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ABSTRACT 

 Synthetic Aperture Radar (SAR) is a principle that uses transmitted pulses that store 

and combine scene echoes to build an image that represents the scene reflectivity. SAR 

systems can be found on a wide variety of platforms to include satellites, aircraft, and more 

recently, unmanned platforms like the Global Hawk unmanned aerial vehicle. The next 

step is to process, analyze and classify the SAR data. The use of a convolutional neural 

network (CNN) to analyze SAR imagery is a viable method to achieve Automatic Target 

Recognition (ATR) in military applications. The CNN is an artificial neural network that 

uses convolutional layers to detect certain features in an image. These features correspond 

to a target of interest and train the CNN to recognize and classify future images. Moving 

targets present a major challenge to current SAR ATR methods due to the “smearing” 

effect in the image. Past research has shown that the combination of autofocus techniques 

and proper training with moving targets improves the accuracy of the CNN at target 

recognition. The current research includes improvement of the CNN algorithm and 

preconditioning techniques, as well as a deeper analysis of moving targets with complex 

motion such as changes to roll, pitch or yaw. The CNN algorithm was developed and 

verified using computer simulation. 
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I. INTRODUCTION 

The synthetic aperture radar principle is used globally for both military and civilian 

applications. The radar provides imagery from almost any platform, the most common being 

air and space-borne systems that capture a bird’s-eye view of the ground below [1]. The radar 

return is processed into an image that humans visually examine and apply to everyday 

problems. The military uses SAR imagery for reconnaissance for example, to study the 

battlefield terrain or gain information on the adversary. The military also frequently uses 

optical and infrared instruments for intelligence collection; however, the SAR technique is 

more flexible because it is not limited by a real aperture wavelength [1]. SAR technique 

captures and stores the scene echoes along the synthetic aperture, then later combines echoes 

through a focus algorithm that yields a coherent image [1]. For both optical and infrared 

sensors, SAR has greater tactical advantage since it is not limited by weather or night–day 

environment [1]. Since the military operates at all hours of the day, it is necessary for 

continuous intelligence collection that SAR provides regardless of visibility conditions.  

SAR applications include wide area observation and battlefield surveillance from 

space and aircraft sensors. More recently, SAR improvements include decimeter resolution 

and classification algorithms [1]. Classification of military targets is growing in importance 

and necessity to gain a strategic advantage over the adversary [1]. The major limitation of 

SAR, however, lies in its founding principle of a fixed scene center [1]. A moving object 

disrupts SAR image processing and complicates classification because it blurs and smears 

the pixels of the target, sometimes becoming unrecognizable with high-speed or complex 

maneuvering. There are numerous solutions to improve SAR moving target recognition, the 

most studied which are inverse SAR (ISAR) mode, bi/multi-static configuration, and 

improvements to focusing algorithms [1]. For this research, moving target SAR imagery will 

be simulated by inserting an artificial phase error into stationary SAR images prior to 

classification.  

Target recognition and classification will be conducted using a convolutional neural 

network (CNN) algorithm. A CNN is a type of artificial neural network that falls under 

artificial intelligence, machine learning, and deep learning sequentially [2].  Machine 
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learning (ML) relies on the process of screening large sets of data for classification and uses 

training data to teach the algorithm what features to prioritize when a new set of data is 

presented [2]. The features are weighted, and the algorithm can recognize and classify new 

images [2]. In modern research, image and video processing favor the convolutional neural 

networks for classification because of networks ability to “learn” features [1]. CNN uses 

sparse connectivity which is where the hidden layers of neurons are only connected with the 

previous layer of subset neurons [2]. The architecture consists of three main layers that are 

convolutional layer, pooling layer, and fully connected layer. The convolutional layer 

performs the majority computations to convolve features using the filters to calculate a 

smaller set of weights [2]. The CNN is then trained using backpropagation to create a 

spatially flipped filter that performs convolution and additional filtering [2]. Next, the 

pooling layer reduces the spatial dimension of the image and maps the features using either 

average, max, stochastic, spatial spectral, or multiscale pooling operations [2]. The last layer 

is the fully connected layer that reconnects the neurons between layers and then makes a 

prediction based on probability of features belonging to a specific class [2]. Overall, the CNN 

produces high recognition accuracy when given large sets of training data and therefore a 

desirable method for conducting automatic target recognition in moving SAR imagery. 

A. MOTIVATION 

The motivation behind this research is to apply deep learning to classification 

problem to improve accuracy while reducing the amount of processing and human 

involvement required for target recognition. While humans can classify images with high 

levels of accuracy just by the naked eye, they are limited to a single image at a time. The 

advantage of deep learning is the ability to process massive amounts of data and learn from 

it [2]. In particular, the neural network uses known images for training and then can 

recognize new images without the need to collect additional information. Additionally, this 

research aims to find the limits which the complexity and magnitude of target motion is 

too great to be focused and accurately identified. This threshold will show the limitations 

which arbitrary rigid object motion autofocus (AROMA) in conjunction with deep learning 

is able to assist in target recognition. Chapter V contains the results of this research and 

ties it back to the motivation discussed in this section.  
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B. OBJECTIVE 

The objective of this research is to improve preconditioning techniques and analyze 

the classification accuracy after defocus, focus, and processing through the convolutional 

neural network. Classification accuracy was tested using the Synthetic and Measured Paired 

Labeled Experiment (SAMPLE) dataset from the Air Force Research Laboratory (AFRL). 

The SAMPLE dataset consists of synthetically generated SAR targets with a class size of N 

= 10. The advantage of synthetically generated images versus measured data is that there is 

no background environment that could potentially mask the target of interest. SAMPLE data 

shows only the vehicle target of interest captured from different aspects and elevations. 

Without the influence of environmental clutter, the neural network trains only on the target 

pixels, which has shown improvement in target recognition performance over usage of 

measured dataset targets [3].  

Using the SAMPLE dataset, defocus was conducted by inserting artificial phase error 

into the pixels of the complex image. The phase error used both translational and more 

complex movement that was generated from a power law equation in which the spectral 

density and decay constant were varied to simulate different types of motion. Increasing the 

spectral density and decreasing the decay constant also increased the complexity of the 

simulated motion relative to that of smaller spectral density and larger decay constant. The 

code to inject phase error was also used in the development of AROMA which allowed for 

simulation of “complicated non-linear rotational and translational target motions” [4]. The 

goal was to see how different degrees of defocus affected the classification accuracy before 

and after the images were focused and processed by the CNN. Chapter IV provides further 

explanation of the code and methods used to simulate moving targets for testing data. 

Autofocus was performed on the smeared images using the analysis known as 

AROMA.  AROMA expands upon the concept of phase gradient autofocus (PGA), a method 

commonly used for performing imagery autofocus. AROMA assists in focusing due to 

complex non-linear target motion rather than stationary objects that PGA is founded [4]. 

AROMA analyzes unknown rigid object motion to estimate the rotation angles and 

translation distances and refocus the target using a maximum likelihood signal-theoretic 
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analysis [4]. Chapter II explains the process by which AROMA calculates and refocuses 

smeared images.  

The final step, classification, processes the AROMA focused images through the 

CNN. The MATLAB Deep Learning Toolbox™ was used to generate the CNN. The CNN 

algorithm consists of 15 layers that contribute the training and validation of the SAR 

images. The classification results are displayed in a confusion matrix and accuracy 

percentage is computed for correct class labeling. Chapter II provides a detailed review of 

the CNN and Chapter IV shows application of the CNN for this research. A summary of 

the results and recommendations for improved accuracy is contained in Chapter V, and the 

conclusion and future work are presented in Chapter VI.  
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II. RADAR IMAGERY BACKGROUND 

A. SYNTHETIC APERTURE RADAR 

As briefly described in Chapter I, synthetic aperture radar is a valuable method for 

collection of imagery that is unrestricted by night or weather conditions. The use of radar 

waves to produce an image first emerged around 1980 with the spotlight-mode SAR [5]. 

This mode was able to reproduce images that could nearly compete with optical sensors of 

the time, leading to the growth of SAR imaging technology for remote sensing [5].  

The fundamentals of SAR are based on the transmission and reception of a radar 

waveform pulse [5]. Waveforms are sent out in a series of pulses that illuminate a desired 

target [5]. The target reflects back the pulses which are demodulated and processed to form 

an image [5]. The direction of these pulses from the radar antenna transmitter to the target 

scene is defined as the range and the cross-range direction is defined to be with the ground 

plane and orthogonal to the range direction [5]. Now that a ground reference is established, 

the next step is to describe the radiation from the airborne platform as it illuminates a 

ground target.   

The continuous wave (CW) burst at radian frequency  is a common radar 

waveform that is commonly used for target illumination, as it is comprised of the envelope 

function and carrier cosine wave [5]. For a single scattering point, the geometry from the 

patch center to the platform is described in Figure 1 and shows the ground range, slant 

range and depression angle. The time interval for the CW waveform is from . 

The signal received by the radar for a single scatterer is [5]:  

   (1.1) 

The time delay amount is ,  is change in phase of waveform, and  

is the envelope function from (2.1), which is the time between CW burst pulses [5]. 

Equation (2.2) shows the relationship between slant and ground range, where u is the slant 

range, y is the distance to the scatterer, and  is the depression angle.  
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  (1.2) 

Ultimately, the range resolution is calculated in terms of the slant range, so it is necessary 

to understand the two SAR image coordinate systems. 

 

Figure 1. Patch collection geometry. Source: [5]. 

The total waveform return signal is given as the integral or density function from   

-L to L which is the ground range illuminated patch [5]. The patch propagation time  is 

incorporated into the two-way propagation delay to represent the returned signal interval 

[5]. The burst waveform duration  is chosen to be much smaller than   to resolve targets 

that are close range to each other [5]. The final resolution depends on the effective duration, 

, for the CW burst pulse envelope given in (2.3). If two strong targets are close together, 

then the return waveform will have overlapping echoes, which are difficult to resolve [5]. 

