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Abstract

The phase gradient autofocus (PGA) algorithm has seen widespread use and success

within the synthetic aperture radar (SAR) imaging community. However, its use and

success has largely been limited to collection geometries where either the polar format

algorithm (PFA) or range migration algorithm is suitable for SAR image formation.

In this work, a generalized phase gradient autofocus (GPGA) algorithm is developed

which is applicable with both the PFA and backprojection algorithm (BPA), thereby

directly supporting a wide range of collection geometries and SAR imaging modalities.

The GPGA algorithm preserves the four crucial signal processing steps comprising

the PGA algorithm, while alleviating the constraint of using a single scatterer per

range cut for phase error estimation which exists with the PGA algorithm. Moreover,

the GPGA algorithm, whether using the PFA or BPA, yields an approximate maxi-

mum marginal likelihood estimate (MMLE) of phase errors having marginalized over

unknown complex-valued reflectivities of selected scatterers. Also, in this work a new

approximate MMLE, termed the max-semidefinite relaxation (Max-SDR) phase esti-

mator, is proposed for use with the GPGA algorithm. The Max-SDR phase estimator

provides a phase error estimate with a worst-case approximation bound compared to

the solution set of MMLEs (i.e., solution set to the non-deterministic polynomial-

time hard (NP-hard) GPGA phase estimation problem). Moreover, in this work a

specialized interior-point method is presented for more efficiently performing Max-

SDR phase estimation by exploiting low-rank structure typically associated with the

GPGA phase estimation problem. Lastly, simulation and experimental results pro-

duced by applying the GPGA algorithm with the PFA and BPA are presented.

iv



Acknowledgements

First and foremost, I would like to thank my wife for her love and support. Without

it, none of this would have been possible.

I would like to thank my committee members, Dr. Julie Jackson, Dr. Peter Collins,

and Dr. Matthew Fickus, for their valuable insights and recommendations. I would

also like to extend a special thanks to Dr. Julie Jackson for the experience and

opportunities she has afforded me, dating back to my undergraduate studies. I would

like to thank both Matrix Research and Radial Research and Development for both

the opportunity and financial support needed to finish my degree. Lastly, I would

like to thank individuals who have provided me the continued opportunity to finish

my degree: Dr. Lee Patton, Dr. Matthew Ferrara, and Dr. Michael Bryant.

Aaron Evers

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Spatially Invariant Defocus Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Generalized Phase Gradient Autofocus Algorithm . . . . . . . . . . . . . . 6

1.2.3 Max-Semidefinite Relaxation Phase Estimation . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Phase-Only Autofocus Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Phase Estimation for Phase-Only Autofocus . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Generalized Phase Gradient Autofocus . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Multichannel Autofocus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Maximum Sharpness Autofocus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



Page

2.2.4 Minimum Entropy Autofocus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

III. Matched Filter and Image Formation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Matched Filter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Example Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Image Formation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Differential Range Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Approximate Differential Range Error Bound . . . . . . . . . . . . . . . . 38

3.2.3 Example Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

IV. Generalized Phase Gradient Autofocus Algorithm . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Using the Polar Format Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Using the Backprojection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Scatterer Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Low-Pass Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Maximum Marginal Likelihood Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



Page

V. Generalized Phase Gradient Autofocus Phase Estimation . . . . . . . . . . . . . . . . 67

5.1 Phase Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
help

5.2 Eigenvector Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Max-Semidefinite Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Efficient Max-Semidefinite Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.1 Low-Rank Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.2 Specialized Interior Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.4 Max-Semidefinite Relaxation Feasible Point . . . . . . . . . . . . . . . . . . 81

5.4.5 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VI. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 Phase Error Estimate Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Average Run-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Near-Field Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Far-Field Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.1 Using the Polar Format Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4.2 Using the Backprojection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1 Spatially Invariant Defocus Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Generalized Phase Gradient Autofocus Algorithm . . . . . . . . . . . . . . . . . . 101

viii



Page

7.3 Max-Semidefinite Relaxation Phase Estimation . . . . . . . . . . . . . . . . . . . . 101

Appendix A. Marginal Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix B. Fisher Information Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.1 Argument of the Phase Error Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.2 Cross Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.3 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Appendix C. Lagrange Dual Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix D. Logarithmic Barrier Gradient and Hessian . . . . . . . . . . . . . . . . . . . . 114

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



List of Figures

Figure Page

1 The scope of this research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Spotlight-mode bistatic SAR scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 High-Level SAR imaging processing chain. . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Example ideal and defocused SAR images. . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 PFA and BPA SAR image formation processes. . . . . . . . . . . . . . . . . . . . . . 17

6 Bistatic scenario for a single slow-time pulse of a SAR
collect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 The surface and contours of a scatterer’s ambiguity
function, and the desired and observed samples in (15),
given the position and velocity uncertainties in (45)
to (48). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Bistatic geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Near-field imaging scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

10 Convergence of (56) and (57). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11 Spatially invariant regions identified using (63) and (64)

with β = 1, kmax = 4, and ‖δpt‖ , ‖δpr‖ = 33/2

2
σ. . . . . . . . . . . . . . . . . . . . . 44

12 Minimum, maximum, and mean differential phase error
for each point located within the identified spatially
invariant region in Figure 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

13 Far-field imaging scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

x



Figure Page

14 Convergence of (56) and (57). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

15 Spatially invariant regions identified using (63) and (64)

with β = 1, kmax = 4, and ‖δpt‖ , ‖δpr‖ = 33/2

2
σ. . . . . . . . . . . . . . . . . . . . . 47

16 Minimum, maximum, and mean differential phase error
for each point located within the identified spatially
invariant region in Figure 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

17 Near-field imaging scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

18 Comparison of phase-only autofocus SAR image quality
as the spatially invariant phase error model breaks down. . . . . . . . . . . . . 50

19 PGA algorithm [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

20 GPGA algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

21 Number of scatterers, P , needed during the scatterer
selection process for an efficient estimator to produce a
phase error estimate with an MSE of (απ/4)2, with
α = 1/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

22 MSE of the argument of the phase error estimate for the
PD, EVR, and Max-SDR phase estimators versus SINR
and the size of the GPGA data (i.e., number of
slow-time pulses N and number of selected scatterers P ). . . . . . . . . . . . . 87

23 Average run-time for different GPGA phase estimators
versus the size of the GPGA data (i.e., number of
slow-time pulses N and number of selected scatterers P ). . . . . . . . . . . . . 89

24 Experimental system and setup from [60,94–97]. . . . . . . . . . . . . . . . . . . . . 91

xi



Figure Page

25 Measured and autofocused BPA images produced using
the GPGA algorithm with different phase estimators,
for the experimental setup in Figure 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

26 Autofocus results produced using the GPGA algorithm
with different phase estimators and the PFA for SAR
image formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

27 Autofocus results produced using the GPGA algorithm
with different phase estimators and the BPA for SAR
image formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xii



List of Tables

Table Page

1 Summary of trade-offs between different autofocus
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Bistatic scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Computational complexity comparison between the
specialized IPM in Algorithm 1 and a generic IPM for
solving (99). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Summary of trade-offs between different GPGA phase
estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 MSE of PD phase error estimates in radians2 and
number of selected scatterers versus the relative
threshold for scatterer selection and the number of
GPGA iterations run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 MSE of EVR phase error estimates in radians2 and
number of selected scatterers versus the relative
threshold for scatterer selection and the number of
GPGA iterations run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 MSE of Max-SDR phase error estimates in radians2 and
number of selected scatterers versus the relative
threshold for scatterer selection and the number of
GPGA iterations run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 MSE of PD phase error estimates in radians2 and
number of selected scatterers versus the relative
threshold for scatterer selection and the number of
GPGA iterations run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 MSE of EVR phase error estimates in radians2 and
number of selected scatterers versus the relative
threshold for scatterer selection and the number of
GPGA iterations run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xiii



Table Page

10 MSE of Max-SDR phase error estimates in radians2 and
number of selected scatterers versus the relative
threshold for scatterer selection and the number of
GPGA iterations run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xiv



List of Acronyms

AFIT Air Force Institute of Technology.

AWG arbitrary waveform generator.

AWGN additive white Gaussian noise.

BPA backprojection algorithm.

CFAR constant false alarm rate.

CPI coherent processing interval.

CRLB Cramér-Rao lower bound.

DFT discrete Fourier transform.

DSDR dual semidefinite relaxation.

EVR eigenvector relaxation.

FFT fast Fourier transform.

FIM Fisher information matrix.

GPGA generalized phase gradient autofocus.

GSF generalized sharpness function.

GUI graphical user interface.

INS inertial navigation system.

IPM interior-point method.

xv



LMI linear matrix inequality.

LPF low-pass filter.

Max-SDR max-semidefinite relaxation.

MCA multichannel autofocus.

MMLE maximum marginal likelihood estimate.

MSE mean squared error.

NP-hard non-deterministic polynomial-time hard.

PD phase difference.

PFA polar format algorithm.

PGA phase gradient autofocus.

RAIL Radar Instrumentation Laboratory.

SAR synthetic aperture radar.

SDR semidefinite relaxation.

SINR signal-to-interference-plus-noise ratio.

UAV unmanned aerial vehicle.

xvi



A GENERALIZED PHASE GRADIENT AUTOFOCUS ALGORITHM

I. Introduction

Synthetic aperture radar (SAR) imaging is a special form of radar where a scene or

area of interest is interrogated with radio waves over a set of diverse viewing angles,

and the scattered waves are observed and used to estimate the scene’s electromagnetic

reflectivity. Being a special form of radar, SAR imaging shares operational benefits as-

sociated with general radar systems including: 1) day/night operation, 2) all-weather

operation, and 3) short/long range operation [1–9]. The earliest development of SAR

imaging is commonly attributed to Carl Wiley of Goodyear Aircraft Corporation, in

June 1951 [10,11]. Since its early development, SAR imaging has been employed for

a wide variety of military and civilian applications including: topographic mapping,

land-use monitoring, agricultural monitoring, environmental monitoring, planetary

or celestial investigations, and reconnaissance and acquisition of targeting informa-

tion [1–3,6–9,12,13].

Although there are a number of applications and operational advantages for SAR

imaging systems, SAR imaging is not without its own challenges. In order to produce

high-quality, focused SAR images accurate propagation models, high-grade transmit

and receive hardware, and accurate motion measurements of the collection geometry

are needed [2,3,14]. The level of accuracy needed is on the order of a fraction of the

transmitted signal’s carrier wavelength [2, 3]. Meeting this level of accuracy tends

toward costly studies and/or hardware. Typically, a more cost-effective algorithmic

approach is considered consisting of a data-driven automatic refocusing technique,
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termed “autofocus” [2, 3, 14].

Numerous autofocus algorithms exist [1–3,13,15–63]. Of these many existing autofo-

cus algorithms one is arguably considered the “gold-standard” — the phase gradient

autofocus (PGA) algorithm1 [14,33]. The PGA algorithm was first introduced in the

late 1980s and was formulated for use with the polar format algorithm (PFA) [16].

Since its early development, the PGA algorithm has seen widespread use and success

within the SAR imaging community [2, 3, 14, 16, 19–24, 29, 31, 33, 35–37, 42, 44–46, 48,

51, 53, 55, 58, 62]. This success is largely driven by the balance the PGA algorithm

provides in terms of being relatively efficient, yet proving to perform well by providing

quality autofocus solutions for a number of scene types, scene content, and scenarios.

As a result of such widespread use and success, a natural question has been raised

in the literature: can the PGA algorithm be applied directly with the backprojection

algorithm (BPA)2, which directly supports a wide range of collection geometries and

SAR imaging modalities [44]? It is this question, along with other closely related

questions, which are answered in this work. Specifically, in this research a generalized

phase gradient autofocus (GPGA) algorithm is developed which preserves the four

crucial signal processing steps comprising the PGA algorithm, while being applicable

with both the PFA and BPA.

1.1 Scope

Figure 1 depicts the scope of this research. As indicated in Figure 1, focus is given

solely to spotlight-mode SAR imaging. Focus is limited to spotlight-mode for devel-

oping and studying the GPGA algorithm to enable side-by-side comparisons to be

1Herein, PGA algorithm refers to the class of PGA algorithms, as variations of PGA exist using
different phase estimators [3, 16,17,19,20].

2Herein, BPA refers to the backprojection and filtered/convolution backprojection algorithms.
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made with the PGA algorithm, which was initially developed for spotlight-mode SAR

imaging. Although, as mentioned in [44], the BPA is invariant to the SAR operating

mode (i.e., is performed the same regardless of the SAR imaging modality). Thus, the

GPGA algorithm is expected to be applicable with other SAR imaging modalities,

given it is shown to be applicable with the BPA.

As noted previously, SAR image defocus is generally attributed to inaccurate propa-

gation models, transmit and receive hardware limitations, and/or inaccurate motion

measurements of the collection geometry. Regardless of the source of defocus, SAR

data is defocused in two ways: 1) range profile misalignment (i.e., range-cell migra-

tion) and 2) pulse-to-pulse phase corruption (i.e., phase-only defocus). These two

types of SAR data defocus are listed in Figure 1 and constitute two different classes

of SAR autofocus algorithms based on the assumed defocus model.

Operating 
Mode

Image 
Formation 

Process

Autofocus 
Algorithm 

Type

SAR 
Imaging

ISAR Strip Map Spotlight Scan Inter-
ferometric

Polar 
Format Other Back-

projection

§ Generalized Phase Gradient Autofocus
§ Multichannel Autofocus
§ Maximum Sharpness Autofocus
§ Minimum Entropy Autofocus

Parametric 
Based 

Non-
Parametric 

Non-
Parametric 

Parametric 
Based

Defocus 
Model

Phase-
Only 

Range-Cell 
Migration 

Range-Cell 
Migration 

Phase-
Only 

§ Generalized Phase Gradient Autofocus
§ Multichannel Autofocus
§ Maximum Sharpness Autofocus
§ Minimum Entropy Autofocus

Figure 1. The scope of this research.
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The scope of this research is limited to the phase-only defocus model, which is appli-

cable when motion measurement errors are less than the range and velocity resolution

of the SAR system [3,64,65]. Thanks in part to advanced propagation modeling, im-

proved transmit and receive hardware, and inertial navigation systems (INSs) with

improved accuracy, the phase-only defocus model is widely applicable. In fact, phase-

only autofocus algorithms are so prevalent they are also referred to as traditional aut-

ofocus algorithms [65]. Although the phase-only defocus model is applicable in most

cases, the range-cell migration defocus model is necessary for: 1) higher-resolution

SAR imaging; 2) in cases where the SAR system is constrained by strict size-weight-

and-power requirements, which indirectly lead to inaccurate INS measurements; and

3) the SAR system is deployed on a less stable platform, such as an unmanned aerial

vehicle (UAV), where large motion measurement errors are common [64, 65]. Since

the scope of this research is limited to the phase-only defocus model, for the remain-

der of this work the term “autofocus” is to be interpreted as meaning “phase-only

autofocus.”

As shown in Figure 1, numerous non-parametric based autofocus algorithms exist for

spotlight-mode SAR imaging using either the PFA or BPA [1–3, 13, 15–63]3. At first

glance it may seem odd so many autofocus algorithms exist for a single defocus model.

However, at the core of each of the listed autofocus algorithms is a non-deterministic

polynomial-time hard (NP-hard) phase estimation problem, whose solution set con-

sists of estimates of the phase errors causing SAR image defocus. For SAR imaging

applications, where the size of the data involved with the NP-hard phase estimation

problem is typically large, it is not reasonable to expect to always solve the phase

estimation problem (i.e., find a global optimal point). Instead, heuristics are needed

3Figure 1 does not include popular autofocus algorithms such as map-drift and prominent point
processing, as these algorithms are either parametric based or not automated [2].
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to obtain an approximate solution to the NP-hard phase estimation problem in a

reasonably efficient manner. As a result of having to resort to heuristics, an excess

of autofocus algorithms is not so surprising. For instance, many of the existing auto-

focus algorithms provide a trade-off between performance/robustness, computational

complexity, and suboptimality of the phase error estimate (i.e., suboptimality of an

approximate solution to the NP-hard phase estimation problem).

As mentioned previously, of the many existing autofocus algorithms available, the

PGA algorithm is arguably considered the “gold-standard” due in large part to the

balance it provides between performance and computational complexity [14, 33]. Al-

though considered the “gold-standard,” a number of areas exist where the PGA algo-

rithm may be improved or generalized. In the next section, contributions made with

this research, consisting of advancements made to the PGA algorithm through the

development of the GPGA algorithm, are discussed.

1.2 Contributions

In this research, advancements to the current state-of-the-art in SAR autofocus are

made by extending or generalizing the well-known PGA algorithm, resulting in what

is termed the GPGA algorithm. The material from this research consists of three pri-

mary contributions and a number of secondary contributions, which have culminated

in four publications [60, 66–68]. Together, the primary and secondary contributions

of this research provide greater insight into topics concerning: 1) how the GPGA

algorithm relates to other existing SAR autofocus algorithms, 2) when and where the

GPGA algorithm is applicable, 3) strategies for configuring/applying the GPGA al-

gorithm, 4) statistical motivation for the GPGA algorithm, and 5) trade-space study

for three different GPGA phase estimators. In the sections to follow each of the three
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primary contributions are summarized, with each section primarily concerned with

material presented in each of the respective publications [66–68].

1.2.1 Spatially Invariant Defocus Model

Many existing autofocus algorithms, including the GPGA algorithm, rely on the

assumption that phase errors, which cause SAR image defocus, are spatially invariant

[1–3, 13, 15–17, 19, 20, 23, 26, 28, 30–33, 35, 38, 39, 42, 45, 46, 48, 50, 55, 59, 60]. In many

cases this assumption holds, but for larger scene sizes or scenarios where the far-field

approximation does not hold, the spatially invariant phase error approximation breaks

down. In Section 3.2, an approximate upper bound is derived on the spatially variant

phase error component of phase errors. The derived bound applies with near- and far-

field bistatic geometries, with monostatic as a special case, and is expressed in terms

of either known quantities or quantities which typically have a known upper bound.

The derived bound enables SAR scene size limits to be computed, such that phase

errors are approximately spatially invariant according to a specified phase threshold.

1.2.2 Generalized Phase Gradient Autofocus Algorithm

In Chapter IV, the GPGA algorithm is developed which is applicable with both the

PFA and BPA, thereby directly supporting a wide range of collection geometries

and SAR imaging modalities. The GPGA algorithm preserves the four crucial signal

processing steps comprising the PGA algorithm, while alleviating the constraint of

using a single scatterer per range cut for phase error estimation which exists with

the PGA algorithm. Moreover, it is shown in Chapter IV that the GPGA algorithm,

whether using the PFA or BPA, yields an approximate maximum marginal likelihood
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estimate (MMLE) of phase errors having marginalized over unknown complex-valued

reflectivities of selected scatterers.

1.2.3 Max-Semidefinite Relaxation Phase Estimation

In Section 5.3, a new approximate MMLE, termed the max-semidefinite relaxation

(Max-SDR) phase estimator, is proposed for use with the GPGA algorithm. Lever-

aging recent work on SDR, the Max-SDR phase estimator provides a phase error

estimate with a worst-case approximation bound compared to the solution set of

MMLEs (i.e., worst-case suboptimality for a feasible point to the NP-hard GPGA

phase estimation problem). Additionally, in Section 5.3 a specialized interior-point

method (IPM) is presented for more efficiently performing Max-SDR phase estimation

by exploiting low-rank structure typically associated with the GPGA phase estima-

tion problem. When the size of the data involved with the phase estimation problem

is large, which is typical for SAR imaging applications, the computational complexity

and run-time are reduced by roughly N2 and two orders of magnitude, respectively, as

compared to a generic IPM. Hence, the presented specialized IPM makes Max-SDR

phase estimation more practical for SAR imaging applications leveraging the GPGA

algorithm.

