities of a cell and an additional one for future system implementations to include

complex boundary computations) from host-PC to the DDR2-SDRAM, available on the

attached FPGA board or vice versa. Using the software process running on the host-PC,

varying number of data packets (ranging from 16KB to 2MB) were first downloaded to

the on-board DDR2-SRAM bank followed by uploading them back to the host memory.

The round trip timing were measured as shown in Figure 6.6. The average bandwidth

calculated from the experiment was 33MB/sec and accordingly used to define τd = 2.3µs.

A number of test case runs for updating 2048 LBM cells were performed to determine τb

time to update an LBM boundary cell, and the average time recorded was 13ns.

6.2.4 Results

For the dual FPGA enabled PC system, we ported our single FPGA-based implementa-

tions with one, two, four, and eight PEs respectively to one of the Maxwell’s available

nodes (each node includes two FPGAs attached via PCI interface). These implementa-

tions were tested for five different square lattice sizes (N equal to 322, 642, 1282, 2562 and

5122) that were computed for (g = 256) number of iterations. The resulting execution

times for the corresponding single and the dual FPGA based implementations cases are

shown in Figure 6.4. The corresponding speedup is shown in Figure 6.5.

6.2. Test Cases and Results | 59

 0.1

 1

 10

 100

 1000 10000 100000

E
x
ec

u
ti

o
n
 t

im
e

[s
]

System size

PE = 1

 0.1

 1

 10

 100

 1000 10000 100000

E
x
ec

u
ti

o
n
 t

im
e

[s
]

System size

PE = 2

 0.1

 1

 10

 100

 1000 10000 100000

E
x
ec

u
ti

o
n
 t

im
e

[s
]

System size

PE = 4

 0.1

 1

 10

 100

 1000 10000 100000

E
x
ec

u
ti

o
n
 t

im
e

[s
]

System size

PE = 8

Figure 6.4: Execution times for computing 256 iterations of the square domain LBM D2Q9 grid

of size N using a single and dual FPGA enabled system implementation. Broken line represents

performance model Equation (6.19) for the dual FPGA enabled execution. Filled circles represent

the measured execution times for a single FPGA enabled system implementation, and filled

triangles represent a dual FPGA enabled system implementation with (a) 1PE, (b) 2PE, (c)

4PE, and (d) 8PE implementation respectively. Big circles specified on the broken line highlight

the minimum system size required for latency hiding to work and for the said implementation to

be compute bound.

Chapter5/Chapter5Figs/EPS/gplots/speedup/1vs2fpga_1PE.eps
Chapter5/Chapter5Figs/EPS/gplots/speedup/1vs2fpga_2PE.eps
Chapter5/Chapter5Figs/EPS/gplots/speedup/1vs2fpga_4PE.eps
Chapter5/Chapter5Figs/EPS/gplots/speedup/1vs2fpga_8PE.eps

60 | CA on Multiple FPGA Enabled PC

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4 5 6 7 8

S
p
ee

d
u
p

Processing elements

Figure 6.5: Speedup achieved using dual- over single-FPGA based implementations. Speedup

measurements are based on execution times for computing 256 iterations of varying square do-

main LBM D2Q9 system sizes for varying number of PE implementations, using a single and

dual FPGA enabled PC implementations respectively. Pluses represent 322, crosses 642, stars

1282, triangles 2562, and circles 5122 system sizes respectively.

 0

 10

 20

 30

 40

 50

 60

 10 100 1000
 20

 25

 30

 35

 40

 45

 50

T
ra

n
sf

er
 t

im
e

[n
s]

B
an

d
w

id
th

 [
M

B
p
s]

Data [KB]

Figure 6.6: System parameter(τd): Stars represent the time to upload the data packets (ranging

from 16KB to 2MB) from the DDR2 SDRAM available on the FPGA board to the host-PCs

memory over the PCI interface or vice versa. Average of the calculated bandwidth from the test

runs, as shown by triangles, was used to define τd, that is, the time to upload (or download) an

LBM cell from host-PC to the memory banks available on the attached FPGA board.

Chapter5/Chapter5Figs/EPS/gplots/speedup/speedup_1Fv2F.eps
Chapter5/Chapter5Figs/EPS/parameters/tauD.eps

6.3. Conclusion and Future Work | 61

With an increasing number of PEs the fractional PE completion overhead (fpe) as

shown in Equation (6.10) increases and the overall speedup goes down. And with increase

in system size N , the fractional boundary data downloading overhead (fb) as shown in

Equation (6.9) goes down and the overall speedup goes up. All of the three fractional

overheads fb, fpe, and fw are always larger than zero and overall result in the loss of

speedup. However, fb can be minimised with the inclusion of an extra memory bank for

downloading of updated boundary data by the host machine to each of the FPGA board.

Moreover, the difference between compute bound speedup (that is, for larger system sizes)

and communication bound speedup (or even speed down) is clearly visible due to the fact

that latency hiding no longer is effective, for the smaller system sizes.

6.3 Conclusion and Future Work

This chapter presented a detailed discussion on porting a single- to a dual-FPGA based

LBM D2Q9 implementation. Based on the single FPGA enabled model as specified in the

previous chapters, a model to evaluate the performance of a two dimensional CA executed

on multiple FPGA enabled PC system was presented. Further the model was validated

for a dual FPGA based setup for the square domain LBM D2Q9 implementations. Results

from the dual FPGA based implementations demonstrate how the included latency hiding

techniques were a success and the overall execution time was decreased by a factor close

to two. A working latency hiding also demonstrates what [56] has identified as one of the

important HPC/FPGA application design techniques.

