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Abstract

Currently, the optimization of reconfigurable design parameters is typically done

manually and often involves substantial amount effort. The main focus of this thesis is to

reduce this effort. The designer can focus on the implementation and design correctness,

leaving the tools to carry out optimization. To address this, this thesis makes three main

contributions.

First, we present initial investigation of reconfigurable design optimization with the

Machine Learning Optimizer (MLO) algorithm. The algorithm is based on surrogate

model technology and particle swarm optimization. By using surrogate models the long

hardware generation time is mitigated and automatic optimization is possible. For the

first time, to the best of our knowledge, we show how those models can both predict when

hardware generation will fail and how well will the design perform.

Second, we introduce a new algorithm called Automatic Reconfigurable Design Efficient

Global Optimization (ARDEGO), which is based on the Efficient Global Optimization

(EGO) algorithm. Compared to MLO, it supports parallelism and uses a simpler opti-

mization loop. As the ARDEGO algorithm uses multiple optimization compute nodes,

its optimization speed is greatly improved relative to MLO. Hardware generation time

is random in nature, two similar configurations can take vastly different amount of time

to generate making parallelization complicated. The novelty is efficient use of the opti-

mization compute nodes achieved through extension of the asynchronous parallel EGO

algorithm to constrained problems.

Third, we show how results of design synthesis and benchmarking can be reused when

a design is ported to a different platform or when its code is revised. This is achieved

through the new Auto-Transfer algorithm. A methodology to make the best use of

available synthesis and benchmarking results is a novel contribution to design automation

of reconfigurable systems.
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Chapter 1

Introduction

1.1 Motivation

The history of computing dates back to the ancient analog computers used for astronomical

calculations. Yet, it was only within the last 100 years that many major advancements in

physics, chemistry and mathematics allowed for the creation of modern digital computers.

One of the major milestones was the development of general-purpose programming

languages like C or Fortran in the 1960s-1970s. They offered a layer of abstraction from

the underlying hardware allowing for faster software development and thus massively

increased complexity of the programs. In particular, development of JAVA in the 1990s

went as far as automating memory management [11]. Languages like Ruby or Python went

even further, they were designed to allow the programmer to express complex functionality

in just a few lines of code. The process of hardware abstraction in software design became

so advanced, that currently many programmers have little to no understanding of the

underlying computer architecture. The job of machine code generation has been offset to

compilers. In the meantime, although not as widely acknowledged, the process of hardware

design was also changing. Especially interesting was the development of reconfigurable

hardware and logic synthesizers.

The initial idea of reconfigurable hardware is widely agreed to first appear in the

1960s [61]. It started gaining popularity in the 1990s with the increased availability of

new FPGAs devices. Initially those devices could not compete with Application Specific

Integrated Circuits (ASIC) both due to the performance and cost issues. However, in the

early 2000s they became commercially viable due to the creation of better supporting

software. Their main advantage over ASIC was lower up front development cost. When

compared to Central Processing Units (CPUs) they offered better power utilization and
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Figure 1.1: Some of many possible Field Programmable Gate Array (FPGA) boards:
XMC-FPGA05D XMC/PM and PMC-FPGA05 with Xilinx Virtex-5 FPGAs from Curtiss
Wright [1] and a Nallatech 395 with Atera Stratix V FPGA [2].

often orders of magnitude of speed-up.

While the technology has advanced, the reconfigurable hardware industry still faces a

number of challenges. The spatial programming model used in FPGAs is very different

from the widely understood temporal software programming model. Extracting spatial

features from a temporal application written in C or Fortran and translating it to Hardware

Description Language (HDL) consumes a large amount of engineering hours, often making

FPGA accelerators economically infeasible. A number of ideas on automating the design

process have been presented by various researchers, and some have been verified: new

Higher Level Language (HLL), extensions of the existing languages or language specific

accelerator libraries. In recent years the FPGA industry has been looking for the holy

grail — an approach that would allow users to automatically and efficiently map HLL onto

reconfigurable heterogeneous platforms. Such an approach would allow user to concentrate

on developing an optimal algorithm, leaving most of the implementation to the system.

We are interested in providing domain experts like scientists and engineers with

the power of reconfigurable computing while hiding the complexity of the application

development. This scope being very broad, we focus on automatic optimization of

reconfigurable design parameters. A good example of such a design is the Finite Impulse

Response (FIR) filter

f(x) =

q∑
i=0

bi × xq−i (1.1)

with a batch of q elements x = {xi}qi=1, where xi ∈ R, being processed using q coefficients

bi ∈ R at every time step. Ideally multiple filters should be implemented in parallel, and

the numerical representation of real numbers has to be specified. The design multiplication
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Figure 1.2: Some of many available HDLs and their infrastracture: Maxeler MaxJ with
MaxIDE [3] and OpenCL [4] with OpenCL Editor [5].

operators can be implemented using custom arithmetic, offering a trade-off between

accuracy and throughput. The lower the operator precision, the more coefficients can be

implemented. Alternatively, lower precision operators allow for more FIR filters on a single

FPGA chip. The goal of optimization is to find the design offering the highest throughput

for a specified accuracy. The optimization also includes design clock frequency, making

design generation noisy due to potential timing issues. Depending on the parameter

configuration, the design has a smaller or larger probability of hardware generation failure.

For example, the real-time Proximity Query (PQ) design [46] suffers both from Place

and Route (PAR) and timing problems and as a result hardware generation often fails.

Looking back at the FIR design, it involves a lot of data streaming onto the FPGA. It

is possible that the computation throughput is going to be limited by the connecting

bus. Despite FIR being a very simple design, the above mentioned properties make

optimization challenging. An exhaustive approach could use a script such as the one

presented in Figure 1.3 to explore the parameter space.

Generally optimization of designs requires the designer to analyze the design, create

models and benchmarks, and subsequently use them to optimize the design for throughput,

power consumption or some other performance metric. This is a time consuming process

even for an experienced designer, often lasting a number of days. There are multiple

other examples of similar problems, such as optimization of multi-FPGA systems [71].

The level of parallelism can have non-obvious impact on the performance of run-time
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1 # c lo c k f requency
2 f r e q = 100
3 # i t e r a t e over the un r o l l i n g f a c t o r
4 for p in [ 1 , 2 , 4 , 8 ] :
5 # i t e r a t e over width o f the exponent
6 for wE in range (8 , 11) :
7 # i t e r a t e over width o f the mantissa
8 for wM in range (11 , 53) :
9 # genera te d i r e c t o r i e s and hardware con f i g u r a t i on f i l e

10 bu i ldConf ig (p , f r eq , wE, wM)
11 # bu i l d hardware us ing the generated con f i g u r a t i on
12 os . system ( ”Make hw” )
13 # run the generated hardware
14 os . system ( ”Make run” )
15 # ana lyze r e s u l t s
16 r e s u l t s = analyze ( )

Figure 1.3: A sample script used for exhaustive search over a range of design parameters.
The code generates hardware configuration, builds the design and executes a benchmark.
Finally the results are analyzed.

reconfigurable designs [30]. The design throughput [46] is highly dependent on the

numerical representation. It influences resource utilization and therefore the level of

parallelism. Optimization of coefficients of constant multipliers can also yield improvement

[76]. Balancing data-reuse and loop-level parallelism for hardware generation requires

complicated frameworks [94]. Determining optimal stencil configuration is known to

be a difficult problem [109]. Although authors present tools and models which allow

for efficient optimization of specific designs, they have to be updated for new designs.

The high manual effort and low re-usability of the tools make those approaches highly

inefficient in terms of designer’s productivity. Automation of tools and their generality

are highly desired for increased productivity.

There were few attempts in the past to create generic automatic optimization tools for

reconfigurable designs. The are two main obstacles in the engineering and application of

those tools. The first obstacle is the massive design parameter spaces which possibly span

out into thousands of designs. The second obstacle is the long design evaluation time,

taking multiple hours to generate hardware and execute benchmarks. A prior attempt used

surrogate modeling to speed-up expensive design evaluations [117]. Fitness Inheritance

was used to decrease the number of design evaluations and hence speed-up optimization.

In [100] authors present a design and Computer Aided Design (CAD) tool parameter

tuning approach. Equally to the design parameters, proper selection of those CAD tool
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1 # parameter space d e f i n i t i o n
2 parameters = {” f req min ” : 100 ,
3 ” freq max ” : 100 ,
4 ”p min” : 1 ,
5 ”p max” : 10 ,
6 . . .
7 }
8
9 # Bui ld b i t s t r eams and run benchmarks , the f i t n e s s f unc t i on

10 def buildHardwareRunBenchmark ( ) :
11 # execu te b i t s t r eam genera t ion
12 os . system ( ”Make hw” )
13 # execu te benchmark and / or ana lyze b i t s t r eam
14 return os . system ( ”Make run” )
15
16 # supp ly the parameter d e f i n i t i o n and s c r i p t s to the op t im i za t i on a l gor i thm
17 opt imia lDes ign = Algorithm ( parameters , buildHardwareRunBenchmark )

Figure 1.4: Automated parameter optimization algorithm. It takes as input the hardware
generation scripts along with the parameter space definition.

parameters can allow for generation of better performing design. The technique offers a

very high degree of parallelism, the authors generate up to 50 designs in parallel. Very few

designers can build more than a few designs in parallel, let alone 10 or 50. Furthermore, the

investigated case study requires only 20-25 minutes for hardware generation, an unrealistic

example. Some of the proposed parameters, like random seeds used for placement, not

necessarily being good candidates for optimization. Lastly, the authors claim that the

presented approach offers a 20x reduction in the number of evaluated designs compared to

exhaustive search. This makes the approach unrealistic for multi-parameter designs with

millions of possible designs. Timing optimization using cloud computing and machine

learning is presented in [80]. Again, the optimization targets CAD parameters. Multiple

different designs are evaluated, and it is shown how tuning of the CAD parameters can

offer better chance of design meeting timing.