1.3 Outline

The remainder of this work is outlined as follows. In Chapter II the phase-only auto-

focus signal model is formulated beginning with the baseband, received signal model

for a bistatic collection geometry. Additionally, in Chapter II a high-level description

of the objective of phase-only autofocus is provided, and a brief summary of many
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existing phase-only autofocus algorithms is given. In Chapter III matched filter and

image formation analysis is performed to identify bounds on motion measurement er-

rors and SAR scene size limits such that the phase-only defocus model and spatially

invariant phase error assumption are applicable. In Chapter IV the GPGA algorithm

is formulated by first providing a side-by-side description of the PGA and GPGA algo-

rithms, making evident the GPGA algorithm includes the PGA algorithm as a special

case. Then, it is shown that whether using the PFA or BPA, the GPGA algorithm

provides an approximate MMLE of phase errors having marginalized over unknown

complex-valued reflectivities of selected scatterers. In Chapter V three phase estima-

tors or approximate MMLEs are described for use with the GPGA algorithm, and

their respective trade-offs discussed. In Chapter VI results produced from synthetic

and measured data sets using the GPGA algorithm are presented and discussed. In

Chapter VII concluding remarks are made.

1.4 Notation

The real and complex fields are denoted by R and C, respectively. The imaginary unit

is denoted by j =
√
−1, the complex exponential function by e : C → C, the argu-

ment/angle of a complex value by Arg : C→ R, the real operator by Re : C→ R, and

the complex conjugate by (·)∗. The set of N×N real-valued symmetric and complex-

valued Hermitian matrices are denoted by SN and HN , respectively. Column vectors

are denoted by boldface lowercase letters and matrices by boldface uppercase letters.

The nth entry of a vector x is denoted by [x]n using 0-based indexing. The super-

scripts (·)T and (·)H represent the transpose and conjugate transpose, respectively. A

square diagonal matrix with main diagonal elements x is denoted by Diag (x), and

diag (X) is a column vector with elements given by the main diagonal elements of
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X. The Hadamard or element-wise product is denoted by �. The identity matrix

is denoted by I, and vectors or matrices of all zeros or ones are denoted by 0 and

1, respectively. The Euclidean norm is denoted by ‖·‖, the Frobenius norm by ‖·‖F,

the ceiling function by d·e, and the absolute value of a scalar and determinant of a

matrix by |·|. The trace of a square matrix is denoted by Tr (·) and the rank of a

matrix is denoted by Rank (·). The generalized inequalities X � 0 and X � 0 de-

note the square matrix X is positive definite and positive semidefinite, respectively.

The expectation of a random variable is denoted by E [·]. Lastly, U and CN denote

uniform and circularly symmetric complex normal distributions, respectively.
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II. Background

In this section, the phase-only autofocus signal model is formulated beginning with

the baseband, received signal model for a bistatic collection geometry, which includes

monostatic as a special case. In addition, in this section a high-level description of the

objective of phase-only autofocus is provided, and a brief summary of many existing

phase-only autofocus algorithms is given.

2.1 Phase-Only Autofocus Signal Model

Consider the spotlight-mode bistatic SAR imaging scenario depicted in Figure 2 con-

sisting of a transmitter-receiver pair and stationary point scatterers. In Figure 2,

pi,pt,pr : R → R3 are vector-valued functions of time providing the true position

state of the ith scatterer, transmitter, and receiver, respectively, and tn ∈ R indi-

cates the time of the nth slow-time pulse. Additionally, let p̃t, p̃r : R → R3 denote

.	.	.	Transmitter, pt(tn)
Receiver, pr(tn)

Scatterer, pi(tn)

Scene Center, p0(tn)

Figure 2. Spotlight-mode bistatic SAR scenario.

vector-valued functions of time providing the measured/estimated position state of
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the transmitter and receiver

p̃t(t) = pt(t) + δpt(t), (1)

p̃r(t) = pr(t) + δpr(t), (2)

where δpt, δpr : R→ R3 are the transmitter and receiver position errors, respectively.

Then, the true and measured vectors from the transmitter-to-ith scatterer and ith

scatterer-to-receiver, rt,i, ri,r, r̃t,i, r̃i,r : R→ R3, are

rt,i(t) = pi(t)− pt(t) = rt,i(t) r̂t,i(t), (3)

ri,r(t) = pr(t)− pi(t) = ri,r(t) r̂i,r(t), (4)

r̃t,i(t) = pi(t)− p̃t(t) = r̃t,i(t) ̂̃rt,i(t), (5)

r̃i,r(t) = p̃r(t)− pi(t) = r̃i,r(t) ̂̃ri,r(t), (6)

where rt,i, ri,r, r̃t,i, r̃i,r : R → R are the respective vector magnitudes and r̂t,i, r̂i,r,

̂̃rt,i, ̂̃ri,r : R→ R3 are the respective unit vector-valued functions. Using (3) to (6), the

true and measured bistatic delay and Doppler from the transmitter-to-ith scatterer-

to-receiver, τi, νi, τ̃i, ν̃i : R→ R, at slow-time tn are

τi,n = τi(tn) =
1

c

(
‖rt,i(tn)‖ + ‖ri,r(tn)‖

)
, (7)

νi,n = νi(tn) = −1

λ

(
r̂Ht,i(tn)

(
ṗi(tn)− ṗt(tn)

)
+ r̂Hi,r(tn)

(
ṗr(tn)− ṗi(tn)

))
, (8)

τ̃i,n = τ̃i(tn) =
1

c

(
‖r̃t,i(tn)‖ + ‖r̃i,r(tn)‖

)
, (9)

ν̃i,n = ν̃i(tn) = −1

λ

(
̂̃rHt,i(tn)

(
ṗi(tn)− ˜̇pt(tn)

)
+ ̂̃rHi,r(tn)

(
˜̇pr(tn)− ṗi(tn)

))
, (10)

where c is the speed of light, λ ∈ R is the transmitted signal’s carrier wavelength,

and ṗi, ṗt, ṗr, ˜̇pt, ˜̇pr : R→ R3 are vector-valued functions of time providing the true

11



and measured velocity of the ith scatterer, transmitter, and receiver, respectively.

Next, let the nth baseband signal emitted by the emitter be an L-length complex-

valued signal denoted by un ∈ CL. Then, making stop-and-hop and narrowband

signal approximations, the discretized baseband received signal, sn ∈ CL, for the nth

slow-time pulse may be modeled as

sn =
M−1∑

m=0

γm,n e−jωoτm,nD (τm,n, νm,n) un + nn, (11)

where M is the number of stationary point scatterers, γm,n ∈ C is the complex-valued

reflectivity for the mth scatterer during the nth slow-time pulse, ωo = 2πfo ∈ R is the

angular carrier frequency of the transmitted signal, D : R× R→ CL×L is the delay-

Doppler operator, nn ∼ CN (0, σ2
nI) is circularly symmetric additive white Gaussian

noise (AWGN), and σ2
n ∈ R is the received signal noise power (assumed constant

across all slow-time pulses). The unitary delay-Doppler operator for an L-length

signal sampled with a sampling rate of fs is

D (τ, ν) = e j2πντFHDiag (τ ) FDiag (ν) , (12)

where F ∈ CL×L is a unitary discrete Fourier transform (DFT) matrix, the `th element

of the delay linear phase ramp, τ ∈ CL, is

[τ ]` = e−j2π
fs
L
d`−L/2eτ , (13)

and the `th element of the Doppler shift linear phase ramp, ν ∈ CL, is

[ν]` = e j2πν
`
fs . (14)

12



Figure 3 depicts a high-level processing chain for forming a SAR image given the

baseband, received signal model in (11). In the discussion to follow each of the shown

processing steps are discussed.
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Figure 3. High-Level SAR imaging processing chain.

To form a SAR image, the received signal is first motion compensated (i.e., mo-

comp) to the measured bistatic delay to the scene center, τ̃0,n, and range compressed

via matched filtering. Assuming measurement errors are present, the nth range profile

or range compressed signal, ξn : R → C, at the measured bistatic delay to the ith

scatterer, τ̃i,n, is

ξn (τ̃i,n) =
(

e−jωoτ̃0,nD (τ̃i,n, ν̃0,n) un
)H

sn

= γi,n e−jωo(τi,n−τ̃0,n)χi,n (τ̃i,n, ν̃0,n) + vi,n + wi,n, (15)

where the matched filtered signal is Doppler compensated to the measured bistatic

Doppler to the scene center ν̃0,n, χi,n : R × R → C is the nth transmitted signal’s

ambiguity function whose peak response is located at (τi,n, νi,n), and vi,n, wi,n ∈ C

are interference and noise terms for the ith scatterer during the nth slow-time pulse,

respectively. The nth transmitted signal’s ambiguity function, whose peak response
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is located at (τi,n, νi,n), is

χi,n(τ, ν) = (D (τ, ν) un)HD (τi,n, νi,n) un. (16)

The interference and noise terms are

vi,n =
M∑

m=0
m 6=i

γm,n e−jωo(τm,n−τ̃0,n)χm,n (τ̃i,n, ν̃0,n) , (17)

and

wi,n =
(

e−jωoτ̃0,nD (τ̃i,n, ν̃0,n) un
)H

nn, (18)

where wi,n ∼ CN (0, σ2
w) and σ2

w = σ2
n ‖un‖2 is assumed constant across all slow-time

pulses (i.e., assume ‖un‖2 = ‖un′‖2 for n, n′ ∈ {0, . . . , N − 1}).

Upon performing motion compensation and range compression, the next step is phase-

only autofocus. The key step of phase-only autofocus is the estimation of phase errors

which manifest in the range compressed data during the motion compensation step

due to motion measurement errors. To convey the detrimental effect phase errors

may potentially have on a SAR image, example ideal and defocused SAR images are

shown in Figure 4. The defocused image in Figure 4 is produced by applying synthetic

phase errors consisting of white phase errors for each slow-time pulse chosen from a

uniform distribution over the interval [−π, π). From the example images depicted in

Figure 4, the potential need for performing autofocus is made apparent.

From (15), the ideal phase error estimate, δ̂φ ∈ CN , is (this result is made more
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(a) Ideal Image. (b) Defocused Image.

Figure 4. Example ideal and defocused SAR images.

evident in Section 3.2)

[
δ̂φ
]
n

= e jωo(τ̃0,n−τ0,n), (19)

and applied to the range compressed data as

ξn (τ̃i,n) :=
[
δ̂φ
]∗
n
ξn (τ̃i,n) . (20)

From inspection of (15), (19) and (20), it is seen that only the leading phase error in

(15) is corrected or compensated for, while the motion measurement errors present in

the delay-Doppler operator of the matched filtered signal are ignored. Ignoring the

motion measurement errors present in the matched filtered signal is what draws the

distinction between phase-only and range-cell migration autofocus algorithms. More

specifically, range-cell migration autofocus attempts to correct for both the leading

phase error and the motion measurement errors in the matched filtered signal, while

phase-only autofocus settles for correcting only the leading phase error. In Section 3.2

analysis is provided to identify when the motion measurement errors present in the
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matched filtered signal may be ignored (i.e., when phase-only autofocus is applicable).

To better see how phase errors manifest in a formed SAR image, for the remainder

of this section the phase error estimate is assumed to be δ̂φ = 1 (i.e., the discussion

proceeds as though no autofocus is performed). In Section 2.2 additional discussion

is provided on the phase estimation step of phase-only autofocus.

Upon performing autofocus, the next step is to form a SAR image. The SAR image,

ζ : R3 → C, at location pi is

ζ (pi) = φ̃
H

i ξi = 1Hξ̃i, (21)

where φ̃i ∈ CN is the measured complex exponential phase vector applied to produce

the SAR image at location pi, ξi ∈ CN consists of the N range profile samples

contributing to the SAR image at location pi, and ξ̃i = ξi � φ̃
∗
i contains the phase

compensated range profile samples contributing to the SAR image at location pi.

In (21) the dependence of the SAR image on the range profile samples, phase error

estimate, and estimated complex exponential phase vector is made implicit.

The expression in (21) encompasses multiple image formation processes, as each point

of the SAR image is expressed as a coherent sum of phase compensated range profile

samples. Figure 5 depicts how φ̃i, ξi, and ξ̃i are defined for two of the most popular

image formation processes: 1) PFA and 2) BPA. For the PFA, the phase vector φ̃i is

a Fourier basis vector, and ξi are the range profile samples obtained after resampling

the phase history data from a polar to a uniformly sampled Cartesian grid (i.e., the

data is reformatted in Figure 3 and Figure 5a). For the BPA, the nth element of

the phase vector is
[
φ̃i

]
n

= e−jωo(τ̃i,n−τ̃0,n), and the nth element of the range profile

samples is [ξi]n = ξn (τ̃i,n) (i.e., the data is not reformatted in Figure 3 and Figure 5b).
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(b) BPA.

Figure 5. PFA and BPA SAR image formation processes.

In the remainder of this section, the expressions introduced for the BPA are used

to build the phase-only autofocus signal model. It is important to note that using

the BPA for analysis does not preclude the PFA, since loosely speaking, the PFA is a

special case of the BPA. In this special case, the stand-off ranges of the transmitter and

receiver to the scene center approaches infinity such that the data collection manifold

maps out a uniformly sampled Cartesian grid. Hence, the need for performing polar-

to-Cartesian resampling of the phase history data is alleviated (i.e., there is zero

wavefront curvature such that the received data already lies on a uniformly sampled

Cartesian grid).

Using the expressions from (15) to (21) for the BPA, the nth phase compensated
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range profile sample contributing to the SAR image at location pi is

[
ξ̃i

]
n

= e jωoδτi,n
(
γi,nχi,n (τ̃i,n, ν̃0,n) + vi,n

)
+ wi,n, (22)

where δτi,n = τ̃i,n − τi,n is the measurement error for the bistatic delay to the ith

scatterer during the nth slow-time pulse, and the interference and noise terms after

phase compensation (i.e., ξ̃i = ξi � φ̃
∗
i ) are redefined as

vi,n := e−jωoδτi,n
[
φ̃i

]∗
n
vi,n =

M∑

m=0
m 6=i

γm,n e jωo(τi,n−τm,n)χm,n (τ̃i,n, ν̃0,n) , (23)

and

wi,n :=
[
φ̃i

]∗
n
wi,n =

(
e−jωoτ̃i,nD (τ̃i,n, ν̃0,n) un

)H
nn. (24)

Given the expression in (22), the vector of phase compensated range profile samples

contributing to the SAR image at location pi is

ξ̃i = Diag (δφ)γi + wi, (25)

where each of the terms is defined as follows:

[δφ]n = e jωoδτi,n , (26)

[γi]n = γi,nχi,n (τ̃i,n, ν̃0,n) + vi,n, (27)

[wi]n = wi,n. (28)

In (26), the phase error vector is spatially variant as the quantity depends upon i (i.e.,

the phase error vector changes for each location pi in the SAR image). However, in
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Section 3.2 it is shown that for appropriate SAR scene sizes the spatially variant

phase error vector is approximately spatially invariant (i.e., the phase error vector is

approximately independent of the location pi in the SAR image for reasonable SAR

scene sizes). Herein, it is assumed an appropriate SAR scene size is chosen so the

spatially invariant phase error model is applicable. Hence, a subscript i is omitted

from the phase error vector δφ in (25) and (26).

The model in (25) represents the phase-only autofocus signal model assumed for

phase-only autofocus algorithms, which includes the GPGA algorithm. In the next

section, the phase estimation step for phase-only autofocus is described in greater de-

tail and the relationship between the GPGA and other existing phase-only autofocus

algorithms is discussed.

2.2 Phase Estimation for Phase-Only Autofocus

In [30] it is shown that generally speaking, phase error estimation for phase-only aut-

ofocus requires solving or finding an approximate solution (typically a local optimal

point) to an optimization problem, whose objective function consists of an image

mask or weighting function and a point transformation (possibly nonlinear) of the

SAR image intensities. Herein, this optimization problem is referred to as the phase

estimation problem.

Let the image intensity, I : R3 × CN → R, be

I(pi, δ̂φ) = |ζ(pi)|2 =
∣∣∣δ̂φ

H
ξ̃i

∣∣∣
2

, (29)

recalling the dependence of the SAR image on the phase error estimate is made
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implicit in (21) and ξ̃i is the vector of phase compensated range profile samples

defined in (25) (i.e., is the range profile samples omitting the phase error correction

for autofocus in (20)). Then, in general the phase estimation problem for performing

phase-only autofocus is

maximize
δ̂φ∈CN

M−1∑

i=0

m(pi, δ̂φ) Γ
(
I(pi, δ̂φ)

)
,

subject to
∣∣∣
[
δ̂φ
]
n

∣∣∣
2

= 1, for n ∈ {0, . . . , N − 1} ,
(30)

where m : R3×CN → R is the image mask and Γ : R→ R is the point transformation

of the SAR image intensities referred to as the generalized sharpness function (GSF)

[30]. From the phase estimation problem in (30) it is not clear how the GSF is

chosen. In a few cases the GSF can be derived as a particular estimator for a given

statistical model. In most other cases, the GSF is chosen heuristically [39]. The

heuristics involved with choosing a GSF largely follow from intuition about designer

metrics which are most suitable for a given scene type, scene content, and/or scenario

(see [30] and references therein for discussion on common designer metrics). In the

four sections to follow, the GSF for the GPGA and other existing autofocus algorithms

is described.

In general, the phase estimation problem in (30) is NP-hard [69, 70]. Thus, for SAR

imaging applications, where the number of slow-time pulses is typically on the order

of N ∼ 102 or more, it is not reasonable to expect to always solve (30) (i.e., find

a global optimal point). Instead, heuristics are needed to obtain an approximate

solution to (30) in a reasonably efficient manner. Given heuristics are necessary to

perform autofocus, it is sensible to evaluate autofocus algorithms using three mea-

sures: 1) performance/robustness, in terms of accurately estimating the phase errors

for a number of scene types, scene content, and scenarios; 2) efficiency, in terms of
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the run-time and computational complexity of the autofocus algorithm; and 3) sub-

optimality, in terms of the suboptimality of the phase error estimate with respect to

a global optimal point of (30). In the four sections to follow, the GPGA and other

existing autofocus algorithms are described and discussed in terms of these three

measures.

2.2.1 Generalized Phase Gradient Autofocus

The GPGA algorithm (and thereby the PGA algorithm) is one of the few autofo-

cus algorithms where the GSF can be derived as a particular estimator for a given

statistical model. In Section 4.7 this derivation is presented in detail, showing the

GSF is the identity function, Γ(x) = x. The image mask or weighting function for

the GPGA algorithm is designed through a scatterer selection process applied to a

formed defocused SAR image yielding

m(pi, δ̂φ) =





1, i ∈ T ,

0, i /∈ T ,
(31)

where T is an index set for moderate or nearly constant signal-to-interference-plus-

noise ratio (SINR) scatterers. In Chapter IV strategies for performing scatterer se-

lection are described in detail. Additionally, in Chapter IV it is shown that with the

PGA algorithm, an additional constraint is placed on the indexing set used in (31)

such that only a single scatterer per range cut may be selected during the scatterer se-

lection process. Using the defined GSF and image mask, the GPGA phase estimation
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problem is

maximize
δ̂φ∈CN

∑

i∈T

∣∣∣δ̂φ
H
ξ̃i

∣∣∣
2

,

subject to
∣∣∣
[
δ̂φ
]
n

∣∣∣
2

= 1, for n ∈ {0, . . . , N − 1} .
(32)

In Section 4.7 it is shown that a global optimal point to the GPGA phase estimation

problem is an MMLE of the phase errors having marginalized over unknown complex-

valued reflectivities of selected scatterers. Thus, an approximate solution to the

GPGA phase estimation problem is as an approximate MMLE of the phase errors.

