133 research outputs found

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR

    A sparsity-driven approach for joint SAR imaging and phase error correction

    Get PDF
    Image formation algorithms in a variety of applications have explicit or implicit dependence on a mathematical model of the observation process. Inaccuracies in the observation model may cause various degradations and artifacts in the reconstructed images. The application of interest in this paper is synthetic aperture radar (SAR) imaging, which particularly suffers from motion-induced model errors. These types of errors result in phase errors in SAR data which cause defocusing of the reconstructed images. Particularly focusing on imaging of fields that admit a sparse representation, we propose a sparsity-driven method for joint SAR imaging and phase error correction. Phase error correction is performed during the image formation process. The problem is set up as an optimization problem in a nonquadratic regularization-based framework. The method involves an iterative algorithm each iteration of which consists of consecutive steps of image formation and model error correction. Experimental results show the effectiveness of the approach for various types of phase errors, as well as the improvements it provides over existing techniques for model error compensation in SAR

    Overcoming polar‐format issues in synthetic aperture radar multichannel autofocus

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166214/1/rsn2bf00419.pd

    A Generalized Phase Gradient Autofocus Algorithm

    Get PDF
    The phase gradient autofocus (PGA) algorithm has seen widespread use and success within the synthetic aperture radar (SAR) imaging community. However, its use and success has largely been limited to collection geometries where either the polar format algorithm (PFA) or range migration algorithm is suitable for SAR image formation. In this work, a generalized phase gradient autofocus (GPGA) algorithm is developed which is applicable with both the PFA and backprojection algorithm (BPA), thereby directly supporting a wide range of collection geometries and SAR imaging modalities. The GPGA algorithm preserves the four crucial signal processing steps comprising the PGA algorithm, while alleviating the constraint of using a single scatterer per range cut for phase error estimation which exists with the PGA algorithm. Moreover, the GPGA algorithm, whether using the PFA or BPA, yields an approximate maxi- mum marginal likelihood estimate (MMLE) of phase errors having marginalized over unknown complex-valued reflectivities of selected scatterers. Also, in this work a new approximate MMLE, termed the max-semidefinite relaxation (Max-SDR) phase estimator, is proposed for use with the GPGA algorithm. The Max-SDR phase estimator provides a phase error estimate with a worst-case approximation bound compared to the solution set of MMLEs (i.e., solution set to the non-deterministic polynomial- time hard (NP-hard) GPGA phase estimation problem). Moreover, in this work a specialized interior-point method is presented for more efficiently performing Max- SDR phase estimation by exploiting low-rank structure typically associated with the GPGA phase estimation problem. Lastly, simulation and experimental results produced by applying the GPGA algorithm with the PFA and BPA are presented

    PRECONDITIONING AND THE APPLICATION OF CONVOLUTIONAL NEURAL NETWORKS TO CLASSIFY MOVING TARGETS IN SAR IMAGERY

    Get PDF
    Synthetic Aperture Radar (SAR) is a principle that uses transmitted pulses that store and combine scene echoes to build an image that represents the scene reflectivity. SAR systems can be found on a wide variety of platforms to include satellites, aircraft, and more recently, unmanned platforms like the Global Hawk unmanned aerial vehicle. The next step is to process, analyze and classify the SAR data. The use of a convolutional neural network (CNN) to analyze SAR imagery is a viable method to achieve Automatic Target Recognition (ATR) in military applications. The CNN is an artificial neural network that uses convolutional layers to detect certain features in an image. These features correspond to a target of interest and train the CNN to recognize and classify future images. Moving targets present a major challenge to current SAR ATR methods due to the “smearing” effect in the image. Past research has shown that the combination of autofocus techniques and proper training with moving targets improves the accuracy of the CNN at target recognition. The current research includes improvement of the CNN algorithm and preconditioning techniques, as well as a deeper analysis of moving targets with complex motion such as changes to roll, pitch or yaw. The CNN algorithm was developed and verified using computer simulation.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Autofocus and Back-Projection in Synthetic Aperture Radar Imaging.