BLACK-BOX 
(Reconfigurable Design)

ALGORITHM

Evaluate 
Design

Examine 
Noisy

Results

Figure 1.5: Optimization of reconfigurable designs as a black-box optimizaton problem.

37



CHAPTER 1. INTRODUCTION

Unlike previous work, our work focuses on the architecture parameters of the designs,

rather then CAD tools. Our approach in principle could be applied to CAD tool parameter

optimization, yet those parameters usually number in dozens and require a different

approach [80, 100]. We start by treating reconfigurable design parameter optimization

problem as a noisy black box global optimization problem, as shown in Figure 1.5. The

noisy black box optimization problem is optimization of a noisy function with no knowledge

of its inner workings. We do this to allow the designer to focus on the actual design, rather

then analytical treatment of the design optimization problem. The input to the algorithms

developed in this thesis is a script that for a given design parameter configuration builds

it for a specific FPGA device. The script also compiles benchmarks to assess performance

of the design with that configuration. Depending on the outcome, the script outputs

an exit code indicating if the design with a given configuration met all of the design

constraints or not. Those constrains range from resource constrains to more design specific

like output accuracy. If possible, the script also outputs the performance metrics — like

execution time or power consumption. A sample script is presented in Figure 1.4. This

packaging of the design generation and assessment processes allows us to optimize a range

of designs with different toolchains. It is suitable for any design and is very beneficial for

experimental setting. For a production system, tighter coupling of the algorithms with

synthesis tools and benchmarks is possible.

We show it is useful to construct surrogate models for the reconfigurable designs. As

these models are orders of magnitude faster to evaluate than generation of bitstreams and

code execution of benchmarks, they substantially accelerate optimization, enabling an

automated generic approach. Most generic automated tools, like exhaustive search or

meta-heuristics, can be quickly deployed and require little development time, yet they

often lack efficiency and require hundreds to millions of fitness function evaluations. In

case of reconfigurable designs this unrealistic number of hardware generations, making

them impractical. We show that this is not necessarily the case. Our generic tools offer

similar optimization time to manual optimization, often finding the globally optimal

design configuration. As an example, the script to optimize the FIR design, as presented

in Figure 1.3, would be rewritten as shown in Figure 1.4. This is the approach we follow

in Chapter 3 and 4.

Furthermore, we show how the tools can learn from one optimization onto another.

Currently optimization attempts only contribute to the designer’s experience, they are

not recorded and do not contribute towards more efficient future development by other

designers or tools. We investigate the potential of storage and transfer of knowledge
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1
2 # des ign op t im i za t i on r e po s i t o r y
3 des ign db = { [ 100 , 1 , 11 , 53 ] : [ 5 5 . 0 ] , # Prev ious l y opt imized r e l a t e d des i gn
4 [ 100 , 4 , 8 , 53 ] : [ 2 2 . 0 ] , # and data ga thered during i t s
5 . . . # opt im i za t i on i s s upp l i e d to the
6 } # algor i thm .
7
8 # parameter space d e f i n i t i o n
9 parameters = {” f req min ” : 100 ,

10 . . .
11 }
12
13 # Bui ld b i t s t r eams and run benchmarks , the f i t n e s s f unc t i on
14 def buildHardwareRunBenchmark ( ) :
15 # execu te b i t s t r eam genera t ion
16 os . system ( ”Make hw” )
17 # execu te benchmark and / or ana lyze b i t s t r eam
18 return os . system ( ”Make run” )
19
20 # supp ly the parameter d e f i n i t i o n and s c r i p t s to the op t im i za t i on a l gor i thm
21 optimalDesign = Algorithm ( parameters , buildHardwareRunBenchmark , des ign db )

Figure 1.6: Automated parameter optimization extended with a design optimization
repository. Extra information can improve both the speed and accuracy of the optimization.

gained during design synthesis for acceleration of future design optimization. In particular,

we show how results of implementation of a design onto a platform can automatically be

used for faster optimization of the same design implemented on a different device. We

also show how results of optimization of a design can aid optimization of another design

with similar architecture. We particularly investigate knowledge transfer in the context of

surrogate model based optimization, as presented in Figure 1.6, in Chapter 5.

1.2 Contributions

The main aim of this thesis is to provide tools and techniques to allow designers to

automatically optimize reconfigurable designs, particularly FPGA based, while minimizing

required experience and input from the designer. By optimization we refer to the problem

of reconfigurable design parameter optimization with respect to benchmarks measuring

design throughput, latency, energy efficiency or some other metric. The problem is treated

as a noisy global black-box optimization problem. This prevents us from making any

strong assumptions about the design and allows for a generic approach. The reconfigurable

designs studied are based on systems consisting of a CPU(s) and a FPGA(s). There

39



CHAPTER 1. INTRODUCTION

BLACK-BOX 
(Design A)

ALGORITHM
Evaluate 
Design

Examine 
Noisy

Results

BLACK-BOX 
(Design B)

ALGORITHM
Evaluate 
Design

Examine 
Noisy

Results

Design A 
repository

Design B 
repository

Figure 1.7: Knowledge transfer in black-box optimization of reconfigurable designs.

are three main contributions in this thesis. This thesis has three main contributions to

address the challenges shown in Table 1.1

1. Traditionally, optimization involves manual design analysis, modeling, and explo-

ration tool creation. This requires an experienced designer, and is a time consuming

process. The optimization time is challenging due to long hardware generation time.

We develop the Machine Learning Optimizer (MLO) algorithm to automate this

process. From a number of benchmark executions, we automatically derive the

characteristics of the parameter space and create a surrogate model of a fitness

function through regression and classification. Based on this surrogate model, design

parameters are optimized using metaheuristics. The new algorithm can improve

optimization time by up to 50% compared to design specific optimization tools.

Compared to standard hill climbing algorithm it offers between 3 to 5 times faster

optimization time while discovering better performing design configurations. The

work is published [89, 91].

2. The previous approach requires tuning and is sensitive to its configuration. Based

on the previous findings, we develop Automatic Reconfigurable Design Efficient

Global Optimization (ARDEGO) algorithm to improve over MLO its performance

and simplify the optimization loop. This reduces further the required user input

and experience. The new algorithm is suitable for problems with large number of

parameters. Furthermore, to speed-up optimization time the algorithm is parallelized.

The algorithm is shown to optimize a 7-dimensional stencil-based design in less than

93 hours. When using multiple worker nodes during optimization of a financial

quadrature-based design a 22% reduction in optimization time is observed compared
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to the design specific optimization tool. The work is published in papers [47, 88].

3. Both of the previous approaches do not learn from previous optimization. There

is a strong indication that reusing previous optimization results can substantially

speed-up new optimization attempts. We show how the knowledge gathered during

optimization attempts of similar designs, or designs ported across platforms, can be

transferred to speed-up optimization and improve the final design performance. By

using knowledge transfer optimization time is reduced by up to 35% compared to

ARDEGO.

Table 1.1: The three major challenges with optimization of reconfigurable designs.

Challenge Description

Hardware Generation Time Generation and evaluation of a single parameter setting
takes between an hour to two days.

No. of possible configurations The curse of dimensionality. The number of potential
design configurations can be in the millions.

Lost Knowledge The knowledge gathered during development and opti-
mization of designs is not transferred.

1.3 Overview of the Thesis

The thesis is organized into six chapters. This chapter consists of an introduction and

motivation behind the work presented in the thesis. Chapter 2 provides the reader with the

background information necessary to understand further chapters. Each of the Chapters 3,

4 and 5 deal with one of the previously mentioned research challenges. Chapter 6 presents

future work and conclusions.

The main focus of the thesis is to reduce the effort associated with reconfigurable

design development by automating parameter optimization. The designer should focus on

the design development and correctness, the tools should carry out the optimization. In

Chapter 3 we present the initial investigation of reconfigurable design optimization using

the MLO algorithm. The algorithm is based on the surrogate model technology and particle

swarm optimization. The method shows a lot of promise, yet it suffers from a number

of problems; complicated optimization loop and lack of parallelism. The complexity of
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optimization loop is investigated by examining the impact of MLO configuration on design

optimization performance. MLO also struggles to optimize designs with larger number of

parameters.

