-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Carpe dIEN

Available online at www.sciencedirect.com

SCIENCE@DIREOT° PROGRESS IN
NUCLEAR ENERGY

An International Review Journal

ool G
ELSEVIER Progress in Nuclear Energy 48 (2006) 525—539

www.elsevier.com/locate/pnucene

Two stochastic optimization algorithms applied
to nuclear reactor core design

Wagner F. Sacco *™*, Cassiano R.E. de oliveira ®, Claudio M.N.A. Pereira ¢

* Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
® Comissao Nacional de Energia Nuclear, DIRE/IEN, Ilha do Fundao sin, 21945-970, PO Box 68550, Rio de Janeiro, Brazil
¢ Universidade Federal do Rio de Janeiro — PEN/COPPE, Ilha do Fundao s/n, 21945-970, PO Box 68509, Rio de Janeiro, Brazil

Received 9 May 2005; revised 30 October 2005; accepted 30 October 2005

Abstract

Two stochastic optimization algorithms conceptually similar to Simulated Annealing are presented and applied to a core design
optimization problem previously solved with Genetic Algorithms. The two algorithms are the novel Particle Collision Algorithm
(PCA), which is introduced in detail, and Dueck’s Great Deluge Algorithm (GDA). The optimization problem consists in adjusting
several reactor cell parameters, such as dimensions, enrichment and materials, in order to minimize the average peak factor in
a three-enrichment-zone reactor, considering restrictions on the average thermal flux, criticality and sub-moderation. Results
show that the PCA and the GDA perform very well compared to the canonical Genetic Algorithm and its variants, and also to Sim-
ulated Annealing, hence demonstrating their potential for other optimization applications.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Metaheuristics; Stochastic optimization; Nuclear reactor design

1. Introduction

Stochastic optimization methods based on the Simulated Annealing paradigm (Kirkpatrick et al., 1983) have been
actively developed in the last 30 years and successfully applied to numerous complex optimization problems in en-
gineering and medical sciences. These methods though very powerful are not free from practical drawbacks, the main
one being that performance is too sensitive to the choice of free parameters, such as, for example, the annealing sched-
ule and initial temperature (Carter, 1997).

Ideally, an optimization algorithm should not rely on user-defined or problem-dependent parameters and should not
converge to a suboptimal solution. Given the appropriate annealing schedule, Simulated Annealing is guaranteed to
converge to the global optimum (Aarts and Korst, 1989), as it is a Metropolis-based algorithm (Metropolis et al.,
1953), where a worse solution can be accepted with a certain probability. However, its rate of convergence is strongly

* Corresponding author. Nuclear and Radiological Engineering Program, The George Woodruff School of Mechanical Engineering, 900 Atlantic
Drive NW, Neely Building, Room G108, Atlanta, GA 30332-0405, USA. Tel.: +1 404 385 6890; fax: +1 404 894 3733.
E-mail address: wagner.sacco@me.gatech.edu (W.F. Sacco).

0149-1970/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.pnucene.2005.10.004

https://core.ac.uk/display/50523119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:wagner.sacco@me.gatech.edu
http://www.elsevier.com/locate/pnucene

526 W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539

dependent on the user-specified initial parameters. A desirable outcome would be, therefore, the development of an
algorithm similar to Simulated Annealing, but without the burden of parameter specification.

One such algorithm, which does not rely on user-supplied parameters to perform the optimality search, is introduced in
detail here. Its structure was outlined, along with some preliminary results, in Sacco and Oliveira (2005). Named the *“Par-
ticle Collision Algorithm” (PCA), the algorithm is loosely inspired by the physics of nuclear particle collision reactions
(Duderstadt and Hamilton, 1976), particularly scattering and absorption. Thus, a particle that hits a high-fitness ““nucleus”
would be “absorbed” and would explore the boundaries. On the other hand, a particle that hits a low-fitness region would
be scattered to another region. This permits us to simulate the exploration of the search space and the exploitation of the
most promising areas of the fitness landscape through successive scattering and absorption collision events.

Another algorithm conceptually similar to Simulated Annealing that is presented here is the Great Deluge Algo-
rithm (GDA) (Dueck, 1993). It is an analogy with a flood: the “water level” rises continuously and the proposed so-
lution must lie above the ““surface’ in order to survive. The user must specify two parameters: the “rain speed’’, which
controls convergence of the algorithm similar to SA’s annealing schedule, and the initial rain level, analogous to SA’s
initial temperature. The main advantage of this algorithm in relation to Simulated Annealing is its robustness to pa-
rameter specification (Bykov, 2003).

The remainder of the paper is organized as follows. The section following presents an overview of the established
optimization methods, namely, Simulated Annealing, Great Deluge Algorithm and Genetic Algorithm, which are used
in the comparative tests. Section 3 presents the details of the implementation of the new PCA method and its validation
tests. Section 4 provides a description of the reactor design optimization problem, details of the numerical implemen-
tation of the algorithms, and the numerical comparisons. Finally, in Section 5, conclusions are presented along with
suggestions for future improvements to PCA.

