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S. Uḡur a,∗, O. Arıkan b, A. Cafer Gürbüz c

a Meteksan Savunma, Ankara, Turkey
b Bilkent University, Electrical and Electronics Engineering Department, Ankara, Turkey
c Department of Electrical and Electronics Engineering, TOBB University of Economics and Technology, Ankara, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 10 November 2014

Keywords:
Synthetic Aperture Radar
Expectation Maximization based Matching 
Pursuit algorithm
Compressed sensing
Autofocus

Synthetic Aperture Radar (SAR) provides high resolution images of terrain and target reflectivity. SAR 
systems are indispensable in many remote sensing applications. Phase errors due to uncompensated 
platform motion degrade resolution in reconstructed images. A multitude of autofocusing techniques has
been proposed to estimate and correct phase errors in SAR images. Some autofocus techniques work 
as a post-processor on reconstructed images and some are integrated into the image reconstruction 
algorithms. Compressed Sensing (CS), as a relatively new theory, can be applied to sparse SAR image 
reconstruction especially in detection of strong targets. Autofocus can also be integrated into CS based 
SAR image reconstruction techniques. However, due to their high computational complexity, CS based 
techniques are not commonly used in practice. To improve efficiency of image reconstruction we propose 
a novel CS based SAR imaging technique which utilizes recently proposed Expectation Maximization 
based Matching Pursuit (EMMP) algorithm. EMMP algorithm is greedy and computationally less complex 
enabling fast SAR image reconstructions. The proposed EMMP based SAR image reconstruction technique 
also performs autofocus and image reconstruction simultaneously. Based on a variety of metrics, 
performance of the proposed EMMP based SAR image reconstruction technique is investigated. The 
obtained results show that the proposed technique provides high resolution images of sparse target 
scenes while performing highly accurate motion compensation.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Synthetic Aperture Radar (SAR) is a technique to generate high 
resolution images of ground reflectivity from a sensor platform. 
Over more than five decades of their use, SAR systems have found 
wide variety of application areas ranging from military surveillance 
to environmental monitoring activities. The success of SAR systems 
stems from their ability to coherently integrate multiple returns 
acquired over the course of the flight path of the SAR platforms, 
which requires precise platform position information within a frac-
tion of the carrier wavelength. Even with the use of modern nav-
igational systems, there is an error due to the difference between 
actual and the estimated platform positions which results in con-
siderable phase errors especially for high resolution SAR systems 
typically operating at higher carrier frequencies. Several autofocus 
techniques have been developed to estimate this residual phase 
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error [1–7]. Once a reliable estimate is obtained, the effect of the 
phase error is compensated on the raw SAR data to provide better 
SAR reconstructions.

Compressed Sensing (CS) is a relatively new paradigm [8,9] in 
which theoretically, sparse signals can be reconstructed by sam-
pling them below Nyquist rate. Application of CS requires the 
reconstructed signal to be sparse in a known basis [10]. Since spar-
sity is encountered in many natural signals, CS has found diverse 
application areas including radar signal processing [11–18]. Com-
pressive sensing based radar in theory has several advantages such 
as reduced memory size, decreased A/D converter rates or possi-
bility of eliminating the match filtering process [19]. Because CS 
allows to reconstruct SAR images by using data sampled below 
the Nyquist rate, the required memory size and A/D converter rate 
can be relaxed, resulting important cost and complexity savings in 
practice [20].

In the application of CS to SAR image reconstruction, the scene 
reflectivity is required to have a sparse representation in a known 
basis. Speckle noise creates significant challenges in representation 
of SAR images sparsely. But for radar scenes with highly reflec-
tive man-made objects, wavelets [21], standard unit impulse basis 
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vectors, or both can be used for a sparse representation of the tar-
gets that dominate the scene reflectivity.