In Chapter V, three GPGA phase estimators or approximate MMLEs, two of which

are derived from existing PGA phase estimators, are described in detail. These three

phase estimators are referred to as: 1) phase difference (PD), 2) eigenvector relaxation

(EVR), and 3) Max-SDR phase estimators, with the first two being derived from

existing PGA phase estimators. In Chapter V the Max-SDR phase estimator is shown

to yield an approximate MMLE of the phase errors with a worst-case suboptimality

compared to the solution set of MMLEs (i.e., provides a strong statement regarding

the suboptimality of the phase estimator). In Chapter VI results produced from

synthetic and measured data sets using each of the three mentioned phase estimators

are presented and discussed.

2.2.2 Multichannel Autofocus

With the obvious exception of the PGA algorithm, the multichannel autofocus (MCA)

algorithm1 is arguably the most closely related existing autofocus algorithm to the

1Herein, MCA algorithm refers to the class of MCA algorithms developed in [42,45,46,48,49,51,
55].
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GPGA algorithm2. For instance, the GPGA and MCA algorithms share the same

generalized sharpness function, Γ(x) = x [42,45,46,48,49,51,55]. Moreover, for both

the GPGA and MCA algorithms the GSF can be derived as a particular estimator

for a given statistical model. For details regarding the MCA statistical model the

reader is referred to [51]. In large part, where the GPGA and MCA algorithms differ

is in how the image mask is designed. With the GPGA algorithm the image mask

is designed to maximize the GSF over moderate or nearly constant SINR scatterers,

whereas with the MCA algorithm the image mask is designed to minimize the GSF

over low-return regions [42,45,46,48,49,51,55]. In particular, the image mask for the

MCA algorithm is

m(pi, δ̂φ) =




−1, i ∈ T ,

0, i /∈ T ,
(33)

where T is an index set for low-return regions in the SAR image. In [42, 45, 46, 48,

49, 51, 55] it is assumed low-return regions are known a priori based on the antenna

patterns of the transmit and receive antennas. Using the defined GSF and image

mask, the MCA phase estimation problem is

maximize
δ̂φ∈CN

−
∑

i∈T

∣∣∣δ̂φ
H
ξ̃i

∣∣∣
2

,

subject to
∣∣∣
[
δ̂φ
]
n

∣∣∣
2

= 1, for n ∈ {0, . . . , N − 1} .
(34)

In addition to sharing the same GSF, the MCA and GPGA algorithms also share two

similar phase estimators, which provide an approximate solution to their respective

phase estimation problems. These shared phase estimators are the EVR and SDR

phase estimators. For specifics regarding how these phase estimators are applied with

2In fact, the work in [55] initially sparked both the author’s and advisor’s interest into studying
autofocus algorithms.
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the MCA algorithm the reader is referred to [55]. Similar to the Max-SDR phase

estimator mentioned with the GPGA algorithm, the SDR phase estimator described

in [55] also provides a phase error estimate with a worst-case approximation bound

compared to the solution set of the MCA phase estimation problem in (34) (i.e.,

provides a strong statement regarding the suboptimality of the phase estimator).

2.2.3 Maximum Sharpness Autofocus

The maximum sharpness autofocus algorithm is another autofocus algorithm whose

GSF can be derived as a particular estimator for a given statistical model3. For

details regarding the given statistical model the reader is referred to [39]. The GSF

derived for maximum sharpness autofocus is Γ(x) = x2. In the literature, the image

mask or weighting function for maximum sharpness autofocus is generally treated as

being optional (i.e., m(pi, δ̂φ) = 1) [26, 28, 30, 38, 50]. Although, as suggested in [26]

employing a strategy for designing and applying a non-constant image mask could

potentially lead to an improved maximum sharpness autofocus algorithm. Using the

defined GSF and image mask, the maximum sharpness phase estimation problem is

maximize
δ̂φ∈CN

M−1∑

i=0

∣∣∣δ̂φ
H
ξ̃i

∣∣∣
4

,

subject to
∣∣∣
[
δ̂φ
]
n

∣∣∣
2

= 1, for n ∈ {0, . . . , N − 1} .
(35)

For maximum sharpness phase estimation, [26,28,30,38,50] propose using either gra-

dient or coordinate descent to obtain a local optimal point to the maximum sharpness

phase estimation problem. Regardless of the chosen descent technique, a local opti-

mal point is obtained using only a first-order optimality condition. Thus, little can be

3This is true at least in the case where the image is formed using the PFA. It is not clear or
evident from the work in [39] that the same derived result holds for an image formed using the BPA.
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said about the suboptimality of the phase error estimate with respect to the solution

set of the maximum sharpness phase estimation problem. Moreover, it is difficult

to make statements regarding the efficiency or computational complexity of either

descent technique, as their efficiency and computational complexity largely depends

upon the quality of an initialization point.

2.2.4 Minimum Entropy Autofocus

For minimum entropy autofocus the GSF is Γ(x) = −x ln(x), and the image mask is

m(pi, δ̂φ) =
−1

∑M−1
i=0

∣∣∣δ̂φ
H
ξ̃i

∣∣∣
2 . (36)

Substituting these functions in (30) forms what is termed the minimum entropy phase

estimation problem

maximize
δ̂φ∈CN

1
∑M−1

i=0

∣∣∣δ̂φ
H
ξ̃i

∣∣∣
2

M−1∑

i=0

∣∣∣δ̂φ
H
ξ̃i

∣∣∣
2

ln

( ∣∣∣δ̂φ
H
ξ̃i

∣∣∣
2
)
,

subject to
∣∣∣
[
δ̂φ
]
n

∣∣∣
2

= 1, for n ∈ {0, . . . , N − 1} .

(37)

In [33] it is noted that there is no information-theoretic connection for the minimum

entropy GSF. Rather, the minimum entropy GSF is merely chosen as a mathemati-

cally convenient measure of the focus of a SAR image (i.e., is chosen as a heuristic).

To attempt to solve the minimum entropy phase estimation problem in (37), [33] opts

to use optimization transfer. That is, [33] constructs a surrogate GSF Γ(x;x(`)) =

−x ln(x(`)), where x is the original value and x(`) is the value obtained after the `th

iteration of an optimization algorithm. Replacing the GSF in (37) with the surrogate
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GSF produces the surrogate minimum entropy phase estimation problem

maximize
δ̂φ∈CN

1
∑M−1

i=0

∣∣∣δ̂φ
H
ξ̃i

∣∣∣
2

M−1∑

i=0

∣∣∣δ̂φ
H
ξ̃i

∣∣∣
2

ln

( ∣∣∣∣ξ̃
H

i δ̂φ
(`)
∣∣∣∣
2)

,

subject to
∣∣∣
[
δ̂φ
]
n

∣∣∣
2

= 1, for n ∈ {0, . . . , N − 1} ,

(38)

where δ̂φ
(`)

is the phase error estimate after the `th iteration of the minimum entropy

autofocus algorithm.

In [33] coordinate descent is first proposed for obtaining a local optimal point to the

surrogate minimum entropy phase estimation problem. However, since SAR imaging

applications typically involve a large number of slow-time pulses, coordinate descent

tends to be computationally inefficient. To improve computational efficiency, [33]

proposes a heuristic where all the coordinates of the phase error estimate are updated

simultaneously. In [38], this simultaneous update approach is shown to yield the same

local optimal point obtained with coordinate descent, assuming the initialization point

is within some local region around the local optimal point.

2.2.5 Summary

Table 1 provides a summary of the trade-offs for each of the autofocus algorithms

described in this section. Due to the nature of the phase estimation problem (i.e.,

NP-hard), it is difficult (if not impossible) to make sweeping claims such as “auto-

focus algorithm X outperforms one or all other autofocus algorithms.” Moreover, the

performance of each of the autofocus algorithms depends on design parameters in-

cluding but not limited to designing an image mask (i.e., scatterer selection) and/or

stopping criteria for an optimization routine [14]. Thus, barring tests are run with

each autofocus algorithm covering all combinations of design parameters and differ-
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ent data sets representing different scene types, scene content, and scenarios, general

claims comparing the performance of each of the autofocus algorithms are inappro-

priate. Considering testing over such a large space is impractical, a more reasonable

approach to selecting an autofocus algorithm is: 1) identify a set of autofocus algo-

rithms which are expected or assumed to provide adequate performance for expected

scenarios/testing environments then, 2) identify an autofocus algorithm from the set

of considered autofocus algorithms by weighing their respective trade-offs.

From the trade-offs listed in Table 1, one may see the GPGA algorithm has utility

in a number of cases based on the following properties: 1) the GPGA algorithm has

clear statistical motivation as it is an approximate MMLE of phase errors having

marginalized over unknown complex-valued reflectivities of selected scatterers; 2) re-

sults in Chapter VI suggest that for scatterers selected with moderate SINRs the

GPGA algorithm is an efficient estimator of phase errors, meaning the CRLB derived

in Chapter V may be used to predict expected performance; 3) the GPGA algorithm

using Max-SDR phase estimation provides a phase error estimate with a worst-case

suboptimality compared to the solution set of the NP-hard phase estimation problem;

4) the computational complexity and run-time performance for the GPGA algorithm

is independent of an initialization point (i.e., is deterministic); 5) the GPGA algo-

rithm is one of the most computationally efficient algorithms (by way of comparisons

made in the literature between other autofocus algorithms and the PGA algorithm).

Moreover, even in the event maximum sharpness or minimum entropy autofocus is the

autofocus algorithm of choice, due to the relative efficiency of the GPGA algorithm,

the GPGA algorithm may be used for warm-starting the gradient descent methods

(i.e., to provide an initialization point) used with the maximum sharpness or mini-

mum entropy autofocus algorithms (similar to the suggestion made in [33] regarding
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the PGA algorithm).

2.3 Conclusion

In this section, the phase-only autofocus signal model was formulated beginning with

the baseband, received signal model for a bistatic collection geometry. In addition,

in this section a high-level description of the objective of phase-only autofocus was

provided, and a brief summary of many existing phase-only autofocus algorithms was

given. In the next section, analysis is performed to identify when the phase-only

autofocus signal model is applicable and the spatially invariant phase error modeling

assumption holds.
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III. Matched Filter and Image Formation Analysis

In this section matched filter and image formation analysis is performed to identify

bounds on motion measurement errors and SAR scene size limits such that the phase-

only defocus model and spatially invariant phase error assumption are applicable.

3.1 Matched Filter Analysis

As mentioned in Section 2.1 regarding the matched filtered response in (15), phase-

only autofocus is applicable when motion measurement errors in the delay-Doppler

operator of the matched filtered signal have negligible effect on the focus of a SAR

image (i.e., may be ignored). In order to ignore these motion measurement errors,

the ambiguity function or range compressed scattered return of a scatterer in (15)

must coherently combine across slow-time pulses. Thus, at a minimum the ambiguity

function samples must correspond to the mainlobe of a scatterer’s response at each

slow-time pulse. In other words, for phase-only autofocus to be applicable, position

and velocity measurement errors must be limited such that the mainlobe response of

each scatterer’s ambiguity function is sampled in the matched filtered return.

For a band-limited signal, the first null of a scatterer’s mainlobe response in range

occurs at c
B

, where B is the two-sided bandwidth of the transmitted signal. Thus,

the bound on position uncertainty ensuring the mainlobe of a scatterer’s response is

sampled in range is

β
c

B
≥ max

n∈{0,...,N−1}
‖δpt(tn)‖ + ‖δpr(tn)‖

≥ max
i∈{0,...,M−1}
n∈{0,...,N−1}

|cδτi,n| , (39)
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where β ∈ [0, 1] is a proportionality constant set by the system designer for an

allowable range aberration from the peak of a scatterer’s mainlobe response. Using

the expressions in (3) to (6), the inequality in (39) is readily obtained by adding the

following inequalities

|r̃t,i(t)− rt,i(t)| ≤ ‖δpt(t)‖ , (40)

|r̃i,r(t)− ri,r(t)| ≤ ‖δpr(t)‖ . (41)

The intention of the proportionality constant is to enable the system designer to bound

the amount of matched filtered loss due to position uncertainty. For example, letting

β = 0.45 results in no more than roughly 3 dB of matched filtered loss due to position

uncertainty. Example results illustrating this case are provided in Section 3.1.1.

To gain more intuition about (39), consider a monostatic case where δpt(t) = δpr(t)

and β = 1. Then, the result from (39) simplifies to

c

2B
≥ max

n∈{0,...,N−1}
‖δpt(tn)‖ , (42)

which implies for the monostatic case that the Euclidean norm of the position uncer-

tainty should be limited to the monostatic range resolution. The derived bound in

(42) is equivalent to the position uncertainty bound provided in [3].

For a time-limited signal, the first null of a scatterer’s mainlobe response in Doppler

occurs at 1
T

, where T is the coherent processing interval (CPI). Assuming no posi-

tion uncertainty to isolate the effects of velocity uncertainty, the bound on velocity
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uncertainty ensuring the mainlobe of a scatterer’s response is sampled in Doppler is

β
λ

T
≥ max

i∈{0,...,M−1}
n∈{0,...,N−1}

∣∣∣r̂Ht,i(tn)δṗt(tn)− r̂Hi,r(tn)δṗr(tn)
∣∣∣

= max
i∈{0,...,M−1}
n∈{0,...,N−1}

|λ (ν̃i,n − νi,n)| , (43)

where β ∈ [0, 1] is a proportionality constant set by the system designer for an

allowable velocity aberration from the peak of a scatterer’s mainlobe response and

δṗt, δṗr : R → R3 are the transmitter and receiver velocity errors, respectively.

Again, the intention of the proportionality constant is to enable the system designer

to bound the amount of matched filtered loss due to velocity uncertainty. For example,

letting β = 0.45 results in no more than roughly 3 dB of matched filtered loss due

to velocity uncertainty. Example results illustrating this case are also provided in

Section 3.1.1.

To gain more intuition about (43), consider a monostatic case where r̂i,r(t) = −r̂t,i(t),

δṗt(t) = δṗr(t), and β = 1. Then, the result from (43) simplifies to

λ

2T
≥ max

i∈{0,...,M−1}
n∈{0,...,N−1}

∣∣∣r̂Ht,i(tn)δṗt(tn)
∣∣∣ , (44)

which implies for the monostatic case that the magnitude of the velocity uncertainty

along the radial component should be limited to the monostatic velocity resolution

(see [5] for discussion on the monostatic velocity resolution).

To conclude this section, example results illustrating derived bounds on position and

velocity uncertainty for the phase-only defocus model to be applicable are presented

and discussed.
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3.1.1 Example Results

Consider the bistatic scenario shown in Figure 6 for a single slow-time pulse of a SAR

collect. Table 2 is a detailed listing of the parameters for the bistatic scenario shown

in Figure 6. With the depicted scenario, a single stationary scatterer located at the

scene center is assumed. Such a simple collection geometry is assumed to enable the

effects of position and velocity uncertainty to easily be examined for verifying bounds

derived in Section 3.1.

(a) 3D view. (b) Top-down view.

Figure 6. Bistatic scenario for a single slow-time pulse of a SAR collect.

Table 2. Bistatic scenario.

Parameter Symbol Value Units

Transmitter Position pt [ 50.00, 15.00, 10.00 ]T km
Transmitter Position Error δpt [ 12.69, 3.81, 2.54 ]T m
Transmitter Velocity ṗt [ 0.00, 90.00, 0.00 ]T m/s
Transmitter Velocity Error δṗt [ 2.70, 0.81, 0.54 ]T m/s
Receiver Position pr [ 50.00, -15.00, 10.00 ]T km
Receiver Position Error δpr [ 12.69, -3.81, 2.54 ]T m
Receiver Velocity ṗr [ 0.00, 90.00, 0.00 ]T m/s
Receiver Velocity Error δṗr [ 2.70, -0.81, 0.54 ]T m/s
Scatterer ‘0’ Position p0 [ 0.00, 0.00, 0.00 ]T km
Scatterer ‘0’ Velocity ṗ0 [ 0.00, 0.00, 0.00 ]T m/s
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The position and velocity uncertainties for the transmitter and receiver are derived

from (39) and (43), where β = 0.45 to limit the individual matched filtered losses

from position and velocity uncertainty to no more than roughly 3 dB. Specifically,

the position and velocity uncertainties are

δpt = β
c

2B
r̂t,0(tn), (45)

δṗt = β
λ

2T
r̂t,0(tn), (46)

δpr = β
c

2B
r̂0,r(tn), (47)

δṗr = β
λ

2T
r̂0,r(tn). (48)

Figure 7 depicts the surface and contours of the scatterer’s ambiguity function,

χ0(τ, ν), for the bistatic scenario depicted in Figure 6, where the transmitted sig-

nal is a 50 millisecond duration, 5 megahertz bandwidth random phase modulated

signal (i.e., T = 50 ms and B = 5 MHz). Figure 7 also depicts the sample of the

scatterer’s ambiguity function observed in the matched filtered response in (15), for

the given position and velocity uncertainties. As expected, the chosen position and

velocity uncertainties in (45) to (48) result in roughly 3 dB of matched filtered loss

along both the range and Doppler dimensions.

In this section, bounds on motion measurement errors were derived such that the

phase-only defocus model is applicable. In the next section, SAR scene size limits are

derived such that the spatially invariant defocus assumption is valid.
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Figure 7. The surface and contours of a scatterer’s ambiguity function, and the desired
and observed samples in (15), given the position and velocity uncertainties in (45)
to (48).

3.2 Image Formation Analysis

A common modeling assumption made with existing phase-only autofocus algorithms,

including the GPGA algorithm, is that phase errors, which cause SAR image defocus,

are spatially invariant [1–3, 13, 15–17, 19, 20, 23, 26, 28, 30–33, 35, 38, 39, 42, 45, 46, 48,

50,55,59,60]. For far-field imaging with reasonably sized scenes the phase errors are

approximately spatially invariant. However, as larger scene sizes or scenarios where

the far-field approximation does not hold are considered, the spatially invariant phase

error approximation breaks down.

A common approach for handling spatially variant defocus is to divide a larger scene

into smaller sub-images over which the phase errors are approximately spatially in-

variant [2]. Then, autofocus is performed on each sub-image and each corresponding

SAR sub-image is formed. To conclude the process, the full SAR image is formed by

mosaicing together the individual SAR sub-images. Although this divide and conquer

method has proven useful, a question still remains — how large should the sub-images

be such that the phase errors are spatially invariant? In the proceeding discussion,
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this question is answered by deriving an approximate upper bound on differential

bistatic range errors for near- and far-field bistatic geometries, with monostatic as a

special case. The derived bound is expressed in terms of known quantities or quanti-

ties which typically have a known upper bound.

3.2.1 Differential Range Error

To simplify notation in this section, focus is given to the bistatic geometry for an

arbitrarily chosen pulse or slow-time recording of a SAR scenario, so that any time

dependence of the transmitter or receiver position functions may be omitted (see the

notation in Figure 8). By letting the slow-time pulse be arbitrarily chosen, a similar

analysis follows for each pulse of a SAR collect.

pt

pi

pr

ept

epr

brt,i
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bert,i
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Figure 8. Bistatic geometry.