The total effective bandwidth for the CW pulse is solved using the Fourier transform and 

is given in (2.4).  

  (1.3) 

  (1.4) 
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The returned signal is then mixed with the in-phase and quadrature sinusoids at the same 

frequency and sent through a low-pass filter [5]. The final complex signal, denoted by the 

overbar, after mixing is given in (2.5) as an integration from one half the propagation patch 

time  over the two channel outputs. Equation (2.6) gives the equivalent output written as 

a convolution. 

  (1.5) 

  (1.6) 

Equation (2.7) and (2.8) give the resolution in terms of  and .  

  (1.7) 

  (1.8) 

Another method to extracting the reflected signal from the return signal is to analyze (2.5) 

as a Fourier transform equation. The frequency domain equation is shown below in (2.9) 

and has two parts that are B(u) and G(U). The U in (2.10), the spatial frequency variable, 

is essential to describe the spatial frequency offset that is used for spotlight-mode SAR 

cross-range resolution.  

  (1.9) 

  (1.10) 

The CW burst as shown above requires minimal manipulation to recover the reflectivity 

profile; however, the long transmission time yields smaller bandwidth and range resolution 

[5]. One of the solutions to improve range resolution is a stretched waveform, such as the 

linear FM (LFM) chirp that is commonly used in imaging radars [5]. For an LFM chirp, 

the return echo is shown in (2.11), which integrates from near to far slant range, u.  
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  (1.11) 

The bandwidth for an LFM chirp is in (2.12) and is in terms of chirp rate or .  

  (1.12) 

The final reflectivity g(t) is estimated from (2.13) by deconvolving s(t) and , or by 

using a process called deramping [5]. The deramping process is used for spotlight-mode 

SAR and mixes the return signal with in-phase and quadrature chirps, low-pass filters the 

mixer output, and is transferred into the Fourier domain [5]. In order to perform the Fourier 

transform the mixer output, it is assumed that the  chirp duration is larger than  the 

patch duration or  >>  [5]. 

  (1.13) 

After demodulation, the scene reflectivity or g(u) gives the spatial frequency U and 

resolution in terms of slant range from (2.14) [5]. The spatial frequency Y and resolution 

for the ground range is calculated from (2.16).   

  (1.14) 

  (1.15) 

  (1.16) 

  (1.17) 

Spotlight-mode SAR resolves both the range and cross-range dimensions via the 

deramp process to detect target separation and form an image [5]. The cross-range problem 

occurs when the separation between echoes overlaps and makes it difficult to resolve the 
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scene [5]. Figure 2 shows the cross-range problem where targets in the same range line 

separated in cross range are unable to be distinguished in a single return. 

A real-aperture imaging radar can overcome the cross-range problem by sending 

pulses that are equal to the cross-range beam pattern width in order to maintain continuous 

coverage [5]. This method, however, is impractical because the radar antenna size increases 

for higher resolution. To achieve a cross-resolution of one-meter would require an 

unrealistically sized antenna [5].  

 

 
Figure 2. Cross-Range return along range line. Source: [5]. 

A synthetic aperture is another method that overcomes the cross-range problem 

and produces high resolution images without an extremely large physical antenna, as with 

a real aperture [5]. SAR is based on a concept called aperture synthesis that collects scene 
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data from multiple viewing angles in order to reconstruct the reflectivity scene [5]. A 

synthetic aperture is the path that the aircraft flies and transmits and receives the radar 

pulses [5]. The antenna mainbeam typically follows the patch center as the aircraft flies a 

perpendicular path as shown in Figure 3.  

 

 
Figure 3. Synthetic aperture collection along a perpendicular path. Source: 

[5]. 

Two fundamental modes for SAR data collection are strip-mapping and spot-light 

geometry [5]. Strip-map SAR dates to the 1950s where an aircraft would aim the antenna 

orthogonal to the flight path while transmitting and receiving multiple pulses [5]. The 

longer the flight path, the better the resolution [5]. The pulses are transmitted along the 

flight path at one-half the antenna width spacing [5]. Figure 4 shows the collection 

geometry for strip-mapping SAR. This ensures there is no aliasing and produces a better 
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cross-range resolution [5]. Strip-map SAR is convenient because it is easy to adjust the 

antenna size and PRF to meet the minimum transmission spacing [5].  

 
Figure 4. Collection geometry for strip-mapping SAR. Source: [5]. 

For small area patches, spotlight-mode SAR produces better resolution since the 

radar is slewed to fix on the illuminated patch while the aircraft is on its flight path [5]. 

Figure 5 shows the collection geometry for spotlight-mode SAR, which depicts how the 

radar continually illuminates the scene like that of a stage spotlight. Figure 6 shows the 

three-dimensional SAR collection geometry. 
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Figure 5. Collection geometry for spotlight-mode SAR. Source: [5]. 

 
Figure 6. Three-dimensional SAR collection geometry. Source: [5]. 

For a three-dimensional spotlight-mode SAR collection, the reflected scene is 

obtained by using the tomographic framework and projection slice theorem [5]. 

Tomographic framework is commonly used in the medical field for CAT scans and x-ray 

imaging [5]. The framework produces a layered image using a series of thin slices from 

multiple viewing angles to recreate a patient’s body scan [5]. The projection-slice theorem 
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relates the Fourier transform to the viewing angle along the path which the radar scans [5]. 

For two-dimensional Fourier transform projections are swept to a polar raster 2D Fourier 

space then the inverse Fourier transfer is taken to get the spatial-frequency data that creates 

the final tomographic image [5]. Unlike medical tomography, SAR imaging captures scene 

that may contain elevated targets such as buildings and land features [5]. Elevation requires 

a third-dimension framework to accurately reproduce reflected scenes [5]. From Figure 6, 

one can see that the geometry is moved into three-dimensions where g(x, y, z) is integrated 

to yield the new projection function that is an angular orientation of . Just as in 2D 

space, the Fourier transform of g(x,y,z) is applied for three dimensions to extract the pulses 

[5]. 

The collection of pulses determines the surface of the final image as Jakowatz refers 

to as a “ribbon surface” shape [5]. The most common method for collection is the straight-

line flight, which naturally collects radar return data within a slant plane [5]. The SAR 

image is a combination of the slant plane and ground plane properties that are converted 

from polar raster to Cartesian raster data [5]. The final images can be described in 

resolution for range and cross range values [5]. The resolution depends upon the details of 

various quantities, including the spatial-frequency data, bandwidth, flight path geometry, 

and radar wavelength [5]. Equation (2.18) and (2.19) give the slant plane range and cross-

range resolutions from the extent of the spatial frequencies  and .  

  (1.18) 

  (1.19) 

Equation (2.20) and (2.21) give the ground plane range and cross-range resolutions.  

  (1.20) 

  (1.21) 
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Building on the concept of resolution, it is possible to calculate the maximum image 

dimensions. Ideally, a SAR collection would have the highest resolution of the largest 

scene area as possible [5]. The main challenge to achieving high resolutions is the ability 

to sample in a nearly straight trajectory and at a rate fast enough that the image can be 

reconstructed [5]. The maximum image dimensions rely on the sampling speed that the 

radar collects information [5]. Equation (2.22) and (2.23) give the maximum image 

dimensions based on the number of samples .  

  (1.22) 

  (1.23) 

Another challenge to achieving higher resolution is the SAR holographic and 

speckle properties. Spotlight-mode SAR imitates a hologram where the aperture size 

greatly affects the resolution, and its “phase history is sufficient to reconstruct and image 

of the entire scene, with resolution proportional to the size of the piece used.” [5] The 

reflectivity of a SAR image is similar to that of the optical reflection that a hologram builds 

an image [5]. Both methods produce bright and dark speckle patterns in the image due to 

the reflection of surface features and objects [5]. When the return is processed and scaled, 

the effects magnify and can sometimes appear smeared as a result of the smoothing during 

image processing [5].  

Another consideration during SAR image processing is the phase error that is 

inevitable when considering the SAR platform motion and the sending and receiving of 

numerous pulses while airborne. The two main types of phase error are quadratic and high 

frequency [5]. The next section introduces different autofocus methods that are used to 

correct the phase error within SAR imagery. 
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B. AUTOFOCUS METHODS 

This section explores the different types of autofocus methods commonly used 

during image processing and classification. The different methods have advantages and 

disadvantages when focusing SAR imagery. 

1. INVERSE FILTERING 

Inverse filtering is a type of autofocus that attempts to correct for phase error that 

is unavoidable during SAR collection [5]. This technique is centered on a single point target 

and uses the inverse Fourier transform to estimate the effect of the phase error [5]. One 

drawback to using a single point target is that SAR images may contain more than one 

point target at the scene center [5]. In this case, inverse filtering performs focus based on 

the strongest point target in the image [5]. Equation (2.24) gives the corrected range-

compressed data as function of the uncorrected data , the estimated phase error , and 

the residual phase function . The indices k and m indicate range line and aperture 

position respectively. The final corrected image from (2.25), is the inverse fast Fourier 

transform of , which is convolution of the original image with the residual blurring 

function . The index n indicates the cross-range image-domain number.  

  (1.24) 

  (1.25) 

  (1.26) 

Overall, inverse filtering performs well when there is a strong point target and little 

surrounding clutter in the scene [5]. The process is simple and outputs clear, focused 

images with few streaks. The downside to using inverse filtering is its ability to handle 

multiple point targets and clutter that increase streaking and defocus in the final image [5].  

2. MAP-DRIFT 

Map-drift is another type of phase error correction technique that is a sub-aperture 

process [5]. Map-drift uses the entire image rather than a point target to estimate the phase 
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error [5]. The phase error is represented as a polynomial function that often better 

represents the dynamic properties of phase error [5]. The model assumes that a quadratic 

phase error exists in the corrupted SAR image [5]. From there, the corrupted image is split 

into two in the aperture domain. The equal split means that the half-aperture images will 

be shifted linearly in the cross-range direction [5]. From here, the cross-correlation between 

the half-aperture peak and the sub-pixel location. The quadratic coefficient b is calculated 

from the cross-correlation, and a total phase error function is output [5]. The phase error 

function is given in (2.27). The process for focusing using map-drift technique is shown in 

the flow chart in Figure 7. 