SAR image reconstruction by using sparsity driven penalty func-
tion has been investigated in [19,22–25]. Ref. [26] gives a thor-
ough survey of recent literature on sparsity driven SAR imaging. 
CS based SAR imaging is generally formulated as a convex l1 norm 
minimization problem and it is solved by either linear program-
ming or greedy pursuit algorithms. Although these techniques do 
not consider phase errors in SAR image reconstruction, the pro-
posed techniques in [20,27–29] provide sparse reconstructions in 
the presence of phase errors. However, compared to the commonly 
used SAR autofocusing techniques, these approaches require sig-
nificantly more processing time than conventional reconstruction 
techniques that limits their practical use.

In the present study, a novel SAR reconstruction technique that 
utilizes a new sparse reconstruction approach called as Expecta-
tion Maximization Matching Pursuit (EMMP) algorithm [30] is pro-
posed. The EMMP algorithm uses the compressive measurements 
as incomplete data about the system and iteratively applies ex-
pectation and maximization (EM) steps to construct the complete 
data that would correspond to a set of SAR data for each dominant 
target in the scene. The objective of EM iterations is to provide 
more reliable estimates to the complete data so that accurate and 
efficient estimation of the individual target parameters can be ob-
tained more reliably in the maximization step. Once, more accurate 
estimates for a certain target are obtained, its contribution to the 
incomplete data can be more accurately estimated allowing recon-
struction of remaining targets without its interference. This EM 
procedure also allows to estimate unknown phases for each com-
plete data component in an iterative manner.

The proposed EMMP based SAR imaging algorithm is greedy, 
computationally less complex, and has lower reconstruction er-
rors compared to l1 norm minimization. Hence, both the accuracy 
and convergence rate of the iterations significantly increase, en-
abling fast and high resolution SAR image reconstructions. Note 
that, in addition to the preliminary results presented in [31], the 
proposed approach [32] is extended to conduct autofocus as part 
of the EMMP iterations. As illustrated on both synthetic and real 
data sets, the proposed EMMP based SAR reconstruction technique 
performs highly effective autofocus in the presence of phase errors.

In Section 2, the proposed technique of simultaneous recon-
struction and autofocus of sparse SAR images based on EMMP 
algorithm is described. Section 3 investigates the effect of spar-
sity parameter on the image reconstruction quality of the proposed 
technique. Comparison of the image reconstruction performances 
of the proposed technique and the technique based on the non-
linear conjugate gradient descent algorithm is given in Section 4. 
Section 5 concludes the article.

2. Simultaneous reconstruction and autofocus of sparse SAR 
images based on EMMP algorithm

In spotlight mode SAR, an airborne or spaceborne platform car-
ries a mono-static radar system on a straight flight path, while 
the radar transmits and receives echoes from the area of interest 
(see Fig. 1). The received and digitized radar returns are coherently 
processed to obtain significantly higher resolutions in azimuth di-
rection that could have been obtained by a large aperture antenna. 
Baseband measurement model of a spotlight SAR system can be 
written as the following vector-matrix equation [25]:

y = Gx + w, (1)

where y is the received signal (the measurement vector), G is the 
complex valued discrete SAR projection operator matrix, x is the 
reflectivity vector and w is the additive complex white Gaussian 
Fig. 1. Spotlight mode SAR imaging geometry.

measurement noise vector. Assuming that the reconstruction will 
be performed over a target grid of N × N range and azimuth sam-
ples, then, y, x, and w are m × 1 vectors and G is a matrix of size 
m × m, respectively, for m = N2.

One important application of SAR systems is imaging of man-
made objects. Since, typical reflections from man-made objects are 
significantly stronger than that of background terrain, reflectivity 
distribution over the imaged area can be modeled as a sparse dis-
tribution over an appropriate set of vectors such as wavelets.

