702 research outputs found

    Facial Component Detection in Thermal Imagery

    Get PDF
    This paper studies the problem of detecting facial components in thermal imagery (specifically eyes, nostrils and mouth). One of the immediate goals is to enable the automatic registration of facial thermal images. The detection of eyes and nostrils is performed using Haar features and the GentleBoost algorithm, which are shown to provide superior detection rates. The detection of the mouth is based on the detections of the eyes and the nostrils and is performed using measures of entropy and self similarity. The results show that reliable facial component detection is feasible using this methodology, getting a correct detection rate for both eyes and nostrils of 0.8. A correct eyes and nostrils detection enables a correct detection of the mouth in 65% of closed-mouth test images and in 73% of open-mouth test images

    Local Higher-Order Statistics (LHS) describing images with statistics of local non-binarized pixel patterns

    Get PDF
    Accepted for publication in International Journal of Computer Vision and Image Understanding (CVIU)International audienceWe propose a new image representation for texture categorization and facial analysis, relying on the use of higher-order local differential statistics as features. It has been recently shown that small local pixel pattern distributions can be highly discriminative while being extremely efficient to compute, which is in contrast to the models based on the global structure of images. Motivated by such works, we propose to use higher-order statistics of local non-binarized pixel patterns for the image description. The proposed model does not require either (i) user specified quantization of the space (of pixel patterns) or (ii) any heuristics for discarding low occupancy volumes of the space. We propose to use a data driven soft quantization of the space, with parametric mixture models, combined with higher-order statistics, based on Fisher scores. We demonstrate that this leads to a more expressive representation which, when combined with discriminatively learned classifiers and metrics, achieves state-of-the-art performance on challenging texture and facial analysis datasets, in low complexity setup. Further, it is complementary to higher complexity features and when combined with them improves performance

    Using Photorealistic Face Synthesis and Domain Adaptation to Improve Facial Expression Analysis

    Full text link
    Cross-domain synthesizing realistic faces to learn deep models has attracted increasing attention for facial expression analysis as it helps to improve the performance of expression recognition accuracy despite having small number of real training images. However, learning from synthetic face images can be problematic due to the distribution discrepancy between low-quality synthetic images and real face images and may not achieve the desired performance when the learned model applies to real world scenarios. To this end, we propose a new attribute guided face image synthesis to perform a translation between multiple image domains using a single model. In addition, we adopt the proposed model to learn from synthetic faces by matching the feature distributions between different domains while preserving each domain's characteristics. We evaluate the effectiveness of the proposed approach on several face datasets on generating realistic face images. We demonstrate that the expression recognition performance can be enhanced by benefiting from our face synthesis model. Moreover, we also conduct experiments on a near-infrared dataset containing facial expression videos of drivers to assess the performance using in-the-wild data for driver emotion recognition.Comment: 8 pages, 8 figures, 5 tables, accepted by FG 2019. arXiv admin note: substantial text overlap with arXiv:1905.0028

    The role of speech technology in biometrics, forensics and man-machine interface

    Get PDF
    Day by day Optimism is growing that in the near future our society will witness the Man-Machine Interface (MMI) using voice technology. Computer manufacturers are building voice recognition sub-systems in their new product lines. Although, speech technology based MMI technique is widely used before, needs to gather and apply the deep knowledge of spoken language and performance during the electronic machine-based interaction. Biometric recognition refers to a system that is able to identify individuals based on their own behavior and biological characteristics. Fingerprint success in forensic science and law enforcement applications with growing concerns relating to border control, banking access fraud, machine access control and IT security, there has been great interest in the use of fingerprints and other biological symptoms for the automatic recognition. It is not surprising to see that the application of biometric systems is playing an important role in all areas of our society. Biometric applications include access to smartphone security, mobile payment, the international border, national citizen register and reserve facilities. The use of MMI by speech technology, which includes automated speech/speaker recognition and natural language processing, has the significant impact on all existing businesses based on personal computer applications. With the help of powerful and affordable microprocessors and artificial intelligence algorithms, the human being can talk to the machine to drive and control all computer-based applications. Today's applications show a small preview of a rich future for MMI based on voice technology, which will ultimately replace the keyboard and mouse with the microphone for easy access and make the machine more intelligent
    • 

    corecore