  (1.27) 

 
Figure 7. Map-drift technique focus process flow chart. Source: [5]. 

The disadvantage of using map-drift autofocus occurs when dealing with high order 

phase error [5]. This is due to the initial quadratic assumption that map-drift calculates the 
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entire phase error curve [5]. A better method for calculating higher order error is called 

phase gradient autofocus, which will be discussed next [5]. 

3. PHASE GRADIENT AUTOFOCUS 

Phase gradient autofocus (PGA) is a maximum likelihood estimation process that 

averages the phase error across the image [5]. This differs from inverse filtering and map-

drift techniques, which use a point target reference and parametric basis of phase error 

estimation respectively [5]. Instead of taking the entire average to estimate phase error for 

a single target, PGA combines “defocus information from a multiplicity of image targets 

with an optimality that is rooted in the tenets of statistical estimation theory” [5] The 

autofocus process is performed in four steps which are circular shifting, windowing, phase 

difference estimation, and iterative correction [5]. Figure 8 shows the PGA process and 

steps.  

 
Figure 8. Phase Gradient Autofocus (PGA) process flow chart. Source: [5]. 
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The first step is circular shifting also known as center shifting. This is accomplished 

through the PGA algorithm that looks at each range line in an image and selects the 

strongest target to be center shifted [5]. The purpose is to use only the strongest targets to 

create an average phase error estimate [5]. After the target is selected, the algorithm 

removes the linear phase component to isolate the phase error and integrate over the 

circularly shifted image [5].  

Next, the second step is windowing which removes any clutter from circularly 

shifted image. A rectangular window is applied to the circularly shifted image to remove 

data that is not within the window [5]. The window also applies weights to any of the data 

that falls within the window [5]. The window size is selected based on non-coherent 

averaging that sums the magnitude of the image cross-range of the circularly shifted image 

[5]. This process creates a compressed image from which the PGA algorithm estimates 

phase error [5].  

The third step, phase difference estimation, decompresses the image using the 1D 

Fourier transformation on each range line to extract the target reflectivity and noise term 

[5]. The PGA algorithm estimates the phase error from these two terms [5]. The noise term 

is assumed to be Gaussian which allows extraction of the target signal. The phase 

estimation is generated two ways [5]. The first approach is maximum likelihood (ML) 

estimation of all N × M data points. The second approach, more popular, is to estimate the 

phase difference between two adjacent pulses [5]. 

The fourth step is iterative correction, which involves the repetition of the ML 

estimation on the refocused image to reduce target smearing. This process is iterated until 

the energy of the phase error function falls below a given threshold [5]. Each iteration 

improves image focus by reducing smearing and restoring pixels [5].   

Jakowatz summarizes the advantages of PGA over inverse filtering in four key 

points that are: 1) does not require large point target, 2) uses larger portion of image data, 

3) phase estimation is grounded in estimation theory, and 4) uses iterative process to refine 

phase estimation [5].  
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4. ARBITRARY RIGID OBJECT MOTION AUTOFOCUS (AROMA) 

Another autofocus method, proposed by Dr. David Garren from the Naval 

Postgraduate School, builds on the concept of PGA. The analysis known as Arbitrary Rigid 

Object Motion Autofocus (AROMA) also uses maximum likelihood to estimate the angles 

of rotation in moving targets SAR [4]. As discussed in Chapter I, AROMA better addresses 

the complex motion that moving targets exhibit compared to stationary objects. 

Moving targets present a challenge to SAR target recognition due to the “smearing” 

effect which primarily occurs in the cross-range direction [4]. Most of the current research 

on autofocus methods assumes that the target velocity and acceleration are constant for 

both translational and rotational motions [4]. AROMA performs autofocus for complicated 

non-linear rotational and translation motion [4]. The analysis is related to PGA through its 

use of 3D generalization and a ML phase error estimation [4]. 

The AROMA model assumes that the target is a rigid body with arbitrary temporal 

profiles for translation and rotation relative to the radar [4]. The coordinate system for the 

model is based on the coordinate system where 𝑧𝑧 = 0 [4]. For the radar model, the pulse is 

defined as spherical coordinates with a given center frequency  that is translated into a 

spatial frequency  [4]. The first pulse is defined in (2.28) and the second pulse is defined 

in (2.30).  

  (1.28) 

  (1.29) 

  (1.30) 

  (1.31) 

The next assumption provides that the amplitutde of the radar return pulses is 

constant, since there the change between the pulses is small [4].  

The second coordinate system to consider is the reference frame for the stationary 

target at the center of the target motion [4]. The coordinate system is a function of radial 

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



20 

distance, elevation angle and azimuthal angle. The coordinate systems for each of these 

angles is given in (2.32), (2.33), and (2.34) respectively.  

  (1.32) 

  (1.33) 

  (1.34) 

The final phase change is estimated using a linear approach to find the difference 

in distance between succesive pulses [4]. The  linearized form of the phase esimation is 

given in (2.35).  

  (1.35) 

  (1.36) 

  (1.37) 

  (1.38) 

The phase estimation for  is calculated using the ML techniques, physical 

signal model, and integration along the synthetic aperature [4]. As with PGA, the strongest 

scattering center is selected for estimation on each range line. Down-range position is 𝑥𝑥𝑘𝑘 

and cross-range coordinate is the line 𝑘𝑘 [4]. The final model is given in (2.39) and Table 1 

describes the variables for the AROMA theory to assist in this background chapter.  

  (1.39) 
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Table 1. AROMA theory primary variables. Source: [4].  

 
 

The next process explains the estimation of the phase error. As established, 

AROMA uses a ML estimate for the error functions [4]. AROMA takes the complex image 

for down-range and cross-range and calculates the 1D discrete inverse Fourier transform 

[4]. A scattering center is then defined and the properties at the scattering centers are 

estimated using a Guassian density function [4]. The PDF corresponding to the differences 

 is based on the PGA derivation [4]. The theory assumes that  is 

independent of  and  and each range line has the same statistical properties [4]. 
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Under these assumptions, a covariance matrix in (2.40) is formed from the variance and 

clutter-plus-noise processess.  

  (1.40) 

Using Equation (2.40),  a new conditional PDF for the index k is defined and then 

maximised to estimate . For multiple dimensions, AROMA continues to 

optimize and calculate the partial derivatives of the conditional PDF as a log function in 

order to solve for  [4]. The equations are solved using a linear approximation. 

The consequence of using a linear approximation is that aliasing issues occur [4]. Garrren 

explains, however, that if the temporal interval between radar pulses is sufficiently small 

and small rotation and translation between pulses occurs, then aliasing does not pose a 

significant issue to phase approximation [4]. The estimated value between each pulse pair 

is calculated and the mean is removed for each phase term. The leftover function is 

integrated along the synthetic aperture to solve for the phase terms. The error between 

phase terms is added up for each itreation to find the total accumulated error [4]. 

 There are two limitations of AROMA that Garren identifies. The first which is due 

to the linear approximation that “limits the effective changes in the rotational angle 

between any two successive radar pulses” [4] However, this limitation does not apply for 

large total target rotation angles with the integration of numerous pulses. The second 

limitation is the occlusion of some target scattering centers during SAR collection. This 

limitation does not seriously impact the accuracy, since the issues rarely “cause any 

unnacceptable divergence of the estimator” in AROMA overall accuracy [4]. The resulting 

error estimates are ML based and do not need to be averaged. The major disadvantage of 

ML process is that AROMA has more difficulty processing sudden motions in error 

estimation [4]. 

 The last step is to use the error estimates to refocus the target. Refocusing is 

accomplished by using the error estimation and applying target refocus to numerous 

iterations as the focus is improved [4]. Target refocusing is performed by computing the 

phase correction offsets of the defocused target and then applied to each iteration [4]. The 
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phase factor and phase shift are computed. A 1D Fourier transform is then applied to yield 

a refocused target image chip for the current iteration [4]. The chip is then used as the input 

to the next stage of iterations [4].  Figure 9 shows the AROMA process flow chart for each 

stage of error estimation. 

 
Figure 9. AROMA process diagram. Source: [4]. 
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III. ARTIFICIAL INTELLIGENCE CONCEPTS 

A. MACHINE LEARNING 

The rise in popularity of artificial intelligence (AI) for technological purposes has 

led to a formal defining of the terms associated with this field such as machine learning 

(ML) or deep learning (DL). AI is a “field focused on automating intellectual tasks 

normally performed by humans” while “ML and DL are specific methods of achieving this 

goal” [6] ML and DL methods can solve complicated tasks that require a pattern 

recognition algorithm. Figure 10 is a visual representation of the subset layers that make 

up artificial intelligence and data science. 

 
Figure 10. Artificial intelligence and data science layered approach. Source: 

[6]. 

 Machine learning differs from conventional computer programming because the 

algorithms learns to solve tasks using past analysis based on features and weights [6]. The 

weights are derived from the first encounter and are used to produce a new algorithm to 

predict future datasets [6]. There are four main types of learning which are supervised, 

unsupervised, semi-supervised, and reinforced learning [6]. Supervised learning is based on 

patterns in training dataset that are mapped to features in a target [6]. The outcome is 

compared to a validation set to verify the performance of the algorithm [6]. Unsupervised 

learning also detects patterns for labeling, however, the patterns may not exist or be defined 
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for any certain features [6]. Semi-supervised learning is similar to supervised learning, but 

only a small subset of data is labeled and then used to train the algorithm [6]. The last method, 

reinforced learning, seeks for a desired outcome rather than a specific answer [6]. The 

algorithm uses trial and error to model a learning experience rather than data so that it better 

addresses novel challenges and is not limited by data input  [6]. Deep learning is a subset of 

machine learning that uses multiple layers, such as in a neural network, to learn different 

levels of image features [7]. Deep learning analysis is complex form of machine learning that 

mimics the way a human brain learns through the neurons and connections of different layers 

[8]. The next section will explain the neural network as it is applied to image recognition.   