2. Overview of established optimization methods
2.1. Simulated Annealing

Simulated Annealing was introduced as a computational method mimicking the physical process of the increasing
of energetic stability of molecular structure by consecutive heating and cooling of a material. The candidate solutions
with worse objective function values are accepted with a probability given by

P = exp(AE/T), (1)

where AF is the energy variation from two consecutive states and T is the current temperature. The temperature re-
duction scheme is known as the “‘cooling schedule”. This can involve arbitrarily reducing the temperature after a cer-
tain number of iterations or successful moves, or by defining a simple progression formula:

T =Too")

where T is the initial temperature, « is a number between 0.9 and 0.99 and 7 is the iteration number (Aarts and Korst,
1989). Fig. 1 shows the SA’s pseudo code for a maximization problem.

2.2. The Great Deluge Algorithm

As mentioned previously, the Great Deluge Algorithm draws an analogy with flood phenomena. Like Simulated
Annealing, GDA may accept worse candidate solutions than the current best during its run. The worse solution is ac-
cepted if its fitness is higher than the water level, which is the control parameter.

The water level, WL, receives an initial value WL, which is increased iteratively by the ‘“‘rain speed”’. We use here
the rain speed, Up, suggested by Bykov (2003), which is given by:

f (X’) — WLO
Up=——"—7—, 3
p N 3)
where f(') is a goal value and N is the number of iterations. This goal value can be estimated by some quick technique
(e.g. Hill-Climbing) or by some previously known results. The initial water level can be set as the lower boundary of
the results. But as mentioned, this algorithm is relatively insensitive to this parameter.

W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539 527

Choose an initial configuration Old_Config
Choose an initial temperature T
For n =0 to # of iterations
Generate a small stochastic perturbation New_Config of the solution
Compute AE = Fitness(New_Config) - Fitness(Old_Config)
IfAE>0
Old_Config := New_Config
Else
With probability exp(AE/T)
Old_Config := New_Config
End If
Reduce temperature

End For

Fig. 1. Pseudo code for SA.

Fig. 2 shows the GDA’s pseudo code. The algorithm’s default is for maximization problems. For minimization
problems, fitness values must be multiplied by —1.

2.3. Genetic Algorithms

Genetic Algorithms (GAs) (Goldberg, 1989) are search methods based upon the biological principles of natural
selection and survival of the fittest as introduced by Charles Darwin in his seminal work “The Origin of Species”
(1859). They were rigorously introduced by Holland (1975). GAs consist of a population of individuals that are pos-
sible solutions and each one of these individuals receives a reward, known as ““fitness’’, that quantifies its suitability to
solve the problem. In ordinary applications, fitness is simply the objective function. Individuals with better than av-
erage fitnesses receive greater opportunities to cross. On the other hand, low-fitness individuals will have less chance
to reproduce until they are extinguished. Consequently, the good features of the best individuals are disseminated over
the generations. In other words, the most promising areas of the search space are explored, making the GA converge to
the optimal or near-optimal solution.

Genetic Algorithms have proven to be efficient in a great variety of areas of application, as the population of can-
didate solutions converge to a single optimum, in a phenomenon known as genetic drift (Goldberg, 1989). Many pop-
ulational diversity mechanisms, called niching methods (Mahfoud, 1995), have been proposed to force the GA to
maintain a heterogeneous population throughout the evolutionary process. These methods are inspired by nature, as
in an ecosystem there are different subsystems (niches) that contain many diverse species (subpopulations). The number
of elements in a niche is determined by its resources and by the efficiency of each individual in taking profit of these
resources. Each peak of the multimodal function can be seen as a niche that supports a number of individuals directly

Choose an initial configuration Old_Config
Choose WL, and Up
For n =0 to # of iterations
Generate a small stochastic perturbation New_Config of the solution
If Fitness(New_Config) > WL
Old_Config := New_Config
End If
WL =WL + Up
End For

Fig. 2. Pseudo code for GDA.

528 W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539

proportional to its “fertility’’, which is measured by the fitness of this peak relative to the fitnesses of the other peaks of
the domain. Genetic Algorithms which employ this technique are known as “Niching Genetic Algorithms™ (NGAs).

The niching method referred herein is Fuzzy Clearing (Sacco et al., 2004), where the individuals are clustered using
an algorithm called “Fuzzy Clustering Means” (Bezdek, 1981) and the individual with best fitness (dominant) is de-
termined for each cluster. Following that the dominant’s fitness is preserved and all the others’ individuals have their
fitnesses zeroed (in the case of a maximization problem).

Another way of preserving populational diversity is by using the Island Genetic Algorithm (IGA) (Cantu-Paz,
2000). In this model, the population is divided into multiple populations that evolve isolated from each other most
of the time, but exchange individuals occasionally with their neighbors (migration).

3. The Particle Collision Algorithm (PCA)
3.1. Algorithm description

The PCA resembles in its structure that of Simulated Annealing: first an initial configuration is chosen; then there is
a modification of the old configuration into a new one. The qualities of the two configurations are compared. A de-
cision then is made on whether the new configuration is “acceptable”. If it is, it serves as the old configuration for the
next step. If it is not acceptable, the algorithm proceeds with a new change of the old configuration. PCA can also be
considered a Metropolis algorithm, as a trial solution can be accepted with a certain probability. This acceptance may
avoid the convergence to local optima.

