54 research outputs found

    Power splitting versus time switching based cooperative relaying protocols for SWIPT in NOMA systems

    Get PDF
    Non-orthogonal multiple access (NOMA) along with wireless power transfer have recently been adapted to cooperative communications for 5G and beyond wireless networks. This paper investigates NOMA based cooperative relaying wireless- powered networks (CRWPNs) where, decode-and-forward (DF) relaying and successive interference cancellation are both employed at a wireless-powered intermediate node. For simultaneous wireless information and power transfer (SWIPT), power-splitting relaying (PSR) and time switching-based relaying (TSR) protocols are considered in the NOMA based CRWPN. As a result, the combination of cooperative relaying power domain NOMA network and PSR and TSR protocols is proposed in this paper. The outage performance and ergodic rate of both protocols are analysed for evaluation of the impacts of energy harvesting (EH) time, EH efficiency, power splitting ratio, source data rate, and the distance between the nodes. In addition, two delay limited transmission (DLT) and delay tolerant transmission (DTT) modes are considered in this network model to investigate the throughput and ergodic rate of the system according to the source transmission rate. It is shown that the cooperative relaying NOMA (CRNOMA) scheme achieves a lower outage probability when compared to the conventional orthogonal multiple access (OMA) schemes. Additionally, the PSR outperforms the TSR in both low and high signal-to-noise ratio (SNR) regions in terms of throughput, ergodic rate and energy efficiency. For instance, the outage probability of CRNOMA for both PSR and TSR in SNR range of from -10 dB to +20 dB (i.e. a low SNR region) decreases gradually but not linearly. However, in SNR range of from +20 dB to +40 dB (i.e. a high SNR region), the outage probability of CRNOMA for both PSR and TSR decreases quickly. Furthermore, the energy efficiency is shown to be considerably enhanced with the employment of EH for CRNOMA. Finally, the impacts of the distance between the nodes on the performance and a comparison between two scenarios of having and without having direct links are evaluated

    Throughput and ergodic capacity of wireless energy harvesting based DF relaying network

    Get PDF
    In this paper, we consider a decode-and-forward (DF) relaying network based on wireless energy harvesting. The energy constrained relay node first harvests energy through radio-frequency (RF) signals from the source node. Next, the relay node uses the harvested energy to forward the decoded source information to the destination node. The source node transfers energy and information to the relay node through two mechanisms, i) time switching-based relaying (TSR) and ii) power splitting-based relaying (PSR). Considering wireless energy harvesting constraint at the relay node, we derive the exact analytical expressions of the achievable throughput and ergodic capacity of a DF relaying network for both TSR and PSR schemes. Through numerical analysis, we study the throughput performance of the overall system for different system parameters, such as energy harvesting time, power splitting ratio, and signal-to-noise-ratio (SNR). In particular, the throughput performance of the PSR scheme outperforms the throughput performance of the TSR scheme for a wide range of SNRs.ARC Discovery Projects Grant DP14010113

    Outage probability analysis for hybrid TSR-PSR based SWIPT systems over log-normal fading channels

    Get PDF
    Employing simultaneous information and power transfer (SWIPT) technology in cooperative relaying networks has drawn considerable attention from the research community. We can find several studies that focus on Rayleigh and Nakagami-m fading channels, which are used to model outdoor scenarios. Differing itself from several existing studies, this study is conducted in the context of indoor scenario modelled by log-normal fading channels. Specifically, we investigate a so-called hybrid time switching relaying (TSR)-power splitting relaying (PSR) protocol in an energy-constrained cooperative amplify-and-forward (AF) relaying network. We evaluate the system performance with outage probability (OP) by analytically expressing and simulating it with Monte Carlo method. The impact of power-splitting (PS), time-switching (TS) and signal-to-noise ratio (SNR) on the OP was as well investigated. Subsequently, the system performance of TSR, PSR and hybrid TSR-PSR schemes were compared. The simulation results are relatively accurate because they align well with the theory

    Outage performance analysis and SWIPT optimization in energy-harvesting wireless sensor network deploying NOMA

    Get PDF
    Thanks to the benefits of non-orthogonal multiple access (NOMA) in wireless communications, we evaluate a wireless sensor network deploying NOMA (WSN-NOMA), where the destination can receive two data symbols in a whole transmission process with two time slots. In this work, two relaying protocols, so-called time-switching-based relaying WSN-NOMA (TSR WSN-NOMA) and power-splitting-based relaying WSN-NOMA (PSR WSN-NOMA) are deployed to study energy-harvesting (EH). Regarding the system performance analysis, we obtain the closed-form expressions for the exact and approximate outage probability (OP) in both protocols, and the delay-limited throughput is also evaluated. We then compare the two protocols theoretically, and two optimization problems are formulated to reduce the impact of OP and optimize the data rate. Our numerical and simulation results are provided to prove the theoretical and analytical analysis. Thanks to these results, a great performance gain can be achieved for both TSR WSN-NOMA and PSR WSN-NOMA if optimal values of TS and PS ratios are found. In addition, the optimized TSR WSN-NOMA outperforms that of PSR WSN-NOMA in terms of OP.Web of Science193art. no. 61

    Joint energy harvesting time allocation and beamforming in two-way relaying network

    Get PDF
    Abstract. A two-way relaying system with amplify-and-forward technique, where relay stations (RSs) acquire the energy from transmission signal and interferences, is considered. The RSs use the energy to amplify the signal received from the transmitter and forward it to the receiver. Particularly, energy harvesting (EH) and time switching (TS) are deployed. Based on the TS architecture, we divide transmission time into two time slots, which are EH phase and information transmission (IT) phase. In the EH phase, the RSs harvest the energy from the received radio frequency (RF) signal. In the IT phase, the RSs process and forward the transmission signal to the destination by energy harvesting during the EH phase. From such a transmission scheme, we investigate the optimal time ratio of the EH and IT phase as well as the beamforming at RSs in order to acquire the sum rate maximization. Since the sum-rate maximization problem is nonconvex, we develop an iterative algorithm based on the majorization-minimization (MM) technique to solve the problem. Furthermore, we deployed two schemes to overcome the self-interference to see the efficiency of each scheme related to sum-rate performance. The results show that power transmission and a number of relay station have a major impact on the sum rate performance of the two-way relay system

    Wireless information and energy transfer in nonregenerative OFDM AF relay systems.