B. CONVOLUTIONAL NEURAL NETWORKS 

With the advancement in computing power, machine learning and deep learning 

rose in popularity and success for labeling large amounts of data [9]. As a subcategory of 

deep learning, convolutional neural networks (CNNs) have proven to be a highly successful 

method for image classification [9]. From the early 2000s to now, CNNs have grown in 

complexity and practical application [9]. Early neural networks used dual-stage processing 

compared to recent models which use multiple layers, to include the most recent advance 

called maximum pooling, previously mentioned in Chapter I [9]. 

As explained in Chapter I, CNNs are a type of artificial neural network that was 

created to mimic that of visual cortex in the human brain [9]. The visual cortex consists of 

layers of cells for visual cognition which the artificial neural network seeks to model [9]. 

The layers in a neural network are stacked together creating a deep learning model [9]. 

Referring to Chapter I, the three main layers of the neural network are convolutional layer, 

pooling layer, and fully connected layers [9]. Figure 11 shows the image classification 

pipeline for a CNN.  
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Figure 11. Pipeline for image classification using a CNN. Source: [9]. 

1. Convolution Layer 

 The convolution layer creates a feature map and calculates training weights that are 

used for creating the next feature map [9]. This layer learns the features of an input image 

and creates a map of neurons that is connected to the consequent layers [9]. For each new 

input, the learned weights are convolved with the feature map to create a new updated 

feature map [9]. The terminology used for describing a feature map is in terms of kernel 

and tensor [10]. A kernel is a small number of arrays, which is applied across a tensor [10]. 

The tensor, an array of numbers, is multiplied with each element of the kernel to create an 

output value [10]. This output value makes up the feature map that is the foundation of the 

convolutional layer [10]. The kernels act as feature extractors that are defined by size and 

number [10]. More importantly, kernels contain the feature patterns that play a role in the 

training phase of CNN in which the convolutional layer identifies the kernels that best 

describe a dataset [10]. Figure 12 shows a visual depiction of the convolutional layer where 

one can see the values for each kernel as it is placed over the input vector and recalculates 

the new weights. 
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Figure 12. Visual depiction of the CNN process to calculate weights. Source: 

[11]. 

2. Pooling Layer 

 The pooling layer function is to “reduce the spatial resolution of the feature maps 

and thus achieve spatial invariance to input distortions and translates” [9]. Pooling is a type 

of down sampling that reduces the dimensions of the feature maps to reduce the number of 

“learnable parameters” without causing distortion to the feature map [9]. Two types of 

pooling are average and maximum pooling [9]. Average pooling propagates the input 

average to all neighborhood images in the layer [9]. Average pooling is considered an 

extreme down sampling that takes the feature map to a size of 1x1 array [9]. This method 

is typically only used once in the CNN prior to the fully connected layer [10]. Maximum 

pooling only propagates the maximum value from one layer to the next and gets rid of the 

other numbers [10]. Maximum pooling is a newer method that is more popular than average 

pooling [10]. Figure 13 shows how max pooling method calculates the maximum value of 

a field and average pooling propagates the average of the field for the next layer. 
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Figure 13. Average pooling compared to max pooling process. Source: [9]. 

3. Fully Connected Layer 

The fully connected layers interpret the features from a stack of convolutional and 

pooling layers for ultimate classification [10]. The fully connected layers contain the final 

outputs, or probabilities of each class, of the network after the features are extracted and 

down sampled in the convolution and pooling layers respectively [10]. The parameters for 

this layer are in terms of number of weights and activation function [10]. The activation 

function normalizes the output into a probability between 0 and 1 and sums these values 

[10]. Depending on the classification task required, there are multiple options for choosing 

the type of activation function, such as sigmoid, softmax, and identity [10]. Table 2 

contains a list of the common classification tasks and the activation functions associated 

with the tasks. 
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Table 2. Common classification tasks and activation functions. Source: 
[10]. 

 
 

C. TRAINING THE NETWORK 

 Neural networks require training to teach the algorithm how to adjust the weights 

to maximize performance outcome [10]. The goal of training a network is to find kernels 

and weights in the fully connected layer that will minimize the predicted and truth 

classification errors [10]. Backpropagation is the most common algorithm to train the 

network  [9]. Backpropagation “computes the gradient of an objective function to 

determine how to adjust a network’s parameters” [9] Backpropagation calculates the loss 

value for chosen kernels and weights, then choses the best performance model [9].  

Gradient descent is used in conjunction with backpropagation to update the 

learnable parameters that are kernels and weights to minimize loss [9]. A gradient for each 

learnable parameter is created based on learning [9]. The gradient decent shows the 

direction of the loss function rate [9]. The loss function, also called the cost function, 

compares the predicted and truth labels for the network [9]. Equation (3.1) defines the 

gradient in terms of learnable parameter 𝑤𝑤, learning rate 𝛼𝛼, and loss function 𝐿𝐿. The goal 

of the gradient decent algorithm is to reduce the loss as the learnable parameters are 

updated, and the gap between predicted and truth labels decreases [9]. 

  (3.1) 
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 The network uses three datasets to perform classification. The datasets are training, 

validation, and test sets. The training set is used to calculate the loss values and learnable 

parameters [10]. One issue to avoid with the training set is overfitting [10]. Overfitting 

occurs when the network starts to memorize the signal noise of the dataset rather than the 

desired pattern [10]. To ensure overfitting does not occur, the loss should be monitored 

during training and validation steps [10]. The validation set tests and selects the best 

training model for classification. The test set is used to evaluate the performance of the 

end-to-end model. 

 Training the network plays an important role in the performance of a neural 

network. As a saying within the machine learning community, “garbage in, garbage out,” 

the data that is used for each step—training, validation and testing— must be selected to 

produce the best results and avoid overfitting [10]. 
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IV. DATASETS 

A. MSTAR 

 The foundation of the SAMPLE dataset introduced in Chapter I, was generated 

using the Air Force Research Laboratory Moving and Stationary Target and Recognition 

(MSTAR) data set. The MSTAR data set was first collected in September 1995 in 

Huntsville, Alabama and then again in November 1996 at Eglin Air Force Base, Florida 

[12]. An X-band SAR radar in one foot resolution spotlight mode was used to collect 

images of the targets to include articulation, obscuration, and camouflage [12]. Clutter data 

was also collected for the targets. The 1996 collection expanded the total number of targets 

from 13 to 15 [13]. 

The MSTAR public data set contains the clutter, targets, T-72 variants, and mixed 

targets [13]. The final data set contains 11 target types at 15-, 17-, 30-, and 45 degree 

depression angles at different aspect angles [13]. The operating condition for each target is 

provided with the data set and is seen in Table 3 and Table 4. The letters “C”, “S” and the 

number in the sequence corresponds to the collection number, scene, and depression angle 

respectively. The clutter data was also taken using a X-band SAR sensor in strip map mode. 

The clutter library contains 100 full scene images at 15 degree depression for rural and 

urban backgrounds.  
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Table 3. Operating conditions for each MSTAR target. Source: [12]. 

 
 

Table 4. Operating conditions for each MSTAR target. Source: [12]. 

 
 

The last two data sets are the T-72 variants and mixed targets. The T-72 variants 

were collected using an X-band STARLOS sensor at one-foot resolution spotlight mode 

[12]. The depression angels for the T-72 variants were 15-, 17-, 30-, and 45 degrees [12]. 

The mixed targets also used the STARLOS sensor with the same resolution and depression 

angles. The image chips for the mixed targets were provided as a JPEG file [12]. The 

MSTAR data sets make up seven CDs that are also publicly available on the Air Force 
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Research Laboratory (AFRL) Sensor Data Management System (SDMS) website for 

download  [12].  

B. SAMPLE 

 The SAMPLE dataset was used for testing and development of this research. As 

with Capt. Erik Henegar’s work from 2020, the SAMPLE dataset was chosen over MSTAR 

since overfitting did not occur while training the CNN [14]. This section covers the 

background and formation of the SAMPLE dataset from the Air Force Research 

Laboratory. The SAMPLE dataset was designed specifically for automatic target 

recognition (ATR) research [3]. The driving factor was to improve on the previous MSTAR  

twenty years of ATR research [3]. The SAMPLE dataset is more reliable than MSTAR 

because it standardizes the sensor parameters and configurations [3]. MSTAR contains a 

limited dataset with varying sensor parameters, target configurations and environmental 

conditions that do not meet the wide range of operating conditions (OCs) that contribute to 

broader development of ATR algorithms [3]. SAMPLE dataset uses the SAR imagery from 

the MSTAR dataset and augments with synthetic data that better represents the OC space 

[3]. One example is the ability to capture images from various viewing angles and bearings 

that allows for diversity in the dataset. Especially for CNNs, diverse training data is 

required to produce better performance. The solution to expanding the OC space is to 

produce synthetic data that mimics different environments and reflections [3].  

 There are numerous methods to creating synthetic SAR data such as 

electromagnetic computation tools and computer aided design (CAD) models [3]. The 

main challenge, however, is that radar reflections are difficult to model since their 

reflective properties do not act the same as an electro-optic (EO) model that is often used 

for creating synthetic SAR data [3]. The SAMPLE data improves on the current MSTAR-

based models by better simulating the electromagnetic reflections of the targets. The goal 

of SAMPLE database is to “bridge the gap between measured and synthetic SAR image.” 

[3] 
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1. SAMPLE MODEL 

 The SAMPLE dataset was generated using carefully truthed CAD models and 

MSTAR SAR images  [3]. The merging allowed for the CAD model vehicles to be moved 

into certain positions that simulated an actual electromagnetic reflection [3]. For each of 

the various positions, the radar signal was simulated and saved as a SAR image. The images 

contained elevations between 15 degrees and 17 degrees at different locations. A total of 

ten vehicle types were chosen for the SAMPLE database and are listed in Table 5 by name 

and serial number. The CAD models were compared to EO images to validate the truth for 

each target.  