The pseudo code description of the PCA is shown in Fig. 3. The algorithm’s default is for maximization problems.
For minimization, just multiply the objective function by —1 and invert the ratio in pycagering-

Generate an initial solution Old_Config
Best Fitness = Fitness (Old_Config)
For n =0 to # of iterations
Perturbation()
If Fitness(New_Config) > Fitness(Old_Config)
If Fitness(New_Config) > Best Fitness
Best Fitness := Fitness(New_Config)
End If
Old_Config := New_Config
Exploration ()
Else
Scattering ()
End If
End For

Exploration ()
For n = 0 to # of iterations
Small_Perturbation()
If Fitness(New_Config) > Fitness(Old_Config)
Old_Config := New_Config
End If
End For
return

Scattering ()
_ Fimess(New_Config)
Best Fitness

Pscartering=1

If pscanermg > random (09 1)
Old_Config := random solution
Else
Exploration ();
End if
return

Fig. 3. Pseudo code for PCA.

W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539 529

Perturbation()

For i =0 to (Dimension-1)
Upper := Superior Limit [i]
Lower := Inferior Limit [{]
Rand = Random(0,1)
New_Conlfigli] := Old_Configli] + ((Upper - Old_Config|i])*Rand) -

((Old_Configli] - Lower)*(1-Rand))
If (New_Configli] > Upper)

New_Configli] := SupLim[i];
Else
If (New_Configli] < Lower)

New_Configli] = InfLim[i];
End If
End If
End

Fig. 4. Function ‘“‘Perturbation”.

The ““stochastic perturbations’” in the beginning of the loop are random variations in each variable’s values within
their ranges. We based this mechanism on that used in the Simulated Annealing algorithm (Aarts and Korst, 1989). For
details, see function “‘Perturbation” in Fig. 4.

If the quality or fitness of the new configuration is better than the fitness of the old configuration, then the ““particle”
is ““absorbed”, there is an exploration of the boundaries searching for an even better solution. Function “Explora-
tion()” performs this local search, generating a small stochastic perturbation of the solution inside a loop. In PCA’s
current version, it is a one-hundred-iteration loop. The “‘small stochastic perturbation” is similar to the previous sto-
chastic perturbation, but in a smaller range (see ‘““Small_Perturbation™ in Fig. 5).

Otherwise, if the quality of the new configuration is worse than the old configuration, the *“particle” is “scattered”.
By scattering we mean that the new configuration receives random values between the upper and lower bounds of each
design variable. The scattering probability (Pgcaicering) 18 inversely proportional to its quality. A low-fitness particle will
have a greater scattering probability.

3.2. Validation

As the search space of the reactor design optimization problem is not known beforehand, prior to applying PCA to
this problem, it was deemed necessary to validate the algorithm. We applied commonly employed test functions and
compared the results to those obtained by the more established genetic and Simulated Annealing algorithms, and also
by the conceptually similar GDA. These functions, which are defined below, have a single global optimum. In case of
multiple global optima (same values for the objective function at different locations), these algorithms would all con-
verge to one of these optima. The only method that can handle this situation is the Niching Genetic Algorithm (Mah-
foud, 1995).

3.3. Test functions

Easom’s (1990) function is a unimodal test function where the global minimum region has a small area relative to
the search space (see Fig. 6, below), making it a great challenge for optimization algorithms.

z(x,y) = —cos(x) cos(y) exp{ — 1[(x —)+ (y— 77)2] }, =100 < x,y < 100, (4)

with global minimum z = —1 at (x,y) = (m,m).

530 W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539

Small_Perturbation()
For i =0 to (Dimension-1)

Upper = Random(1.0, 1.2) * Old_Configli]
If (Upper > Superior Limit [i])

Upper = Superior Limit [i]
End If

Lower = Random(0.8, 1.0) * Old_Configli]
If (Lower < Inferior Limit [i])

Lower = Inferior Limit [{]
End If
Rand = Random(0,1)
New_Configli] = Old_Config[i] + (Upper - Old_Config[i])*Rand) -
((Old_Configli] - Lower)*(1-Rand))
End

Fig. 5. Function “Small_Perturbation™.

Shekel’s Foxholes, introduced by Shekel (1971) and adapted for maximization by De Jong (1975), is a two-dimen-
sional function with 25 peaks all with different heights, ranging from 476.191 to 499.002 (Fig. 7). The global optimum
is located at (—32,—32). Shekel’s Foxholes is defined by:

1

z(x,y) = 500 — ,—65.536 < x,y < 65.536, (5)

1
I+i+ (x—a(i)*+(y=b(i)°

0.002 + 37,

where a(i) = 16[(i mod5)— 2] and b(i) = 16[(i/5)— 2].

Due to the high modality of Shekel’s Foxholes function it is a difficult task to determine its points of local and
global maxima.

The last test function, Rosenbrock’s valley, is a classic optimization problem (Rosenbrock, 1960). The global
optimum is inside a long, narrow, parabolic shaped flat valley (see Fig. 8). To find the valley is trivial, however, con-
vergence to the global optimum is difficult and hence this problem has been repeatedly used to test the performance of
optimization algorithms. The global optimum of the function, defined by Eq. (6), is z= 0 at (x,y) = (1,1).

Fig. 6. Easom’s function.