As shown in Section 2.1, the spatial variance of the phase errors is a direct result

of the measured bistatic delay error δτi. The measured bistatic delay error may be

expressed in terms of a spatially variant and invariant component as

δτi = τ̃i − τi

= (τ̃d,i + τ̃0)− (τd,i + τ0)

= δτd,i︸︷︷︸
spatially variant

+ δτ0︸︷︷︸
spatially invariant

, (49)
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where τ̃d,i, τd,i ∈ R are the measured and true differential bistatic delays to pi, respec-

tively, τ̃0, τ0 ∈ R are the measured and true bistatic delays to the scene center, respec-

tively, δτd,i = τ̃d,i − τd,i is the differential bistatic delay error to pi, and δτ0 = τ̃0 − τ0
is the bistatic delay error to the scene center. The measured and true differential

bistatic delays to pi are

τ̃d,i = τ̃i − τ̃0, (50)

τd,i = τi − τ0. (51)

Using the vectors from (3) to (6), the differential bistatic range error is

c δτd,i = c (τ̃d,i − τd,i)

=
(
‖r̃t,i‖ + ‖r̃i,r‖ − ‖r̃t,0‖ − ‖r̃0,r‖

)
−
(
‖rt,i‖ + ‖ri,r‖ − ‖rt,0‖ − ‖r0,r‖

)
. (52)

The measured differential range from the transmitter-to-pi is

‖r̃t,d,i‖ = ‖r̃t,i‖ − ‖r̃t,0‖

= ‖pi − p̃t‖ − ‖p̃t‖ , (53)

where the coordinate system is assumed to be fixed such that p0 = 0 (i.e., the

scene center is the origin of the coordinate system). Similar definitions follow for

the measured differential range from pi-to-receiver, as well as when no measurement

errors are present on the transmitter and receiver positions.

In the next section, a Maclaurin series expansion is used for ‖r̃t,i‖ to express (53) as

a convergent series. Then, using a similar expression for when no measurement errors

are present, an approximate upper bound on the differential range error from (52) is

derived.
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3.2.2 Approximate Differential Range Error Bound

Using the Binomial theorem and letting z = x + y, the Maclaurin series expansion

for
√

1 + z is

√
1 + z = 1 +

z

2
+

+∞∑

k=2

(
1/2

k

)
zk

= 1 +
x+ y

2
+

+∞∑

k=2

k∑

`=0

(
1/2

k

)(
k

`

)
xk−`y`, (54)

where
(
1/2
k

)
is the generalized binomial coefficient [71]. Recognizing

√
1 + z is real

analytic on (−1,+∞) and using the ratio test, one may see the series in (54) converges

to
√

1 + z for z ∈ (−1, 1).

To leverage the Maclaurin series in (54), the Euclidean distance between pi and p̃t is

expressed as

‖r̃t,i‖ =

√
‖p̃t‖2 + ‖pi‖2 − 2pT

i p̃t

= ‖p̃t‖
√

1 +
‖pi‖2

‖p̃t‖2
− 2

pT
i p̃t
‖p̃t‖2

. (55)

Applying (54) to (55) with x =
‖pi‖2
‖p̃t‖2

and y = −2
pT
i p̃t
‖p̃t‖2

, and substituting back in (53)

produces1

‖r̃t,d,i‖ = − pT
i p̃t
‖p̃t‖

+
1

2

‖pi‖2
‖p̃t‖

+
+∞∑

k=2

k∑

`=0

ak,`
‖pi‖2k−2`

‖p̃t‖2k−1
(
pT
i p̃t
)`
, (56)

where ak,` = (−2)`
(
1/2
k

)(
k
`

)
. The series in (56) converges as long as ‖pi‖ <

(√
2− 1

)
‖p̃t‖,

1The function
√

1 + z is real analytic on (−1,+∞) and
‖pi‖2

‖p̃t‖2 − 2
pT

i p̃t

‖p̃t‖2 > −1, since it is assumed

the transmitter and receiver do not coincide with a SAR image scene position. This result is more

evident from the inequality
‖pi‖2

‖p̃t‖2 − 2
pT

i p̃t

‖p̃t‖2 ≥ ‖pi‖2

‖p̃t‖2 − 2
‖pi‖
‖p̃t‖ = x2 − 2x ≥ −1, with the quadratic

reaching a minimum of -1 when x = 1 (i.e., ‖pi‖ = ‖p̃t‖).
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so that |z| = |x+ y| =
∣∣∣ ‖pi‖

2

‖p̃t‖2
− 2

pT
i p̃t
‖p̃t‖2

∣∣∣ < 1 is satisfied2.

Recognizing pT
i p̃t = pT

i pt + pT
i δpt and applying the Binomial theorem to

(
pT
i p̃t
)`

,

(56) may be expressed as

‖r̃t,d,i‖ = − pT
i p̃t
‖p̃t‖

+
1

2

‖pi‖2
‖p̃t‖

+
+∞∑

k=2

k∑

`=0

ak,`,0
‖pi‖2k−2`

‖p̃t‖2k−1
(
pT
i pt
)`

+
+∞∑

k=2

k∑

`=1

∑̀

m=1

ak,`,m
‖pi‖2k−2`

‖p̃t‖2k−1
(
pT
i δpt

)m

(pT
i pt)

m−` , (57)

where ak,`,m =
(
`
m

)
ak,`.

In the case no measurement errors are present δpt = 0 and p̃t is replaced with pt in

(57), producing

‖rt,d,i‖ = − pT
i pt
‖pt‖

+
1

2

‖pi‖2
‖pt‖

+
+∞∑

k=2

k∑

`=0

ak,`,0
‖pi‖2k−2`

‖pt‖2k−1
(
pT
i pt
)`
. (58)

Subtracting (58) from (57) and assuming ‖δpt‖ � ‖pt‖ (i.e., ‖p̃t‖ ≈ ‖pt‖ and

pT
i pt ≈ pT

i p̃t), the differential bistatic range error from the transmitter-to-pi may be

approximated as

‖r̃t,d,i‖ − ‖rt,d,i‖ ≈ −
pT
i δpt
‖p̃t‖

+
+∞∑

k=2

k∑

`=1

∑̀

m=1

ak,`,m
‖pi‖2k−2`

‖p̃t‖2k−1
(
pT
i δpt

)m

(pT
i p̃t)

m−` . (59)

Applying the Cauchy-Schwarz inequality to pT
i δpt, the approximate differential bistatic

2The presented bound is more evident from the inequality
∣∣∣ ‖pi‖2

‖p̃t‖2 − 2
pT

i p̃t

‖p̃t‖2

∣∣∣ ≤ ‖pi‖2

‖p̃t‖2 + 2
‖pi‖
‖p̃t‖ =

x2 + 2x, with the quadratic on the right hand side being less than one on the interval x =(
−1−

√
2,−1 +

√
2
)
.
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range error from (59) is upper bounded by

∣∣‖r̃t,d,i‖ − ‖rt,d,i‖
∣∣ / ‖pi‖ ‖δpt‖‖p̃t‖

+
+∞∑

k=2

k∑

`=1

∑̀

m=1

|ak,`,m|
‖pi‖2k−2`+m ‖δpt‖m

‖p̃t‖2k−1 |pT
i p̃t|m−`

. (60)

A similar bound follows for the differential range error from pi-to-receiver

∣∣‖r̃r,d,i‖ − ‖rr,d,i‖
∣∣ / ‖pi‖ ‖δpr‖‖p̃r‖

+
+∞∑

k=2

k∑

`=1

∑̀

m=1

|ak,`,m|
‖pi‖2k−2`+m ‖δpr‖m

‖p̃r‖2k−1 |pT
i p̃r|m−`

. (61)

Combining the results from (60) and (61), an inequality for the spatially variant phase

error component from (49) is obtained

β
π

2
≥ 2πfo

c

(‖pi‖ ‖δpt‖
‖p̃t‖

+
‖pi‖ ‖δpr‖
‖p̃r‖

+
+∞∑

k=2

k∑

`=1

∑̀

m=1

|ak,`,m|
‖pi‖2k−2`+m ‖δpt‖m

‖p̃t‖2k−1 |pT
i p̃t|m−`

+
+∞∑

k=2

k∑

`=1

∑̀

m=1

|ak,`,m|
‖pi‖2k−2`+m ‖δpr‖m

‖p̃r‖2k−1 |pT
i p̃r|m−`

)

' 2πfo |δτd,i| , (62)

where β ∈ [0, 1] is a proportionality constant set by the system designer for specifying

the allowable amount of change in phase for the spatially variant phase error term

to be considered spatially invariant. The conditions for when the inequality in (62)

holds are as follows:

1. 1√
2−1 ‖pi‖ < ‖p̃t‖ , ‖p̃r‖,

2. ‖δpt‖ � ‖pt‖,

3. ‖δpr‖ � ‖pr‖.

Assuming known upper bounds exist on the position uncertainty, which is typical, all
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quantities in (62) are known, with ‖pi‖ representing a free parameter which specifies

the SAR scene size limit. Thus, the SAR scene size limit, ‖pi‖, for spatially invariant

defocus may be computed numerically using a root finding algorithm. To make this

point more evident, let pi = rip̂i, where ri is the magnitude of pi and p̂i is a unit

vector to pi. Then, using equality in (62), one obtains

0 = − β c

4fo
+

(‖δpt‖
‖p̃t‖

+
‖δpr‖
‖p̃r‖

)
ri

+
kmax∑

k=2

k∑

`=1

∑̀

m=1

|ak,`,m|
‖δpt‖m

∣∣∣p̂T
i
̂̃rt,0
∣∣∣
`−m

‖p̃t‖2k−`−1+m
r2k−`i

+
kmax∑

k=2

k∑

`=1

∑̀

m=1

|ak,`,m|
‖δpr‖m

∣∣∣p̂T
i
̂̃r0,r
∣∣∣
`−m

‖p̃r‖2k−`−1+m
r2k−`i . (63)

For chosen/measured values of β, kmax, ‖δpt‖, ‖δpr‖, ‖p̃t‖ and ‖p̃r‖, 2kmax−1 roots

may be found corresponding to the solutions of (63). Of these roots, at least one is

guaranteed to be purely real since the degree of the real polynomial in (63) is always

odd [72]. Thus, finding the largest purely real root for (63) yields the maximum

radial extent in the direction p̂i for the SAR scene such that the phase errors are

spatially invariant. Repeating this process with a set of p̂i sampled across the unit

circle provides a sampling of a bounding region or polygon over which the phase errors

are approximately spatially invariant.

In the case a single radius is desired for specifying the SAR scene size limit (instead

of a polygon), the following may be solved to obtain the radius to a ball which is
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contained within the bounding region determined from (63)

0 = − β c

4fo
+

(‖δpt‖
‖p̃t‖

+
‖δpr‖
‖p̃r‖

)
ri

+
kmax∑

k=2

k∑

`=1

∑̀

m=1

|ak,`,m|
‖δpt‖m

‖p̃t‖2k−`−1+m
r2k−`i

+
kmax∑

k=2

k∑

`=1

∑̀

m=1

|ak,`,m|
‖δpr‖m

‖p̃r‖2k−`−1+m
r2k−`i . (64)

In the next section example results are shown for near- and far-field imaging scenarios,

where (63) and (64) are used to identify SAR scene sizes for which the phase errors

are approximately spatially invariant.

3.2.3 Example Results

Near-Field Geometry Figure 9 depicts a near-field bistatic SAR imaging scenario

with a center frequency of fo = 2.5 GHz. For the given scenario, the transmitter and

receiver position errors are chosen as realizations of Gaussian random variables

δpt, δpr ∼ N
(
0, σ2I

)
, (65)

where σ2 = 2.52 cm2 is the variance of the position errors.

Figure 10 shows the residual between the true differential range error and that com-

puted using (56) and (57). As expected, as the number of terms considered in the

series expansion is increased, the residual decreases (i.e., the series is converging to

the true value).
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(a) 3D view. (b) Top-down view.

Figure 9. Near-field imaging scenario.

Figure 10. Convergence of (56) and (57).

Figure 11 depicts spatially invariant regions identified using (63) and (64), with β = 1,

kmax = 4, and ‖δpt‖ , ‖δpr‖ = 33/2

2
σ. The value used for ‖δpt‖ and ‖δpr‖ roughly

corresponds to the 90% confidence interval of the Euclidean norm of the Gaussian

distributed position errors3. In Figure 11, the radius of the spatially invariant ball

(the red contour) is ≈ 2 m. The blue contours in Figure 11 show the maximum

3The upper bound assumed for the Euclidean norm of the position uncertainty may be relaxed
or tightened based on the willingness of the system designer to accept SAR scene sizes, which may
include scene positions that do not have spatially invariant phase errors according to the phase
threshold specified in (62).
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differential phase error at each point across the synthetic aperture. Mathematically,

this is

max
n∈{0,...,N−1}

2πfo |δτd,i,n| (66)

at each point pi. As expected, the predicted spatially invariant regions fall within the

π/2 differential phase error contour. The predicted spatially invariant regions are not

tight with the π/2 contour primarily due to the application of the Cauchy-Schwarz in-

equality from (59) to (60), which will rarely hold with equality given random position

errors.

Figure 11. Spatially invariant regions identified using (63) and (64) with β = 1, kmax = 4,

and ‖δpt‖ , ‖δpr‖ = 33/2

2 σ.

Figure 12 depicts the minimum, maximum, and mean differential phase error for each

point located within the identified spatially invariant region in Figure 11, for each

pulse of the synthetic aperture. Mathematically, this is

min /mean/max
i∈S

2πfoδτd,i,n (67)
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for each slow-time pulse across the synthetic aperture, where S is the set of points

within the identified spatially invariant region in Figure 11. In addition, Figure 12

depicts the π/2 differential phase error bound, making it evident no points within the

identified spatially invariant region exceed the specified threshold.

Figure 12. Minimum, maximum, and mean differential phase error for each point
located within the identified spatially invariant region in Figure 11.

Far-Field Geometry Figure 13 depicts a far-field bistatic SAR imaging scenario

with a center frequency of fo = 10 GHz. Again, the transmitter and receiver position

errors are chosen as realizations of Gaussian random variables

δpt, δpr ∼ N
(
0, σ2I

)
, (68)

where σ2 = 0.152 m2 is the variance of the position errors.

Figure 14 shows the residual between the true differential range error and that com-

puted using (56) and (57). Again, as expected, as the number of terms considered in

the series expansion is increased, the residual decreases (i.e., the series is converging
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(a) 3D view. (b) Top-down view.

Figure 13. Far-field imaging scenario.

to the true value).

Figure 14. Convergence of (56) and (57).

Figure 15 depicts spatially invariant regions identified using (63) and (64), with β = 1,

kmax = 4, and ‖δpt‖ , ‖δpr‖ = 33/2

2
σ. Again, the value used for ‖δpt‖ and ‖δpr‖

roughly corresponds to the 90% confidence interval of the Euclidean norm of the

Gaussian distributed position errors3. In Figure 15, the radius of the spatially in-

variant ball (the red contour) is ≈ 95 m. The blue contours in Figure 15 show the

46



maximum differential phase error at each point across the synthetic aperture. Math-

ematically, this is

max
n∈{0,...,N−1}

2πfo |δτd,i,n| (69)

at each point pi. Again, as expected, the predicted spatially invariant regions fall

within the π/2 differential phase error contour.

Figure 15. Spatially invariant regions identified using (63) and (64) with β = 1, kmax = 4,

and ‖δpt‖ , ‖δpr‖ = 33/2

2 σ.

Figure 16 depicts the minimum, maximum, and mean differential phase error for each

point located within the identified spatially invariant region in Figure 15, for each

pulse of the synthetic aperture. Mathematically, this is

min /mean/max
i∈S

2πfoδτd,i,n (70)

for each slow-time pulse across the synthetic aperture, where S is the set of points

within the identified spatially invariant region in Figure 15. In addition, Figure 16
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depicts the π/2 differential phase error bound, making it evident no points within the

identified spatially invariant region exceed the specified threshold.

Figure 16. Minimum, maximum, and mean differential phase error for each point
located within the identified spatially invariant region in Figure 15.

Synthetic Aperture Radar Imaging Results In this section, example autofo-

cused SAR images formed using two different processing schemes are compared. With

the first scheme, autofocus is performed on the full SAR image, ignoring the predicted

spatially invariant phase error bound. In other words, a single phase error correction

is estimated and applied for each point of the SAR image. With the second scheme,

autofocus is performed on sub-images, where the sub-image scene size is determined

by the predicted spatially invariant phase error bound. In other words, a separate

phase error correction is estimated for each sub-image and applied for each point

in the sub-image. Then, the full SAR image is formed by mosaicing together the

individually autofocused sub-images. SAR images formed using these two schemes

make evident the usefulness of the spatially invariant phase error bound derived and

presented in Section 3.2.2.
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For each of the two processing schemes the SAR image is formed using the BPA. In

addition, the images are autofocused using the phase-only SDR autofocus algorithm

presented in [60], where it is assumed that the true location of strong in-scene scatter-

ers is known. Although the SDR autofocus algorithm is considered, any phase-only

autofocus algorithm could be used to obtain comparable results to those presented

herein. The collection geometry assumed for the two processing schemes consists of

the near-field collection geometry described in Figure 9. Figure 17 depicts the col-

lection geometry, this time with the SAR scene consisting of 25 stationary isotropic

point scatterers spaced every 4 meters along the east and north dimensions. A 4

meter-by-4 meter sub-image scene size, which is approximately the spatially invari-

ant phase error bound predicted in Figure 11, is considered for producing the mosaic

SAR image.

(a) 3D view. (b) Top-down view.

Figure 17. Near-field imaging scenario.

Figures 18a and 18b depict the ideal and defocused SAR images, respectively. Fig-

ure 18c depicts the autofocused image produced by performing autofocus on the full

SAR image (i.e., by ignoring the predicted spatially invariant phase error bound).

Figure 18d depicts the autofocused mosaic SAR image produced by performing auto-
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focus on individual 4 meter-by-4 meter sub-images (i.e., by adhering to the predicted

spatially invariant phase error bound).

(a) Ideal SAR image. (b) Defocused SAR image.

(c) SDR autofocused SAR image. (d) SDR autofocused mosaic SAR image.

Figure 18. Comparison of phase-only autofocus SAR image quality as the spatially
invariant phase error model breaks down.

As expected, the SAR image in Figure 18d, where individual 4 meter-by-4 meter

sub-images are autofocused and mosaiced together, is better focused than the SAR

image in Figure 18c, where a single autofocus solution is applied4. The added defocus

4Although the mosaic SAR image is better focused, it does contain discontinuities from separate
autofocus solutions being applied across the image. Dealing with these discontinuities extends
beyond the scope of this work.
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observed in Figure 18c is a direct result of the spatially invariant phase error model

breaking down. For instance, near the center of the SAR image in Figure 18c, the focus

is comparable to the ideal image in Figure 18a. However, near the edges of the SAR

image in Figure 18c, where the spatially invariant phase error model breaks down (see

Figure 11), the scattering responses become less distinguishable. On the other hand,

the defocus observed in the mosaic SAR image in Figure 18d is relatively constant

throughout the SAR image. That is, the residual defocus is no worse near the edges of

the SAR image as compared to the center of the SAR image. The consistency of the

residual defocus observed in Figure 18d, as compared to that observed in Figure 18c,

is a consequence of the spatially invariant phase error model not breaking down within

each of the autofocused sub-images.

3.3 Conclusion

In this section, matched filter and image formation analysis was performed to identify

bounds on motion measurement errors and SAR scene size limits such that the phase-

only defocus model and spatially invariant phase error assumption are applicable. In

the next section, the GPGA algorithm is developed and studied.
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IV. Generalized Phase Gradient Autofocus Algorithm

In this section the GPGA algorithm is formulated. The formulation begins by first

providing a side-by-side description of the PGA and GPGA algorithms, making ev-

ident the GPGA algorithm includes the PGA algorithm as a special case. Next, it

is shown that the GPGA algorithm is applicable with the BPA, while preserving the

four crucial signal processing steps comprising the PGA algorithm. Lastly, it is shown

that with the generalized formulation, whether using the PFA or BPA, the GPGA

algorithm provides an approximate MMLE of phase errors having marginalized over

unknown complex-valued reflectivities of selected scatterers.