 

Table 5. Serial number for SAMPLE target vehicle. Source: [3]. 

 
 

After removing any discrepancies in the CAD models, the next process was to 

collect the electromagnetic signatures of the vehicles [3]. The surface material and features 

were simulated based on the known properties of the vehicles. The background used for all 

SAR images was a rough surface to create a speckle pattern in the resulting SAR image 

[3]. A simulated radar pulse and return was recorded for the vehicles over 360 degree 

azimuth between 14 degree and 18 degree elevation. 

 After radar collection, the dataset required image formation to create the final 

SAMPLE SAR database [3]. Each image contains the metadata for target type, radar 

bandwidth, collection azimuth, elevation, target position, range resolution, and cross-range 

resolution [3]. The metadata was saved with the pre-existing MSTAR file that also 

contained the synthetic SAR image [3]. The phase history data and radar pulse locations 

were pulled from the metadata and run through a Taylor window [3]. The windowing was 

applied to the synthetic data within the MSTAR file to create a complex image [3]. The 

complex image was aligned using circular shifting followed by quantization [3]. The image 
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was quantized into seven levels using a convex hull mask and then aligned with the 

synthetic image [3]. The final image was saved as a MATLAB .mat file to create the 

SAMPLE database. The Air Force Research Laboratory (AFRL) released a subset of 

SAMPLE database for public experimentation which allows access to the .mat files and 

the metadata for each synthetic image. The metadata provided for each SAMPLE image is 

shown in Table 6. A comparison with the original MSTAR thumbnail images on the top 

row and the new SAMPLE images on the bottom row is shown in Figure 14. The publicly 

released SAMPLE dataset was used in this research for testing the neural network and 

manipulation of the complex images to test automatic target recognition. 

Table 6. SAMPLE metadata information. Source: [3]. 

 
 

Target 2S1 BMP2 BTR70 M1 M2 M35 M548 M60 T72 ZSU23 
MSTAR 

          
SAMPLE 

          
Figure 14. Target types and comparison between MSTAR and SAMPLE data. 

Adapted from  [3]. 
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V. EXPERIMENTAL DESIGN 

A. SIMULATION 

1. Preconditioning 

 The first steps after receiving the SAMPLE database were to become familiar with 

the format and metadata followed by preconditioning the SAR images for training the 

CNN. The SAMPLE data was provided as both a .mat file and PNG image. The database 

for .mat files contains two versions of the complex image as real and synthetic. The .mat 

chip for each file contains information that was used to create the image, such as 

bandwidth, azimuth, and range resolution. Figure 15 shows an example of a 2S1 target 

information that the .mat file contains when loaded into MATLAB. The .mat format was 

required for inserting the artificial phase error into the stationary SAR image. Additionally, 

.mat file format was required for performing the autofocus in the AROMA algorithm. The 

PNG format was required specifically for training and testing the CNN. 

 
Figure 15. Target information for .mat file for each SAMPLE image chip 
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As with the .mat files, the PNG images also contained real and synthetic libraries. 

For each library, the images were saved as a decibel or quarter power magnitude (QPM) 

format. The difference between the images was the reversible scaling that was applied to 

the pixel values. The pixel scale for each image was between 0 and 1. QPM, or quarter 

power magnitude, represents the square root of each pixel value that was designed to 

produce a magnitude image that represented one quarter power. The decibel version of the 

image was a decibel scaling of the magnitude or 20*log_10(magnitude) and then rescaled 

back to 0 to 1. Table 7 shows a visual comparison between the decibel and QPM format 

for real and synthetic of an M1 Abrams tank. 

Table 7. SAMPLE PNG for M1 Abrams tank at 16 degree elevation and 
010 degree azimuth center. 

 Decibel QPM 

REAL 

  
SYNTHETIC 

  

 

For this research, the real .mat and real QPM PNG were used for testing the CNN 

algorithm. Real data was selected since it modeled a more real-world target than synthetic 

data when testing for moving targets. The QPM image was selected due to the contrast in 

grayscale pixel. The contrast between light and dark pixels was more apparent in the QPM 

images and therefore better suited to train the CNN to look for patterns.  
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 During the first stages of testing, the classification performance using real QPM 

images with the CNN were unsatisfactory. Upon further investigation, it was found that 

the QPM images needed additional preconditioning before being processed by the CNN. 

Chapter VI will explain in detail the issues that occurred using QPM PNG for training and 

testing the CNN. The final solution required that all of the complex images— stationary, 

smeared, and focused— to be saved as a magnitude PNG using an imwrite() command 

prior to feeding the images into the CNN. This is due to the way in which MATLAB saves 

complex images and returns the PNG. The PNG output darkens the background and 

lightens the reflection of the target. The black and white color contrast is greater than the 

original QPM image, and therefore must be used to train and test the CNN. Figure 16 shows 

the output of the complex .mat image after being formatted using imwrite().  

 
Figure 16. MATLAB output for complex magnitude image of the M1 Abrams 

tank using the imwrite() command 

 The stationary data provided in the SAMPLE dataset was resaved using imwrite() 

and was used to train the network. All ten types of targets were used during training and 

testing. All elevations of stationary targets were used for training, while 16 degree elevation 
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targets were used for testing since every class contained 16 degree images. Additionally, 

this elevation best represented the medium for the target datasets since the elevation was 

between 14 degrees and 17 degrees. Table 8 shows the breakdown of the SAMPLE dataset 

for each target type.  

Table 8. SAMPLE dataset class size by elevation degree. 

Target Total Class 14-deg 15-deg 16-deg 17-deg 

2S1 174 - 66 50 58 

BMP2 107 - - 55 52 

BTR70 92 - - 43 49 

M1 129 26 - 52 51 

M2 128 23 - 52 53 

M35 129 24 - 52 53 

M60 176 - 65 51 60 

M548 128 23 - 52 53 

T72 108 - - 56 52 

ZSU23 174 - 66 50 58 

TOTAL = 1345 96 197 463 539 

 

2. Method 

 The simulation method used the complex image .mat and 128 x 128-pixel SAMPLE 

images for input into the CNN. The MATLAB Deep Learning Toolbox and Parallel 

Computing Toolbox were used to construct and run the CNN. Deep Learning Toolbox 

provided the functions to create specific CNN layers and then training options. Parallel 

Computing Toolbox was enabled after initial testing to decrease the processing time of 

classification. The Parallel Computing Toolbox allowed the use of dual central processing 

units (CPUs) for processing the images through the CNN. The final output of the CNN 

code was a confusion matrix that displayed the predicted versus actual target classes 

numerically and color coded. The performance accuracy was given as a percentage correct 
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out of one-hundred. Both the confusion matrix and accuracy percentage were critical to 

developing the CNN algorithm because they allowed for direct observations of target 

trends and CNN performance.  

3. Inserting Artificial Phase Error 

 As discussed in Chapter I, complex target motion was simulated by inserting 

artificial phase error into the SAR images. Phase error was introduced into the complex 

image to output a PNG and .mat that contained the smeared pixels. The amount and 

complexity of the motion was varied throughout testing by adjusting the decay rate and 

spectrum maximum within the power law computation code. The power law was selected 

because it was able to simulate complex motion rather than purely translational motion. 

The complex motion was incorporated by adding an additional decay rate and spectrum 

maximum values into the phase error equation. In a real target, the complex motion could 

represent a pitching motion in the downrange direction. The code assumed a center 

frequency of 1.2 GHz and the default global parameters. The only required input to 

generate artificial phase error was the complex image format for the desired targets.  

The next process for inserting target motion was designed to produce a phase error 

vector that would be applied to the input image to produce a smearing effect. Additionally, 

the power law decay constant and spectrum max were manually set prior to running the 

smear code. The complex images were saved in their class folders and fed into the smear 

code one at a time. The inverse fast Fourier Transform shift was performed for each 

complex image to produce a range compressed image. The next process was to compute 

the artificial power law phase error using the range compressed image. The decay constant 

and spectrum max were extracted from the AROMA initialized parameters. The transform 

domain of the phase error was then defined, and the magnitude of the FFT of the phase 

error was generated with the assumption that the phase error was random from 0 to 360 

degrees. Since the phase error is generated at random, the error applied to each image varies 

for each trial. The corresponding phase error was computed for the right and left half of 

the image by multiplying the magnitude image by the phase error exponential. The mean 

of the first derivative was then subtracted from the real-valued phase corresponding phase 

error. The result was integrated to form the phase, and the truth vectors were generated 
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along the path length “s” and the elevation angle theta. Figure 17 and Figure 18 show the 

SAR image of a 2S1 tank before and after inserting the artificial phase error. For this 

example, the decay rate was set to 50 and the spectrum max set to 100 to simulate a slow-

moving target. Figure 19-22 show the artificial phase error vector 1, artificial phase error 

vector 2, the true elevation angle, and true path length respectively. 

 
Figure 17. SAR Image of 2S1 tank before inserting artificial phase error 
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Figure 18. SAR Image of 2S1 tank after inserting artificial phase error via 

Power Law 

 
Figure 19. True artificial phase error vector 1 
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Figure 20. True artificial phase error vector 2 

 
Figure 21. True elevation angle profile 
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Figure 22. True path length error profile 

After the artificial phase error was computed, a separate code was used to insert the 

error into the SAR image. The linear and constant phase terms were then subtracted from 

the true phase error. The output yielded the defocused image data which was written to a 

data structure and saved as a complex .mat file in preparation for autofocus.  

4. Performing Autofocus Using AROMA 

 The next step was to perform autofocus on the smeared images using AROMA. As 

with the phase error injection, AROMA required the .mat complex image input to perform 

the necessary calculations for phase error correction. During testing, it was discovered that 

in order to precondition the data for AROMA, the grid space parameters had to be defined. 