In Chapter 4 we focus on decreasing the effort associated with optimization of

reconfigurable design. Based on the experience gathered during MLO evaluation, a new

algorithm is presented, called ARDEGO. The new algorithm is based on the Efficient

Global Optimization (EGO) algorithm and it offers several improvements over MLO. It

offers asynchrnous parallelism, and a simpler optimization loop. Hardware generation

time is random, and two designs can take different amount of time to generate. To

ensure efficiency asynchrnous parallelization is necessary. As the ARDEGO algorithm

uses multiple optimization nodes, its optimization speed is greatly increased relative to

MLO.

The main drawback of ARDEGO compared to a human designer is that the algorithm

does not build up its knowledge with subsequent design optimization. Chapter 5 presents

Auto-Transfer algorithm and shows how results of design synthesis and benchmarking can

be transferred to decrease optimization of a similar design when ported onto a different

platform or when its code is revised. In modern dynamic environment the designs are

often modified and the underlying platforms revised. A methodology to transfer old

synthesis results is crucial to automation.

In Chapter 6 we present future work and conclusions. Possible extensions and

research direction are presented.
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Background

This chapter presents existing concepts and approaches required to understand the work

presented in this thesis. Most importantly, we formalize the optimization problem of

reconfigurable designs.

Initially, we present the concepts behind reconfigurable designs and their develop-

ment. Then we overview some mathematical optimization techniques and provide formal

definitions of the reconfigurable design optimization problem. This is followed by an

introduction to the machine learning techniques used in this thesis. Lastly, combining all

the previous concepts, surrogate modeling is introduced.

2.1 Reconfigurable Designs

An FPGA is a semiconductor device that allows the programmer to emulate a digital

circuit or a program provided that it fits within the chip resource limit [10, 82, 138]. The

device was invented by Xilinx Inc. in 1980’s [12, 159]. FPGA can be used as a standalone

computing device or as a sub-component of a heterogeneous systems. Throughout most of

history, it was Xilinx Inc. and Altera Corporation that were the two main FPGA vendors

[13]. The growing importance of heterogeneous FPGA systems being signaled by recent

acquisition of Altera by the Intel Corporation [14]. There is even a strong indication for

potential for future hybrid ASIC-FPGA architectures. Furthermore, in recent years the

number of FPGA design start-ups have been drastically increasing. This is mainly due to

the advantages FPGA offer over ASIC based technologies, listed in table Table 2.1.

FPGA designs are far more suitable for low scale systems, where the cost of developing

an ASIC chip would outweigh the potential gains. The cost of producing a single FPGA

chip is much higher, but designing an efficient ASIC chips takes months, if not years,
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Table 2.1: FPGA and ASIC comparison [10, 49, 82, 87, 138]

ASIC Reconfigurable Hardware

1.Full customization 1.Short time to market
2.Lower unit costs 2.Low upfront cost
3.Smaller form factor 3.Simpler design cycle
4.Higher clock cycle 4.More predictable project cycle
5.Very high upfront cost 5.Programmability

Design

Design DesignDesign Design

Figure 2.1: FPGA design and a small subset of available platforms. Courtesy of Altera
Corporation [6] and Xilinx, Inc. [7].

whereas designing an FPGA design can take days (given that one is only customizing a

ready design). Even a full scale FPGA design is less time consuming than ASIC, mainly

due to lower prototyping cost. Furthermore FPGA can be upgraded relatively cost free,

while ASIC requires the procurement of new hardware or complicated software patches.

These characteristics made FPGA an interesting remedy to many problems; often offering

superior performance and task customization at a much lower cost.

In principle, any design built for ASIC can be implemented on any FPGA. The main

challenge is to make effective use of limited FPGA embedded resources. Most commonly

a FPGA device is composed of Lookup Tables (LUTs), Digital Signal Processors (DSPs),

flip flops, Block RAMs (BRAMs), and Debug Support Units (DSUs) [55, 82]. To make

matters more worse, vendors often offer FPGAs with more specialized embedded resources.

The resulting FPGA architecture is very complicated, hence why a layer of hardware

abstraction is essential. As presented in Figure 2.1 a design can be mapped onto different

FPGA platforms offered by various vendors. The design architecture should focus on
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utilizing generic FPGA features, and the mapping should focus on implementing the

components efficiently. Similar in spirit to software where the compiler generates computer

specific machine code.

Although FPGA designs can be ported across different devices, they vary in the degree

of portability. For example the Xilinx MicroBlaze soft processor [15] makes heavy use

of vendor hardware libraries and as a result only targets specific reconfigurable devices.

Vendor and chip specific hardware libraries provide a large number of circuits like memory

controllers, Ethernet controllers or others [16, 17]. Fully cross-vendor and cross-platform

portable design cannot be based on hardware libraries and has to be separated from the

underlying device, a good example is high-frequency trading FPGA library [98]. The

use of hardware libraries introduces a trade-off between portability and performance and

is an important aspect of FPGA design. To summarize, FPGA designs have two main

characteristics:

Customizability - FPGA designs can be customized and become configurable with

parameters, in the same manner as objects are instantiated with different variables.

Some possible parameters are numerical representation [46, 155], constants coeffi-

cients [76], using different level of parallelism [30] or stencil configuration [109]. The

fact that FPGAs are clocked in the range of MHz instead of GHz and consist of far

smaller number of logical gates than ASIC designs means that in a large number of

cases they are going to be orders of magnitude slower than their counterparts. That

is an obvious disadvantage, which is countered by customization to better fit the

goal performance levels, lower cost and time to market.

Portability - FPGA designs are often portable, although some physical constraints

can limit that. Different LUT or interconnect architecture can allow for efficient

implementation on one FPGA device while on other it might waste resources as

its sub-components were designed to exploit hardware based multipliers. The vast

majority of FPGA designs are developed using Intellectual Property (IP) cores what

allows for efficient cross platform migration of a design, given the new platform

supports required IP cores [98]. This is analogous to writing cross platform software.

Others are designed through HDL generation scripts, which can generate code for

different platforms [165]. Some applications utilize architecture-specific properties

making them inefficient out of their target systems range - while others are designed

to be used across a number of different platforms. The concept goes as far as creating

virtualization of FPGA platforms [83].
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Figure 2.2: Two configuration of a reconfigurable design. One configured with 4 cores
and narrower numerical implementation, one with two cores and wider numerical repre-
sentation.

2.1.1 Applications of FPGAs

FPGAs are employed as either an ASIC prototype, or as a target computation device.

Although ASIC designs offer better performance, the customizability, portability and

lower development cost make FPGAs attractive computation devices.

Large ASIC developers, like Intel or AMD, often employ FPGA arrays to emulate

their new CPU or other devices. This is called ASIC prototyping. Simulation of complex

digital circuits is time consuming, especially if one requires great level of detail. FPGA

offers the advantage of being able to interact with real hardware components emulating

ASIC chips with little computational overhead.

FPGAs can be used for computation either as stand-alone devices or as part of a

heterogeneous system. In stand-alone mode all of the computation is carried by the

FPGA. FPGAs are used as stand-alone devices like drones [59] or reconfigurable radios

[30], where they can be optimized for power saving. In a software defined-radio system

a large chunk of computation is decoding and encoding of audio signals. FPGA allows

for high throughput system that can be configured to work with any new or legacy

standard that is needed. In a heterogeneous system a portion of an application code is

implemented as a digital circuit on the FPGA, while the rest is run on a CPU or some

other device [23, 27, 143]. Heterogeneous systems are often used by the High Performance

Computing (HPC) community to carry out intensive computation. Depending on the

subtask, either CPU or FPGA carries computation. Quite often, the CPU is used more
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BUS

PCI-E

BUS

Figure 2.3: FPGA Heterogeneous System. Courtesy of Intel Corporation [8], Samsung
Electronics Co., Ltd [9] and Xilinx, Inc. [7].

for the administrative tasks, while the FPGA is the main computation engine. There are

numerous examples of applications where FPGA are used to achieve better performance.

They have been extensively used in finance, solving problems like low latency data feed

handling [119] to option pricing and other problems [43, 77, 153, 155]. Geophysics [109]

and bioinformatics [92, 142] are another areas where FPGAs have been extensively used.

2.1.2 Reconfigurable designs as computation devices

FPGAs are commonly used as computation devices where portions or the whole application

is used for computation. Typically a board containing one or more FPGA chips and

associated DDR memory is installed in a PCI-E slot. The system can be heterogeneous

if both the CPU and FPGA are involved in computation. Vendors usually provide an

Application Programming Interface (API) and a tool-chain to develop and use bitstreams

with HLL. These can vary substantially in quality and complexity, depending on user

needs and their budget, nevertheless the design schematic is similar. An application can

be designed from scratch using FPGA, or if already available accelerated, the principles

and development approach remains unchanged.

Acceleration over homogeneous computing system is usually achieved by porting the

computationally intensive loops onto the FPGA board/s utilizing streaming computation

paradigms. In streaming model, the calculations are done by performing operations on

continuous data streams instead of executing instructions. Figure 2.4 presents a for loop
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with a trivial streaming mode implementation. On an instruction based computer where

the control overhead is significant in terms of silicon and time, one has to perform a

number of memory access, caching and many other operations requiring between 10 and

100 clock cycles to get a single z value calculated. On a custom machine one can create a

design that will increment and add the two data streams producing a result every clock

cycle using small amount of silicon. Designs utilizing this approach can achieve substantial

speed-up as memory latency is hidden and application control is severely limited per

useful bit of computation.