4.1 Using the Polar Format Algorithm

For all remaining discussion, unless explicitly stated, the PGA algorithm refers to the

algorithm depicted in Figure 19, which consists of processing steps described in [19].

Before discussing each of these processing steps, it is first important to understand

the assumed relationship between the range profile or range compressed data and the

SAR image.

In [19], the PGA algorithm is formulated using the PFA, meaning the range profile

data is related to the SAR image by a fast Fourier transform (FFT) across slow-time.

As alluded to in Section 2.1 with (25), this implies φ̃i is a Fourier basis vector, and ξi

is a single row of range profile samples from the polar-to-Cartesian resampled data.

As will be seen, understanding this relationship is important as well-known Fourier

identities are used to develop the GPGA algorithm.

The PGA algorithm depicted in Figure 19 begins by first forming a PFA image.
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Figure 19. PGA algorithm [19].

Next, the strongest peaks from a subset of range cuts from the formed PFA image are

centered in cross-range using a circular shift. The set of indices corresponding to the

identified strongest peaks (i.e., selected scatterers) is denoted by T . Upon selecting

and centering scatterers, a window is applied along the cross-range dimension for each

selected range cut. Then, an FFT is computed along cross-range to move from the

image domain to the range profile domain. After moving to the range profile domain,

what is referred to as the data matrix is computed as a sum of outer products of the

circularly shifted and windowed range cuts. Lastly, phase estimation is performed by

solving or finding an approximate solution to the NP-hard phase estimation problem

depicted in Figure 19.

Figure 20 depicts what is termed the GPGA algorithm. Using Fourier identities, the

GPGA algorithm performs each of the signal processing steps of the PGA algorithm

directly in the range profile domain. For instance, centering the strongest peak in a

single range cut using a circular shift in the image domain is equivalent to element-

wise multiplying the range profile samples by the phase vector applied to produce the
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Figure 20. GPGA algorithm.

strongest peak. Mathematically, this equivalence is

Center ζ (pi)

Using Circular Shift
⇐⇒ ξ̃i = ξi � φ̃

∗
i . (71)

Applying a window along the cross-range dimension in the image domain is equiva-

lent to applying a low-pass filter (LPF) to phase compensated range profile samples.

Mathematically, this equivalence is

Window in

Cross-Range
⇐⇒ ξ̃i := HLPFξ̃i, (72)

where HLPF ∈ CN×N is an LPF matrix. The remaining steps of the PGA algorithm,

which include computing the data matrix and performing phase estimation, are per-

formed in the range profile domain and are identical for the GPGA algorithm. Thus,

it is seen that each of the signal processing steps comprising the PGA algorithm may

be performed directly in the range profile domain by way of the GPGA algorithm

depicted in Figure 20.
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At this point in the discussion, the GPGA algorithm has been described as being

applied with the PFA to enable a side-by-side comparison to be made with the PGA

algorithm. In the next section, the GPGA algorithm is described as being applied

with the BPA.

4.2 Using the Backprojection Algorithm

As depicted in Figure 20, the GPGA algorithm using the BPA begins by first forming

a BPA image. Next, the range profile samples and phase vector corresponding to the

strongest peaks in the formed BPA image are identified. These quantities are ξi and

φ̃i for i ∈ T , where again, T is the set of indices corresponding to the strongest peaks

(i.e., selected scatterers) in the formed BPA image. For the BPA, the range profile

samples ξi need not correspond to a single range cut (see Figure 5b), and the phase

vector need not correspond to a Fourier basis vector (recall, the BPA phase vector

is
[
φ̃i

]
n

= e−jωo(τ̃i,n−τ̃0,n)). However, the centering step is still completed through

phase compensation, where an element-wise multiply ξ̃i = ξi�φ̃
∗
i is computed. Upon

performing phase compensation, the windowing step is performed by applying a LPF

to the phase compensated range profile samples, as shown in the right hand side of

(72). Next, what is referred to as the data matrix is computed as a sum of outer

products of the phase compensated and low-pass filtered range profile samples ξ̃i.

Lastly, phase estimation is performed by solving or finding an approximate solution

to the NP-hard phase estimation problem depicted in Figure 20.

Before discussing strategies for applying the GPGA algorithm, it is first important

to point out some of the intuition behind the centering and windowing steps of the

GPGA algorithm when used with the BPA (this same intuition for the centering and

windowing steps of the PGA algorithm when used with the PFA is discussed in [3,20].)
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First, phase compensation is performed to effectively center the point spread function

of each selected scatterer at the scene center of the SAR image (i.e., at the spatial

location p0 where the differential bistatic delay is zero). This centering of the point

spread function is better evidenced by expanding (21)

ζ (pi) = 1Hξ̃i

=
N−1∑

n=0

[
ξ̃i

]
n

e jωo(τ̃0,n−τ̃0,n)

= φ̃
H

0 ξ̃i, (73)

which closely resembles the expression for the SAR image at the scene center: ζ (p0) =

φ̃
H

0 ξ0 = 1Hξ0. Upon centering/aligning the point spread function of each selected

scatterer, windowing is performed. Windowing is performed to try to capture the

majority of the blur or defocus of each point spread function, while filtering energy

outside of the main defocus region to try to improve the effective SINR of each selected

scatterer [3, 20].

From [3,20] and the discussion points above, one may see that the GPGA algorithm

when used with the BPA shares the same intuitions as the PGA and GPGA algorithms

when used with the PFA. Albeit, the intuition for the steps performed with the BPA

is not as readily seen as when the PFA is used, where well-known Fourier identities

may be leveraged.

In Sections 4.3 to 4.5, strategies for performing three of the four crucial signal pro-

cessing steps of the GPGA algorithm are discussed. Discussion on arguably the

most important step of the GPGA algorithm, phase estimation, is withheld from

this discussion as the entirety of Chapter V is dedicated to describing and discussing

trade-offs between different GPGA phase estimators.
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4.3 Scatterer Selection

As will be discussed and shown in Section 4.7, with the GPGA algorithm there is

statistical motivation for selecting scatterers with either moderate or nearly constant

SINR. Since these scattering locations are not generally known a priori, a strategy

must be devised for identifying these scattering locations from formed (and potentially

defocused) SAR images.

Arguably, the most straightforward approach for scatterer selection is to apply a

relative threshold to the formed SAR image. That is, indices of image points with

an image intensity within a specified threshold of the maximum image intensity are

included in T . The intuition behind this approach is that image points with higher

intensity potentially have higher SINR.

A potentially more robust and complicated scheme may consist of using strategies

from constant false alarm rate (CFAR) detection. For instance, the 2D CFAR win-

dowing/filtering process could be applied to the formed SAR image to estimate the

SINR at each point in the image. Then, image points with an estimated SINR exceed-

ing a specified SINR threshold could be included in T . For more details regarding

the many 2D CFAR windowing/filtering strategies available, the reader is referred

to [73–76].

4.4 Low-Pass Filter Design

For GPGA LPF design two strategies commonly employed with the PGA algorithm

are proposed [3]. These strategies include: 1) setting the low-pass width to be the

estimated blur width of the phase errors and 2) employing an LPF with a constant
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shrinking low-pass width over GPGA iterations.

For estimating the blur width of the phase errors, a non-coherent sum of the spectrum

of each set of phase compensated range profile samples is first computed as

x =
∑

i∈T

(
Fξ̃i

)
�
(
Fξ̃i

)∗
. (74)

Substituting in (25) for ξ̃i, and assuming nearly constant reflectivity, high SINR

scatterers are selected during the scatterer selection process (i.e., γi ≈ γi1 and wi is

negligible), x from (74) is seen to be an estimate of the magnitude of the spectrum

of the phase errors

x =
∑

i∈T
(F(Diag (δφ)γi+wi))� (F(Diag (δφ)γi+wi))

∗

≈
∑

i∈T
|γi|2 (Fδφ)� (Fδφ)∗ . (75)

Thus, from x the blur or low-pass width of the window in cross-range, let it be denoted

by W in terms of the number of samples, may be estimated by thresholding x at a

chosen level below the maximum value of x (similar to the approach suggested in [3]).

Once the width has been estimated, the LPF matrix used in (72) may be computed

by

HLPF = FHDiag (h) F, (76)

where

[h]n =





1, |dn−N/2e| ≤ W
2
,

0, else,
(77)
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for n ∈ {0, . . . , N − 1}.

The second and simpler GPGA LPF design strategy is to employ an LPF with a

constant shrinking low-pass width over GPGA iterations. The intuition here is that

after each iteration the image becomes better focused, and the residual phase errors

approach a constant. Hence, the spectrum of the residual phase errors has less blur

width (i.e., as the residual phase errors approach a constant, the spectrum approaches

a delta function with no blur width). For the constant shrinking low-pass width

approach, the LPF matrix may be computed using (76) with h defined as

[h]n =





1, |dn−N/2e| ≤ αk N
2
,

0, else,
(78)

where α ∈ (0, 1] is the constant shrink factor and k ∈ {0, 1, . . .} is the GPGA iteration

number.

4.5 Iterations

As discussed in [19,20], a crucial step of the PGA algorithm is iterating the algorithm.

The intuition for this step is that with each iteration the SAR image becomes better

focused enabling the strongest scattering locations to more easily be identified, and

thereby leads to improved phase estimation. As depicted in Figure 20, the GPGA

algorithm is designed to preserve the crucial step of iterating.

In [3, 20] strategies or stopping criteria are discussed for determining an appropriate

number of PGA algorithm iterations. These strategies apply equally well with the

GPGA algorithm. The simplest of these strategies, and the strategy used for results

presented in Chapter VI, is running the GPGA algorithm for a fixed number of
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iterations. Similar to findings in [19] with the PGA algorithm, the authors have

found the GPGA algorithm provides adequate performance with a number of data

sets using no more than three GPGA iterations. However, the system designer is free

to change the iteration strategy or stopping criteria as seen fit, so both a robust and

computationally efficient implementation of the GPGA algorithm may be realized.

4.6 Summary

At first glance, the GPGA algorithm may only seem useful for applying the PGA

algorithm with the BPA. However, the generalization also has an implication which

improves upon the PGA algorithm from [3,16,17,19,20] using the PFA. For instance,

with the PGA algorithm there is a known limitation in that only one strong peak

per range cut may be centered and used for phase error estimation [14, 45, 55]. This

limitation is alleviated using the generalized implementation shown in Figure 20,

as the phase compensation and low-pass filtering steps may be performed on any

arbitrary set of image points T .

In the next section, the GPGA algorithm, whether using the PFA or BPA, is shown

to provide an approximate MMLE of phase errors having marginalized over unknown

complex-valued reflectivities of selected scatterers.
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4.7 Maximum Marginal Likelihood Estimate

Let the variables in (26) to (28) be distributed as

ωoδτi,n ∼ U [−π, π ) , (79)

γi ∼ CN
(
0, σ2

γ,i11H + σ2
v,iI
)
, (80)

wi ∼ CN
(
0, σ2

wI
)
, (81)

where σ2
γ,i ∈ R is the expected matched filtered power per pulse for the ith scatterer

and σ2
v,i, σ

2
w ∈ R are the expected matched filtered interference and noise powers per

pulse at the ith scattering location, respectively. In (79) to (81) each of the variables

are assumed to be independent with respect to one another. For the statistical model

described by (79) to (81), the following is observed:

1. The complex-valued reflectivities for the ith scatterer, γi,n, are expected to be

perfectly correlated from pulse-to-pulse (i.e., perfectly correlated across n).

2. Both the matched filtered interference and noise powers, σ2
v,i and σ2

w, are con-

stant from pulse-to-pulse (i.e., constant across n).

From the observations stated above a physical implication follows. In particular, for

an anisotropic scattering model a small enough receive aperture, in terms of angular

extent, must be considered for performing autofocus such that the scatterer’s complex-

valued reflectivities and the interference power are expected to be constant from pulse-

to-pulse. This physical implication does not represent a limitation or shortcoming of

any autofocus algorithm leveraging the above statistical model. Rather, this physical

implication dictates how an autofocus algorithm leveraging the above statistical model

must be applied. For instance, if a wide aperture collection geometry is considered,
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then the wide aperture data should be broken up into smaller sub-apertures (a step

commonly done in practice) for performing autofocus so that the statistical model

from (79) to (81) applies.

The SINR, given the above statistical model, for the ith scattering location is

SINRi =
σ2
γ,i

σ2
v,i + σ2

w

. (82)

Without loss of generality, let the interference-plus-noise term be one (i.e., σ2
v,i +

σ2
w = 1), so that SINR is parameterized solely by the expected scatterer’s matched

filtered power σ2
γ,i. Using this assumption and the derivation from Appendix A, the

marginal likelihood for the phase compensated range profile samples from (25), having

marginalized over the unknown complex-valued reflectivities γi, is

ξ̃i
∣∣δφ,η ∼ CN

(
0, σ2

γ,iδφδφ
H + I

)
, (83)

where η ∈ RP is a vector containing all σ2
γ,i for i ∈ T (i.e., vector containing all

hyperparameters) and P is the number of scatterers selected during the scatterer

selection process (i.e., the cardinality of T ).

Using the matrix determinant lemma and Woodbury matrix identity, the determinant

and inverse of the covariance matrix from (83) are

∣∣σ2
γ,iδφδφ

H + I
∣∣ = 1 + σ2

γ,iN (84)

and

(
σ2
γ,iδφδφ

H + I
)−1

= I− δφδφH

1
σ2
γ,i

+N
. (85)
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Substituting (84) and (85) in the log marginal likelihood function for (83) produces

L (δφ,η) ∝ −
∑

i∈T
ln
(
1 + σ2

γ,iN
)

+
∑

i∈T

∣∣∣ξ̃
H

i δφ
∣∣∣
2

1
σ2
γ,i

+N

≈ −
∑

i∈T
ln
(
1 + σ2

γ,iN
)

+ α (η)
∑

i∈T

∣∣∣ξ̃
H

i δφ
∣∣∣
2

, (86)

where constants with respect to δφ and η have been omitted and α : RP → R,

α (η) > 0 is an approximation constant. For the approximation in (86) to hold, it is

assumed selected scatterers have moderate or nearly constant SINR (i.e., Nσ2
γ,i � 1

or σ2
γ,i is nearly constant for all i ∈ T ). One of these two conditions will typically

be satisfied using the GPGA algorithm. In fact, in many cases both conditions will

be satisfied. For instance, the first step of the GPGA algorithm is the selection

of strongest peaks from the formed SAR image (i.e., image points with potentially

high SINR). Moreover, the system designer may enforce that the image intensities

of selected scatterers lie within a given interval such that the image intensities are

approximately constant (i.e., image points with potentially constant SINR).

From (86) the approximate log marginal likelihood is seen to be separable in terms

of the phase errors and the hyperparameters

L (δφ,η) ≈ L1 (η) + α (η)L2 (δφ) , (87)

where L1 : RP → R and L2 : CN → R are defined as

L1 (η) = −
∑

i∈T
ln
(
1 + σ2

γ,iN
)
, (88)

L2 (δφ) =
∑

i∈T

∣∣∣ξ̃
H

i δφ
∣∣∣
2

. (89)
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Thus, given selected scatterers with moderate or nearly constant SINR, an MMLE

for the phase errors, δ̂φ
?
, is obtained by finding a global maximum point to

maximize
δ̂φ∈CN

δ̂φ
H
Ξδ̂φ,

subject to
∣∣∣
[
δ̂φ
]
n

∣∣∣
2

= 1, n ∈ {0, . . . , N − 1} ,
(90)

where Ξ = ξ̃ξ̃
H ∈ HN is the GPGA data matrix (see Figure 20) and ξ̃ =

{
ξ̃i

∣∣∣ i ∈ T
}
∈

CN×P is a matrix consisting of column vectors of phase compensated range profile

samples for each selected scatterer. The optimization problem in (90) is equivalent

to the GPGA phase estimation problem stated in (32), recognizing

δ̂φ
H
Ξδ̂φ = δ̂φ

H
ξ̃ξ̃

H
δ̂φ

= δ̂φ
H

(∑

i∈T
ξ̃iξ̃

H

i

)
δ̂φ

=
∑

i∈T

∣∣∣δ̂φ
H
ξ̃i

∣∣∣
2

. (91)

As mentioned in Section 2.2, the GPGA phase estimation problem is NP-hard. Thus,

for SAR imaging applications, where the size of the GPGA data is typically large, it

is not reasonable to expect to always solve (90) (i.e., find a global optimal point). In-

stead, heuristics are needed to obtain an approximate solution to (90) in a reasonably

efficient manner. As previously mentioned, because heuristics are involved a number

of phase estimators or approximate MMLEs exist, with each providing a trade-off

in terms of performance/robustness, computational complexity, and suboptimality

of the phase error estimate with respect to the solution set of MMLEs for (90). In

the next section, three GPGA phase estimators, two of which are derived from ex-

isting PGA phase estimators, are described in detail and their trade-offs discussed.

However, before continuing on to the next section, some additional comments on the

64



GPGA algorithm are made.

In light of the many comments made in the literature regarding assumptions and

shortcomings of the PGA algorithm, the authors feel it is necessary to highlight

assumptions made and address potential shortcomings with the GPGA algorithm:

1. In (11), the SAR scene is assumed to consist of a collection of stationary point

scatterers — a common modeling assumption made with many SAR imaging

applications. Moreover, (11) relies on stop-and-hop and narrowband signal

approximations, and best models scenarios where scattering bodies are large

compared to the carrier wavelength [77,78].

2. Timing/position errors, which may result from propagation effects, hardware

limitations, and/or motion measurement errors, are assumed to produce spa-

tially invariant phase errors. For this assumption to hold, the SAR scene size is

assumed to be chosen according to the scene size limits derived in Section 3.2.

3. For the statistical model described by (79) to (81), the GPGA algorithm pro-

vides an approximate MMLE of phase errors having marginalized over unknown

complex-valued reflectivities of selected scatterers. For the presented formula-

tion of the GPGA algorithm, no assumptions regarding specific scene types or

scene content are made (e.g., scene containing strong isolated point scatterers

and/or low/high contrast regions). This statement is not to be misinterpreted

as reading, “the GPGA algorithm performs well with all different scene types,”

just that the formulation does not rely upon any scene type or scene content

assumptions.

4. Naturally, the performance of the GPGA algorithm (as well as the PGA algo-

rithm) depends upon the SINR of selected scatterers. Thus, for SAR scenes
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containing moderate to high SINR scatterers and/or regions, it is reasonable

to assume the GPGA algorithm will provide an adequate autofocus solution

(although, extreme edge cases may exist where this is not true). For scenes de-

void of these convenient moderate or high SINR features, the GPGA algorithm

phase error estimation accuracy is generally expected to degrade. Depending

upon a number of factors, most notably SINR, this reduction in phase error

estimation accuracy may or may not be suitable. In other words, while the

estimation accuracy of the GPGA algorithm is generally expected to degrade

with SAR scenes containing lower SINR scatterers and/or regions, it is difficult

to say precisely for which scene types and scene content the GPGA algorithm

phase error estimation accuracy will be inadequate.

4.8 Conclusion

In this section, the GPGA algorithm was formulated by first providing a side-by-side

description of the PGA and GPGA algorithms, making evident the GPGA algo-

rithm includes the PGA algorithm as a special case. Next, it was shown that the

GPGA algorithm was applicable with the BPA, while preserving the four crucial sig-

nal processing steps comprising the PGA algorithm. Lastly, it was shown that with

the generalized formulation, whether using the PFA or BPA, the GPGA algorithm

provides an approximate MMLE of phase errors having marginalized over unknown

complex-valued reflectivities of selected scatterers. In the next section, trade-offs

between three GPGA phase estimators or approximate MMLEs are discussed.
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V. Generalized Phase Gradient Autofocus Phase Estimation

In this section, discussion is provided on three GPGA phase estimators: 1) PD, 2)

EVR, and 3) Max-SDR phase estimators. In this discussion, each of the three GPGA

phase estimators are described in detail and their respective trade-offs are discussed.