As AROMA was originally written for a SAR chip image input, the grid space had different 

dimensions than the SAMPLE dataset that was created. Using the metadata contained in 

each SAMPLE .mat file, the range and cross range pixel spacing was required to calculate 

the range and cross range grid size. Similar to the code to produce artificial smearing, the 

default parameters for ground range mid (30 000 meters), elevation mid (1000 meters), 

frequency center (1.2 GHz), and waveform speed (  meters per second) were kept the 

same value. Using these default parameters, the spatial frequency range and cross range 
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grid were computed. The defocused complex image, range and cross range grids, and 

center frequency were saved into a data structure. The data structure contained the 

preconditioned SAMPLE data that was properly formatted and ready to be processed by 

AROMA. 

 Following preconditioning, the AROMA main driver code initializes the quantities 

, , and  then hands off the data for phase error estimation and interpolation [4]. One 

iteration per image is performed beginning with the phase error estimation. The non-

parametric phase error is estimated along the synthetic aperture for a single iteration and 

the total phase error is then extracted from the resulting structure [4]. Following this step, 

the maximum intensity pixel on each range line is located and the pixel index value is 

computed in order to ensure the zero index is in the center of the cross-range position [4]. 

The image is then converted into the range-compressed and azimuth-spread domain in 

order to create the phase factor for performing a cross-range shift. The cross-range shift is 

required so that the dominant pixel on each range line is centered at the middle cross-range 

position [4]. The image is circularly shifted and a window is applied to extract the desired 

cross-range pixels. The image is transformed back to the range-compressed and azimuth-

spread domain [4]. The algorithm then forms two large subapertures offset by one pixel or 

less to form relevant interference product matrix. The result is integrated along the aperture 

length to yield range and cross-range matrices [4]. The real and imaginary components of 

the product moment vectors and weighted average are computed from the interference 

product matrix [4]. Further integration along the synthetic aperture then produces a phase 

error vector for this iteration. The current difference vector is added to the current total 

difference vector and the mean is subtracted [4]. The new phase difference error vector is 

integrated to form an estimate of the phase error vector [4]. The mean from the phase error 

vector is subtracted and is written to the output autofocus structure [4]. A cumulative output 

phase error vector is created and passed to the next AROMA subroutine.  

The final step the AROMA autofocus technique uses a cyclic sinc interpolation to 

estimate phase error. The cumulative output phase error structure is extracted and provided 

as input to the subroutine. The total phase error is point multiplied by the range-

compressed, azimuth-spread form of the original image [4]. The result is padded and sinc 
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interpolation is applied [4]. Sinc interpolation provides a shift according to the  vector and 

computes the frequency cross-range shift [4]. A loop is created to apply various samples 

of the sinc function over the cross-range window [4]. The window is applied to the sample 

points closest to the peak [4]. The analysis creates a -compensated range-compressed, 

azimuth-spread image [4]. The -compensated image is point multiplied by a phasor matrix 

and then transformed to the function domain to form a motion-compensated image [4]. The 

motion-compensated image data is output to a complex image structure and then saved as 

a PNG. The output PNGs will provide the testing targets for the CNN. The performance of 

the CNN will determine how well the autofocus was able to remove the smearing effects 

caused by target motion within the SAR image. It is predicted that the more complex 

motion, or larger pixel smear, AROMA will have greater difficulty performing phase error 

estimation and restoring the image to a stationary representation. Figure 23 and Figure 24 

show the SAR image of a 2S1 tank before and after performing autofocus using AROMA. 

Figure 25 shows the final comparison of stationary, defocused, and focused image.  

 
Figure 23. SAR image of 2S1 tank before performing autofocus via AROMA 

algorithm with artificially injected phase error to simulate target motion. 
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Figure 24. SAR image of 2S1 tank after performing autofocus via AROMA 

algorithm. 

Real QPM Raw Magnitude Saved Defocused Power 

Law 

AROMA Focused 

    

Figure 25. Comparison of 2S1 tank SAR images through precondition, 
artificial phase injection, and autofocus process. (DR: 50, SM: 100)  
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Figure 26. Confusion matrix using AROMA focused images with a DR: 50 

and SM: 100. Accuracy 88.10% 

 

Real QPM Raw Magnitude Saved Defocused Power 

Law 

AROMA Focused 

    

Figure 27. Comparison of BMP2 tank SAR images through precondition, 
artificial phase injection, and autofocus process. (DR: 100, SM: 300) 
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Figure 28. Confusion matrix using AROMA focused images with a DR: 100 

and SM: 300. Accuracy 55.36%. 

5. CNN Architecture 

 Finally, the refocused images were ready for processing through the neural 

network. The CNN was constructed using 15 layers total with seven convolution layers, 

seven pooling layers and one fully connected layer. The convolutional layer is further 

broken into the convolution linear function, batch normalization layer, and ReLU 

activation function. The convolution linear function creates a 2D convolution layer with a 

specified filter size of height and width [15]. For this research, a filter size of 2 × 2 was 

used and then padded at the edges. The middle value of the convolution linear function 

denotes the number of filters. The number of filters doubled each layer. The batch 

normalization layer normalizes each channel across a mini-batch which helps reduce the 

sensitivity to variations within the dataset [16]. The ReLU layer, or rectified linear unit 

uses a threshold operator to change any input value less than zero to be set to zero [17]. 

The maximum pooling layer follows the ReLU layer. The max pooling layer divides the 

data into rectangular pooling regions and outputs the max value for each region [2]. The 

pooling size for this operation was 2 × 2 with a stride of 2. The stride represents the step 
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size of the rectangular region as it traverses the data vertically and horizontally. The next 

layer, or fully connected layer, contains a softmax layer and classification layer.  The 

softmax layer uses a normalized exponential function to perform multi-class generalization 

problems [18]. The classification layer creates an output layer that holds the name of the 

loss function during training, the size of the output and the class labels [19]. The layer 

computes the cross-entropy loss for classification and weighted classification [19]. Since 

there were ten classes of armored vehicles and tanks, the number assigned to the 

fullyConnectedLayer was 10. Figure 29 shows a portion of the code used to create the 

layers.  

 
Figure 29. Portion of CNN algorithm used to create the layer structure 

B. TRAINING AND TESTING 

 The training and testing phase consisted of three simulations to test stationary 

targets and moving targets. The stationary target simulation was conducted by both training 

and testing the network with the SAMPLE images without any artificial phase error. This 

first simulation created a baseline accuracy and ensured that the CNN was properly 

classifying the targets. Table 9 shows the breakdown for the training and testing number 

of images. 
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Table 9. Number of training and testing images for stationary targets. 

Target 2S1 BMP2 BTR70 M1 M2 M35 M60 T72 
Training 174 107 92 129 128 129 176 128 
Testing 50 55 43 52 52 52 51 52 

 

 The second simulation compared performance before and after performing 

AROMA autofocus. The goal was to show that AROMA improved accuracy after 

conducting autofocus on a defocused image. The results provided a side-by-side 

comparison of the SAR images as different degrees of phase error was applied to the 

stationary target. The number of training and testing images used for the simulation is 

shown in Table 10. A total of four runs were conducted for this simulation to test different 

phase error. The classification results will be discussed in Chapter VI.  

The third simulation tested various degrees of complex motion by adjusting the 

power law constants during artificial phase error injection. There were nine variations of 

the power law that were tested. Each variation increased in complexity by increasing the 

value of the spectrum maximum and decreasing the decay constant of the power law. The 

power law equation was then applied to the stationary images to create the corresponding 

phase error. As the intensity of the complex motion was increased, the amount of visible 

smearing in the images also increased. Table 10 shows the breakdown for the training and 

testing number images used for the moving target simulation. Table 11 shows the four 

variations of power law used for testing. 

All three simulations created a methodical approach to testing moving target 

recognition created by artificially injected phase error. Stationary simulation set a baseline 

level of accuracy for a non-moving target to provide a comparison to that of a moving 

target. The second simulation provided a first-look into classification results of moving 

targets. These preliminary findings led to the decision to remove the M60 target from the 

testing and training during the final classification simulation. The last simulation tested the 

effects training class imbalance and provided classification results after AROMA 

autofocusing for nine different power law variations. Results showed that AROMA 

autofocus technique applied to a defocused image improved classification accuracy after 

being processed by the CNN.  
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Table 10. Number of training and testing images for moving targets. 

Target 2S1 BMP2 BTR70 M1 M2 M35 M60 M548 T72 ZSU23 
Training 174 107 92 129 128 129 176 128 108 174 
Testing 50 55 43 52 52 52 51 52 56 50 

Table 11. Power law variations and PNG display of smearing effect.  

Moving Target Trial Decay Constant 
Spectrum 

Maximum 
PNG of M2 

1 50 100 

 

2 100 150 

 

3 100 200 

 

4 100 300 
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VI. RESULTS AND ANALYSIS 

A. STATIONARY TARGETS BASELINING 

 The first simulation was conducted to verify that the CNN algorithm was 

performing as expected. Trials were run on the SAMPLE images in their original state 

which represented stationary targets. The network was trained using the SAR images 

captured at 14-, 15-, and 16 degree elevation. Only the 17 degree elevation images for each 

class were used for testing. As discussed in Chapter V, the accuracy was particularly 

affected by the M60 target. The first trial shows the stationary trained and stationary tested 

images with all classes. The second trial shows the same results after removing the M60 

target from both training and testing datasets. The results for both stationary target trials 

are shown in Table 12. 

Table 12. Stationary target baseline results with and without M60 target 

Target Trial 1: 
All Classes 

Trial 2: 
No M60 

 Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Run 3: 
Percent 
Correct 

Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Run 3: 
Percent 
Correct 

2S1 98.28 96.55 93.10 98.28 94.83 96.55 
BMP2 100 100 96.15 98.08 88.46 100 
BTR70 100 100 98.04 98.04 98.04 100 

M1 96.08 96.08 100 100 94.12 100 
M2 96.23 100 96.23 98.11 98.11 98.11 
M35 100 98.11 100 100 96.23 100 
M548 98.11 100 100 96.23 96.23 100 
M60 98.33 75.00 93.33 - - - 
T72 98.08 100 98.08 98.08 94.23 96.15 

ZSU23 0 3.45 13.80 94.83 93.10 100 
Average 
Percent 
Correct 

88.51 86.92 88.87 97.96 94.82 98.98 

 

 The results for the first trial with all classes of stationary targets revealed a major 

concern. The major concern was the poor accuracy for ZSU23 classification. The trial was 
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run three times to verify the results and accuracy for ZSU23. Both trials, ZSU23 stood out 

as an outlier with average accuracy of 5.75% correct classification. These results do not 

compare with the rest of the target classification accuracy. The most likely explanation for 

the poor classification of ZSU23 is due to its visual shape as it appears in a PNG. The 

shape, as seen in Table 13, closely resembles the M60 target, which explains a possible 

reason the neural network classified about half of the targets as a M60 rather than ZSU23 

in both runs. 