1
2 for i in range (0 , N) :
3 z [ i ] = x [ i ] + y [ i ] + 1 .0

Figure 2.4: Simple loop suitable for FPGA based heterogeneous system.

2.2 Design Development

A design is an implementation of a program using a reconfigurable platform. It consists

of FPGA suitable HDL description and software. The software component is typically

used to transfer the data from and onto a reconfigurable platform, as well as to initialize

the computation and control some behavior of the reconfigurable platform. Figure 2.4

represents a simple design, it performs addition of two time series.

The development usually begins by coding the design and benchmarks used to assess

its quality. It is also possible for the designer to use a High Level Synthesis (HLS) language

to describe the design [49]. HLS involves HDL description of an application which is

synthesized into a hardware design. The idea is analogous to the idea of a software

compiler. They are important in the context of reconfigurable computing as they largely

make the underlying platform transparent to the programmers. Through the use of

libraries and integrated tool-chains, hardware compilers provide an programming model

API. Good examples are ROCCC 2.0 [18], YAHDL [39], OpenCL [4] and MaxCompiler

[3]. Instead of HDL they use an exotic flavor of Java (MaxCompiler), C (ROCC) or some

other HLL to describe the FPGA design. Another example is a semi-automated Python

code hardware acceleration where the user selects which loops are to be ported onto FPGA

[135]. In [49] a comparison is made between AutoESL’s AutoPilot HLS tool [ 166] based

approach and manually optimized designs. Those automated approaches are analogous
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to the CUDA HLL interface provided by Nvida to access the computational resources

of their Graphic Processing Unit (GPU) processors [108]. A sample two loop design is

presented in Figure 2.4. The loop is not as easily accelerated as the one presented in

Figure 2.5. The second loop depends on calculation of mean, which can only happen after

the loop has finished executing. Usually the data flow dependencies are far more complex,

making the development task complicated.

1 acc = 0 .0
2 for i in range (0 , N) :
3 for j in range (0 , M) :
4 acc += matrixA [ i ] [ j ]
5
6 mean = acc / (N∗M)
7
8 for i in range (0 , N) :
9 for j in range (0 , M) :

10 matrixB [ i ] [ j ] = matrixB [ i ] [ j ] − mean

Figure 2.5: Two loop code.

2.2.1 Design Development and Optimization Approaches

Optimization begins once the designer managed to create a basic functional version of the

design. Traditionally, optimization of reconfigurable designs is carried out by building

benchmarks, deriving analytical models, and creating optimization tools [155, 30, 76, 94].

This allows for a manual, design specific automatic optimization approach, or a generic

optimization as presented in Figure 2.6.

Typically manual optimization approach relies on the experience of a designer. The

designer builds the design, and uses his experience and intuition to optimize the design.

This is often done by modeling the performance of the design, and building a limited

number of bitstreams. It is the preferred method when parameter space spans large

number of designs or is difficult to model. The designer can navigate in the design space

examining hardware generation and benchmark output. It does require an experienced

designer and is labour intensive. Examples of such optimization are [109, 46].

The design specific automated approach is a step forward in automation from the

manual approach. The designer create analytical models to predict design performance

as well as design specific optimization tools. The workload overhead can be substantial,

however, it is not as labor intensive as the manual approach as the parameter space

exploration is automated. It allows for the optimization tool to re-optimize designs when
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constraints change. It also relies on the designers experience. Examples of design specific

approaches are [155, 30, 76, 94].
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Figure 2.6: Different optimization approaches.

In a generic algorithm the parameter exploration is performed by an automated tool

which uses user-provided scripts. An example of a generic optimization approach is an

exhaustive search, with the evaluation of all possible designs. To use exhaustive search,

the designer prepares a script which builds and benchmarks a design. Exhaustive search

is a simple loop over the parameter space. It takes a parameter configuration, and

executes the script. Then it collects the results. It continues until the whole space has

been traversed. It has the advantage that it can be applied to any design optimization

problem. Unfortunately for design spaces spanning hundreds of designs, an exhaustive

search becomes too time consuming and is rarely employed. In a generic algorithm,

exhaustive search can be replaced with a more sophisticated logic, like surrogate model

based algorithms. The surrogate model based approach does not require the designer to

analyse the application and construct analytical models. The surrogate model is integrated

with the algorithm allowing for full optimization automation. Aside of coding the design,

it does not rely on designer experience to perform optimization. There are numerous
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examples of such approaches.

One of the earliest mentions of a generic optimization algorithm for reconfigurable

designs is based on a genetic algorithm [117]. The expensive fitness function evaluations

are replaced with a regression model and the cost of evaluation is mitigated by a fitness

inheritance scheme, which allows to reduce fitness function evaluations. The fitness

function is based on analytical models. The goal of optimization is to find a design optimal

in terms of area and latency. The algorithm does not deal with problems like PAR.

A more recent generic optimization algorithm is used for CAD tool and design parameter

optimization [100]. The algorithm is based on a regression model of design’s performance

function. In an iterative fashion it samples configurations predicted to perform best

according to the regression model. One of the drawbacks of the algorithm is that it

potentially can suffer from over exploitation, only evaluating designs predicted to have

best performance. Another potential problem with the approach is only a 20x reduction

relative to the number of potential configurations that have to be evaluated. This implies

evaluation of millions of configurations for larger parameter spaces. The advantage is that

its optimization loop is simple and offers parallelism.

Cloud computing combined with machine learning also seems to offer a lot of promise

for generic optimization algorithms [80]. The optimization goal is to use optimal CAD

tool parameter configuration for the reconfigurable design to reach timing closure. The

difficulty is long evaluation time of reconfigurable designs and large CAD tool parameter

space. The algorithm is designed to harness parallelism in the form of cloud computing.

It uses a naive Bayes classifier to learn about the most influential CAD tool parameters.

There is a potential problem in the approach stemming from the assumption that CAD

tool parameters are conditionally independent of each other, which is not necessarily

true. Combinations of CAD tool parameters settings can significantly affect the end

result. An interesting idea of parameter space reduction through offline learning is also

presented. The set of CAD tool parameters is fixed for a given device, hence a database of

all optimization runs can be constructed. This database is then analysed using Principal

Component Analysis (PCA) [35] picking the CAD tool parameters which have the highest

impact on timing of a design. The authors mention potential problems of construction of

such a database due to the high cost of configuration evaluation.

In all three of the earlier mentioned optimization approaches, manual, design specific

and generic, the designer has to code the design, specify the parameter space, constraints

and goals. The resulting design code and design specification is used in all three of the

cases. The great advantage of an automated algorithm is that it simplifies the optimization
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flow. The designer saves time on coding of the optimization tools and building analytical

models, the algorithm is used instead. Guaranteed that the algorithm offers comparable

optimization time, this allows for improved designers productivity. Assuming coding of the

design and benchmark (step 1) is unavoidable and specification of the parameter space and

optimization goal (step 2) is often straight-forward, the main issues in optimization are

tasks outlined in steps 3 and 4. Creation of analytical models and tools is labor intensive,

while using optimization tools is time consuming. Success of step 4 is highly dependent on

step 3. In an automated approach, the user supplies a benchmark along with constraints

and goals, and the the algorithm automatically carries out the optimization.

2.2.2 Reconfigurable Design Optimization Problem Statement

The optimization of reconfigurable designs is a time-consuming process, and automation

is highly desired. The designer starts by describing the design and coding of benchmarks.

Benchmarks evaluate reconfigurable design’s parameter configurations, which is a time

consuming process and often involves hardware generation and software execution. The

output of a benchmark is a noisy performance measure; execution time, energy or any

other target quality. This measure is called fitness in the optimization literature. In

the case of reconfigurable designs the fitness function f represents the behavior of the

benchmark, and vector x is the parameter configuration within the parameter space X
with D dimensions (parameters).

Once the benchmarks and the design are ready, the designer defines the parameter

space and the design constraints. The space defines the architecture and the physical

settings of the FPGA design. If the design fails any of the constraints, the benchmark

informs the designer about the error using an appropriate exit code t [89]. Many possible

constraints exist; for example, the design has to fit specific area, timing and power

constraints. A good example of a target design is the previously presented FIR filter

performing the following function

f(x) =

q∑
i=0

bi × xq−i (2.1)

with a batch of q filtered elements x = {xi}qi=1, where xi ∈ R, being processed using q

coefficients bi ∈ R at every time step. Some of the possible parameters is the mantissa

and exponent width of the floating point operators, unrolling factor, number of cores

and clock frequency. Numerical precision and resource limitations are good examples of
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constraint functions. The optimization goal could be to find the most energy efficient or

highest throughput configuration.

Analytical models are constructed to predict the performance of a design. Development

of these performance models often requires high levels of expertise [ 71, 109]. Usually an

optimization tool is developed to explore the parameters space using supplied benchmarks.