W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539 531

,f,!,u\\u

/n R
!!‘!““'?'“ sl “n“ b u\w(’m\‘
il .,‘1-';?##“1\%' ‘

Fig. 7. Shekel’s Foxholes.
2(x,y) = 100(y — 2*)*+(1 —x)%, —2.048 < x,y < 2.048 (6)

3.4. Results

The Standard Genetic Algorithm (SGA) used in the validation tests was that implemented in GENESIS (Greffens-
tette, 1990), which employs double-point crossover (Goldberg, 1989), Stochastic Universal Sampling as the selection
scheme (Baker, 1987) and elitism (Goldberg, 1989). The following parameters were used, as recommended by Gold-
berg (1989): 100,000 function evaluations (population size = 100, number of generations = 1000), crossover
rate = 0.6, mutation rate = 0.005, generation gap = 0.1. The SA, PCA and GDA were set up for 100,000 function eval-
uations, the cooling schedule used in the SA was given by Eq. (2) with « = 0.95 and the rain speed in the GDA fol-
lowed Eq. (3). Various initial temperatures and initial rain levels were tested for SA and GDA so that the most suitable
values were used for each function. The relatively high number of function evaluations was used to allow the

- 3609
L 2087
L 2165
L 1444

F 7218

Y o2 22 1.2 X

Fig. 8. Rosenbrock’s valley.

532 W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539

Table 1
Results for Easom’s function
Experiment SGA SA GDA PCA

Best Iter. Best Iter. Best Iter. Best Iter.
Best results
#1 —1.000 800 —1.000 800 —1.000 400 —1.000 200
#2 —1.000 3100 —1.000 1100 —1.000 900 —1.000 200
#3 —1.000 3800 —1.000 1200 —1.000 2100 —1.000 200
#4 —1.000 3900 —1.000 1200 —1.000 2400 —1.000 200
#5 —1.000 4100 —1.000 1800 —1.000 2500 —1.000 400
#6 —1.000 4200 —1.000 3400 —1.000 2900 —1.000 400
#7 —1.000 4400 —1.000 3900 —1.000 3100 —1.000 400
#8 —1.000 4700 —1.000 4400 —1.000 3200 —1.000 500
#9 —1.000 4800 —1.000 4800 —1.000 3400 —1.000 500
#10 —1.000 5100 —1.000 5200 —1.000 3800 —1.000 500
Average —1.000 3890 —1.000 2780 —1.000 2470 —1.000 350
Std. Dev. 0.000 1266 0.000 1729 0.000 1087 0.000 135
Worst results
#1 —1.000 40,100 —1.000 36,900 —1.000 32,600 —1.000 10,000
#2 —1.000 43,400 —1.000 37,300 —1.000 32,800 —1.000 10,000
#3 0.000 1700 —1.000 37,400 —1.000 33,000 —1.000 10,500
#4 0.000 2100 —1.000 37,800 —1.000 33,200 —1.000 11,600
#5 0.000 2400 —1.000 39,400 —1.000 33,400 —1.000 12,000
#6 0.000 2400 —1.000 39,900 —1.000 33,500 —1.000 12,400
#7 0.000 2900 —1.000 40,000 —1.000 33,800 —1.000 13,000
#8 0.000 3100 —1.000 40,300 —1.000 34,700 —1.000 13,400
#9 0.000 3900 —1.000 40,500 —1.000 35,000 —1.000 17,400
#10 0.000 5900 —1.000 40,900 —1.000 35,100 —1.000 20,600
Average —0.200 10,790 —1.000 39,040 —1.000 33,710 —1.000 13,090
Std. Dev. 0.422 16,378 0.000 1520 0.000 916 0.000 3412
All executions
Average —0.920 11,257 —1.000 21,234 —1.000 18,845 —1.000 3550
Std. Dev. 0.273 8058 0.000 11,504 0.000 0.000 0.000 3804

algorithms to converge. As the GDA and PCA are by default maximization algorithms, it was necessary to multiply
Easom’s function and Rosenbrock’s valley equations by —1, as it would be for any minimization problem.

Tables 1—3 display the results obtained by each algorithm. We performed 100 independent runs with different ran-
dom seeds for each algorithm. The tables below present the 10 best and 10 worst values obtained in each run and the
number of evaluations required to reach them, and also the averages and standard deviations for the 100 executions.

The results show that PCA reached the optimal values in all tests, requiring less function evaluations than the other
methods. All function evaluations were counted, including those in PCA’s “Exploration” phase. In the case of Ea-
som’s function, because of the extremely narrow valley, the Standard Genetic Algorithm drifted in some executions
before reaching this region.

4. Numerical comparisons
4.1. Problem description

The main objective of this work was to compare two SA-like algorithms with Simulated Annealing (SA) and Ge-
netic Algorithms (SGA and the NGA), and for this purpose we use the nuclear reactor design problem previously de-
scribed in Pereira et al. (1999). Briefly this problem consists of a cylindrical 3-enrichment-zone PWR, with a typical
cell composed by moderator (light water), cladding and fuel, see Fig. 9.

The design parameters that may be varied in the optimization process, as well as their variation ranges, are shown in
Table 4. The materials are represented by discrete variables.