    Full text link
    Spotlight-mode Synthetic Aperture Radar (SAR) imaging has received considerable attention due to its ability to produce high-resolution images of scene reflectivity. One of the main challenges in successful image recovery is the problem of defocusing, which occurs due to inaccuracies in the estimated round-trip delays of the transmitted radar pulses. The problem is most widely studied for far-field imaging scenarios with a small range of look angles since the problem formulation can be significantly simplified under the assumptions of planar wavefronts and one-dimensional defocusing. In practice, however, these assumptions are frequently violated. MultiChannel Autofocus (MCA) is a subspace-based approach to the defocusing problem that was originally proposed for far-field imaging, with a small range of look angles. A key motivation behind MCA is the observation that there exists a low-return region within the recovered image, due to the weak illumination near the edges of the antenna footprint. The strength of the MCA formulation is that it can be easily extended to more realistic scenarios with polar-format data, spherical wavefronts, and arbitrary terrain, due to its flexible linear-algebraic framework. The main aim of this thesis is to devise a more broadly effective autofocus approach by adopting MCA to the aforementioned scenarios. By forming the solution space in a domain where the defocusing effect is truly one-dimensional, we show that drastically improved restorations can be obtained for applications with small to fairly wide ranges of look angles. When the terrain topography is known, we utilize the versatile backprojection-based imaging methods in the model formulations for MCA to accurately account for the underlying geometry. The proposed extended MCA shows reductions in RMSE of up to 50% when the underlying terrain is highly elevated. We also analyze the effects of the filtering step, the amount of wave curvature, the shape of the terrain, and the flight path of the radar, on the reconstructed image via backprojection. Finally, we discuss the selection of low-return constraints and the importance of using terrain elevation within MCA formulation.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135868/1/zzon_1.pd

    Backprojection Autofocus for Synthetic Aperture Radar

    Get PDF
    In synthetic aperture radar (SAR), many adverse conditions may cause errors in the raw phase-history data. Autofocus methods are commonly used in SAR to mitigate the effects of these problems. Over the years, many types of autofocus have algorithms have been created, however, each has implicit assumptions restricting their use. The backprojection image formation algorithm places few restrictions on SAR imaging, thus it is desirable to have an autofocus algorithm that is similarly unconstrained. This paper presents a versatile autofocus method that is accordant with backprojection

    A Linear Algebraic Framework for Autofocus in Synthetic Aperture Radar

    Full text link
    Synthetic aperture radar (SAR) provides a means of producing high-resolution microwave images using an antenna of small size. SAR images have wide applications in surveillance, remote sensing, and mapping of the surfaces of both the Earth and other planets. The defining characteristic of SAR is its coherent processing of data collected by an antenna at locations along a trajectory in space. In principle, we can produce an image of extraordinary resolution. However, imprecise position measurements associated with data collected at each location cause phase errors that, in turn, cause the reconstructed image to suffer distortion, sometimes so severe that the image is completely unrecognizable. Autofocus algorithms apply signal processing techniques to restore the focused image. This thesis focuses on the study of the SAR autofocus problem from a linear algebraic perspective. We first propose a general autofocus algorithm, called Fourier-domain Multichannel Autofocus (FMCA), that is developed based on an image support constraint. FMCA can accommodate nearly any SAR imaging scenario, whether it be wide-angle or bistatic (transmit and receive antennas at separate locations). The performance of FMCA is shown to be superior compared to current state-of-the-art autofocus techniques. Next, we recognize that at the heart of many autofocus algorithms is an optimization problem, referred to as a constant modulus quadratic program (CMQP). Currently, CMQP generally is solved by using an eigenvalue relaxation approach. We propose an alternative relaxation approach based on semidefinite programming, which has recently attracted considerable attention in other signal processing applications. Preliminary results show that the new method provides promising performance advantages at the expense of increasing computational cost. Lastly, we propose a novel autofocus algorithm based on maximum likelihood estimation, called maximum likelihood autofocus (MLA). The main advantage of MLA is its reliance on a rigorous statistical model rather than on somewhat heuristic reverse engineering arguments. We show both the analytical and experimental advantages of MLA over existing autofocus methods.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86443/1/khliu_1.pd

    SAR image reconstruction by expectation maximization based matching pursuit

    Get PDF
    Cataloged from PDF version of article.Synthetic Aperture Radar (SAR) provides high resolution images of terrain and target reflectivity. SAR systems are indispensable in many remote sensing applications. Phase errors due to uncompensated platform motion degrade resolution in reconstructed images. A multitude of autofocusing techniques has been proposed to estimate and correct phase errors in SAR images. Some autofocus techniques work as a post-processor on reconstructed images and some are integrated into the image reconstruction algorithms. Compressed Sensing (CS), as a relatively new theory, can be applied to sparse SAR image reconstruction especially in detection of strong targets. Autofocus can also be integrated into CS based SAR image reconstruction techniques. However, due to their high computational complexity, CS based techniques are not commonly used in practice. To improve efficiency of image reconstruction we propose a novel CS based SAR imaging technique which utilizes recently proposed Expectation Maximization based Matching Pursuit (EMMP) algorithm. EMMP algorithm is greedy and computationally less complex enabling fast SAR image reconstructions. The proposed EMMP based SAR image reconstruction technique also performs autofocus and image reconstruction simultaneously. Based on a variety of metrics, performance of the proposed EMMP based SAR image reconstruction technique is investigated. The obtained results show that the proposed technique provides high resolution images of sparse target scenes while performing highly accurate motion compensation. (C) 2014 Elsevier Inc. All rights reserved
    corecore