The optimal parameter setting is determined based on the space specification and con-

straints using the models to minimize the optimization time. The optimization problem

of reconfigurable designs can be formally defined. Beginning with the observations of

performance of a reconfigurable design y, defined as follows

y = f(x) + ε, ε ∼ N (0, σn
2). (2.2)

with discrete parameters x belonging to the parameter space X . The parameter space is

a discrete metric space with D parameters X ⊆ RD. The y value is the noisy observation

of performance of a design obtained through evaluation of a benchmark, the process

used to assess the performance is called the fitness function f : X → R. For simplicity,

additive Gaussian noise with mean 0 and variance σ2
n is assumed. Along with design

performance, a benchmark evaluates constraints using a non-deterministic function c and

returns performance f(x) and a discrete number c(x) = t, indicating which constraints

are not satisfied. The observed exit code t indicates constraint violation if t 6= 1. The

set of possible exit codes is denoted as T . For example, for a particular design t = 1

would indicate no constraint violation, t = 2 would indicate inaccurate design, t = 3 failed

timing constraints and t = 4 a dual, accuracy and latency, constraint failure. A constraint

is either one of k equalities g or one of r inequalities h:

gi(x) = ci i = 1, .., k. hj(x) ≤ cj j = 1, .., r. (2.3)

where ci and cj are some constants. The constraint violations are encoded in a c function

to indicate which, if any, have failed for a given x. The constraints can depend on a

random process and are not guaranteed to be deterministic. In general, those random

process are unknown.

For simplicity, it is assumed that c is a random process, that consists of a number of

nonidentical independent random variables, each following a distribution with an unknown

probability density function px(t) = p(c(x) = t). With probability one the outcome is one
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of the possible exit codes

∀x ∈ X ,
∑
∀t∈T

px(t) = 1. (2.4)

For two neighboring configurations x and x′, with respect to the Euclidean distance

|x − x′|, the Kullback-Leibler divergence [86] DKL(px||px′) and DKL(px′ ||px) is usually

small. The Kullback-Leibler divergence is intuitively understood as a measure of the

information lost when using one distribution to approximate another. In this case, it is

as a statement, saying that the distributions are similar. The reasoning is that nearby

configurations exhibit similar probability of constraint satisfaction. For example, a 4

core design uses 53 bits for numerical representation and has a 95% chance of satisfying

all constraints. The probability is most likely going to be ≈ 95% for the same design

configured with 4 cores and a 52 bit numerical representation.

The fitness and classification functions are encapsulated in a benchmark function b.

b(x) = (f(x) + ε, c(x)). (2.5)

The optimization objective is to find an optimal parameter setting xopt ∈ X , which

optimizes the fitness f(x) while not violating any constraints through multiple evaluations

of benchmark b. The set of admissible parameters, which does not violate any constraints

and for which f is defined is called valid region V . The set V is defined as the subset of

the parameter space that has a non-zero probability of satisfying all constraints

V = {x|∃x : [px(1) > 0] ∧ [x ∈ X ]}. (2.6)

For example a configuration, which has a 50% probability of generating hardware that

meets timing resides in the valid region. A configuration which violates a deterministic

accuracy constraint does not belong to the valid region. Those configurations, which have

0% probability of meeting constraints, belong to the invalid region I of the parameter

space. A good example is a configuration which overmaps on resources.

I = {x|∃x : [px(1) = 0] ∧ [x ∈ X ]}. (2.7)
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(a) Fitness function

(b) Probability of successful hardware generation

Figure 2.7: PQ design throughput fitness function [46] (a) and probability of succesful
hardware generation visualization (b). Image (a) is based on real hardware generation,
the design was implemented for Maxeler MPC-X1000 system with a Xilinx Virtex-6
XC6VSX475T FPGA. White patches represent unsuccessful hardware generation. In (b)
green line marks the boundary between the valid and invalid region, white area is the
invalid region. The probability figure is for demonstration purpose only, the numbers do
not demonstrate the actual chance of successful hardware generation.

The global optimization problem of reconfigurable designs is then defined as finding

the best possible configuration

xopt = argmax
x∈V

f(x). (2.8)

Taking into account the previously defined noisy nature of f , it is a global optimization

of a noisy black box function. A sample problem is presented in the Figure 2.7. It presents

the PQ design [46] with PAR, timing and resource issues. The valid region shrinks due to

resource constraints as the number of cores is increased. Due to the random nature of the

PAR process, random discontinues are visible in the fitness function visualization. Similar

formulation of optimization problems with random constraint functions is presented in [64].

The main difference lies in the formulation of the constraint function, where the authors

assume only inequality constraint functions and do not explicitly provide information on
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the behavior of the constraint function.

The formulation of the problem of reconfigurable design parameter optimization forms

the basis of this thesis, it is addressed by Chapter 3, 4 and 5. Extensions to the problem

are presented in Chapters 4 and 5. The formalization should allow the reader to better

relate the problem to the Bayesian optimization literature; justifying current treatment of

the problem and spanning future research.

2.2.3 Parameter Space

The parameter space X of a reconfigurable design is a metric space determining both the

architecture and physical settings of FPGA designs. The Euclidean distance |x− x′| is

a meaningful metric for the parameter space. The below definitions describe commonly

understood definitions of reconfigurable design’s parameters.

Categorical A parameter consisting of a set of values with no meaningful metric. A set

consisting of FPGA chip A and FPGA B would be an example.

A. B. C.

Figure 2.8: Categorical parameter. Courtesy of Altera Corporation [6] and Xilinx, Inc.
[7].

Continuous A possibly bounded subset of R. An example of a continuous parameter is

clock frequency.

Figure 2.9: Continuous parameter.
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Uniformly Discrete A possibly bounded subset of R consisting of isolated points. The

uniformly discrete parameter consists of a subset of R where all points xi’s are

equidistantly spaced. An example is number of computational pipelines.

Figure 2.10: Uniformly discrete parameter.

Non-Uniformly Discrete A possibly bounded subset of R consisting of isolated points

which are not equidistant. Degree of parallelism or number of cores that is scaled

up by powers of two are good examples. Another example is a parameter space

consisting of a set of divisors.

Figure 2.11: Non-uniformly discrete parameter.

The majority of the parameters of reconfigurable design parameters are uniformly

discrete, even if they appear continuous. The designer chooses a step size s and transforms

the continuous space into a uniformly discrete space. The step size s should follow the

physical properties of the parameter. For example, if clock frequency parameter can be

adjusted in 500 KHz steps, that is the stepsize. If mantissa width can be adjusted in bit

increments, one bit is a step size. The categorical parameters are generally not part of the

parameter space used in optimization. They are represented by sets over which Euclidean

distance is not be defined. Different types of FPGA (Virtex 6, Stratix V, etc..) or different
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implementations of memory controllers (controller A DDR 400 Mhz, controller B DDR2

333 Mhz, controller B DDR2 400 Mhz, etc..) are examples of unstructured parameters.

Table 2.2: Summary of the most commonly encountered parameters.

Parameter Examples

Continuous Clock Frequency (not strictly continuous), software parame-
ters,..

Uniformly Discrete Number of cores, Number of pipelines, Mantissa width, Ex-
ponent width, Number of integer bits, Unrolling factor,..

Non-Uniformly Discrete Number of cores, Number of pipelines

Categorical Memory controller, FPGA chip, etc..

2.2.4 Fitness Function and Constraints

Given a parameter setting x, the benchmark b(x) returns two values: y, the observed

design fitness and t, the exit code indicating if design met all constraints. Execution time

and power consumption are examples of fitness measures. There are many possible exit

codes t, with 0 indicating valid parameter settings x. The designer can choose to extend

the benchmark to return additional exit codes depending on the failure cause, such as

configurations producing inaccurate results or failing to build.

Table 2.3: Examples of fitness function constraints.

Constraints Explanation

Timing Depending on the design, the chip and clock frequency it might be difficult
to synthesize a design to reach the required timing.

PAR The PAR process depends on the design and the chip. Generally, the
higher the resource utilization the more difficult it gets to PAR a design.

Resource FPGA chip has limited resources. Bigger designs often struggle to fit
onto a chip.

Accuracy Depending on the requirements and numerical representation used in
the design, the design might produce inaccurate results. This is usually
adjusted by increasing the number of bits allocated to numerical operators,
increasing accuracy at the expense of resource and complexity.
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There are two types of exit codes. The first type indicates a valid parameter setting.

The second type indicates a configuration that possibly resulted in hardware being

generated yet failed at least one constraint. The region of X that defines parameters

settings x that produce f(x) and satisfy all constraints is defined as valid region V , region

with the designs failing at least one constraint is called the invalid region I. It is important

to take into consideration random nature of the c function. The probability of design

meeting timing score or being able to PAR is largely random, although correlated with

the parameter setting x. The higher the clock frequency, and the higher the resource

utilization, the harder it is to generate the design. The probability of design generation is

further influenced by the number of cost tables and design effort set to generate hardware.

Function f does not have to be bounded, is very or completely non-smooth, continuous

or discontinuous and noisy. There are numerous examples of exponential, quadratic, linear

and other behavior of fitness functions across dimensions. The discontinuities of f over

F arise from bottlenecks, and over X from bitstream generating process failures. For

example, performance of a design improves with frequency until the memory bandwidth

becomes a bottleneck. Function f can have varied degree of smoothness across dimensions

and axis depending on the properties of the design. It will usually be bounded, as metrics

like execution time or power both have to be positive. The noise included in f(x) is due

to system interaction. Summarizing, little is know about the function and hence, it is

referred to as a noisy black-box function.