Proven guarantees of CS based reconstruction techniques en-
sure that reliable reconstruction of a sparse signal of length m
is possible if the measurement matrix satisfies Restricted Isome-
try Property (RIP) and the number of measurements are at least 
O (K log(m/K )) where K is the level of sparsity of the signal [33], 
which can be significantly smaller than m. Thus, for sparse SAR 
image reconstructions, the required number of samples can be sig-
nificantly lower than the Nyquist rate, providing important hard-
ware savings. To exploit the potential reduction in the sampling 
rate, the method described in [20] can be used to under-sample 
the measured data. Assuming that the reflectivity vector is sparse 
in the column space of a given matrix � with representation coef-
ficients α, measurement model given in (1) can be written equiv-
alently as:

y = G�α + w = Aα + w. (2)

In CS applications, it is desired to obtain a reconstruction which 
is as sparse as possible while providing a tolerable fit to measure-
ments. For this purpose, l0 norm of α can be minimized [8,9]. 
Since l0 norm optimization requires combinatoric search that is 
rarely feasible in practice, generally the l0 norm problem is re-
laxed to l1 norm minimization problem. It is proven that l0 and 
l1 norm minimization problems provide the same solution if α is 
sparse and A holds the RIP [34,35].

Generally, the SAR image reconstruction in CS methodology has 
been formulated in two different approaches. In Basis Pursuit De-
noising (BPDN) [36] formulation,

min
α

‖α‖1 such that ‖y − Aα‖2 ≤ σ , (3)

the scene with minimum l1 norm is reconstructed such that the 
resulting fit error to measurements is less than a threshold σ . In 
LASSO formulation [37],

min‖y − Aα‖2 such that ‖α‖1 ≤ τ , (4)

α
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the scene whose reflectivity has an l1 norm that is less than τ , is 
chosen to minimize the fit error. Although in principle these for-
mulations are equivalent for a properly chosen (σ , τ ) pair, it is not 
straightforward to determine σ for SAR image reconstructions es-
pecially if the terrain reflectivity is highly variable. However, an 
appropriate choice for τ can be obtained based on the size and re-
flectivity of the dominant reflectors in the imaged area. Hence, it 
is easier to choose a proper τ , to the l1-norm of the target. There-
fore in practice, LASSO formulation is more suitable for SAR image 
reconstructions with dominant reflectors in the target scene.

Unlike BPDN and LASSO formulations, the proposed EMMP ap-
proach provides a near optimal solution to the following l0 norm 
problem:

min
α

‖y − Aα‖2 such that ‖α‖0 ≤ K , (5)

where K is the sparsity level of the signal. Sparsity level K can be 
estimated for man-made targets based on the ratio of the target 
and resolution cell areas. Hence, it is actually easier to choose K , 
because the choice for τ in the LASSO formulation also requires 
reflectivity information about these targets.

SAR systems need accurate distance and angle information be-
tween the SAR platform and the reference point in the terrain of 
interest in order to establish the synthetic aperture precisely. How-
ever, especially in airborne SAR applications, due to the limited 
accuracy of the navigational sensors, there is always some residual 
error left in the estimation of the actual flight path. These uncom-
pensated platform motion errors cause uncertainties in distance 
and angle measurements which result in phase errors in the re-
ceived SAR signal. Let φ(t) represents the phase error which results 
mixing errors, hence the demodulation output of the SAR system 
becomes [38]:

yp(t) = e jφ(t) y(t), (6)

where yp(t) is the received signal with phase error due to an error 
of the platform position from the scene center. Following (6), the 
exponential multiplication of the phase error can be inserted to 
the signal model and the measurement relation of (1) becomes:

yp = �y = �Gx + w. (7)

Here, � is a diagonal matrix representing phase errors for every 
different measurement position on the flight path and is given as:

� =

⎛
⎜⎜⎝

e jφ1

e jφ2

. . .

e jφN×N

⎞
⎟⎟⎠ . (8)

Here N × N is the total number of measurement positions that will 
be used in the image reconstruction and φi ’s are the corresponding 
phase errors in radians incurred at the ith measurement position. 
Because the deviation from the flight path is typically a small frac-
tion of a range resolution bin, the error in the range compressed 
data due to phase error is generally ignored [38]. Therefore, phase 
errors are assumed to be the same for all the obtained data at each 
azimuth position of the radar platform, resulting:

⎛
⎜⎜⎝

yp1

yp2

...

ypN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e jφ1

e jφ2

. . .

e jφN

⎞
⎟⎟⎠

⎛
⎜⎜⎝

G1
G2
...

