1,281 research outputs found

    A modified particle swarm optimizer and its application to spatial truss topological optimization

    Full text link
    p. 1044-1057Particle Swarm Optimization (PSO) is a new paradigm of Swarm Intelligence which is inspired by concepts from 'Social Psychology' and 'Artificial Life'. Essentially, PSO proposes that the co-operation of individuals promotes the evolution of the swarm. In terms of optimization, the hope would be to enhance the swarm's ability to search on a global scale so as to determine the global optimum in a fitness landscape. It has been empirically shown to perform well with regard to many different kinds of optimization problems. PSO is particularly a preferable candidate to solve highly nonlinear, non-convex and even discontinuous problems. In this paper, one enhanced version of PSO: Modified Lbest based PSO (LPSO) is proposed and applied to one of the most challenging fields of optimization -- truss topological optimization. Through a benchmark test and a spatial structural example, LPSO exhibited competitive performance due to improved global searching ability.Yang, B.; Bletzinger, K. (2009). A modified particle swarm optimizer and its application to spatial truss topological optimization. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/676

    Automated optimization of reconfigurable designs

    Get PDF
    Currently, the optimization of reconfigurable design parameters is typically done manually and often involves substantial amount effort. The main focus of this thesis is to reduce this effort. The designer can focus on the implementation and design correctness, leaving the tools to carry out optimization. To address this, this thesis makes three main contributions. First, we present initial investigation of reconfigurable design optimization with the Machine Learning Optimizer (MLO) algorithm. The algorithm is based on surrogate model technology and particle swarm optimization. By using surrogate models the long hardware generation time is mitigated and automatic optimization is possible. For the first time, to the best of our knowledge, we show how those models can both predict when hardware generation will fail and how well will the design perform. Second, we introduce a new algorithm called Automatic Reconfigurable Design Efficient Global Optimization (ARDEGO), which is based on the Efficient Global Optimization (EGO) algorithm. Compared to MLO, it supports parallelism and uses a simpler optimization loop. As the ARDEGO algorithm uses multiple optimization compute nodes, its optimization speed is greatly improved relative to MLO. Hardware generation time is random in nature, two similar configurations can take vastly different amount of time to generate making parallelization complicated. The novelty is efficient use of the optimization compute nodes achieved through extension of the asynchronous parallel EGO algorithm to constrained problems. Third, we show how results of design synthesis and benchmarking can be reused when a design is ported to a different platform or when its code is revised. This is achieved through the new Auto-Transfer algorithm. A methodology to make the best use of available synthesis and benchmarking results is a novel contribution to design automation of reconfigurable systems.Open Acces

    Forecasting Cryptocurrency Value by Sentiment Analysis: An HPC-Oriented Survey of the State-of-the-Art in the Cloud Era

    Get PDF
    This chapter surveys the state-of-the-art in forecasting cryptocurrency value by Sentiment Analysis. Key compounding perspectives of current challenges are addressed, including blockchains, data collection, annotation, and filtering, and sentiment analysis metrics using data streams and cloud platforms. We have explored the domain based on this problem-solving metric perspective, i.e., as technical analysis, forecasting, and estimation using a standardized ledger-based technology. The envisioned tools based on forecasting are then suggested, i.e., ranking Initial Coin Offering (ICO) values for incoming cryptocurrencies, trading strategies employing the new Sentiment Analysis metrics, and risk aversion in cryptocurrencies trading through a multi-objective portfolio selection. Our perspective is rationalized on the perspective on elastic demand of computational resources for cloud infrastructures