2.2.5 Optimization Challenges

Modern high performance computing world is facing the challenge of heterogeneous

computing and increasingly complex designs. The designs are encapsulated in a far

larger parameter spaces, have many possible architecture flavors and target various

platforms while living in a range of different environments. Furthermore, with larger

chips compilation and synthesis time is constantly increasing. The challenges faced by

modern reconfigurable design developers are similar in nature to what has been approached

by software developers in the past decades. How to offer the best performance while

maintaining sufficient abstraction level. The main difference is that the parameter space

for reconfigurable computing is orders of magnitude larger and more expensive to traverse

- as a result the optimization process takes immense amount of time.

The are three major challenges. The main challenge in traversing the reconfigurable

design parameter space is the long hardware generation and evaluation time. Although it
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Table 2.4: Summary of the three major challenges with optimization of reconfigurable
designs.

Challenge Description

Hardware Generation Time Generation and evaluation of a single parameter setting
takes between an hour to two days.

No. of possible configurations The curse of dimensionality. The number of potential
design configurations can be in the millions.

Lost Knowledge The knowledge gathered during development and opti-
mization of designs is not transferred.

is possible to predict speed and area of a circuit before generating a bitstream, the process

is inaccurate. Furthermore the timing of a circuit is unpredictable same as the output of

place and route algorithms. The better the resource utilization obviously the better use of

the existing hardware and usually better performance - unfortunately it is not always the

case. Inserting an extra pipe might provide us with 10% percent improvement, but might

degrade the achievable frequency by far more. It might make the place and route process

orders of magnitude more time consuming. Currently no accurate models can encapsulate

that. The current method of countering this phenomena is by tedious hand optimization

and launching multiple PAR processes - a highly time consuming process.

After creating the design and determining target device, performance, energy usage,

functionality and area utilization, the user has to optimize the design to meet the specified

goal. A number of approaches have been investigated, some of which we presented earlier.

Assuming that the average configuration space of a design lays in the range of tens or

hundreds of different settings, each requiring many multi-hour simulations and builds,

making exhaustive search of the parameter space infeasible. Current this problem is tackled

by manual approach, yet they could be significantly improved and perhaps automated if

more accurate and faster methods of parameter space exploration were employed.

Whenever an application is ported onto a heterogeneous system one can expect it

to be used for some time, unfortunately at one point it is ought to be ported onto a

next generation platform. Although the new heterogeneous system might have a similar

architecture, this is not necessary the case. Introduction of new chip building blocks

or a different intra node architecture might result in a new optimal design. This is a

similar issue to software portability which is solved by various compiler and libraries,

unfortunately in case of reconfigurable designs being leveraged by larger parameter space
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and more expensive design evaluation.

2.3 Mathematical optimization

Mathematical optimization is understood as finding the best element from a set of

available points [141, 41]. Often the element is a vector of scalars x defined over a

multidimensional space X . The fitness of the value is defined as a function f over the

space. For maximization, this is stated as follows:

argmax
x∈X

f(x). (2.9)

A number of various optimization techniques can be employed. They are used depend-

ing on the properties of the function f and the search space X . Convex programming can

be used if the function is convex [105]. Convex programming is used for optimization of

FPGA based designs [136]. Some other examples are optimization of an FPGA cluster,

balancing computation and communication [95]. It was proven useful in communication

systems and signal processing algorithms design [99]. Linear programming is a type of

convex programming where the objective function is linear and the set of constraints are

specified using only linear equalities and inequalities. A problem is a linear programming

problem if it can be expressed as

max cTx, subject to Ax = b ≥ 0 and x ≥ 0. (2.10)

where the problem has D variables, c ∈ RD, A ∈ RD×D and b ∈ R.

Mixed integer linear programming are linear programming problems restricted to

integer domains. They have been used for problems like heterogeneous multiprocessor

system-on-chip design space exploration [51].

In geometric programming objective and inequality constraints are expressed as

posynomials and equality constraints as monomials [40]. Some geometric programs can

be expressed as convex programs. Some possible applications include optimization of

integrated circuits [53] or design of FPGA architectures [137].

Nonlinear programming considers problems where some of the constraints or the

objective function are non-linear [29, 85]. Non-linear problems are more common than
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the linear ones, and the optimization is more complex. They are defined as

argmax
x∈X

f(x). (2.11)

subject to either one of k equality g or one of r inequality h constraints

gi(x) = 0 i = 1..k. hj(x) ≤ 0 j = 1..r. (2.12)

The techniques used to solve nonlinear programs are problem dependent, and the

range can be considered unlimited. Some examples of nonlinear programming include

image restoration [162] or centrifugal pump configuration [21]. Another example is a

three heat-exchanger network synthesis problem [22]. Nonlinear programming has also

applications in chemistry, as presented for a phase and chemical equilibrium problem [102].

It was shown useful for floor planning for FPGA designs [121].

Metaheuristics are algorithms that iteratively search the domain space of a problem to

improve the quality of a solution, using some heuristic to assess quality [149]. Metaheuris-

tics are favorable methods to deal with optimization problems whose search spaces for

optimal solutions are extremely vast. One example of such algorithm is Particle Swarm

Optimization (PSO). It is a population-based metaheuristic based on the simulation of the

social behavior of birds within a flock [63]. The algorithm starts by randomly initializing

a number particles where each individual is a point in the X search space. The population

is updated in an iterative manner where each particle x∗ is displaced based on the PSO

particle motion equations. In the classical version for continuous X = RD spaces they are

r1 ∼ U(0, 1), r2 ∼ U(0, 1). (2.13)

vi = wvi + c1r1(li − xi) + c2r2(gi − xi). (2.14)

xi = xi + vi. (2.15)

where i is dimension index, r1 and r2 are uniform random numbers, l∗ is the particles x∗

so far local best found position, g∗ is the global so far best found position and U(0, 1) is a

uniform random number with range [0, 1]. The vi are particle velocities, c1 and c2 are the

acceleration coefficients and w is the inertia weight.

Metaheuristics have been extensively used across different domains, for example
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Table 2.5: Mathematical Optimization Summary.

Approach Details

Convex Programming A problem of minimizing convex functions of convex functions
over convex sets [105]. Linear programming is a major sub-
type of convex programming.

Nonlinear Programming A problem of minimizing of nonlinear functions [85]. Number
of problems is practically unlimited and solution is problem
dependent.

Metaheuristics Used when few or non assumptions can be made about the
problem [149].

Genetic Algorithm (GA) have been used in aerodynamics to design new rotor-blades

[67]. New algorithms are constantly being specified like Galaxy-based Search Algorithm

(GbSA)[133, 134] offering various performance characteristics and finding new applications.

Another example of a metaheuristic algorithm is Intelligent Water Drops (IWDP) [131, 132].

In [161] a new Ant Colony Optimization (ACO) based method is introduced for FPGA

placement. It is compared to metaheuristics such as Simulated Annealing (SA), GA, PSO

and hybrid GA and SA algorithm. Metaheuristics can be used to decrease data transfers

by evolving clever compressions schemes while minimizing accuracy [125][126], automating

optimizations within a hardware compiler or identifying reusable code sequences between

the cores for multi-pass kernels.

The choice of the appropriate optimization approach is based on the problem. There

are a number of important fitness function properties, which need to be taken into account.

The problem might be multi-modal having multiple solutions that meet the target goal.

The fitness function can be stochastic in nature. For example, the benchmark used to

evaluate a design is based on random numbers and there is a certain noise associated

with its output. To evaluate a reconfigurable design it first has to be synthesized, if

this process fails the fitness is undefined resulting in f discontinuities. This is also a

largely non-deterministic problem. The algorithm should be able to cope with mixtures

of the previously mentioned parameter spaces. Generally, from the above mentioned only

metaheuristics are applicable to the optimization of black-box functions. Unfortunately,

they rely on a large number of heuristics evaluations and render this approach not

applicable to reconfigurable designs. Evaluation of hundreds, and even less so thousands,

of design parameter configurations is simply unrealistic. This makes creation of a generic
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(a) Ground Truth (b) Samples (b) Classification

Figure 2.12: Classification example.

optimization tool for reconfigurable designs challenging.

2.4 Machine Learning

Machine learning techniques are in essence a way of encapsulating knowledge in various

forms, and then using it to achieve certain goals. For example it is possible to have a set

of data, and for the algorithm to find structure within it. Another possibility, is for an

algorithm to learn on which actions are most beneficial in certain situations. Yet, the type

of algorithms relevant to this work do something else. They perform supervised learning,

where the algorithm learns how a function works provided the input and output data.

2.4.1 Supervised Learning

In the simplest form there is a function f(x) which takes an input variable and returns some

output. The supervised learning algorithm infers this function from labeled observations

that contain a number of input-output pairs. The problem is divided into regression when

trying to determine the strength of a relationship between variables (e.g. forecasting of

stock prices), or classification when the goal is to categorize inputs into distinct classes

(e.g. learning to categorize faces in photos according to emotions they express). Examples

of regression and classification are presented in Figure 2.13 and Figure 2.12. Among

many others, supervised learning includes random forest, decision trees, nearest neighbors,

probabilistic generative models, Artificial Neural Networks (ANNs), Support Vector

Machines (SVMs), or Gaussian Processes (GPs).