G N

⎞
⎟⎟⎠x + w, (9)

where ypi is the partition of the measurement vector yp which 
contains all the range points corresponding to the azimuth position 
index i, φi is the respective phase error, Gi is the partition of the 
matrix G for each azimuth position and N is the total number of 
azimuth positions.

To obtain a sparse and autofocused reconstruction, we would 
like to solve the following optimization in terms of two sets of 
variables, α and � to account for the phase error:

min
α,�

‖yp − �Aα‖2 such that ‖α‖0 ≤ K . (10)

The required optimization in (10) can be reduced to an optimiza-
tion over α alone by replacing � that provides the minimum cost 
for each α [39]:

min
α

f0(α) such that ‖α‖0 ≤ K , (11)

where,

f0(α) = inf
�

{‖yp − �Aα‖2
}
. (12)

To minimize the cost in (12) for a given α, the phase error ma-
trix � that minimizes ‖yp − �Aα‖2 should be obtained. Because 
phase errors are assumed to be the same for all the data corre-
sponding to a certain azimuth location [38], the minimization can 
be formulated equivalently as:

inf
�

‖yp − �Aα‖2 =
∑

i

inf
φi

∥∥ypi − e jφi Aiα
∥∥

2, (13)

where Ai is the partition of the matrix A corresponding to the ith 
azimuth position. In this formulation, the unique solution for phase 
error estimate φi , for each azimuth position can be obtained as:

φ̂i = � (
αH AH

i ypi

)
. (14)

With this result, (10) can be reduced to an optimization over α
only:

min
α

‖yp − �Aα‖2 such that ‖α‖0 ≤ K ,

φi = � (
αH AH

i ypi

)
. (15)

To obtain both the phase error estimates and autofocused image 
parameters (14) and (15) are sequentially used. EMMP iterations 
are used for (15) and phase error corrections are easily imple-
mented within these iterations as summarized in Table 1. In the al-
gorithm, C corresponds to the complete data matrix, r corresponds 
to the residual vector and ε corresponds to the termination crite-
ria which can be set to the average energy of background pixels 
around the region of interest. The inputs of the EMMP algorithm 
are the measurement matrix A, the measurements yp , the sparsity 
level K , and the termination parameter ε . Initially, the complete 
data matrix is set to zero and the residual vector is initialized 
to yp . Because EM algorithm is known to be locally convergent, 
its initialization plays a critical role in ensuring convergence to the 
global solution. But with the initial values set as indicated, the 
EMMP algorithm always gives meaningful results. Whether these 
solutions correspond to the global solution or, they are local so-
lutions in the vicinity of the global one giving acceptable results, 
shall be investigated as a further work.

As in the EM algorithm [40], in EMMP algorithm iterations, 
given estimates for y j and �, the jth sparse component of α is 
found as the best matching vector among the columns of A to 
�−1y j , for 1 ≤ j ≤ K . The selected index list and the complete 
data matrix are updated. Then, � is re-estimated by using the 
obtained α, and the iterations are restarted. The iterations are con-
tinued until the termination criteria or a pre-determined number 
of iterations are reached.
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Table 1
EMMP algorithm with phase error estimation.