In addition, in this section a specialized IPM is presented, which exploits low-rank

structure typically associated with the GPGA phase estimation problem, for more

efficiently performing Max-SDR phase estimation.

5.1 Phase Differencing

The PD phase estimator from [20] is

Arg
([
δ̂φ
]
n

)
=





0, n = 0,

Arg
( n−1∑

n′=0

∑

i∈T

[
ξ̃i

]∗
n′

[
ξ̃i

]
n′+1

)
, else,

(92)

where without loss of generality the argument of the first element of the phase error

estimate is assumed to be zero since the focus of a SAR image is invariant to a constant

phase offset (i.e., one element of the phase error estimate may be arbitrarily assigned,

with all other elements expressed relative to the arbitrarily assigned element).

As noted in [19], the PD phase estimator is derived assuming nearly constant reflec-

tivity, high SINR scatterers are selected during the scatterer selection process (i.e.,

γi ≈ γi1 and wi is negligible). For example, making this assumption, the matched

filtered response from (15) for the ith selected scatterer is approximately

ξ̃i = Diag (δφ)γi + wi ≈ γiδφ. (93)
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Using (93) and rearranging summations, the PD phase estimator from (92) is approx-

imately

Arg
([
δ̂φ
]
n

)
≈





0, n = 0,

Arg
(∑

i∈T
|γi|2

n−1∑

n′=0

[δφ]∗n′ [δφ]n′+1

)
, else.

(94)

which consists of a weighted sum of the numerical integration of the measured phase

difference or phase gradient, [δφ]∗n′ [δφ]n′+1, for each selected scatterer (hence, it is

termed the PD phase estimator).

From (92), one may see the PD phase estimator is easy to implement and has a rela-

tively low computationally complexity of O(NP ). Although the PD phase estimator

is computationally efficient, its performance suffers when high SINR scatterers do

not exist, or are not located and selected during the scatterer selection process [19].

Moreover, little can be said regarding the suboptimality of the PD phase error es-

timate with respect to the solution set of (90). In the next section a more robust

phase estimator, in the sense it does not rely upon a high SINR approximation, is

discussed.

5.2 Eigenvector Relaxation

To formulate the EVR phase estimator, a change of variables is made with the GPGA

phase estimation problem to equivalently express (90) as

maximize
δ̂φ∈CN

δ̂φ
H
Ξδ̂φ,

subject to
∣∣∣
[
δ̂φ
]
n

∣∣∣
2

= 1
N
, n ∈ {0, . . . , N − 1} ,

(95)
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where δ̂φ := δ̂φ/
√
N is the change of variables. By relaxing the equality constraint

in (95), what is referred to as the EVR problem is obtained

maximize
δ̂φ∈CN

δ̂φ
H
Ξδ̂φ,

subject to
∥∥∥δ̂φ

∥∥∥
2

= 1.

(96)

A global optimal point to (96), let it be denoted by v?, is the leading eigenvector of the

GPGA data matrix, Ξ. In order for v? to be directly useful for the phase estimation

problem in (90), it is necessary for v? to have unit-modulus elements (i.e., be feasible

to (90)). Thus, a natural approach for ensuring a feasible point to (90) is obtained

from the solution to (96), is to normalize the elements of v? to be unit-modulus

[
δ̂φ
]
n

=
[v?]n
|[v?]n|

. (97)

Applying this conversion process to obtain a feasible point to (90) is referred to as

EVR, since the elements of the leading eigenvector of Ξ are normalized to be unit-

modulus.

In [19, 20] the authors report the EVR phase estimator outperforms the PD phase

estimator, especially at lower SINRs where the modeling assumption for the PD phase

estimator breaks down. As will be seen in Chapter VI, this reported performance

improvement obtained with the EVR phase estimator over the PD phase estimator

is consistent with findings in this research. Additionally, in [19] the EVR phase

estimator is shown to include the PD phase estimator as a special case when the

number of pulses N = 2.

For performing EVR phase estimation, computing the leading eigenvector of Ξ is

complexity O(N2) [79]. However, when P < N , a condition which may be enforced by
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the system designer of the GPGA algorithm, EVR phase estimation may be performed

more efficiently. For instance, recognizing Ξ = ξ̃ξ̃
H

where ξ̃ ∈ CN×P , EVR phase

estimation may be performed with complexity O(NP ) by computing the leading

singular vector of ξ̃ [79]. Although the computational complexity for the PD and

EVR phase estimators is the same when P < N , in Chapter VI the EVR phase

estimator is shown to have a slightly higher average run-time than the PD phase

estimator.

Similar to the PD phase estimator, the EVR phase estimator generally provides little

insight into the suboptimality of the phase error estimate with respect to the solution

set of (90). The exception to this statement is the special case where the leading eigen-

vector of Ξ has constant modulus elements, in which case the EVR phase estimate is

known to be a global optimal point to (90). In other words, only in special cases does

the EVR phase estimator provide insight into the suboptimality of the phase error

estimate, which is more than can be said for the PD phase estimator. In the next

section a phase estimator which provides a worst-case suboptimality with respect to

the solution set of (90) is discussed (i.e., provides insight into the suboptimality of

the phase error estimate in all cases).

5.3 Max-Semidefinite Relaxation

To formulate the Max-SDR phase estimator, the GPGA phase estimation problem in

(90) is first lifted to a higher dimension. Specifically, letting Φ = δ̂φδ̂φ
H ∈ HN , (90)
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is equivalently expressed as

maximize
Φ∈HN

Tr (ΦΞ) ,

subject to diag (Φ) = 1,

Φ � 0,

Rank (Φ) = 1.

(98)

In (98), the objective function and all constraints, with the exception of the rank-1

constraint, are convex. By relaxing the rank-1 constraint a semidefinite program is

obtained

maximize
Φ∈HN

Tr (ΦΞ) ,

subject to diag (Φ) = 1,

Φ � 0,

(99)

which is referred to as the SDR problem. The SDR problem in (99) is a convex

optimization problem. Hence, a global maximum point to (99), let it be denoted by

Φ?, may be found to an arbitrary accuracy in polynomial time using an IPM [70].

In order for Φ? to be directly useful for the phase estimation problem in (98), it is

necessary Φ? be rank-1 (i.e., be feasible to (98)). When Φ? is rank-1, Φ? is a global

maximum point to (98). In this case, an MMLE of the phase errors, which is a global

maximum point to (90), is obtained by normalizing the leading eigenvector of Φ? to

have unit-modulus elements. In the case Φ? is not rank-1, a conversion process must

be employed to map Φ? to a feasible point of (90).

A natural approach to this conversion process is to apply EVR with the matrix Φ?.

More specifically, a feasible point to (90) is computed by normalizing the elements of

the leading eigenvector of Φ? to be unit-modulus. Albeit straightforward, little can be
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said about the suboptimality of a feasible point to (90) obtained in this manner [80].

Hence, a more robust conversion process, in terms of the suboptimality of an obtained

feasible point, may be desired.

Fortunately, this desired robustness is readily obtained by applying a process known

as randomization [70]. The randomization process for obtaining a feasible point to

(90) from Φ? proceeds as follows:

1. Generate Q realizations distributed as ϕq ∼ CN (0,Φ?) for q ∈ {0, . . . , Q− 1}.

2. Normalize the realizations to have unit-modulus elements:
[
ϕq
]
n

:=
[ϕq]n
|[ϕq]n|

for

q ∈ {0, . . . , Q− 1}.

3. Find the best feasible point to (90) from the set of normalized realizations:

δ̂φ = arg max
ϕ0,...,ϕQ−1

ϕH
q Ξϕq.

At first blush, the randomization process described above may seem to be anything

but robust in terms of the suboptimality of the obtained feasible point. However,

as stated in [70], “the intuitive ideas behind randomization are not difficult to see,

yet the theoretical implications that follow are far from trivial.” In particular, in [69]

the randomization process described above is shown to yield a feasible point to (98)

with a worst-case approximation bound of π/4. Specifically, letting f : CN → R,

f(ϕ) = ϕHΞϕ be the objective function from (90), the worst-case approximation

bound derived in [69] states

f(δ̂φ
?
) ≥ E [f(ϕ)] ≥ π

4
f(δ̂φ

?
), (100)

where δ̂φ
?

is an MMLE (i.e., global optimal point to (90)) and ϕ ∈ CN is generated by

the first two steps of the randomization process described above. The bound derived
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in (100) not only has a profound theoretical implication, but practically speaking, it

also has an implication. As noted in [70], the bound derived in (100) will tend to be

tighter in practice as it is likely a single realization from the randomization process

will yield an objective function value greater than the expected objective function

value (assuming a reasonable number of realizations are generated).

To provide such a strong statement on the worst-case approximation bound for a phase

error estimate, the Max-SDR phase estimator sacrifices computational complexity. In

many SAR imaging applications the demand for increased computational complexity

associated with the Max-SDR phase estimator using a generic IPM is too steep to

make it practical. However, as noted in a number of works (most notably [81–83]),

the complexity and run-time requirements of an IPM may be greatly reduced by

exploiting structure associated with a given problem.

In the next section, a specialized IPM is presented which exploits low-rank structure

typically associated with the GPGA phase estimation problem — thereby making

Max-SDR phase estimation more viable for SAR imaging applications leveraging the

GPGA algorithm.

5.4 Efficient Max-Semidefinite Relaxation

In this section, it is shown that the GPGA data matrix, Ξ, for the SDR problem in

(99) may be constrained to be low-rank, while having negligible effect on the quality

of the autofocus solution (i.e., on the quality of the focused SAR image). Then, by

exploiting this low-rank structure, a specialized IPM is developed and presented for

more efficiently solving the SDR problem in (99) as compared to using a generic IPM.
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5.4.1 Low-Rank Data

A key signal processing step of the GPGA algorithm is scatterer selection. In Sec-

tion 4.3, potential strategies for performing scatterer selection are discussed. Regard-

less of the chosen strategy, the objective of the scatterer selection process is the same

— obtain as many high-quality observations of the phase errors as possible. However,

computationally speaking, there is a benefit to selecting fewer scatterers. In the dis-

cussion to follow, a bound is derived on the number of selected scatterers needed, so

both an efficient and robust implementation of the GPGA algorithm may be realized.

From the derivation in Appendix B, the inverse of the (N − 1) × (N − 1) Fisher

information matrix (FIM) for the argument of the phase errors, [θ]n = Arg ([δφ]n)

for n ∈ {0, . . . , N − 2}, is

J−1θ,θ =
1

2N
∑

i∈T

(
σ2
γ,i

)2

1 +Nσ2
γ,i

(
I + 11H

)
, (101)

where again, without loss of generality σ2
γ,i represents the SINR of the ith selected

scatterer. Letting σ2
γ,min denote the minimum SINR for all selected scatterers (i.e.,

σ2
γ,min ≤ σ2

γ,i for i ∈ T ), the diagonal elements of the inverse of the FIM are bounded

above by

[
J−1θ,θ

]
n,n
≤ 1 +Nσ2

γ,min

NP
(
σ2
γ,min

)2 . (102)

For an efficient estimator, (102) may be used to determine the number of selected

scatterers needed to produce a phase error estimate with a specified mean squared

error (MSE), given a minimum selected scatterer SINR and number of slow-time

pulses. For instance, using the generally accepted phase error threshold of π/4 for
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negligible image defocus [2, 3], the minimum number of selected scatterers for an

efficient estimator is determined from the bound on squared error by solving for P

from

1 +Nσ2
γ,min

NP (σ2
γ,min)2

≤
(
α
π

4

)2
, (103)

where α ∈ (0, 1] is a proportionality constant set by the system designer for a phase

error estimate with a specified MSE.

As will be seen in Chapter VI, Monte Carlo simulation results suggest the Max-

SDR phase estimator is efficient for moderate SINRs (e.g., SINR ≥ 0 dB) and a small

number of slow-time pulses (e.g., N ≥ 10). Thus, for most SAR imaging applications,

where the number of slow-time pulses and SINR conditions are satisfied, the Max-

SDR phase estimator may be considered to be an efficient estimator. Therefore, the

number of selected scatterers needed for Max-SDR phase estimation, to obtain a

phase error estimate with a given MSE, may be determined from (103). For example,

using equality with (103) and considering a proportionality constant of α = 1/4 to

provide a margin of error for realizations that may have a larger squared error than

the expectation (i.e., a margin of error of roughly 6 dB), the number of selected

scatterers needed is

P =

⌈(
16

π

)2 1 +Nσ2
γ,min

N
(
σ2
γ,min

)2

⌉
. (104)

Figure 21 shows (104) evaluated over the parameter space of number of slow-time

pulses and minimum selected scatterer SINR. From Figure 21 one may see that under

moderate conditions the number of selected scatterers needed to obtain an adequate

autofocus solution is no more than roughly 30. The moderate conditions under which
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no more than roughly 30 selected scatterers are needed are as follows: 1) minimum

selected scatterer SINR of roughly 0 dB and 2) number of slow-time pulses is greater

than or equal to 10.

Figure 21. Number of scatterers, P , needed during the scatterer selection process for
an efficient estimator to produce a phase error estimate with an MSE of (απ/4)

2
, with

α = 1/4.

In the next section, a specialized IPM is presented, which exploits the low-rank struc-

ture typically associated with the GPGA phase estimation problem.

5.4.2 Specialized Interior Point Method

In this section, a specialized IPM is developed for solving (99) using a similar strategy

to that employed in [84]. In the context of Max-SDR phase estimation, the strategy

employed in [84] proceeds as follows: 1) solve the Lagrange dual problem associated

with the SDR problem in (99) using an IPM, then 2) use the computed Lagrange

dual solution to calculate an optimal point to the SDR problem in (99). To improve

upon the efficiency of the approach used in [84], the low-rank structure of the GPGA

data matrix discussed in Section 5.4.1 is exploited.
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The Lagrange dual problem for (99), referred to as the dual semidefinite relaxation

(DSDR) problem, is derived in Appendix C and shown to be

minimize
x∈RN

−1Tx,

subject to G(x) � 0,

(105)

where x ∈ RN is the dual variable and G : RN → HN , G(x) = Diag (x) + Ξ is a

matrix involving the dual variable, x, and the GPGA data matrix, Ξ.

To solve (105) to an arbitrary accuracy, a logarithmic barrier function is used to

enforce the linear matrix inequality (LMI), and a series of unconstrained optimization

problems are solved using Newton’s method. The series of unconstrained optimization

problems, referred to as the dual barrier problems, are

minimize
x∈RN

−µk1Tx + ψ(x), (106)

where µk+1 > µk > 0 is an increasing sequence of barrier parameters defining the

series of dual barrier problems and the logarithmic barrier function ψ : RN → R

applied to the LMI in (105) is

ψ(x) =




− ln (|−G(x)|) , |−G(x)| > 0,

+∞, else.
(107)

Algorithm 1 is pseudocode describing how the series of dual barrier problems are

used to obtain an ε-suboptimal point to the SDR problem in (99), where ε > 0 is an

arbitrary suboptimality. From inspection of Algorithm 1, one may see the algorithm

involves two key steps: 1) solving the unconstrained dual barrier problem in (106)

using Newton’s method, and 2) computing an ε-suboptimal point to (99) given an
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ε-suboptimal point x?k+1 to the dual barrier problem. In the proceeding discussion,

additional details are provided on each of these key steps.

Algorithm 1: Specialized SDR Interior Point Method

inputs : GPGA data ξ̃ ∈ CN×P and suboptimality ε > 0
output: ε-suboptimal point Φ? ∈ HN to (99)

// Normalize data for numerical stability, since (99) is invariant to a positive scaling of the

objective function.

1 ξ̃ ← ξ̃/‖ξ̃‖F
2 x?0 ← −(1 + 10−6)1 ; // strictly feasible point to (105)

3 µ0 ← 1 ; // initial barrier parameter

4 a← 1.1 ; // barrier parameter update rate, a > 1

5 for k ← 0 to max. iter.−1 do
6 x?k+1,G

−1(x?k+1)← Solve (106) with Algorithm 2, given barrier parameter µk,
initial strictly feasible point x?k, suboptimality ε, and

GPGA data ξ̃
7 µk+1 ← aµk ; // update the barrier parameter

8 if N/µk ≤ ε then // check suboptimality

// Approx. ε-suboptimal SDR point

9 Φ? ← NG−1(x?k+1)/
(
1Tdiag

(
G−1(x?k+1)

))

10 if −1Tx?k+1 − Tr (ΞΦ?) > ε then
11 continue to the next iteration
12 else
13 break from the loop
14 end

15 end

16 end

5.4.3 Newton’s Method

In order to apply Newton’s method to (106), both the gradient and Hessian of the

dual barrier objective function are needed. Using Wirtinger calculus [85–89], the
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gradient and Hessian are (see Appendix D)

∇x

(
−µk1Tx + ψ(x)

)
= − µk1− diag

(
G−1(x)

)
, (108)

and

[
∇2

x

(
−µk1Tx + ψ(x)

)]
m,n

=
∣∣∣
[
G−1(x)

]
m,n

∣∣∣
2

. (109)

Given expressions for the gradient and Hessian, Algorithm 2 is pseudocode describ-

ing how the dual barrier problem in (106) is solved to an arbitrary accuracy using

Newton’s method. In Algorithm 2 the most computationally complex steps are the

inversion of G(x) and the Hessian, as each of these inversions is complexity O(N3)

using a brute force solver. However, given the low-rank structure of the GPGA data

matrix (e.g., P < N), the inverse of G(x) may be computed more efficiently with

complexity O(NP 2) using the Woodbury matrix identity

G−1(x) = Diag−1(x)−AB−1AH, (110)

where A = Diag−1(x)ξ̃ ∈ CN×P and B = I + ξ̃
H

Diag−1(x)ξ̃ ∈ HP . Because Al-

gorithm 2 is initialized with and only steps to strictly feasible points of the DSDR

problem in (105), the inverse of B exists at each point. To see this, let x be a

strictly feasible point to (105) satisfying the LMI 0 � ξ̃ξ̃H ≺ Diag (−x). Then, us-

ing the matrix determinant lemma it is seen 0 < |−G(x)| = |Diag (−x)| |B|, where

|Diag (−x)| > 0 since 0 ≺ Diag (−x). It then follows that |B| 6= 0, which is true if

and only if the inverse of B exists.

Next, a method is presented for computing the inverse Hessian with reduced com-
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Algorithm 2: Newton’s Method

input : Barrier parameter µ ∈ R, initial strictly feasible point x0 ∈ RN ,
suboptimality ε > 0, and GPGA data ξ̃ ∈ CN×P

output: ε-suboptimal point x ∈ RN to (106)

1 for k ← 0 to max. iter.−1 do
2 if P < N then
3 G−1(x)← inverse using (110)
4 else
5 G−1(x)← brute force inverse
6 end

7 g← −µ1− diag
(
G−1(x)

)
; // gradient using (108)

8 [H]m,n ←
∣∣∣
[
G−1(x)

]
m,n

∣∣∣
2

; // Hessian using (109)

9 if P 2 < N/4 then // See footnote10

10 H−1 ← inverse Hessian using (114)
11 else
12 H−1 ← brute force inverse Hessian
13 end

14 ∆x← −H−1g ; // compute Newton step

15 if −gT∆x ≤ ε then // check suboptimality

16 break from the loop
17 end

18 β ← backtracking line search step-size [82, pg. 464]

19 if β ‖∆x‖ / ‖x‖ ≤ ε then // check progress

20 break from the loop
21 else // take Newton step

22 x← x + β∆x
23 end

24 end
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plexity when1 P 2 < N . First, let B−1 = C0C
H
0 and C = AC0 ∈ CN×P . Then, using

(110) the Hessian from (109), let it be denoted by H ∈ SN , is

H =
(
Diag−1(x)−CCH

)
�
(
Diag−1(x)−CCH

)∗

= D + C̃C̃
H
, (111)

where D ∈ SN is a diagonal matrix

D = Diag−2(x)− 2Diag−1(x)�
(
CCH

)
, (112)

and C̃ ∈ CN×P 2
is

C̃ =

[
DiagH(c0)C, . . . , DiagH(cP−1)C

]
, (113)

with cp denoting the pth column vector of C. Using the Woodbury matrix identity,

the inverse Hessian may be computed with complexity O(NP 4) by

H−1 = D−1 −D−1C̃
(
I + C̃

H
D−1C̃

)−1
C̃

H
D−1, (114)

since D is diagonal and easily inverted.