W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539 533
Table 2
Results for Shekel’s Foxholes
Experiment SGA SA GDA PCA

Best Iter. Best Iter. Best Iter. Best Iter.

Best results
#1 499.002 200 499.002 200 499.002 100 499.002 100
#2 499.002 500 499.002 400 499.002 200 499.002 100
#3 499.002 600 499.002 600 499.002 300 499.002 100
#4 499.002 800 499.002 600 499.002 500 499.002 100
#5 499.002 900 499.002 800 499.002 600 499.002 100
#6 499.002 1000 499.002 1100 499.002 700 499.002 100
#7 499.002 1000 499.002 1100 499.002 700 499.002 200
#8 499.002 1100 499.002 1300 499.002 1100 499.002 200
#9 499.002 1100 499.002 1300 499.002 1600 499.002 200
#10 499.002 1400 499.002 1400 499.002 1900 499.002 300
Average 499.002 860 499.002 880 499.002 770 499.002 150
Std. Dev. 0.000 347 0.000 418 0.000 595 0.000 71
Worst results
#1 498.795 17,700 499.002 36,900 499.002 31,000 499.002 15,700
#2 498.795 19,600 499.002 43,700 499.002 32,500 499.002 16,900
#3 498.795 24,000 499.002 45,100 499.002 33,000 499.002 17,600
#4 498.795 24,700 499.002 46,000 499.002 33,500 499.002 22,500
#5 498.795 30,700 499.002 50,400 499.002 33,600 499.002 23,600
#6 498.795 50,500 499.002 51,500 499.002 34,900 499.002 25,000
#7 498.588 17,500 499.002 59,200 499.002 36,500 499.002 26,200
#3 498.588 21,500 499.002 61,700 499.002 41,400 499.002 31,400
#9 498.588 29,800 499.002 69,000 499.002 47,000 499.002 34,500
#10 498.585 99,100 499.002 98,700 499.002 66,600 499.002 39,500
Average 498.712 33,510 499.002 56,220 499.002 39,000 499.002 25,290
Std. Dev. 0.107 24,999 0.000 17,705 0.000 10,833 0.000 7868
All executions
Average 498.950 9109 499.002 16,971 499.002 13,938 499.002 7360
Std. Dev. 0.108 14,109 0.000 17,344 0.000 11,490 0.000 7982

The objective of the optimization problem is to minimize the average flux or power-peaking factor, f;, of the pro-
posed reactor, allowing the reactor to be sub-critical or super critical (k.r; = 1.0 & 1%), for a given average flux ¢,. Let
D= {R¢, 4¢, R., E\, E3, E3, Mg, M.} be the vector of design variables. Then, the optimization problem can be
written as follows:

Minimize
f(D)

Subject to:

$(D) = d;
0.99 < ker(D) < 1.01;

dkeff
0;
v,

DI<D;<D!, i=1,2,...,6
My = {UOZ or U-metal};

M, = {Zircaloy-2, Aluminum or Stainless-304},

534 W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539

Table 3
Results for Rosenbrock’s valley
Experiment SGA SA GDA PCA

Best Iter. Best Iter. Best Iter. Best Iter.
Best results
#1 0.000 900 0.000 100 0.000 200 0.000 100
#2 0.000 1600 0.000 200 0.000 200 0.000 200
#3 0.000 1900 0.000 400 0.000 400 0.000 200
#4 0.000 1900 0.000 400 0.000 400 0.000 300
#5 0.000 2100 0.000 600 0.000 700 0.000 300
#6 0.000 2100 0.000 700 0.000 800 0.000 300
#7 0.000 2200 0.000 800 0.000 800 0.000 300
#8 0.000 2400 0.000 1000 0.000 1200 0.000 400
#9 0.000 2600 0.000 1400 0.000 1200 0.000 500
#10 0.000 2900 0.000 1600 0.000 1300 0.000 500
Average 0.000 2060 0.000 720 0.000 720 0.000 310
Std. Dev. 0.000 552 0.000 494 0.000 416 0.000 129
Worst results
#1 0.000 12,100 0.000 42,300 0.000 26,800 0.000 15,300
#2 0.000 12,400 0.000 42,700 0.000 27,100 0.000 16,900
#3 0.000 13,300 0.000 47,900 0.000 27,900 0.000 17,300
#4 0.000 13,600 0.000 50,300 0.000 28,900 0.000 17,900
#5 0.000 14,200 0.000 54,300 0.000 33,200 0.000 19,100
#6 0.000 16,300 0.000 55,000 0.000 35,700 0.000 20,300
#7 0.000 18,400 0.000 56,300 0.000 36,600 0.000 25,600
#8 0.000 21,500 0.000 57,000 0.000 41,800 0.000 27,900
#9 0.000 21,800 0.000 76,700 0.000 45,200 0.000 34,400
#10 0.000 29,700 0.000 82,200 0.000 49,500 0.000 37,300
Average 0.000 17,330 0.000 56,470 0.000 35,270 0.000 23,200
Std. Dev. 0.000 5619 0.000 13,251 0.000 8051 0.000 7763
All executions
Average 0.000 7131 0.000 17,697 0.000 10,576 0.000 5953
Std. Dev. 0.000 4695 0.000 17,042 0.000 10,488 0.000 7233

where V,,, is the moderator volume, and the superscripts / and « indicate, respectively, the lower and upper bounds (of
the feasible range) for each design variable.