Input:
A measurement matrix
yp measurement vector
K sparsity level
ε termination threshold

Initialization:
� = I phase error estimate
C = 0 complete data matrix
r = yp residual vector

repeat following steps until 1
N ‖r‖2

2 < ε
for j = 1 : K

Expectation:
ŷi = yp − ∑

k �= j C(:,k)

Maximization:
λ = arg max |AT ŷ j |
p = A(:, λ)

y j = p pT ŷ j

Keep and Update:
λL( j) = λ update selected index list
C(:, j) = y j

end for loop
calculate residual r = yp − ∑K

j=1 C(:, j)

Â = A(:, λL)

α = zeros(m,1)

α(λL) = min ‖yp − ∑K
j=1 α(λL( j))Â(:, j)‖2

Phase Error Estimate:
φ̂i = � (αH AH

i ypi )

yp = �−1yp

end while loop

Output: x = �α solution vector

2.1. Simulation results

To illustrate the performance of the proposed EMMP based aut-
ofocused SAR imaging technique (EMMP-AF-SAR) reconstructions 
on both synthetic data as well as real SAR data from MSTAR 
database [41] have been investigated. For synthetic data, an A/D 
converter operating at one-third of the Nyquist rate is used. For 
Slicy data of MSTAR database, an A/D converter operating at one-
fourth of the Nyquist rate is used. In addition to the rate reduc-
tion of the A/D converter, another 10% reduction on the obtained 
samples is achieved by using pseudo-random sampling scheme de-
tailed in [20].

MATLAB implementation of the proposed EMMP-AF-SAR tech-
nique running on a standard laptop converges in about 20 iter-
ations taking 20 seconds to 5 minutes depending on the size of 
the image, which is significantly faster than alternative gradient 
descent based optimization techniques for CS reconstructions. For 
real-time applications, the proposed approach can be implemented 
on off-the-shelf processor boards to further reduce the computa-
tion time.

2.1.1. Results on synthetic data
The proposed EMMP-AF-SAR technique is first applied on a set 

of synthetic SAR data. To provide a benchmark, the synthetic SAR 
data with no phase error is processed with Polar Format Algorithm 
(PFA) and the resultant image shown in Fig. 2(a) is obtained. To 
investigate the effect of motion errors, the synthetic SAR data is 
distorted by phase errors at each azimuth vantage point. The result 
obtained by the PFA algorithm is shown in Fig. 2(b). For compari-
son, reconstructed SAR image by using the well known Phase Gra-
Fig. 2. The synthetic target reconstructions are illustrated. (a) The original image reconstructed by PFA. (b) The original image with inserted phase error. (c) The autofocused 
image by PGA. (d) Image reconstructed by the proposed EMMP-AF-SAR technique. While the images (a), (b) and (c) use data obtained at the Nyquist rate, for (d) the 
EMMP-AF-SAR technique uses only 30% of the Nyquist rate data.
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Fig. 3. Two Slicy target reconstructions are shown in two columns. First row: PFA reconstructions with no phase errors; Second row: PFA reconstructions with synthetically 
induced phase errors; Third row: PFA-PGA reconstructions; Fourth row: proposed EMMP-AF-SAR reconstructions. While PFA and PFA-PGA reconstructions use data obtained 
at the Nyquist rate, the EMMP-AF-SAR technique uses only 22.5% of the Nyquist rate data.
dient Autofocus algorithm (PGA) [7] is shown in Fig. 2(c). Usually, 
three iterations of PGA are sufficient to compensate phase errors 
reasonably. As seen from Fig. 2(c), although the image is corrected 
to some extent compared to Fig. 2(b), phase error related degra-
dations are still visible. In Fig. 2(d), the reconstruction obtained by 
using the proposed EMMP-AF-SAR technique is shown. Although 
this reconstruction is obtained by using only 30% of the data re-
quired by the PGA technique, it is visibly better focused than the 
result of PGA shown in Fig. 2(c).