An algorithm has a training phase. The user supplies the algorithm with a training

set and the algorithm adjusts the function parameters so that it performs best according

to some metric. If the model used for the function is powerful enough to represent the
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(a) Ground Truth (b) Samples

(c) Regression

Figure 2.13: Regression example.

problem, and the training set was large enough, it should be able to generalize over the

set of problems that it aims to solve [35]. As an example, it is impossible to accurately

model a quadratic curve using a linear model (but for the most trivial case). It is possible

to model it over a certain interval, and with limited accuracy. The task of the user is to

choose the suitable model. Cost of the model, cost of training examples and the accuracy

of output have to be taken into account.

This class of machine learning algorithms has been extensively studied as performance

predictors for new processor micro-architectures, especially for soft-processors. Christophe

Dubach proposes the use of machine-learning techniques to address architecture/compiler

co-design [57]. In his work he shows how ANN can aid in processor and compiler co-

design space exploration. This technique offers cheap design space exploration allowing to

efficiently achieve the desired performance metric goal. In [48] authors investigate ANN

as a micro-architectures soft error vulnerability predictor. They show how ANN can be

reduce the cost of the design exploration to quickly access soft error susceptibility of a

given hardware configuration.
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Kernel Methods

Kernel methods are a class machine learning algorithms, which make use of kernel functions.

The idea is to solve a problem in a higher dimensional feature space, where often the

solution is linear [35]. The problem is mapped to a higher dimensional feature space Xf
using a feature map φ : X → Xf . Then, the problem is solved using a linear model. For

example, in the case of classification, different classes can be separated by a hyperplane.

The concept is presented in Figure 2.14.

Due to higher dimensionality one would rightfully expect the computational cost to

increase. The kernel functions comes in handy by preventing that. When an algorithm

relies on dot product computation, a cheap to compute kernel function is used to calculate

the dot product in the higher dimensional feature space Xf . This way, the problem can

be solved in the higher dimensional space allowing for better predictive power without

substantially increased computation cost. There are certain restrictions on the kernel

function, yet they are not crucial in understanding of the kernel trick.

Support Vector Machines Classification

SVM is a maximum margin classifier, which constructs a hyperplane used for classification

(or regression) [35]. SVM use kernel functions k(x,x′) to transform the input space to a

different feature space where the data points are linearly separable. SVM are a class of

decision machines and so do not provide posterior probabilities. There are n observations

in a training set X = {xi}n1 and t = {ti}n1 , where xi denotes an input vector, ti denotes a

target value. The column vector inputs for all n cases are aggregated in the n×D design

matrix X, and the targets in the integer vector t. The goal is to classify an unseen input

x∗ based on X and t by computing a decision function d allowing prediction of a class

label d(x∗) = t.

In SVM the decision function is constructed based on the observed data X and the target

labels t. SVM work by construction of a maximum margin hyperplane separating different

classes. The problem is formulated for binary classification problem, with t ∈ {−1, 1},
although it can be easily extended to multiple class problems using a “one-against-one”

approach [112]. In SVMs the decision function is constructed based on the observed data

X and the target labels t. SVMs work by construction of a maximum margin hyperplane

separating the two classes
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(a) Non-linearly separable (b) Non-linearly separable

(c) Same problem in the feature space (d) Hyperplane separating points

Figure 2.14: Feature space mapping and SVM classification. The two sets of points
presented in (a) and (b) are not linearly seperable. Yet, when the problem is brought into
a 3 dimensional feature space (c), the solution becomes apparent (d) and a maximum
margin hyperplane is constructed.

w · x− b = 0. (2.16)

where the hyperplane is defined using the Hessian normal form with w vector being the

normal vector and b the distance from the origin. The objective function used to find the

maximum margin hyper plane is

argmin
x,b

1
2
||w||2. (2.17)

The objective function is subject to constraints ti(w · xi − b) ≥ 1. The efficiency of
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SVM technology comes from the idea of a support vector, only a subset ofnn parameter

configurations of the observed data X and t is required to construct the hyperplane. Those

nn parameter configurations, for which wi 6= 0, are called support vectors. The complexity

of SVM training is O(n3), and of prediction it is O(nn2) [115]. Using Lagrange multipliers

α the objective function (2.17) is expressed as

L̃(α) =
n∑
i=1

αi − 1
2

∑
i,j

αiαjtitjx
T
i xj. (2.18)

SVMs become non-linear classifiers by using the kernel trick. The kernel trick is based

on solving the problem in a feature space, which often has higher dimensionality. This can

possibly allow for a linear solution to the problem, which does not exists in the original

space. The transformation function φ is used to transform the vector x into the feature

space. Now, by setting x = φ(x)

L̃(α) =
n∑
i=1

αi − 1
2

∑
i,j

αiαjtitjφ(xi)
Tφ(xj) (2.19)

=
n∑
i=1

αi − 1
2

∑
i,i

αiαjtitjk(xi,xj). (2.20)

The kernel function replace the dot product xTi xj . There are many possible kernel functions,

squared exponential kernel with parameter γ being usually chosen. The parameter has to

directly learned from the data, for example using cross-validation. Intuitively it can be

understood as determining the sphere of influence of individual vectors.

k(x,x′) = exp(−γ||x− x′||2). (2.21)

The SVM can be extended with a soft-margin hyperparameter C [50] if the data

is not linearly separable. The soft-margin hyperparameter determines the penalty for

misclassification of training samples [31, 35]. It enables construction of a decision boundary,

which miss-classifies some parameter configurations, allowing the SVM to deal with a

degree of noise during the classification process. Training of soft margin SVMs is done

by optimization of the revised objective function. The new objective function introduces

non-negative slack variables ξi, which allow for a degree of miss-classification. For a linear
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(a) Ground Truth (b) Low C Medium γ (c) Low C High γ

(d) Low C Low γ (e) Medium C Low γ (f) High C Low γ

Figure 2.15: Two class SVM classification using different values of C and γ hyperparame-
ters.

penalty function, the optimization problem becomes

argmin
x,ξ,b

1
2
||w||2 + C

n∑
i=1

ξi. (2.22)

The constrains are modified to ti(w · φ(xi) + b) ≥ 1 − ξi. The soft-margin SVM with

a squared exponential kernel has two parameters C and γ, which are typically learned

from the data by using cross-validation. Although the SVM is formulated for a binary

classification problem, with t ∈ {−1, 1}, it can be extended to multiple class problems

using a “one-against-one” approach [112].

The hyper-paramter C is less of a concern if γ matches the complexity of the problem

[31]. Assuming that the real decision boundary is smooth and regular as presented in

Figure 2.15(a), over-fitted model is seen in Figure 2.15(b) and Figure 2.15(c) due to

high γ and overly flexible class predictions. Models presented in Figs. 2.15(d)-2.15(f) use

low γ and offer good prediction mainly due to smooth decision boundaries and lower

flexibility. The hyperparameters can be determined using cross-validation technique.
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Figure 2.16: Soft margin SVM classification. A hard margin classification is shown in (a),
where a linear decision boundary is counctructed in the feature space to seperate two
classes. In (b), new examples are added and the problem is no longer linearly seperable.
To take into account the noisy examples, or fact that the the classes are not linearly
seperable in the feature space, a soft margin is introduced. In (c) this is represented
by the two blue lines, where the SVM classifier is trained to allow for certain degree of
misclassifcation.

Gaussian Process Regression

GP based regression models have been extensively used for Bayesian optimization. GP is

a supervised learning method often used for probabilistic regression [130, 124]. It is based

on a linear regression model with additive Gaussian noise.

f(x) = xTw, y = f(x) + ε, ε ∼ N (0, σn). (2.23)

where x is the input vector, weights w are the weights of the linear model, f is the

modelled function and y is the observed value. The assumption is that the observed values

include zero-mean Gaussian noise with varianceσn. The presented model can be used to

perform linear Bayesian regression, maximizing the probability of the observed data given

the model and the model’s parameters given the observed data X = {xi}n1 and y = {yi}n1 .

Using the Bayes rule

posterior =
likelihood× prior

mariginal likelihood
, p(w|y,X) =

p(y|w,X)p(w)

p(y|X)
. (2.24)

Omitting the derivation, the posterior distribution becomes
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p(w|X,y) ∼ N ( 1
σ2
n
A−1Xy, A−1). (2.25)

where Σp is the Gaussian prior covariance matrix of the weights w and the matrix

A = σ−2
n (σ−2

n XXT + Σ−1
p ). The prediction of f(x∗) for an input x∗

p(f |x∗,X,y) = N ( 1
σ2
n
x∗A

−1y, xT∗A
−1x∗). (2.26)

Then, the Gaussian process is a collection of random variables, for which any finite set

is jointly Gaussian distributed. The goal in Bayesian regression is to obtain the predictive

distribution p(f |x∗,X,y) of the f function for a test input x∗ given the observed data.

This distribution can be viewed as a distribution over function regressions, as presented in

Figure 2.17. The uncertainty of predication encapsulated in the form of a distribution, can

be utilized in optimization. This contrasts with non-probabilistic regression techniques

like simple linear regression or more sophisticated spline,which do not provide prediction

uncertainty.