Table 13. Visual comparison of M60 and ZSU23 at 17 degree and 15 degree 
elevation 

Elevation M60 ZSU23 
17 Degrees 

  
15 Degrees 

  
 

 Initial testing with stationary targets provided a baseline of classification accuracy 

for the CNN. The simulation showed that the ZSU23 target was reducing the overall 

accuracy of the CNN, since the ZSU23 was repeatedly misclassified as an M60. This led 

to the proposition on whether to eliminate M60 class from the moving target simulations 

that followed. Since the effects of AROMA autofocus on M60 were not yet explored, the 

decision was made to keep M60 target in the training and testing datasets for the next 

simulation. The next simulation, Section 6.2, compared the defocused images and AROMA 

focused images classification accuracy.  
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The tests conducted during this section were successful at finding potential 

classification challenges, such as the M60, and establishing a baseline level of accuracy. 

The final stationary target classification average accuracy was 97.25% for 9 classes when 

M60 was removed. This baseline percentage was used in the next section to compare with 

the moving target classification results. 

B. DEFOCUS AND AROMA FOCUSED PERFORMANCE 

 The next set of simulations was conducted to test AROMA performance to correct 

the defocused images after inserting the artificial error. AROMA was predicted to improve 

classification accuracy after focusing the images and processing through the CNN. The 

M60 target was included to encompass all targets and to see if AROMA had any effect on 

correcting the misclassification between the ZSU23 and M60 targets. Four runs were 

performed with various motion complexity to test how effective AROMA was able to 

correct phase error. The motion was inserted using the artificial phase error code and 

varying the spectrum maximum and decay constant in the power law equation. Table 14 

shows the run number and the decay constant and spectrum maximum values for the phase 

error. The table shows a side-by-side comparison of before and after the AROMA 

autofocus is performed on the smeared image and classified by the CNN.  

Table 14. Defocused versus focused SAR images after CNN classification 

 Run 1: Run 2: Run 3: Run 4: 
DC 50/SM 100 DC 75/SM 200 DC 100/SM 200 DC 100/SM 300 

Defocus: 
Percent 
Correct 

Focus: 
Percent 
Correct 

Defocus: 
Percent 
Correct 

Focus: 
Percent 
Correct 

Defocus: 
Percent 
Correct 

Focus: 
Percent 
Correct 

Defocus: 
Percent 
Correct 

Focus: 
Percent 
Correct 

2S1 92.00 96.00 54.00 100 88.00 100 46.00 88.00 
BMP2 85.45 90.91 92.59 90.91 80.00 87.27 10.91 70.91 
BTR70 83.72 100 83.72 100 83.72 100 25.58 100 

M1 84.62 96.15 36.54 76.92 51.92 86.54 17.31 57.69 
M2 75.00 94.23 71.15 98.08 40.38 98.08 9.62 38.46 

M35 42.31 63.46 63.46 55.80 61.54 75.00 50.00 59.62 
M548 100 100 80.80 98.08 100 98.08 84.62 96.15 
M60 100 100 90.00 93.33 100 98.04 94.12 92.16 
T72 71.43 85.71 82.14 91.07 26.79 82.14 21.43 42.86 

ZSU23 20.00 14.00 28.00 20.00 64.00 16.00 16.00 24.00 
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 Run 1: Run 2: Run 3: Run 4: 
DC 50/SM 100 DC 75/SM 200 DC 100/SM 200 DC 100/SM 300 

Defocus: 
Percent 
Correct 

Focus: 
Percent 
Correct 

Defocus: 
Percent 
Correct 

Focus: 
Percent 
Correct 

Defocus: 
Percent 
Correct 

Focus: 
Percent 
Correct 

Defocus: 
Percent 
Correct 

Focus: 
Percent 
Correct 

Average 
Percent 
Correct 

75.45 84.05 68.24 82.42 69.64 84.12 37.56 66.99 

 

 The results showed that after performing AROMA autofocusing on defocused 

images, classification accuracy increased. In order, the classification accuracy increased 

by 8.6%, 14.18%, 14.48% and 29.43% for each run. Results were as expected due to the 

increase in smearing effect that causes the target to become unrecognizable and motion too 

complex to estimate original pixel location. Another finding indicated that many of the 

targets were being misclassified as an M60 and is evident from the confusion matrixes that 

show in orange hue along the M60 column indicating incorrect classification. This 

evidence further reinforces the decision to remove the M60 target from testing and training 

datasets would benefit classification of the remaining nine targets. The confusion matrixes 

for the fourth run and power law constants set to 100 decay rate and 300 spectrum 

maximum shown in Figure 30 and 31 to show how many of the targets were classified as 

an M60 indicated by the orange boxes.  
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Figure 30. Confusion matrix classifying defocused images for a power law of 

DC 100/SM 300 

 
Figure 31. Confusion matrix after AROMA focus performed on images for a 

power law of DC 100/SM 300 
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C. MOVING TARGETS 

As presented in Chapter V, the moving target simulation consisted of 18 trials that 

tested the CNN using different degrees of complex motion and an additional 6 trials to test 

training class size. A total of nine different power laws were used to create artificial phase 

error, focused through AROMA techniques, and classified in the CNN. As was discovered 

in the previous section, several of the targets were getting misclassified as an M60 as the 

complexity of the motion increased, and particularly the ZSU23. After removing the M60 

from the testing, the classification performance improved for the remaining nine targets. In 

this section, the final simulations to test AROMA autofocus on moving targets was 

conducted with the omission of M60 target. The results provided a total scope of autofocus 

and neural network ability to conduct moving target recognition. 

The results for the first 18 trials are contained in Tables 15, 16, and 17. 

Additionally, a visual comparison example between defocused and focused images for the 

ZSU23 is found in Table 18 with the corresponding power law constants in the left-hand 

column. In some cases, the defocus effect is more noticeable, especially for the power law 

of 75 decay constant and 300 spectrum maximum. The decay constant is the number of 

radar pulses for the spectrum of the phase error autocorrelation to drop to  of its maximum 

value, while the spectrum maximum affects the amplitude. The more drastic a smear occurs 

when both the decay constant is small, and the spectrum maximum is large. The complexity 

of the defocus makes it harder for AROMA to predict the phase error and restore the pixels 

of the image.

NAVAL POSTGRADUATE SCHOOL  |  MONTEREY, CALIFORNIA  |  WWW.NPS.EDU

_________________________________________________________



63 

Table 15. Moving target results for first three power law combinations DC 50/SM 100, DC 75/SM 100, and DC 100/SM 
100 

 DC 50/SM 100 DC 75/SM 100 DC 100/SM 100 
Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Average 
Percent 
Correct 

Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Average 
Percent 
Correct 

Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Average 
Percent 
Correct 

2S1 88.00 96.00 92.00 100 98.00 99.00 100 100 100.00 
BMP2 90.91 96.36 93.64 98.18 92.73 95.46 100 98.18 99.09 
BTR70 97.67 90.70 94.19 100 100 100.00 100 100 100.00 

M1 94.23 98.08 96.16 100 100 100.00 96.15 100 98.08 
M2 84.62 84.62 84.62 96.15 100 98.08 100 96.15 98.08 
M35 57.69 55.77 56.73 73.08 84.62 78.85 90.38 94.23 92.31 
M548 98.08 98.08 98.08 100 94.23 97.12 98.08 98.08 98.08 
T72 96.43 98.21 97.32 100 100 100.00 100 100 100.00 

ZSU23 96.00 98.00 97.00 96.00 100 98.00 100 100 100.00 
Average 
Percent 
Correct 

89.29 90.65 89.97 95.93 96.62 96.28 98.29 98.52 98.40 
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Table 16. Moving target results for second set of power law combinations DC 75/SM 150, DC 75/SM 200, and DC 
75/SM 300 

 DC 75/SM 150 DC 75/SM 200 DC 75/SM 300 
Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Average 
Percent 
Correct 

Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Average 
Percent 
Correct 

Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Average 
Percent 
Correct 

2S1 98.00 96.00 97.00 78.00 86.00 82.00 74.00 68.00 71.00 
BMP2 94.55 94.55 94.55 54.55 45.45 50.00 56.36 32.73 44.55 
BTR70 100 88.37 94.19 86.05 86.05 86.05 95.35 81.40 88.38 

M1 98.08 92.31 95.20 71.15 69.23 70.19 38.46 67.31 52.89 
M2 92.31 84.62 88.47 59.62 57.69 58.66 65.38 55.77 60.58 
M35 75.00 57.69 66.35 55.77 48.08 51.93 53.85 59.62 56.74 

M548 98.08 98.08 98.08 92.31 98.08 95.20 90.38 92.31 91.35 
T72 96.43 92.86 94.65 89.29 85.71 87.50 85.71 85.71 85.71 

ZSU23 98.00 94.00 96.00 86.00 92.00 89.00 86.00 100 93.00 
Average 
Percent 
Correct 

94.49 88.72 91.61 74.75 74.25 74.50 71.72 71.43 71.57 
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Table 17. Moving target results for third set of power law combinations DC 100/SM 200, DC 150/SM 250, and DC 
200/SM 500 

 DC 100/SM 200 DC 150/SM 250 DC 200/SM 500 
Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Average 
Percent 
Correct 

Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Average 
Percent 
Correct 

Run 1: 
Percent 
Correct 

Run 2: 
Percent 
Correct 

Average 
Percent 
Correct 

2S1 92.00 94.00 93.00 88.00 98.00 93.00 88.00 94.00 91.00 
BMP2 85.45 90.91 88.18 94.55 96.36 95.46 72.73 83.64 78.19 
BTR70 95.35 90.70 93.03 97.67 95.35 96.51 88.37 93.02 90.70 

M1 84.62 94.23 89.43 92.31 98.08 95.20 75.00 86.54 80.77 
M2 78.85 88.46 83.66 82.69 90.38 86.54 75.00 75.00 75.00 
M35 65.38 67.31 66.35 76.92 78.85 77.89 71.15 69.23 70.19 
M548 94.23 98.08 96.16 98.08 98.08 98.08 94.23 100 97.12 
T72 87.50 87.50 87.50 92.86 92.86 92.86 78.57 71.43 75.00 

ZSU23 90.00 92.00 91.00 92.00 98.00 95.00 88.00 96.00 92.00 
Average 
Percent 
Correct 

85.93 89.24 87.59 90.56 94.00 92.28 81.23 85.43 83.33 
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Table 18. Visual comparison for defocused and focused ZSU23 target for 
each power law combination tested during the moving target simulation 

ZSU23 Visual Comparison: Defocused and Focused 

Power Law 

(Decay Rate/Spectrum Max) 

Defocused AROMA Focused 

50/100 

  

75/100 

  

100/100 

  

75/150 
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ZSU23 Visual Comparison: Defocused and Focused 

Power Law 

(Decay Rate/Spectrum Max) 

Defocused AROMA Focused 

75/200 

  

75/300 

  

100/200 

  

150/250 
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ZSU23 Visual Comparison: Defocused and Focused 

Power Law 

(Decay Rate/Spectrum Max) 

Defocused AROMA Focused 

200/500 

  

 

 During this simulation, a second test was conducted to see if class imbalance 

affected results. The training dataset size was varied to test whether oversampling or 

undersampling would affect the CNN classification accuracy. In a journal article written 

by Mateusz Buda et al., it was found that class imbalance can lead to decrease in 

performance of CNNs [20]. The recommendation was to oversample to achieve an even 

class size, which also prevented overfitting [20]. Oversampling involves duplicating 

samples within a class to increase database size. For this research, this was conducted by 

randomly selecting various elevation angles of SAMPLE images in each class to make all 

class sizes equal 176. As predicted, oversampling improved classification accuracy for all 

tests. Oversampling increased accuracy from baseline average by 4.45%, 14.18%, and 

3.35% for the three trials as shown in Table 19. 

For undersampling, randomly selected samples were removed from each class to 

make all class sizes equal 92. The results showed that oversampling and evening class size 

improved classification accuracy, however, undersampling both increased and decreased 

accuracy. For all three power laws, the results showed that oversampling performed 

consistently better than baseline. Further investigation is required to show the effects of 

undersampling. The likely explanation for undersampling improving classification rather 

than decreasing is because the SAMPLE dataset is too small to prove Buda et al. class 

imbalance problem which requires thousands of samples [20]. Table 19 shows the 
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comparison between baseline, oversampling, and undersampling for three different power 

laws.  

This final simulation to investigate CNN performance and class imbalance proved 

to be useful at showing how oversampling can lead to increase classification accuracy. For 

undersampling, the results were inconclusive and further investigation into this theory is 

required, which was not justifiably explained by Buda et al. in their research. 

Table 19. Comparison between baseline, oversampling, and undersampling 
training datasets after CNN classification using various power law 

equations 

 DC 50/SM 100 DC 75/SM 200 DC 200/SM 500 
Base 
Avg 

Over 
sample 

Under 
sample 

Base 
Avg 

Over 
sample 

Under 
sample 

Base 
Avg 

Over 
sample 

Under 
sample 

2S1 92.00 98.00 96.00 82.00 96.00 70.00 91.00 96.00 98.00 
BMP2 93.64 100 98.18 50.00 85.45 36.36 78.19 80.00 94.55 
BTR70 94.19 100 90.70 86.05 93.02 69.77 90.70 86.05 97.67 

M1 96.16 98.08 96.15 70.19 88.46 50.00 80.77 82.69 100.00 
M2 84.62 94.23 84.62 58.66 94.23 61.54 75.00 78.85 82.69 

M35 56.73 65.38 55.77 51.93 57.69 59.62 70.19 73.08 71.15 
M548 98.08 98.08 100 95.20 94.23 96.15 97.12 98.08 100.00 
T72 97.32 100 98.21 87.50 91.07 80.36 75.00 89.29 83.93 

ZSU23 97.00 96.00 94.00 89.00 98.00 96.00 92.00 96.00 96.00 
Average 
Percent 
Correct 

89.97 94.42 90.40 74.50 88.68 68.87 83.33 86.67 91.55 
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VII. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

 In an increasingly competitive world, the ability to produce innovative and unique 

solutions to complex problems becomes an advantage that can make the difference in both 

military and civilian industries. For synthetic aperture radar, the current challenge to 

conduct moving target recognition is a valuable function from which the military, 

especially, can benefit. As introduced, the advantage of SAR over optical sensors is its 

ability to operate all-weather conditions. This capability, combined with the ability to 

classify moving targets within SAR imagery, makes SAR a highly desirable and tactical 

sensor. The use of machine learning techniques, such as a CNN, to conduct moving target 

recognitions broadens the scope of SAR applications and therefore the resulting 

intelligence collected from SAR imagery.  

 This research tested the bounds of AROMA autofocus techniques and the capability 

to classify targets using the CNN algorithm. Three simulations were conducted to evaluate 

the overall performance at identifying moving targets. Prior to the simulations, 

preconditioning of the original SAMPLE images was required to ensure all the formats of 

the defocused and focused images were in the same format. This discovery was identified 

early in the development of the CNN algorithm. The preliminary testing yielded poor 

results well below acceptable accuracy for classifying stationary targets. It was found these 

results were caused from the format mismatch between the raw SAMPLE data and the 

smeared and focused data which were saved as a magnitude, complex image PNGs. After 

saving the processed images using the imwrite() command, the background appeared 

darker, since the SAMPLE data did not contain environment, while the highlights on the 

vehicle targets were more brilliant and whiter. The solution was to match the image formats 

by saving the raw SAMPLE data using the MATLAB imwrite() command. After ensuring 

both training and testing data formats matched, the images were ready to be processed by 

the CNN.   
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The second finding during the first and second simulations revealed that the M60 

target was introducing major classification errors into the other nine targets. During 

stationary target validation, the ZSU23 was repeatedly getting misclassified as an M60 

target. This misclassification was even more evident during the second simulation to test 

defocus and focus performance. With increasing complex motion inserted into the SAR 

images, additional targets (especially the M1, M2 and T72) were being misclassified as a 

M60. The decision to remove the M60 target following the second simulation removed 

unnecessary errors and the ability to test the remaining 9 targets without the influence of 

the M60 target. The final third simulation did not use M60 target and provided a better 

summary of the CNN algorithms performance.  

The third preconditioning step required that the training dataset was oversampled 

to achieve an even class size. Experiments conducted during the third simulation, showed 

that class imbalance affects the performance. Oversampling the training data to achieve 

class balance consistently increased classification accuracy. The baseline SAMPLE 

database class sizes were uneven and performed worse than with oversampling. 

Undersampling, however, was inconclusive, and both increased and decreased accuracy. 

 Implementation of these three preconditioning techniques proved to increase total 

classification performance. This research was also successful at displaying how AROMA 

processed different degrees of defocus and the resulting classification accuracy. The CNN 

was then able to quantify the classification after performing AROMA on defocused images. 

Eighteen different power laws were tested to simulate different types of complex motion. 

The complex motion was varied by adjusting the decay constant and spectrum maximum. 

Five of the runs performed below 90% average accuracy which were DC 50/SM 100, DC 

75/SM 200, DC 75/SM 300, and DC 200/SM 500. This is likely due to the complexity of 

the motion when the decay constant is small, and the spectrum maximum is large, that 

creates a power law wave that oscillates rapidly with a large amplitude. The phase error 

applied using this type of power law is harder to estimate using AROMA, therefore, the 

image restoration is not as effective. Further testing is required to determine an exact 

threshold for the power law at which AROMA is unable to restore a defocused image and 

reach classification above 90%.  
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 In conclusion, this study quantified the performance of AROMA autofocus on 

moving targets and offered three preconditioning techniques to improve classification. An 

efficient process was developed to precondition, insert artificial error, perform autofocus, 

and classify using a CNN algorithm. This methodical approach allows for a foundation to 

conduct future research into improving moving target recognition.  

B. FUTURE WORK 

 Further research on moving target recognition and CNN has yet to be uncovered. 

For this research, the errors caused the M60 target require investigation to provide a 

complete look at the classification results of ten targets rather than nine targets. Due to the 

similarity between the M60 target and the ZSU23 target, one possibility is that more data 

at different angles and elevations needs to be collected on the M60 target to capture any 

unique features. Similarly, the SAMPLE database provided by the AFRL has since been 

expanded and is contained in the SAMPLE 2.0 library. Future research using the SAMPLE 

2.0 database can broaden the training and testing datasets and a deeper look into the CNN 

algorithm performance. 

 Another opportunity for future work would be to explore the class imbalance 

problem encountered in the last simulation of this research. For any neural network, the 

training dataset is critical to the overall performance. For this reason, exploration of the 

effects of training oversampling and undersampling may also lead to improvements in 

automatic target recognition.  

For the CNN, another option for future research is to perform two channel 

classification. Since the SAMPLE images are saved in a complex format, there is potential 

to conduct defocus and focus on both channels. The topic of complex-valued neural 

networks (CVNNs) and deep learning have gained popularity because of the advantages of 

being able to process both phase and magnitude [21]. This method may yield higher 

classification accuracy, if applied correctly, using the available code to insert artificial 

phase error and autofocus. 
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