    Get PDF
    Energy harvesting (EH) is a promising strategy to prolong the operation of energy-constrained wireless systems. Simultaneous wireless information and energy transfer (SWIET) is a potential EH technique which has recently drawn significant attention. By employing SWIET at relay nodes in wireless relay systems, the relay nodes can harvest energy and receive information from their source nodes simultaneously as radio signals can carry energy as well as information at the same time, which solves the energy scarcity problem for wireless relay nodes. In this paper, we study SWIET for nonregenerative orthogonal-frequency-division multiplexing (OFDM) amplify-and-forward systems in order to maximize the end-to-end achievable rate by optimizing resource allocation. Firstly, we propose an optimal energy-transfer power allocation policy which utilizes the diversity provided by OFDM modulation. We then validate that the ordered-signal-to-noise ratio (SNR) subcarrier pairing (SP) is the optimal SP scheme. After that, we investigate the information-transfer power allocation (IPA) and EH time optimization problem which is formulated as a non-convex optimization problem. By making the approximation at high SNR regime, we convert this non-convex optimization problem into a quasi-convex programming problem, where an algorithm is derived to jointly optimize the IPA and EH time. By analytical analysis, we validate that the proposed resource allocation scheme has much lower computational complexity than peer studies in the literature. Finally, simulation results verify the optimality of our proposed resource allocation scheme

    Energy Harvesting Enabled Cooperative Networks Resource Allocation Techniques, Protocol Design And Performance Analysis

    Get PDF
    In In wireless cooperative communication networks, cooperative relaying techniques can be employed to mitigate fading and attenuation problems by positioning relay nodes between a transmitter and a receiver. Therefore, network performance such as efficiency, throughput, and reliability can be improved. However, energy-constrained wireless cooperative relay nodes have a limited viable lifetime,which cannot sustain steady network connectivity, thereby making reliable communication difficult. Recently, energy harvesting (EH) via radio frequency (RF)signals appears to be a solution for sustaining the lifetime of the wireless cooperative relay nodes. In the past years, researchers have proposed some resource allocation techniques and protocols for simultaneous wireless information and power transfer (SWIPT) in the wireless cooperative communication networks. Nevertheless, there are still a lot of challenges being faced by the researchers to achieve an efficient SWIPT in such network. In this work, a new energy saving (ES) resource allocation technique is proposed for RF-EH enabled cooperative networks by adopting time switching relaying (TSR) and power splitting relaying (PSR) protocols. This is based on the assumption that the relay node uses a certain proportion of the harvested power in the current transmission block and then save the remaining portion for the next transmission block. Unlike the previous works, in that the resource allocation techniques in RF-EH enabled cooperative networks have been considered under the assumption that the energy-constrained relay must utilize all of its harvested power in each transmission block. The proposed ES technique is then optimized by considering the optimization problems. Then, the scenario of EH-enabled cooperative network with the presence of an interfering transmitter is considered. A hybridized power-time splitting based relaying (HPTSR) protocol is also proposed with amplified-andforward (AF) and decode-and-forward (DF) relaying techniques by introducing a channel-based and power-time splitter into the relay receiver architecture are analyzed. Numerical results revealed that the proposed ES-TSR and ES-PSR protocols outperformed the existing TSR and PSR protocols with an energy efficiency gain of 13.87 % and 8.31 %, respectively, particularly, when the number of transmission block L 10. These results show that the proposed ES resource allocation technique is more energy efficient than the existing ones. At the optimal throughput value, the proposed AF HPTSR protocol outperformed the existing AF PSR, TSR, and time power switching relaying (TPSR) based protocols with a throughput gain of 54.18 %, 72.31 %, and 10.47 %, respectively. The proposed DF HPTSR protocol showed a performance gain of 2.81 % over the proposed AF HPTSR protocol. These results show that the proposed AF or DF HPTSR protocol can achieve a better throughput performance over the existing protocols, especially at high signal-to-noise ratio

    Time switching for wireless communications with full-duplex relaying in imperfect CSI condition

    Get PDF
    In this paper, we consider an amplify-and-forward (AF) full-duplex relay network (FDRN) using simultaneous wireless information and power transfer, where a battery-free relay node harvests energy from the received radio frequency (RF) signals from a source node and uses the harvested energy to forward the source information to destination node. The time-switching relaying (TSR) protocol is studied, with the assumption that the channel state information (CSI) at the relay node is imperfect. We deliver a rigorous analysis of the outage probability of the proposed system. Based on the outage probability expressions, the optimal time switching factor are obtained via the numerical search method. The simulation and numerical results provide practical insights into the effect of various system parameters, such as the time switching factor, the noise power, the energy harvesting efficiency, and the channel estimation error on the performance of this network. It is also observed that for the imperfect CSI case, the proposed scheme still can provide acceptable outage performance given that the channel estimation error is bounded in a permissible interval.Web of Science1094239422
    corecore