5.4.4 Max-Semidefinite Relaxation Feasible Point

From (99) and (105) one may see Slater’s condition is satisfied, since for each problem

there exists a strictly feasible point [82]. For example, Φ = I and x = −(‖Ξ‖2F + δ)

are strictly feasible points to (99) and (105), respectively, where δ > 0 is an arbitrary

1Although the complexity is reduced when P 2 < N , the author has found through experimenta-
tion that due to added computational steps, the described method for computing the inverse Hessian
tends to provide a run-time performance improvement when P 2 < N/4.
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positive constant. Because Slater’s condition is satisfied, the duality gap between the

primal and dual problems in (99) and (105) is zero [82,90,91], meaning

Tr (ΞΦ?) = −1Tx?, (115)

where Φ? ∈ HN and x? ∈ RN are global optimal points to (99) and (105), respectively.

As shown in [82, pp. 600], given an optimal point to (106), let it be denoted by x?k+1,

a feasible point to (99) is obtained by Φ? = −G−1(x?k+1)/µk, where µk is the barrier

parameter used in (106) for obtaining x?k+1. In Algorithm 2 this step is not performed

explicitly, since only an ε-suboptimal point is obtained to the dual barrier problem in

(106) (i.e., the ε-suboptimality potentially leads to the scale factor −1/µk not being

precisely correct). Instead, to account for this potential imprecision, the inverse of

G(x) is scaled by the mean of the diagonal elements, 1Tdiag
(
G−1(x?k+1)

)
/N . Since

each of the diagonal elements consists of a potentially perturbed version of −1/µk

due to having an ε-suboptimal point x?k+1, the mean of the diagonal values captures

the true perturbed scale factor needed to compute an approximate feasible point to

(99). In addition, because Φ? is computed using an ε-suboptimal point to (105), the

suboptimality of Φ? may not be precisely ε when N/µk ≤ ε. As a result, Algorithm 1

is designed to evaluate the true suboptimality and perform additional iterations of

the specialized SDR IPM if necessary.

5.4.5 Computational Complexity

To conclude this section, the complexity of the presented specialized IPM is deter-

mined and compared against a generic IPM. From [82], the worst-case number of

iterations needed for Algorithm 1, ignoring leading constant terms, is ln(N/ε). Ad-
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ditionally, the worst-case number of Newton’s method iterations (i.e., Algorithm 2

iterations) is
√
N [82]. Using these worst-case number of iterations, Table 3 is a

tabulation of the computational complexity for the specialized and a generic IPM for

solving (99). Although the computational complexity for the specialized IPM is only

reduced when P 2 < N , the number of O(N3) operations performed to solve (99) is

reduced compared to a generic IPM when P < N . In Chapter VI run-time results

are presented making this point evident.

Table 3. Computational complexity comparison between the specialized IPM in Algo-
rithm 1 and a generic IPM for solving (99).

Specialized IPM Generic IPM

P 2 < N O(N1.5P 4 ln(N/ε)) O(N3.5 ln(N/ε))
P 2 ≥ N — O(N3.5 ln(N/ε)) —

5.5 Conclusion

In this section, discussion was provided on three GPGA phase estimators: 1) PD,

2) EVR, and 3) Max-SDR phase estimators. Table 4 is a summary of the trade-offs

discussed for each of the three GPGA phase estimators. In addition, in this section a

specialized IPM was presented, which exploits low-rank structure typically associated

with the GPGA phase estimation problem, for more efficiently performing Max-SDR

phase estimation. In the next section, results produced using each of the discussed

GPGA phase estimators are presented and compared.
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Table 4. Summary of trade-offs between different GPGA phase estimators.

Estimator Summary

- Assumes high SINR scatterers are selected
PD - Most efficient with complexity O(NP )

- No insight into suboptimality of phase error estimate
- Assumes moderate or nearly constant SINR scatterers are selected

EVR - Second most efficient with complexity O(NP )
- In general, no insight into suboptimality of phase error estimate
- Assumes moderate or nearly constant SINR scatterers are selected

Max-SDR - Least efficient with complexity O(N1.5P 4 ln(N/ε)) when P 2 ≤ N ,
and O(N3.5 ln(N/ε)) otherwise

- Provides phase error estimate with worst-case suboptimality
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VI. Results

In this section, four sets of results produced using the GPGA algorithm with different

phase estimators are presented and discussed. The first set of results includes Monte

Carlo simulation results examining the MSE of the argument of phase error estimates

for different GPGA phase estimators versus SINR. The second set of results includes

Monte Carlo simulation results examining the average run-time for different GPGA

phase estimators versus the size of the GPGA data (i.e., number of slow-time pulses N

and number of selected scatterers P ). For the third set of results, the GPGA algorithm

is used to autofocus a measured, near-field bistatic SAR data set collected using

a small-scale experimental setup in the Radar Instrumentation Laboratory (RAIL)

at the Air Force Institute of Technology (AFIT). For the fourth set of results, the

GPGA algorithm is applied to measured, far-field SAR data from the GOTCHA

Public Release Dataset [92], where synthetic phase errors are applied to the data to

produce image defocus.

For each of the presented results, the GPGA algorithm is configured as follows: 1) to

attempt to select either moderate or constant SINR scatterers, only image points with

an image intensity within 10 dB of the maximum image intensity may be selected; 2)

a maximum number of 30 scatterers may be selected per GPGA iteration to reduce

computational complexity; 3) the GPGA algorithm is run for three iterations (except

where explicitly stated). In addition, for performing Max-SDR phase estimation,

Algorithm 1 is implemented in MATLAB with a suboptimality of ε = 10−3 and

number of randomization realizations Q = 500. Each of the aforementioned settings

are free to be changed by the system designer as seen fit. However, the author has

found the listed configuration works well on a number of data sets, all while reducing

computational complexity.
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6.1 Phase Error Estimate Mean Squared Error

Figure 22 depicts Monte Carlo simulation results showing the MSE of the argument

of phase error estimates versus SINR for different GPGA phase estimators, with

N ∈ {10, 100} slow-time pulses and P ∈ {20, 30} selected scatterers. In addition,

Figure 22 shows the CRLB for each SINR calculated from (101). For each trial of the

Monte Carlo simulation, P vectors containing constant SINR range profile samples

are drawn from the marginal distribution in (83), and used with the different GPGA

phase estimators to produce a phase error estimate. Then, the MSE of the argument

of each phase error estimate, as compared to the argument of the true phase errors,

is computed. For each SINR shown in Figure 22, 5× 103 Monte Carlo trials are run.

From Figure 22 it is clear the EVR and Max-SDR phase estimators drastically out-

perform the PD phase estimator at lower SINRs, which is consistent with discussion

points in Section 5.1 and comments made in the literature regarding the bias of the

PD phase estimator at lower SINRs [17, 19]. In addition, Figure 22 suggests that

on average, the performance of the EVR and Max-SDR phase estimators is nearly

equivalent, at least as simulated with the ideal model in (83). However, as mentioned

previously, the EVR phase estimator does not share the same worst-case approxi-

mation bound provided with the Max-SDR phase estimator (i.e., little can be said

regarding the suboptimality of the EVR phase error estimate with respect to the

solution set of MMLEs).

From the expression for the CRLB in (101), it is seen that for large pulse-SINR

products (i.e., Nσ2
γ,i � 1), the CRLB is inversely related to only the SINR and

number of selected scatterers. In other words, for large pulse-SINR products the
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(a) N = 10, P = 20 (b) N = 100, P = 20

(c) N = 10, P = 30 (d) N = 100, P = 30

Figure 22. MSE of the argument of the phase error estimate for the PD, EVR, and
Max-SDR phase estimators versus SINR and the size of the GPGA data (i.e., number
of slow-time pulses N and number of selected scatterers P ).

CRLB is approximately

[
J−1θ,θ

]
n,n
≈ 1

Pσ2
γ,i

. (116)

Thus, for an efficient estimator with a large pulse-SINR product, the variance on phase

error estimates is driven primarily by the SINR and number of selected scatterers.

From Figure 22 this relationship is made evident. For instance, in Figures 22a and 22b,

and Figures 22c and 22d, the CRLB approaches nearly the same value as SINR
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increases, whether using N = 10 or N = 100. In the next section, the average

run-time for different GPGA phase estimators is presented and discussed.

6.2 Average Run-Time

In this section, Monte Carlo simulations are run to compute the average run-time

for different GPGA phase estimators versus the size of the GPGA data (i.e., number

of slow-time pulses N and number of selected scatterers P ). In addition, to make

evident the efficiency improvement provided by the specialized IPM over a generic

IPM in solving (99), two separate implementations of the Max-SDR phase estimator

are considered using the following IPMs: 1) specialized IPM described in Algorithm 1

and 2) generic IPM from the SDPT3 solver shipped with CVX [93]. For the Monte

Carlo simulation the average run-time for each GPGA phase estimator is recorded

using 103 Monte Carlo trials.

The run-time results in Figure 23 make evident the efficiency improvement realized

with the specialized IPM, as compared to a generic IPM, when the number of slow-

time pulses is large compared to the number of selected scatterers. For example, for

N = 50 and P = 30 the generic IPM is slightly faster than the specialized IPM.

However, for N = 103, which is typical for SAR imaging applications, the specialized

IPM is roughly two orders of magnitude faster than the generic IPM.

As expected, the average run-time for the PD and EVR phase estimators is sig-

nificantly less than the Max-SDR phase estimator, as both of their computational

complexities is O(NP ). However, as previously discussed, the efficiency gained with

the PD and EVR phase estimators over the Max-SDR phase estimator comes at the

expense of robustness, in terms of having a worst-case approximate bound on a phase
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(a) P = 2

(b) P = 10

(c) P = 30

Figure 23. Average run-time for different GPGA phase estimators versus the size of
the GPGA data (i.e., number of slow-time pulses N and number of selected scatterers
P ).

error estimate as compared to the solution set of MMLEs (i.e., represents an efficiency

versus robustness trade-off).
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As an additional point of context regarding the run-time associated with SDR phase

estimation, [55] reported in 2013 that SDR phase estimation, not exploiting low-rank

structure and using a spectral bundle method, took on the order of 30 minutes and

24 hours to converge to a solution for N ∈ {1500, 2000} with 8 GB of RAM and

a clock rate of 2.66 GHz. On the other hand, the presented specialized IPM takes

roughly 7 and 13 seconds for performing SDR phase estimation for P = 30 and

N ∈ {1500, 2000} with 16 GB of RAM and a clock rate of 2.6 GHz. In the next

section the GPGA algorithm is used to autofocus a measured, near-field bistatic SAR

data set.

6.3 Near-Field Imaging

Figure 24 depicts the small-scale experimental setup used for collecting bistatic SAR

data in the RAIL at AFIT. The system and setup shown in Figure 24 has been used

previously to generate test data for passive and bistatic SAR algorithm validation

[60,94–97]. On the transmit side, the RAIL system consists of a Tektronix arbitrary

waveform generator (AWG) connected to an AirMax 2G-16-90 sector antenna. The

AWG is controlled with a laptop through a MATLAB graphical user interface (GUI),

and is capable of loading MATLAB data files containing arbitrary waveforms. On

the receive side, the RAIL system consists of an AirMax 2G-16-90 sector antenna

mounted on a linear motor driven rail that is controlled with a laptop through a

MATLAB GUI. The receive antenna is fed into a Tektronix TDS6124 digital storage

oscilloscope, which records and stores data for post-processing.

Figure 25a depicts the measured defocused SAR image, where the defocus is primar-

ily a result of unknown, random timing delays in the software triggers of the system
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(a)

2 m

Rx

Tx

3 m

6 m

4 m

2 m

1 m

3 m

(b)

Figure 24. Experimental system and setup from [60,94–97].

which contribute to receiver position uncertainty during the collection. From Fig-

ure 25a a near-field response is evidenced by the curvature of the energy in the image

along the cross-range dimension. Hence, the PFA is not well-suited for this collection

geometry as the far-field approximation does not hold. Figures 25b to 25d depict the

autofocused BPA images and the scatterers selected during the third iteration of the

GPGA algorithm using the PD, EVR, and Max-SDR phase estimators. For each of

the autofocused images, the four plate reflectivities are more clearly discernible than

in the measured defocused image, with only minor differences present between each of

the results. For instance, with the PD phase estimator each of the autofocused plate

responses seem to be rotated from the scene center, while appearing to have little

effect on the overall focus of the image. With the EVR and Max-SDR phase estima-

tion results, the autofocused images are nearly identical with only subtle differences

arising in the sidelobes of the plate responses.
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(a) Measured defocused BPA image. (b) PD phase estimator.

(c) EVR phase estimator. (d) Max-SDR phase estimator.

Figure 25. Measured and autofocused BPA images produced using the GPGA algo-
rithm with different phase estimators, for the experimental setup in Figure 24.

6.4 Far-Field Imaging

In this section, the public release data set, referred to as “Gotcha Volumetric SAR

Data Set, Version 1.0,” is used to produce example autofocus results using the GPGA

algorithm [92]. The Gotcha data set consists of X-band SAR data with a bandwidth

of 640 MHz [92]. For results shown herein, an aperture consisting of 469 slow-time

pulses of data, ranging from 0o to 4o azimuth, is used.
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6.4.1 Using the Polar Format Algorithm

For applying the GPGA algorithm with the PFA, the Gotcha SAR data is first resam-

pled from a polar to a uniformly sampled Cartesian grid, resulting in 1024 slow-time

pulses of resampled data. Then, synthetic phase errors are applied to the resampled

data. The synthetic phase errors consist of white phase errors for each slow-time

pulse chosen from a uniform distribution over the interval [−π, π).

Figures 26a and 26b depict the ideal and defocused PFA SAR images. Figures 26c

to 26e show autofocused PFA SAR images after applying the GPGA algorithm for

three iterations using different GPGA phase estimators. Figure 26f shows the true and

estimated phase errors. For the shown PFA autofocus results, quantities which the

autofocus solution are invariant to are removed. These invariant quantities include:

1) constant phase offset, 2) 2π jumps in phase, and 3) linear phase ramp (which results

in image translation) [98]. As evidenced by Figures 26c to 26e, the GPGA algorithm

using the PFA with the PD, EVR, and Max-SDR phase estimators is able to restore

the defocused image to closely resemble the ideal image. Moreover, with the shown

autofocused results there appear to be no distinguishable differences between the

autofocused images produced using the PD, EVR, and Max-SDR phase estimators.

To provide additional insight into how the performance of the GPGA algorithm may

change based on its configuration, the MSE of the phase error estimates produced from

the defocused SAR image in Figure 26b is evaluated versus different configuration

parameters. In particular, Tables 5 to 7 are tabulations of the MSE of the phase

error estimates and number of selected scatterers versus the applied relative threshold

for scatterer selection and number of GPGA iterations run. As illustrated with the

results in Tables 5 to 7, the MSE of the phase error estimates is generally expected
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to decrease with the number of moderate or constant SINR scatterers selected and

number of GPGA iterations run. Moreover, the Max-SDR phase estimator is generally

expected to provide phase error estimates with the lowest MSE, followed in order by

the EVR and PD phase estimators.

Table 5. MSE of PD phase error estimates in radians2 and number of selected scatterers
versus the relative threshold for scatterer selection and the number of GPGA iterations
run.

Iteration
Iter. #1 Iter. #2 Iter. #3 Iter. #4 Iter. #5

R
el

.
T

h
re

sh
ol

d 15 dB
3.251

30

0.796

30

0.092

17

0.075

8

0.053

7

10 dB
3.251

30

0.330

3

0.168

6

0.055

6

0.045

3

5 dB
3.251

30

2.485

1

0.308

1

0.308

1

0.308

1

Table 6. MSE of EVR phase error estimates in radians2 and number of selected scat-
terers versus the relative threshold for scatterer selection and the number of GPGA
iterations run.

Iteration
Iter. #1 Iter. #2 Iter. #3 Iter. #4 Iter. #5

R
el

.
T

h
re

sh
ol

d 15 dB
3.311

30

0.115

30

0.045

7

0.045

7

0.045

7

10 dB
3.311

30

2.798

10

0.045

3

0.045

3

0.045

3

5 dB
3.311

30

3.248

3

0.097

1

0.087

1

0.087

1

6.4.2 Using the Backprojection Algorithm

For applying the GPGA algorithm with the BPA, synthetic phase errors are applied

directly to the 469 pulses of data (i.e., there is no polar-to-Cartesian resampling of
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Table 7. MSE of Max-SDR phase error estimates in radians2 and number of selected
scatterers versus the relative threshold for scatterer selection and the number of GPGA
iterations run.

Iteration
Iter. #1 Iter. #2 Iter. #3 Iter. #4 Iter. #5

R
el

.
T

h
re

sh
ol

d 15 dB
3.278

30

0.126

30

0.012

7

0.012

7

0.012

7

10 dB
3.278

30

0.285

24

0.013

3

0.013

3

0.013

3

5 dB
3.278

30

3.267

12

0.333

2

0.075

1

0.075

1

the data). Again, the synthetic phase errors consist of white phase errors for each

slow-time pulse chosen from a uniform distribution over the interval [−π, π).

Figures 27a and 27b depict the ideal and defocused BPA SAR images. Figures 27c

to 27e show the autofocused BPA SAR images after applying the GPGA algorithm

for three iterations using different GPGA phase estimators. Figure 27f shows the

true and estimated phase errors. For the shown BPA autofocus results, quantities

which the autofocus solution are invariant to are removed. These invariant quantities

include: 1) constant phase offset and 2) 2π jumps in phase [98]. As evidenced by

Figures 27c to 27e, the GPGA algorithm using the BPA with the PD, EVR, and

Max-SDR phase estimators is able to restore the defocused image to closely resemble

the ideal image. Moreover, with the shown autofocused results there appear to be no

distinguishable differences between the autofocused images produced using the PD,

EVR, and Max-SDR phase estimators.

Again, to provide additional insight into how the performance of the GPGA algo-

rithm may change based on its configuration, the MSE of the phase error estimates

produced from the defocused SAR image in Figure 27b is evaluated versus different

configuration parameters. In particular, Tables 8 to 10 are tabulations of the MSE of
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the phase error estimates and number of selected scatterers versus the applied relative

threshold for scatterer selection and number of GPGA iterations run. As illustrated

with the results in Tables 8 to 10, the MSE of the phase error estimates is generally

expected to decrease with the number of moderate or constant SINR scatterers se-

lected and number of GPGA iterations run. Moreover, the Max-SDR phase estimator

is generally expected to provide phase error estimates with the lowest MSE, followed

in order by the EVR and PD phase estimators.

Table 8. MSE of PD phase error estimates in radians2 and number of selected scatterers
versus the relative threshold for scatterer selection and the number of GPGA iterations
run.