    Fractional model of cancer immunotherapy and its optimal control

    Get PDF
    Cancer is one of the most serious illnesses in all of the world. Although most of the cancer patients are treated with chemotherapy, radiotherapy and surgery, wide research is conducted related to experimental and theoretical immunology. In recent years, the research on cancer immunotherapy has led to major medical advances. Cancer immunotherapy refers to the stimulation of immune system to deal with cancer cells. In medical practice, it is mainly achieved by using effector cells such as activated T-cells and Interleukin-2 (IL-2), which is the main cytokine responsible for lymphocyte activation, growth and differentiation. A well-known mathematical model, named as Kirschner-Panetta (KP) model, represents richly the dynamics of the interaction between cancer cells, IL-2 and the effector cells. The dynamics of the KP model is described and the solution to which is approximated by using polynomial approximation based methods such as Adomian decomposition method and differential transform method. The rich nonlinearity of the KP model causes these approaches to become so complicated in order to deal with the representation of polynomial approximations. It is illustrated that the approximated polynomials are in good agreement with the solution obtained by common numerical approaches. In the KP model, the growth of the tumour cells can be expressed by a linear function or any limited-growth function such as logistic equation, in which the cancer population possesses an upper bound mentioned as carrying capacity. Effector cells and IL-2 construct two external sources of medical treatment to stimulate immune system to eradicate cancer cells. Since the main goal in immunotherapy is to remove the tumour cells with the least probable medication side effects, an advanced version of the model may include a time dependent external sources of medical treatment, meaning that the external sources of medical treatment could be considered as control functions of time and therefore the optimum use of medical sources can be evaluated in order to achieve the optimal measure of an objective function. With this sense of direction, two distinct strategies are explored. The first one is to only consider the external source of effector cells as the control function to formulate an optimal control problem. It is shown under which circumstances, the tumour is eliminated. The approach in the formulation of the optimal control is the Pontryagin maximum principal. Furthermore the optimal control problem will be dealt with using particle swarm optimization (PSO). It is shown that the obtained results are significantly better than those obtained by previous researchers. The second strategy is to formulate an optimal control problem by considering both the two external sources as the controls. To our knowledge, it is the first time to present a multiple therapeutic protocol for the KP model. Some MATLAB routines are develop to solve the optimal control problems based on Pontryagin maximum principal and also the PSO. As known, fractional differential equations are more appropriate to describe the persistent memory of physical phenomena. Thus, the fractional KP model is defined in the sense of Caputo differentiation operator. An effective method for numerical treatment of the model is described, namely Predictor-Corrector method of Adams-Bashforth-Moulton type. A robust MATLAB routine is coded based on the mentioned approach and the solution obtained will be compared with those of the classical KP model. The code is prepared in such a way to be able to deal with systems of fractional differential equations, in which each equation has its own fractional order (i.e. multi-order systems of fractional differential equations). The theorems for existence of solutions and the stability analysis of the fractional KP model are represented. In this regard, a frequently used method of solving fractional differential equations (FDEs) is described in details, namely multi-step generalized differential transform method (MSGDTM), then it is illustrated that the method neglects the persistent memory property and takes the incorrect approach in dealing with numerical solutions of FDEs and therefore it is unfit to be used in differential equations governed by fractional differentiation operators. The sigmoidal behavior of the solution to the logistic equation caused it to be one of the most versatile models in natural sciences and therefore the fractional logistic equation would be a relevant problem to be dealt with. Thus, a power series of Mittag-Leffer functions is introduced, the behaviour of which is in good agreement with the solution to fractional logistic equation (FLE), and then a fractional integro-differential equation is represented and proved to be satisfied with the power series of Mittag-Leffler function. The obtained fractional integro-differential equation is named as modified fractional differential equation (MFDL) and possesses a nonlinear additive term related to the solution of the logistic equation (LE). The method utilized in the thesis, may be appropriately applied to the analysis of solutions to nonlinear fractional differential equations of mathematical physics. Inverse problems to FDEs occur in many branches of science. Such problems have been investigated, for instance, in fractional diffusion equation and inverse boundary value problem for semi- linear fractional telegraph equation. The determination of the order of fractional differential equations is an issue, which has been analyzed and discussed in, for instance, fractional diffusion equations. Thus, fractional order estimation has been conducted for some classes of linear fractional differential equations, by introducing the relationship between the fractional order and the asymptotic behaviour of the solutions to linear fractional differential equations. Fractional optimal control problems, in which the system and (or) the objective function are described based on fractional derivatives, are much more complicated to be solved by using a robust and reliable numerical approach. Thus, a MATLAB routine is provided to solve the optimal control for fractional KP model and the obtained solutions are compared with those of classical KP model. It is shown that the results for fractional optimal control problems are better than classical optimal control problem in the sense of the amount of drug administration

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Two stochastic optimization algorithms applied to nuclear reactor core design

    Get PDF
    Two stochastic optimization algorithms conceptually similar to Simulated Annealing are presented and applied to a core design optimization problem previously solved with Genetic Algorithms. The two algorithms are the novel Particle Collision Algorithm (PCA), which is introduced in detail, and Dueck’s Great Deluge Algorithm (GDA). The optimization problem consists in adjusting several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak factor in a three-enrichment-zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. Results show that the PCA and the GDA perform very well compared to the canonical Genetic Algorithm and its variants, and also to Simulated Annealing, hence demonstrating their potential for other optimization applications

    Reinforcement Learning Applied to Trading Systems: A Survey

    Full text link
    Financial domain tasks, such as trading in market exchanges, are challenging and have long attracted researchers. The recent achievements and the consequent notoriety of Reinforcement Learning (RL) have also increased its adoption in trading tasks. RL uses a framework with well-established formal concepts, which raises its attractiveness in learning profitable trading strategies. However, RL use without due attention in the financial area can prevent new researchers from following standards or failing to adopt relevant conceptual guidelines. In this work, we embrace the seminal RL technical fundamentals, concepts, and recommendations to perform a unified, theoretically-grounded examination and comparison of previous research that could serve as a structuring guide for the field of study. A selection of twenty-nine articles was reviewed under our classification that considers RL's most common formulations and design patterns from a large volume of available studies. This classification allowed for precise inspection of the most relevant aspects regarding data input, preprocessing, state and action composition, adopted RL techniques, evaluation setups, and overall results. Our analysis approach organized around fundamental RL concepts allowed for a clear identification of current system design best practices, gaps that require further investigation, and promising research opportunities. Finally, this review attempts to promote the development of this field of study by facilitating researchers' commitment to standards adherence and helping them to avoid straying away from the RL constructs' firm ground.Comment: 38 page
    • …
    corecore