4.2. Optimization algorithms setup

The GA setup was the same as in Sacco et al. (2004), including the random seeds. As in Section 3, all the algorithms
were set up for 100,000 iterations, so that the results were obtained with the same computational effort. The GDA’s
rain speed was set up using an initial rain level of —1.35 (a below-the-average solution) and an estimated final level of
—1.28 (equal to the best results so far). For the SA, an initial temperature T, of —3.00 and a cooling schedule following

Fuel Cladding

Moderator

a b

Fig. 9. (a) The nuclear reactor and (b) its typical cell.

W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539 535

Table 4

Parameters range

Parameter Symbol Range

Fuel radius (cm) R 0.508—1.270
Cladding thickness (cm) A, 0.025—0.254
Moderator thickness (cm) Am 0.025—0.762
Enrichment of zone 1 (%) E, 2.0-5.0
Enrichment of zone 2 (%) E, 2.0-5.0
Enrichment of zone 3 (%) E; 2.0-5.0

Fuel material My {U-metal or UO,}
Cladding material M. {Zircaloy-2, Aluminum

or Stainless Steel-304}

Eq. (2) with & = 0.95 was used. The execution time for 100,000 iterations was 10 h 30 min in a Pentium IV 3.0 GHz
PC with 1 Gb RAM. This time was independent of the method, as the bulk of the effort was taken up by the fitness
evaluations, by the reactor physics code.

4.3. Reactor Physics Code

The HAMMER system (Suich and Honeck, 1967) was used for cell and diffusion equations’ calculations. It per-
forms a multigroup calculation of the thermal and epithermal flux distribution from the integral transport theory in
a unit cell of the lattice.

—S |
o(r) = /V St (13)

dalr —

The integral transport equation for scalar flux ¢(7) is solved for all sub-regions of the unit cell, being the neutron
source S(r) isotropic into the energy group under consideration. The transfer kernel in Eq. (13) is related to the col-
lision probabilities for a flat isotropic source in the initial region. The solution is initially performed for a unit cell in an
infinite lattice.

The integral transport calculation is followed by a multigroup Fourier transfer leakage spectrum theory in order
to include the leakage effects in the previous calculation and to proceed with the multigroup flux—volume
weighting.

Using the four group constants obtained from the mentioned procedure, a one-dimensional multi-region reactor
calculation is performed. The diffusion equation is, then, solved to perform standard criticality calculation.

SVD) T 40+ Zul)000) = X[B + Bkl 1) (14)

The flux ¢,(r) is calculated assuming normalized source density. Eq. (14) is solved using the finite difference
method and a computational mesh with constant spacing in the spatial coordinate.

4.4. Fitness function

The fitness function was developed in such a way that if all constraints are satisfied, it has the value of the average
peak factor, f,,, otherwise, it is penalized proportionally to the discrepancy on the constraint. Such penalization factors
should be set up by the expert, according to the requirements and the priorities of the problem, being weighted by the
coefficients r;, withi=1, 2, 3.

536 W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539

o Ak < 0.01; A¢<001¢0, e“>o
keff
f]‘3+r1Akeff, Akeff >OO]7A¢)§001¢0,T>0
fr+1Ag, Aketr < 0.01;A¢p > 0.01h; AVeff >0
Nkegr Nkege
fo+ Aketr < 0.01;A¢ < 0.01¢p; —— < 0
— AVm AVm
f= (15)
fo 4 1Bk + 1A, Aker > 0.01; A¢p > 0. 01¢0, ot —> 0
A eff eff
fp—|—11Akeff—|—rgAV Akeff>001 A¢<001¢0, <0
A eff keff
f]'3-|-;2A¢)—|—}3AV AkeffSO.O];A¢>O.Ol¢O;—<O
fo+ riAk +1‘A¢+r% Aketr > 0.01;A¢ > 0.01¢ Ak _ g
P 1 eff 2 3 Avma eff 03 AVm

4.5. Results

Tables 5 and 6 show the results for the power-peaking factor obtained by the PCA and GDA compared to those
obtained by the SGA, SA, IGA and NGA for 10 independent experiments each with 50,000 and 100,000 iterations,
respectively. The stopping criterion chosen was the number of iterations which enabled comparisons with previous
efforts in the literature (Pereira et al., 1999; Pereira and Lapa, 2003; Sacco et al., 2004).

From these tables we can see that the PCA produced the best overall result and the GDA the best average and the
lowest standard deviation. Also, both the PCA’s and GDA’s best results and averages at 50,000 iterations are better
than the NGA’s at 100,000. All SGA’s executions drifted before 50,000 executions. Simulated Annealing was the
method with the worst average for 50,000 executions, but it was better than the canonical Genetic Algorithm for
100,000 executions. As mentioned by Carter (1997), parameter-tuning was problematic for SA, especially in this
problem where the search space is unknown.