2.1.2. Results on real Slicy SAR data
The results obtained using real SAR measurements for two 

types of Slicy targets are shown in Fig. 3. The first row presents 
PFA reconstructions with no phase error. The PFA reconstructions 
with synthetically induced phase error are shown in the second 
row. Reconstructed by PFA and autofocused by PGA images are 
given in the third row. The fourth row presents the reconstruc-
tions obtained by the proposed EMMP-AF-SAR technique. Note that 
in the reconstructions with the proposed EMMP-AF-SAR technique 
only 22.5% of the raw data is used.

The results show that the reconstruction quality of the pro-
posed EMMP-AF-SAR technique is better than that of the PFA-PGA 
technique while the proposed EMMP-AF-SAR technique requires 
a fraction of the data for reconstruction. Even though some mi-
nor blurs caused by phase errors left in PFA-PGA reconstructions, 
phase error degradations are almost totally removed from the im-
ages reconstructed by the proposed EMMP-AF-SAR technique. Un-
like the previously proposed CS SAR reconstruction techniques, the 
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Fig. 4. The synthetically inserted (solid line) and the estimated phase errors (dashed 
line) in radians.

Table 2
Metrics for the Slicy target imagery reconstructed by PFA-PGA and the proposed 
EMMP-AF-SAR techniques. The PFA-PGA technique, which is reconstructed by PFA 
and autofocused by PGA uses whole raw SAR data. The proposed EMMP-AF-SAR 
technique uses only 22.5% of the Nyquist rate data.

Slicy target 1 Slicy target 2

MSE H MSE H

PFA-PGA 4.0 × 10−3 4.91 9.3 × 10−4 4.59
EMMP-AF-SAR 9.1 × 10−3 0.14 5.8 × 10−5 0.12

processing time of the proposed EMMP-AF-SAR technique is also 
comparable to the PFA-PGA technique.

To illustrate the extend of autofocusing provided by the pro-
posed algorithm, significantly large phase error is synthetically in-
duced in the raw data. As shown in Fig. 4, the proposed EMMP-AF-
SAR technique provides an acceptable estimate to the synthetically 
induced phase error.

In order to quantify and compare the image reconstruction per-
formance of the EMMP-AF-SAR technique with alternative tech-
niques, the following two metrics are used:

1. Mean Square Error, which is defined as [24]:

MSE = 1

N2

∥∥|x| − |x̂|∥∥2
2, (16)

where x is the original image, x̂ is the reconstructed image, 
and N2 is the total number of pixels in the image.

2. Entropy of the image [24]: this is a metric related to sharpness 
of the image:

H(x) = −
∑

i

pi log2 pi, (17)

where the discrete variable p contains the histogram counts 
of the image x. Entropy is small for sharper images so it is 
preferable for an algorithm to result in low entropies for image 
formation.

These metrics give indications about the performance of the re-
constructions especially on the target classification applications. 
Table 2 lists these metrics for the images illustrated in Fig. 3. The 
data presented in Table 2 indicates that PFA-PGA technique has a 
better performance for the MSE metric of the Slicy 1 target. For 
other parameters, the EMMP-AF-SAR technique outperforms the 
PFA-PGA technique. Note that, for the scenes with strong man-
made targets, EMMP-AF-SAR technique provides reconstructions 
with only non-zero values present in the support of the targets, 
thus, eliminates the speckle noise associated with ground reflec-
tivity. The results show that the EMMP-AF-SAR technique serves 
well for the target classification without further windowing and 
speckle noise removal. It is important to note that, unlike the clas-
sical PFA-PGA technique, the proposed EMMP-AF-SAR technique 
has variable ε and K parameters that can be adjusted for the target 
class of interest to provide significant control over the reconstruc-
tions.

3. Effect of sparsity on quality of SAR image reconstructions

In this section the effect of the sparsity parameter, K , on the 
reconstructed image quality is investigated. For this investigation, 
military target image of MSTAR database is used with 40% of the 
Nyquist rate data. Fig. 5(a) gives the original image used in the 
trials which is reconstructed by PFA. The image contains a mil-
itary target with very high speckle noise. Figs. 5(b)–(f) illustrate 
the resultant images reconstructed by the proposed EMMP-AF-SAR 
technique for a range of sparsity level K .

