473 research outputs found

    5G optimized caching and downlink resource sharing for smart cities

    Get PDF

    An Economic Aspect of Device-to-Device Assisted Offloading in Cellular Networks

    Get PDF
    Traffic offloading via device-to-device (D2D) communications has been proposed to alleviate the traffic burden on base stations (BSs) and to improve the spectral and energy efficiency of cellular networks. The success of D2D communications relies on the willingness of users to share contents. In this paper, we study the economic aspect of traffic offloading via content sharing among multiple devices and propose an incentive framework for D2D assisted offloading. In the proposed incentive framework, the operator improves its overall profit, defined as the network economic efficiency (ECE), by encouraging users to act as D2D transmitters (D2D-Txs) which broadcast their popular contents to nearby users. We analytically characterize D2D assisted offloading in cellular networks for two operating modes: 1) underlay mode and 2) overlay mode. We model the optimization of network ECE as a two-stage Stackelberg game, considering the densities of cellular users and D2D-Tx’s, the operator’s incentives and the popularity of contents. The closedform expressions of network ECE for both underlay and overlay modes of D2D communications are obtained. Numerical results show that the achievable network ECE of the proposed incentive D2D assisted offloading network can be significantly improved with respect to the conventional cellular networks where the D2D communications are disabled

    An Economic Aspect of Device-to-Device Assisted Offloading in Cellular Networks

    Get PDF
    Traffic offloading via device-to-device (D2D) communications has been proposed to alleviate the traffic burden on base stations (BSs) and to improve the spectral and energy efficiency of cellular networks. The success of D2D communications relies on the willingness of users to share contents. In this paper, we study the economic aspect of traffic offloading via content sharing among multiple devices and propose an incentive framework for D2D assisted offloading. In the proposed incentive framework, the operator improves its overall profit, defined as the network economic efficiency (ECE), by encouraging users to act as D2D transmitters (D2D-Txs) which broadcast their popular contents to nearby users. We analytically characterize D2D assisted offloading in cellular networks for two operating modes: 1) underlay mode and 2) overlay mode. We model the optimization of network ECE as a two-stage Stackelberg game, considering the densities of cellular users and D2D-Tx’s, the operator’s incentives and the popularity of contents. The closedform expressions of network ECE for both underlay and overlay modes of D2D communications are obtained. Numerical results show that the achievable network ECE of the proposed incentive D2D assisted offloading network can be significantly improved with respect to the conventional cellular networks where the D2D communications are disabled

    Seed selection for data offloading based on social and interest graphs

    Full text link
    Copyright © 2018 Tech Science Press The explosive growth of mobile data demand is becoming an increasing burden on current cellular network. To address this issue, we propose a solution of opportunistic data offloading for alleviating overloaded cellular traffic. The principle behind it is to select a few important users as seeds for data sharing. The three critical steps are detailed as follows. We first explore individual interests of users by the construction of user profiles, on which an interest graph is built by Gaussian graphical modeling. We then apply the extreme value theory to threshold the encounter duration of user pairs. So, a contact graph is generated to indicate the social relationships of users. Moreover, a contact-interest graph is developed on the basis of the social ties and individual interests of users. Corresponding on different graphs, three strategies are finally proposed for seed selection in an aim to maximize overloaded cellular data. We evaluate the performance of our algorithms by the trace data of real-word mobility. It demonstrates the effectiveness of the strategy of taking social relationships and individual interests into account

    Caching deployment algorithm based on user preference in device-to-device networks

    Get PDF
    In cache enabled D2D communication networks, the cache space in a mobile terminal is relatively small compared with the huge amounts of multimedia contents. As such, a strategy for caching the diverse contents in a multiple cache-enabled mobile terminals, namely caching deployment, will have a substantial impact to network performance. In this paper, a user preference aware caching deployment algorithm is proposed for D2D caching networks. Firstly, based on the concept of the user preference, the definition of user interest similarity is given, in which it can be used to evaluate the similarity of user preferences. Then a content cache utility of a mobile terminal is defined by taking the communication coverage of this mobile terminal and the user interest similarity of its adjacent mobile terminals into consideration. The logarithmic utility maximization problem for caching deployment is formulated. Subsequently, we relax the logarithmic utility maximization problem, and obtain a low complexity near-optimal solution via dual decomposition method. The convergence of the proposed caching deployment algorithm is validated by simulation results. Compared with the existing caching placement methods, the proposed algorithm can achieve significant improvement on cache hit ratio, content access delay and traffic offloading gain
    • …
    corecore