The GDA and PCA performed well compared to the parallel Island Genetic Algorithm (IGA) of Pereira and Lapa
(2003) which obtained the best results so far for this problem. With the same computational effort as the PCA’s (4
islands of 50 individuals, 500 generations or 100,000 iterations), the IGA obtained 1.2784 as best result with an

Table 5

Comparison with the SGA, SA and the NGA for 50,000 iterations

Experiment GA SA IGA NGA GDA PCA
#1 1.3185 1.3449 N.A. 1.2916 1.2806 1.2849
#2 13116 1.3457 N.A. 1.3069 1.2913 1.2876
#3 1.3300 1.4055 N.A. 1.3003 1.2856 1.2964
#4 1.3294 1.3530 N.A. 1.2874 1.2909 1.2953
#5 1.3595 1.3770 N.A. 1.2956 1.2874 1.2829
#6 1.3562 1.3221 N.A. 1.3014 1.2845 1.2791
#7 1.3372 1.3023 N.A. 1.3190 1.2897 1.2975
#8 1.3523 1.3387 N.A. 1.3075 1.2953 1.2865
#9 1.3614 1.3380 N.A. 1.2974 1.2900 1.3010
#10 1.3467 1.3565 N.A. 1.3077 1.2930 1.2852
Average 1.3402 1.3484 N.A. 1.3015 1.2888 1.2896
Std. Dev. 0.0175 0.0283 N.A. 0.0093 0.0044 0.0073

Results for IGA were not available in Pereira and Lapa (2003).

W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539 537

Table 6

Comparison with the SGA, SA and the NGA for 100,000 iterations

Experiment SGA SA IGA NGA GDA PCA
#1 1.3185 1.3449 1.3322 1.2916 1.2806 1.2827
#2 13116 1.3390 1.2799 1.3069 1.2913 1.2876
#3 1.3300 1.3480 1.3378 1.3003 1.2856 1.2964
#4 1.3294 1.3530 1.2835 1.2844 1.2891 1.2874
#5 1.3595 1.3553 1.2810 1.2895 1.2863 1.2829
#6 1.3562 1.3221 1.2796 1.3014 1.2845 1.2791
#7 1.3372 1.3023 12784 1.2872 1.2897 1.2975
#3 1.3523 1.3387 1.3034 1.3050 1.2842 1.2865
#9 1.3614 1.3138 1.2989 1.2959 1.2895 1.2908
#10 1.3467 1.3565 1.3170 1.3077 1.2827 1.2845
Average 1.3402 1.3374 1.2992 1.2970 1.2864 1.2875
Std. Dev. 0.0175 0.0186 0.0228 0.0085 0.0035 0.0059

Results for IGA were taken from Pereira and Lapa (2003).

average of 1.2992, while the GDA’s best was 1.2806 with an average of 1.2864 and the PCA’s best was 1.2791 with an
average of 1.2875.

Fig. 10 shows each algorithm’s evolution for their best results, except for the IGA which was not available in
Pereira and Lapa (2003).

Table 7 shows the best configurations obtained by the SGA (in Pereira et al., 1999) with 300 individuals until con-
vergence, by the IGA (in Pereira and Lapa, 2003) with 400 individuals and 500 generations, by the NGA with 100
individuals (in Sacco et al., 2004) and 500 generations, and by GDA and PCA in 100,000 iterations, when applied
exactly to the same problem. We note that the SGA runs by Pereira et al. produced a worse result even though a larger
population was used, indicating the occurrence of genetic drift. The IGA result though comparable to that of the PCA
required more computational effort.

Best Results
1.3900 ++ PCA —
I o = = Fuzzy Clearing
I : e SGA
: —.-— GDA
1.3700 1} .
- L I SA
1.3500 "'l'",
2 I -
5} l 9
= \
= o
= 1.3300 { T
1
— _Il'L
[
1.3100 —_—
Looene | _...r¥...—..... ..
L I
1.2900 l_‘ S
1.2700

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Fitness Evaluations

Fig. 10. Fitness evaluations vs. fitness for each algorithm’s best configuration.

538 W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539

Table 7
Comparison with previously published best results
SGA* SA IGA® NGA° GDA PCA
Fitness 1.310 1.302 1.278 1.287 1.281 1.279
Minimum average 1.310 1.302 1.278 1.287 1.281 1.279
peak factor
Average flux 8.02x107° 8.00 x 107° 8.08 x 107° 8.04 x 107° 7.95%107° 8.06 x 107°
ketr 1.000 0.998 0.991 1.000 0.990 0.991
Ry (cm) 0.5621 0.5080 0.7661 0.5441 0.5913 0.5497
Ar (cm) 0.1770 0.0558 0.1857 0.1064 0.0638 0.1450
Am (cm) 0.6581 0.5475 0.7569 0.5997 0.5992 0.6111
E, (%) 2.756 2.2072 2.6850 2.5906 2.1485 2.7953
E, (%) 4.032 2.5069 2.8268 2.7559 2.2585 2.9469
E5 (%) 4457 3.8932 4.8819 4.6220 3.8590 5.0000
M; U-metal U-metal U-metal U-metal U-metal U-metal
M, Stainless-304 Stainless-304 Stainless-304 Stainless-304 Stainless-304 Stainless-304

& Pereira et al. (1999).
b Pereira and Lapa (2003).
¢ Sacco et al. (2004).

5. Conclusions

The comparative performances of PCA and GDA with the canonical Genetic Algorithm and its variants show
that the first two algorithms are quite promising and could be applied to other optimization problems in the nuclear
engineering field as, for instance, the nuclear core reload optimization problem (Poon and Parks, 1992).