Fig. 5 illustrates that for K set lower than the actual sparsity 
level of the target, reconstructed images lack important features 
of the target. For K set close to the actual sparsity level of the 
target (which is approximately 50), reconstructions provide better 
results. For K set to greater than the actual sparsity of the target, 
the result is the increased noise level in the reconstructed images. 
Quantitative metrics given in Table 3 also support these observa-
tions. Again the best results are obtained for the reconstructions 
with K set close to the actual sparsity of the target.

4. Performance comparison between EMMP-AF-SAR and 
non-linear conjugate gradient descent algorithms

In this section, the image reconstruction quality of the proposed 
technique is compared to that of a previously proposed CS based 
SAR image reconstruction technique based on gradient descent al-
gorithm that will be referred to as CS-PE-TV [20]. The original 
MSTAR target images, the synthetic motion error induced images 
both reconstructed by PFA, and the images reconstructed by PFA 
and autofocused by PGA are again given in the rows (a), (b), and (c) 
of Fig. 6 as a benchmark. Row (d) of Fig. 6 gives the images recon-
structed by the CS-PE-TV technique. Reconstructions obtained by 
the EMMP-AF-SAR technique for the same target scenes are shown 
in row (e) of Fig. 6. Note that, only 40% of the Nyquist sampled raw 
data is used in these CS reconstructions. Compared to the CS-PE-TV 
reconstructions given in row (d) of Fig. 6, reconstructions provided 
by the EMMP-AF-SAR technique are of similar quality. Also, it is 
observed that the EMMP-AF-SAR technique provides an effective 
autofocusing on the reconstructions. Compared to the CS-PE-TV 
technique, the main advantage of the EMMP-AF-SAR technique is 
its computational efficiency. An MSTAR reconstruction with the 
non-linear conjugate gradient descent algorithm takes about 20 
hours while the same reconstruction with the EMMP-AF-SAR tech-
nique takes only 3–5 minutes on an ordinary PC. Also, EMMP-
AF-SAR technique provides reconstructions with significantly more 
suppressed speckle noise.

While suppressing speckle noise of the terrain, the EMMP-AF-
SAR technique also removes shadows of targets in the imaged 
scene. Shadow information in SAR images is valuable and can 
be used in image classification applications. The technique based 
on the non-linear conjugate gradient descent algorithm also sup-
presses shadows. Generally CS based SAR image reconstruction 
techniques construct only target features but suppress shadows. 
Retaining shadows in SAR images while reconstructing them by CS 
techniques is important and will be investigated as a future work. 
Multichannel autofocus [5,42] and filtered variation [43] are two 
candidates to preserve the shadow information in CS SAR image 
reconstruction.



S. Uḡur et al. / Digital Signal Processing 37 (2015) 75–84 81
Fig. 5. The effect of the sparsity parameter, K on image reconstructions by the proposed EMMP-AF-SAR technique is illustrated. A military target image from MSTAR database 
is used for the trials. Only 40% of the Nyquist rate data is used for the reconstructions by the proposed technique. (a) Original image reconstructed by PFA, (b) EMMP-AF-SAR 
with K = 30, (c) EMMP-AF-SAR with K = 40, (d) EMMP-AF-SAR with K = 50, (e) EMMP-AF-SAR with K = 70, and (f) EMMP-AF-SAR with K = 80.
Table 3
Effect of sparsity parameter on image reconstruction quality 
metrics. A military target image from MSTAR database is used 
for the trials. Only 40% of the raw data is used for the recon-
structions by the proposed technique.