Iteration
Iter. #1 Iter. #2 Iter. #3 Iter. #4 Iter. #5

R
el

.
T

h
re

sh
ol

d 15 dB
3.439

30

0.037

30

0.037

30

0.038

30

0.039

30

10 dB
3.439

30

0.037

30

0.029

17

0.029

16

0.029

17

5 dB
3.439

30

0.037

30

0.032

6

0.032

6

0.032

6

Table 9. MSE of EVR phase error estimates in radians2 and number of selected scat-
terers versus the relative threshold for scatterer selection and the number of GPGA
iterations run.

Iteration
Iter. #1 Iter. #2 Iter. #3 Iter. #4 Iter. #5

R
el

.
T

h
re

sh
ol

d 15 dB
0.069

30

0.031

30

0.031

30

0.031

30

0.031

30

10 dB
0.069

30

0.029

19

0.029

19

0.029

18

0.029

18

5 dB
0.069

30

0.030

6

0.030

6

0.030

6

0.030

6
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Table 10. MSE of Max-SDR phase error estimates in radians2 and number of selected
scatterers versus the relative threshold for scatterer selection and the number of GPGA
iterations run.

Iteration
Iter. #1 Iter. #2 Iter. #3 Iter. #4 Iter. #5

R
el

.
T

h
re

sh
ol

d 15 dB
0.034

30

0.029

30

0.029

30

0.029

30

0.029

30

10 dB
0.034

30

0.029

19

0.029

19

0.029

18

0.029

17

5 dB
0.034

30

0.029

6

0.029

6

0.029

6

0.029

6

6.5 Conclusion

In this section, four sets of results produced using the GPGA algorithm with different

phase estimators were presented and discussed. The presented results illustrated the

effectiveness of the GPGA algorithm using either the PFA or BPA, and better made

evident the performance versus efficiency trade-off that exists with the PD, EVR and

Max-SDR phase estimators. In the next section concluding remarks are made.
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(a) Ideal PFA Image. (b) Defocused PFA Image.

(c) PD phase estimator. (d) EVR phase estimator.

(e) Max-SDR phase estimator. (f) True and estimated phase errors.

Figure 26. Autofocus results produced using the GPGA algorithm with different phase
estimators and the PFA for SAR image formation.
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(a) Ideal BPA Image. (b) Defocused BPA Image.

(c) PD phase estimator. (d) EVR phase estimator.

(e) Max-SDR phase estimator. (f) True and estimated phase errors.

Figure 27. Autofocus results produced using the GPGA algorithm with different phase
estimators and the BPA for SAR image formation.
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VII. Conclusion

In this research, advancements to the current state-of-the-art in SAR autofocus were

made by extending or generalizing the well-known PGA algorithm, resulting in what

was termed the GPGA algorithm. The material from this research consists of three

primary contributions and a number of secondary contributions, which have culmi-

nated in four publications [60, 66–68]. Together, the primary and secondary contri-

butions of this research provide greater insight into topics concerning: 1) how the

GPGA algorithm relates to other existing SAR autofocus algorithms, 2) when and

where the GPGA algorithm is applicable, 3) strategies for configuring/applying the

GPGA algorithm, 4) statistical motivation for the GPGA algorithm, and 5) trade-

space study for three different GPGA phase estimators. In the sections to follow

each of the three primary contributions are summarized, with each section primarily

concerned with material presented in each of the respective publications [66–68].

7.1 Spatially Invariant Defocus Model

Many existing autofocus algorithms, including the GPGA algorithm, rely on the

assumption that phase errors, which cause SAR image defocus, are spatially invariant

[1–3, 13, 15–17, 19, 20, 23, 26, 28, 30–33, 35, 38, 39, 42, 45, 46, 48, 50, 55, 59, 60]. In many

cases this assumption holds, but for larger scene sizes or scenarios where the far-

field approximation does not hold, the spatially invariant phase error approximation

breaks down. In this work, an approximate upper bound was derived on the spatially

variant phase error component of phase errors. The derived bound applies with near-

and far-field bistatic geometries, with monostatic as a special case, and is expressed

in terms of either known quantities or quantities which typically have a known upper
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bound. The derived bound enables SAR scene size limits to be computed, such that

the phase errors are approximately spatially invariant according to a specified phase

threshold.

7.2 Generalized Phase Gradient Autofocus Algorithm

In this research, the GPGA algorithm was developed and shown to be applicable

with both the PFA and BPA, thereby directly supporting a wide range of collection

geometries and SAR imaging modalities. The GPGA algorithm preserves the four

crucial signal processing steps comprising the PGA algorithm, while alleviating the

constraint of using a single scatterer per range cut for phase error estimation which

exists with the PGA algorithm. Moreover, the GPGA algorithm, whether using the

PFA or BPA, yields an approximate MMLE of phase errors having marginalized over

unknown complex-valued reflectivities of selected scatterers.

7.3 Max-Semidefinite Relaxation Phase Estimation

In this work, a new approximate MMLE, termed the Max-SDR phase estimator, was

proposed for use with the GPGA algorithm. Leveraging recent work on SDR, the

Max-SDR phase estimator provides a phase error estimate with a worst-case approxi-

mation bound compared to the solution set of MMLEs (i.e., worst-case suboptimality

for a feasible point to the NP-hard GPGA phase estimation problem). Additionally,

a specialized IPM was presented for more efficiently performing Max-SDR phase es-

timation by exploiting low-rank structure typically associated with the GPGA phase

estimation problem. When the size of the data involved with the phase estimation

problem is large, which is typical for SAR imaging applications, the computational
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complexity and run-time are reduced by roughly N2 and two orders of magnitude, re-

spectively, as compared to a generic IPM. Hence, the presented specialized IPM makes

Max-SDR phase estimation more practical for SAR imaging applications leveraging

the GPGA algorithm.
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Appendix A. Marginal Likelihood

Assume N complex-valued observations, y ∈ CN , are made of an affine data model

y = Ax + b, (117)

where A ∈ CN×N , x,b ∈ CN , and each of the parameters is assumed to be indepen-

dent with respect to one another. Moreover, assume A is arbitrarily distributed and

the remaining parameters in the data model are distributed as

x ∼ CN (0,Cx (η)) , (118)

b ∼ CN (µb (η) ,Cb (η)) , (119)

where µb : CP → CN returns the mean vector for b, Cx,Cb : CP → CN×N return the

covariance matrix for x and b, respectively, η ∈ CP is a vector containing all hyper-

parameters (i.e., distribution parameters), and P is the number of hyperparameters.

Given the descriptions above, the data observations, given all parameters except b,

are distributed as

y
∣∣A,x,η ∼ CN

(
µy (Ax,η) ,Cb (η)

)
, (120)

where µy : CN ×CP → CN , µy (Ax,η) = Ax+µb (η). In the proceeding it is shown

that the marginal likelihood of y, marginalizing over x, is distributed as

y
∣∣A,η ∼ CN

(
µb (η) ,ACx (η) AH + Cb (η)

)
, (121)

assuming both Cx (η) and Cb (η) are full rank (hence, invertible).
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The marginal likelihood, marginalizing over x, is

Pr (y | A,η) =

∫
Pr (y | A,x,η) Pr (x | A,η) dx

=

∫
Pr (y | A,x,η) Pr (x) dx, (122)

recalling each of the parameters are assumed to be independent with respect to one

another. Using (118) and (120), and letting z : CN×CP → CN , z (y,η) = y−µb (η),

the marginal likelihood is (omitting arguments to functions to simplify notation)

Pr (y | A,η) =

∫
1

πN |Cb|
e−(z−Ax)HC−1

b (z−Ax) 1

πN |Cx|
e−xHC−1

x x dx

=
e−zHC−1

b z

πN |Cb| |Cx|

∫
1

πN
e−xH(C−1

x +AHC−1
b A)x e 2Re{zHC−1

b Ax} dx. (123)

Letting C−11 (η) = C−1x (η) + AHC−1b (η) A and ỹ (η) = AHC−Hb (η) z, the result in

(123) becomes

Pr (y | A,η) =
|C1|

πN |Cb| |Cx|
e−zHC−1

b z e ỹHC1ỹ

∫
1

πN |C1|
e−(x−C1ỹ)HC−1

1 (x−C1ỹ) dx

=
|C1|

πN |Cb| |Cx|
e−zHC−1

b z e ỹHC1ỹ. (124)

Substituting back in for ỹ and letting C−12 (η) = C−1b (η)−C−1b (η) AC1 (η) AHC−Hb (η)

produces

Pr (y | A,η) =
|C1|

πN |Cb| |Cx|
e−zHC−1

b z e zHC−1
b AC1AHC−H

b z

=
1

πN |Cb| |Cx|
∣∣C−11

∣∣ e−zHC−1
2 z. (125)
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Using the Woodbury matrix identity it is seen that

C−12 (η) =
(
ACx (η) AH + Cb (η)

)−1
, (126)

implying C2 (η) = ACx (η) AH + Cb (η). Using the matrix determinant lemma it is

seen that

|C2 (η)| =
∣∣C−11 (η)

∣∣ |Cx (η)| |Cb (η)| . (127)

Using (126) and (127), and substituting in the definition for z in (125) produces

Pr (y | A,η) =
1

πN |C2|
e−(y−µb)

HC−1
2 (y−µb)

= CN
(
µb,ACxAH + Cb

)
, (128)

which is equivalent to the marginal likelihood in (121).
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Appendix B. Fisher Information Matrix

From (83) in Section 4.7, the marginal likelihood for the phase compensated range

profile samples for the ith selected scatterer, having marginalized over the unknown

complex-valued reflectivities γi, is

ξ̃i
∣∣δφ,η ∼ CN (0,Ci (δφ,η)) , (129)

where η ∈ CP is the vector of hyperparameters (i.e., vector containing all σ2
γ,i) and

Ci : CN × CP → CN×N , Ci (δφ,η) = σ2
γ,iδφδφ

H + I is the covariance matrix

of the phase compensated range profile samples for the ith scatterer. Using the

provided model, the FIM for the argument of the phase error vector and vector of

hyperparameters, J ∈ C(N−1)P×(N−1)P , is

J =




Jθ,θ Jθ,η

JH
θ,η Jη,η


 , (130)

where the phase error vector, in terms of the argument of the phase error vector

θ ∈ CN−1, is

[δφ]n =





e j[θ]n , n = 0, . . . , N − 2,

1, n = N − 1,
(131)

and

[Jθ,θ]n′,n = − E

[
∂2L (δφ,η)

∂ [θ]n′ ∂ [θ]n

]
∈ C(N−1)×(N−1), (132)

[Jθ,η]n,p = − E

[
∂2L (δφ,η)

∂ [θ]n ∂ [η]p

]
∈ C(N−1)×P , (133)
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[Jη,η]p′,p = − E

[
∂2L (δφ,η)

∂ [η]p′ ∂ [η]p

]
∈ CP×P . (134)

Recall, the estimated phase error vector (i.e., autofocus solution) is independent of a

constant. Hence, one value of the phase error vector may be assumed to be known

and arbitrarily assigned. For convenience, in (131) the last element of the phase error

vector is assumed to be known and equal to one.

In the remaining sections, the blocks of the FIM are derived using the log marginal

likelihood of the phase compensated range profile samples

L (δφ,η) ∝ −
∑

i∈T
ln
(
1 +Nσ2

γ,i

)
+
∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

∣∣∣ξ̃
H

i δφ
∣∣∣
2

, (135)

where constants with respect to δφ and η have been omitted. To simplify the nota-

tion, arguments to the covariance matrix function are omitted for the derivations.

2.1 Argument of the Phase Error Vector

The partial derivative with respect to [θ]n is

∂L (δφ,η)

∂ [θ]n
=
∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

(
∂δφHξ̃i
∂ [θ]n

ξ̃
H

i δφ+ δφHξ̃i
∂ ξ̃

H

i δφ

∂ [θ]n

)

= 2
∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

Re

{
∂δφHξ̃i
∂ [θ]n

ξ̃
H

i δφ

}

= 2
∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

Re
{
−j [δφ]∗n

[
ξ̃i

]
n
ξ̃
H

i δφ
}
. (136)
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The second order partial derivative with respect to [θ]n is

∂2L (δφ,η)

∂ [θ]2n
= 2

∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

Re
{
− [δφ]∗n

[
ξ̃i

]
n
ξ̃
H

i δφ+ [δφ]∗n

[
ξ̃i

]
n

[
ξ̃i

]∗
n

[δφ]n

}

= 2
∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

Re

{
− [δφ]∗n

[
ξ̃i

]
n
ξ̃
H

i δφ+
∣∣∣
[
ξ̃i

]
n

∣∣∣
2
}
. (137)

Taking the expectation and negating produces

−E

[
∂2L (δφ,η)

∂ [θ]2n

]
= 2

∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

Re

{
N−1∑

p=0

[δφ]∗n [Ci]n,p [δφ]p −
(
σ2
γ,i + 1

)
}

= 2
∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

Re




σ2
γ,i

N−1∑

p=0
p 6=n

[δφ]∗n [δφ]n [δφ]∗p [δφ]p





= 2
∑

i∈T

(
σ2
γ,i

)2

1 +Nσ2
γ,i

(N − 1) . (138)

The second order partial derivative with respect to [θ]n and [θ]n′ , where n 6= n′, is

∂2L (δφ,η)

∂ [θ]n′ ∂ [θ]n
= 2

∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

Re
{

[δφ]∗n

[
ξ̃i

]
n

[
ξ̃i

]∗
n′

[δφ]n′
}
. (139)

Taking the expectation and negating produces

−E

[
∂2L (δφ,η)

∂ [θ]n′ ∂ [θ]n

]
= − 2

∑

i∈T

σ2
γ,i

1 +Nσ2
γ,i

Re
{

[δφ]∗n [Ci]n,n′ [δφ]n′
}

= − 2
∑

i∈T

(
σ2
γ,i

)2

1 +Nσ2
γ,i

. (140)

Combining the above results one obtains

Jθ,θ = 2
∑

i∈T

(
σ2
γ,i

)2

1 +Nσ2
γ,i

(
NI− 11H

)
. (141)
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2.2 Cross Terms

The second order partial derivative with respect to [θ]n and [η]p is

∂2L (δφ,η)

∂ [η]p ∂ [θ]n
=

2
(
1 +Nσ2

γ,p

)2Re
{
−j [δφ]∗n

[
ξ̃p

]
n
ξ̃
H

p δφ
}
. (142)

Taking the expectation and negating produces

−E

[
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= 0, (143)

meaning

Jθ,η = 0. (144)

2.3 Hyperparameters

The partial derivative with respect to [η]p is

∂L (δφ,η)

∂ [η]p
= − N

1 +Nσ2
γ,p

+
1

(
1 +Nσ2

γ,p

)2
∣∣∣ξ̃

H

p δφ
∣∣∣
2

. (145)
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The second order partial derivative with respect to [η]p and [η]p′ is

∂2L (δφ,η)

∂ [η]p′ ∂ [η]p
=





N2

(1+Nσ2
γ,p)

2 − 2N

(1+Nσ2
γ,p)

3

∣∣∣ξ̃
H

p δφ
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2

, p = p′,

0, p 6= p′.

(146)

Taking the expectation and negating produces

−E

[
∂2L (δφ,η)

∂ [η]p′ ∂ [η]p
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=
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(147)

Combining the above results one obtains

Jη,η = Diag

([
N2

(1+Nσ2
γ,0)

2 , . . . , N2

(1+Nσ2
γ,P−1)

2

])
. (148)

2.4 Conclusion

Using above derived results, the FIM from (130) simplifies to

J =




Jθ,θ 0

0 Jη,η


 . (149)

Thus, the inverse of the FIM, which is used for the CRLB, is obtained by inverting

the blocks of the FIM. Using the Sherman-Morrison formula, the inverse of Jθ,θ is

J−1θ,θ =
1

2N
∑

i∈T
(σ2
γ,i)

2

1+Nσ2
γ,i

(
I + 11H

)
. (150)
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And, the inverse of Jη,η is

J−1η,η = Diag

([
(1+Nσ2

γ,0)
2

N2 , . . . ,
(1+Nσ2

γ,P−1)
2

N2

])
. (151)
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Appendix C. Lagrange Dual Problem

Consider the convex optimization problem

maximize
Φ∈HN

Tr (ΦΞ) ,

subject to diag (Φ) = c,

Φ � 0,

(152)

where c ∈ RN and Ξ ∈ HN are given data. The Lagrangian, L : RN×HN×HN → R,

for (152) is

L (x,Y,Φ) = Tr (ΦΞ) + xT (diag (Φ)− c) + Tr (ΦY)

= Tr (Φ (Diag (x) + Ξ + Y))− cTx, (153)

where x ∈ RN and Y ∈ HN , Y � 0 are dual variables introduced for the equality

and inequality constraints in (152), respectively. The Lagrange dual function, g :

RN ×HN → R, for (152) is

g(x,Y) = sup
Φ∈HN

{L (x,Y,Φ)}

= sup
Φ∈HN

{Tr (Φ (Diag (x) + Ξ + Y))} − cTx

=





+∞, Diag (x) + Ξ + Y 6= 0,

−cTx, Diag (x) + Ξ + Y = 0,
(154)

where the simplification in the last line follows from a linear function being bounded

above only when the function is zero [82]. Using the Lagrange dual function from
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(154), the Lagrange dual problem for (152) is

minimize
x∈RN ,Y∈HN

−cTx,

subject to Diag (x) + Ξ + Y = 0,

Y � 0.

(155)

Eliminating the slack variable Y, the Lagrange dual problem in (155) may be equiv-

alently expressed as [82]

minimize
x∈RN

−cTx,

subject to Diag (x) + Ξ � 0.

(156)
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Appendix D. Logarithmic Barrier Gradient and Hessian

The logarithmic barrier function, ψ : RN → R, for the DSDR problem in (105) is

ψ(x) = − ln (|−G(x)|)

= − ln (|−Diag (x)−Ξ|) , (157)

where G : RN → HN , G(x) = Diag (x)+Ξ, x ∈ RN is the dual variable, and Ξ ∈ HN

is a given data matrix. Using (157), Wirtinger calculus [85–89], and the chain rule,

the gradient of the logarithmic barrier function is

[∇x (ψ(x))]` = − ∂ ln (|−G(x)|)
∂ [x]`

=
−1

|−G(x)|
∂ |−G(x)|
∂ [G∗(x)]m,n

∂ [G∗(x)]m,n
∂ [x]`

. (158)

Recognizing

∂ [G∗(x)]m,n
∂ [x]`

=





1, m, n = `,

0, else,
(159)

and that the diagonal elements of G(x) are purely real, the gradient of the logarithmic

barrier function, using (42) from [99], is

[∇x (ψ(x))]` =
−1

|−G(x)|
∂ |−G(x)|
∂ [G(x)]`,`

=
− |−G(x)|
|−G(x)| Tr

(
G−1(x)e`e

T
`

)

= −
[
G−1(x)

]
`,`
, (160)
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where e` ∈ RN is the `th standard basis vector (i.e., vector with one as the `th element

and zero elsewhere).

Using (160) and the chain rule, the Hessian of the logarithmic barrier function is

[
∇2

x (ψ(x))
]
k,`

=− ∂ ln (|−G(x)|)
∂ [x]k ∂ [x]`

=−
∂
[
G−1(x)

]
`,`

∂
[
G−1(x)

]∗
m,n

∂
[
G−1(x)

]∗
m,n

∂ [x]k
. (161)

Recognizing

∂
[
G−1(x)

]∗
m,n

∂ [x]k
=


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

1, m, n = k,

0, else,
(162)

and that the inverse of G(x) is conjugate symmetric, the Hessian of the logarithmic

barrier function, using (60) from [99], is

[
∇2

x (ψ(x))
]
k,`

= −
∂
[
G−1(x)

]
`,`

∂
[
G−1(x)

]
k,k

=
[
G−1(x)

]
`,k

[
G−1(x)

]
k,`

=
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[
G−1(x)

]
k,`

∣∣∣
2

. (163)
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