The great advantage of PCA in relation to other optimization algorithms such as the Genetic Algorithm, Simulated
Annealing or the Great Deluge Algorithm is that, other than the number of iterations, it does not require any additional
parameters. Of course the performance of PCA and of the other algorithms depends crucially on the scaling of the
fitness function, which is user-defined. The PCA can be applied to continuous or discrete optimization problems
by just changing the perturbation function, while in Genetic Algorithms it is necessary to apply special operators
for discrete optimization problems (Goldberg, 1989). Last but not least, the PCA is extremely easy to implement.

The Particle Collision Algorithm presented here is in its early stages. As further development, the local search
mechanism could be improved, as a more intelligent mechanism could lead to significant gains in computational
cost. Also, the perturbation and small-perturbation mechanisms should be studied in more detail. Another improve-
ment would be a populational algorithm where the particles would interact to obtain better solutions, in a fashion
similar to Particle Swarm Optimization (Kennedy and Eberhart, 1995).

Acknowledgements

Wagner F. Sacco is supported by CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico, Min-
istry of Science & Technology, Brazil) under postdoctoral grant 200223/2004-6. Claudio Marcio do Nascimento
Abreu Pereira is supported by CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico, Ministry
of Science & Technology, Brazil) under a research grant.

References

Aarts, E., Korst, J., 1989. Simulated Annealing and Boltzmann Machines. John Wiley and Sons, New York.

Baker, J.E., 1987. Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the Second International Conference on Genetic
Algorithms and their Application. Hillsdale, NJ, p. 14.

Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

Bykov, Y., 2003. Time-predefined and Trajectory-based Search: Single and Multiobjective Approaches to Exam Timetabling. Ph.D. thesis, Uni-
versity of Nottingham, UK.

Cantu-Paz, E., 2000. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Boston.

Carter, J.N., 1997. Genetic algorithms for incore fuel management and other recent developments in optimization. In: Advances in Nuclear Sci-
ence and Technology, vol. 25. Plenum Press, New York, p. 113.

W.F. Sacco et al. | Progress in Nuclear Energy 48 (2006) 525—539 539

De Jong, K.A., 1975. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Doctoral dissertation, University of Michigan.

Duderstadt, J.J., Hamilton, L.J., 1976. Nuclear Reactor Analysis. John Wiley and Sons, New York.

Dueck, G., 1993. New optimization heuristics — the great deluge algorithm and record-to-record travel. Journal of Computational Physics 104, 86.

Easom, E.E., 1990. A Survey of Global Optimization Techniques. M. Eng. thesis, University of Louisville, Louisville, KY.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, Reading, MA.

Greffenstette, J.J., 1990. A User’s Guide to GENESIS. Naval Research Laboratory, Washington, D.C.

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, ML

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks,
vol. IV, p. 1942.

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing. Science 220, 671.

Mahfoud, S.W., 1995. Niching Methods for Genetic Algorithms. Ph.D thesis, Illinois Genetic Algorithm Laboratory, University of Illinois at
Urbana-Champaign, Urbana, IL.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953. Equations of state calculations by fast computing machines.
Journal of Chemical Physics 21, 1087.

Pereira, C.M.N.A., Schirru, R., Martinez, A.S., 1999. Basic investigations related to genetic algorithms in core designs. Annals of Nuclear Energy
26, 173.

Pereira, C.M.N.A., Lapa, C.MLE,, 2003. Coarse-grained parallel genetic algorithm applied to a nuclear reactor core design optimization problem.
Annals of Nuclear Energy 30, 555.

Poon, P.W., Parks, G.T., 1992. Optimizing PWR reload core designs. In: Parallel Problem Solving from Nature 2, p. 371.

Rosenbrock, H.H., 1960. An automatic method for finding the greatest or least value of a function. Computer Journal 3, 175.

Sacco, W.F., Machado, M.D., Pereira, C.M.N.A., Schirru, R., 2004. The fuzzy clearing approach for a niching genetic algorithm applied to a nu-
clear reactor core design optimization problem. Annals of Nuclear Energy 31, 55.

Sacco, W.E,, Oliveira, C.R.E., June 2005. A New Stochastic Optimization Algorithm based on Particle Collisions. 2005 ANS Annual Meeting.
Transactions of the American Nuclear Society 92.

Shekel, J., 1971. Test functions for multimodal search techniques. In: Proceedings of the Fifth Princeton Conference on Information Science and
Systems, Princeton, p. 354.

Suich, J.E., Honeck, H.C., 1967. The HAMMER System Heterogeneous Analysis by Multigroup Methods of Exponentials and Reactors. Savan-
nah River Laboratory, Aiken, South Carolina.

	Two stochastic optimization algorithms applied to nuclear reactor core design
	Introduction
	Overview of established optimization methods
	Simulated Annealing
	The Great Deluge Algorithm
	Genetic Algorithms

	The Particle Collision Algorithm (PCA)
	Algorithm description
	Validation
	Test functions
	Results

	Numerical comparisons
	Problem description
	Optimization algorithms setup
	Reactor Physics Code
	Fitness function
	Results

	Conclusions
	Acknowledgements
	References