K MSE H

30 5.0 × 10−3 0.32
40 2.7 × 10−3 0.26
50 1.9 × 10−3 0.32
60 2.6 × 10−3 0.46
70 2.5 × 10−3 0.49
80 2.3 × 10−3 0.60

The performance metrics for MSTAR images reconstructed by 
different techniques are given in Table 4. For the MSE metric, 
EMMP-AF-SAR technique gives a better result than the result of 
the CS-PE-TV technique, for target (1). But for other two targets, 
the results of the CS-PE-TV technique are better. In terms of the 
MSE, it is observed that there is no significant quantitative dif-
ference between the reconstructions of these algorithms. However, 
in terms of Entropy metric, the EMMP-AF-SAR technique provides 
significantly better reconstructions. Almost total removal of the 
speckle noise of the terrain provides the edge for the EMMP-AF-
SAR technique over the CS-PE-TV technique. To achieve improved 
performance levels with respect to Entropy metric with the re-
constructions of the CS-PE-TV technique, a post-processing step 
designed to suppress the speckle noise can be incorporated to the 
processing chain.
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Fig. 6. Three target images of MSTAR database that are used in the trials. Row (a) gives the original images reconstructed by PFA. Row (b) presents the images with inserted 
phase error and reconstructed by PFA. Row (c) gives the images reconstructed PFA and autofocused by PGA. Row (d) gives the images reconstructed by CS-PE-TV technique. 
Row (e) shows the images reconstructed and autofocused by the proposed EMMP-AF-SAR technique.
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Table 4
Comparison of performance metrics for the imagery reconstructed by techniques 
PFA-PGA, CS-PE-TV, and EMMP-AF-SAR.

MSE Entropy

Target 1 PFA-PGA 2.5 × 10−4 2.50
CS-PE-TV 3.6 × 10−3 2.42
EMMP-AF-SAR 1.9 × 10−3 0.32

Target 2 PFA-PGA 1.9 × 10−3 2.95
CS-PE-TV 4.5 × 10−3 2.94
EMMP-AF-SAR 5.4 × 10−3 0.33

Target 3 PFA-PGA 9.3 × 10−4 2.80
CS-PE-TV 7.2 × 10−3 2.42
EMMP-AF-SAR 9.6 × 10−3 0.41

5. Conclusions

SAR imaging of scenes with strong man-made targets is of 
interest in many remote sensing applications. The required high 
resolution in these images can only be obtained with an effective 
compensation of errors induced by platform motion.

In this work, a new EMMP algorithm based SAR image recon-
struction technique is proposed that provides accurate estimation 
of phase errors due to uncompensated platform motion and de-
livers high quality reconstructions of sparse target scenes. It is 
demonstrated on both synthetic and real SAR data that the pro-
posed EMMP based autofocused SAR reconstruction technique pro-
vides efficient reconstructions of SAR images even under severe 
phase errors. Since, it requires only a fraction of the Nyquist rate 
samples, the EMMP-AF-SAR technique also relaxes the require-
ments on the SAR hardware.

Unlike alternative l1 norm minimization based approaches, the 
proposed technique provides near optimal solution to the desired 
l0 norm minimization problem efficiently by a sequential search 
procedure in 1-dimensional search spaces. Moreover, EMMP-AF-
SAR technique converges faster compared to Non-Linear Conjugate 
Gradient Descent algorithm for CS reconstructions while provid-
ing comparable quality outputs. An example image reconstruction 
with the non-linear conjugate gradient descent algorithm takes 
about 20 hours due to large matrix operations with high com-
putational complexities. However the same reconstruction with 
the EMMP-AF-SAR technique takes only 3–5 minutes thanks to 
its lower computational complexity. The 3–5 minutes reconstruc-
tion time is slightly longer than the reconstruction time of the 
PFA-PGA technique which is around one minute. Comparison with 
PFA-PGA technique over synthetic and real data sets with man-
made targets shows that the proposed technique provides compa-
rable or improved reconstructions. In addition, since EMMP-AF-SAR 
reconstructions are highly localized with significantly suppressed 
speckle, it enables improved target classification.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.dsp.2014.11.001.
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