In GP, kernel functions are used to transform the original space to a feature space

using transformation function φ, possibly yielding better predictive power. The previously

described model (2.23) becomes

f(x) = φ(x)Tw. (2.27)

the predictive distribution becomes

f |x∗,X,y ∼ N ( 1
σ2
n
φ(x∗)A

−1Φy, φ(x∗)
TA−1φ(x∗)). (2.28)

where Φ = Φ(X) is the aggregation of columns of φ(x) for all x ∈ X. Yet, introducing

possibly higher dimensional feature space, the inversion of matrix A of size N ×N in the

(2.28) can become cumbersome. Ideally, this operation would be avoided. To achieve that,

the equation (2.28) can be rewritten
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(a) Ground Truth (b) GP regression

(c) Sampling

Figure 2.17: GP regression. A number of samples are drawn from the GP regression (b)
and plotted in (c).

f |x∗,X,y ∼ N (φT∗ΣpΦ(K + σ2
nI)−1y, φT∗Σpφ∗ − φT∗ΣpΦ(K + σ2

nI)−1ΦTΣpφ∗). (2.29)

with φ(x∗) = φ∗ and the K = ΦTΣpΦ ∈ Rn×n is the kernel matrix. When an algorithm

can be expressed solely by inner products in the input space, the inner product of

transformation function φ(x) can be replaced by a kernel function. The computation is

not directly performed in the higher dimensional space, instead a cheap-to-compute kernel

function performs dot product in that higher dimensional space. This can drastically

improve model expressiveness, with little extra compute cost. Seeing that the covariance

matrix Σp is always positive semi-definite (it is a symmetric matrix with positive values),

(Σ
1/2
p )2 = Σp. Then ψ(x) is defined as ψ(x) = (Σ

1/2
p )2φ(x). Defining kernel function as

k(x,x′) = φ(x)TΣpφ(x) it becomes apparent that φ(x)TΣpφ(x) = ψ(x) ·ψ(x′). This is the

kernel trick, which is crucial in GP technology. The computation is performed in higher

dimensional while avoiding the problematic feature vectors φ(x). The kernel function
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can also be viewed as the covariance between f evaluated at any two x and x′ in the

transformed feature space.

The GP does not require a predefined structure, and by using different kernels can

approximate arbitrary function landscapes. GP based regression techniques have been

used to solve highly dimensional problems in many fields such as robot control [106]. The

GP are solely defined by their kernel functions k(x,x′) and the mean function m(x). When

using GP for regression, a prediction for an unseen input x∗ is a Gaussian with mean and

variance defined by kernel and its hyperparameters as well as the past observations X and

y. Without a loss of generality, it is common to normalize the data prior to training and

prediction and to assume that the prior mean function is m(x) = 0.

E[f(x∗)] = f̄(x∗) = k∗
T (K + σ2

nI)−1y. (2.30)

Var[f(x∗)] = σ2(x∗) = k∗∗ − k∗
T (K + σ2

nI)−1k∗. (2.31)

where k∗ = k(X,x∗) and k∗∗ = k(x∗,x∗). When using GP for regression, the choice of a

kernel function is critical for accurate modeling. The kernels themselves are specified with

hyperparameters. A hyperparameter is a higher-order model parameter, which in the

case of GP, are not learned from the data. The main features which should be taken into

account when creating a GP regression model are isotropy, smoothness, and stationarity

[124, 111, 35, 62].

Figure 2.18: Anisotropic and isotropic functions. The image (a) represents a quadratic
function in two dimensions: f(x) = x1

2 + x2
2. This is an isotropic function, with equal

impact of either of the dimensions. A different quadratic function is presented in (b), the
function is anisotropic as the parameter x1 has smaller impact on the function value than
x2. In (c) the situation is put to the extreme and the function solely depends on x2.
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Isotropy means uniformity in all orientations; all of the dimensions have similar impact

on the function. This concept is presented in Figure 2.18. An anisotropic kernel function

has different characteristics across the dimensions (orientations) defined by their respective

hyperparameters. Kernels can be designed to automatically determine relevance of different

dimensions using Automatic Relevance Determination (ARD) [ 35]. During the learning

stage the algorithm determines the relevant hyperparameters. In case of GPs this is

typically done by maximization of marginal log-likelihood. ARD is often used with the

Gaussian squared exponential kernel

k(x,x′) = σ2
fexp(−1

2
(x− x′)TM(x− x′))). (2.32)

with M = diag(|l21, .., l2D|), where li is a length-scale hyperparameter defining the relevance

of a parameter i and σf is the variance of the function f . The ARD comes here from the

fact that during marginal log-likelihood maximization if the parameter i is not relevant

li is going to be automatically minimized. The hyperparameter vector θ consists of all

the length-scales and the noise variance hyperparameter δ. The kernel becomes isotropic

when all of the length-scales are forced to be equal, giving an isotropic Gaussian squared

exponential kernel

k(x,x′) = σ2
fexp(− 1

2l2
||x− x′||2)). (2.33)

where l is the length-scale hyperparameter, and as previously mentioned σf is the variance

of the function f and σω is the noise variance.

Another important kernel function property is smoothness. It is intuitively understood

as whether the function is slowly varying (smooth) or quickly varying (non-smooth).

Kernel functions often have hyperparameters which dictate a degree of smoothness and

will be set to a fixed value, depending on the expected properties of the function GP is

meant to model. Examples of a noisy non-smooth and smooth functions are presented

in Figure 2.19 (a) and (b). The non-smooth function is modelled quite accurately in

(c) using a kernel with limited degree of smoothness. Equally, the smooth function is

modelled accurately in (d). Their less accurate regressions are presented in (e) and (f),

where worse matching kernel functions where used. The worst fit is easily seen by further

deviated predicted mean, and much larger predicted uncertainty for (e) and (f) than (c)

and (d). The commonly used Matèrn class kernel function
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(a) Non-smooth noisy function (b) Smooth noisy function

(c) Matèrn kernel (d) S.E. kernel

(e) S.E. kernel (f) Matèrn kernel

Figure 2.19: GP regressions of non-smooth and a smooth function using Matèrn and
squared exponential kernel functions. Figures (c) and (d) better modeled functions than
(e) and (f), with clearly larger predicted process variance.
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k(x,x′) =
21−ν

Γ(ν)

√
2ν|x− x′|

l

ν

Kν

√
2ν|x− x′|

l
. (2.34)

where l is the length-scale hyperparameter, Kν is the modified Bessel function and ν

hyperparameter regulates the degree of smoothness of the problem function f . The kernel

in the above written form is isotropic, yet similarly to the squared exponential Gaussian

kernel function, M matrix could be introduced. The ν hyperparameter regulates the

degree of smoothness, the function f(x) is differentiable k-times when ν > k. Also, when

ν → ∞ the kernel becomes the squared exponential kernel function and is infinitely

differentiable. The hyperparameter ν is usually chosen to match the expected smoothness

of the modeled problem, usually being set to 3/2 or 5/2. The kernel becomes:

kν=3/2(x,x′) = (1 +

√
3|x− x′|
l

)exp
−
√

3|x− x′|
l

. (2.35)

kν=5/2(x,x′) = (1 +

√
5|x− x′|
l

)exp
−
√

5|x− x′|
l

. (2.36)

The last major important kernel function property is stationarity. In mathematical

terms, the stationary kernel function is solely a function of |x−x′|. Non-stationary kernels

can model functions which completely change their behaviour in different areas of the

space. A function can be quadratic in one region, and a sinusoid in another. As a GP

with non-stationary kernel can generalize less across the space, it requires substantially

more data for accurate modeling. Due to this fact, they are rarely employed.

There is a theoretical framework for obtaining the optimum hyperparameters [66] of a

GP. The GP are usually trained by maximization of the log-marginal likelihood function

with respect to the GP hyperparameters.

log p(y|X, θ) = −1
2
(yT (K + σ2

nI)−1y + log |K + σ2
nI|). (2.37)

The problem of maximization of the likelihood function is non-convex. The complexity

of training of a GP is O(n3), it involves calculation of matrix inversion. Thanks to caching
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of (K + σ2
nI)−1, prediction of σ2(x∗) scales quadratically O(N2).

Cross-validation

It is crucial to choose the correct model and its hyperparameters [31, 35]. Cross-validation

is one of the possible techniques. Cross-validation is a technique used to choose the most

promising model, which involves splitting of the training data D into two subsets. One

of the sets is used to train the model, while the other is used to validate it. Validation

produces some goodness measure, which is used to assess quality of the model. This

can be percentage of correctly predicted labels in the case of a classier. As an example,

in the case of SVM with a Gaussian squared exponential kernel model is defined by its

hyperparameter values γ and C. The technique could also be used to to compare SVM

with different kernel functions.

The cross-validation algorithm is outlined in Figure 2.20. The training data is split

several times, and the model is trained and evaluated using various training sets. The

preferred model is one performing best across a number of different splits [35]. There

are multiple schemes used for splitting of the training data into training and validation

sets. This technique can often prevent model over-fitting, which is crucial, especially when

the available training set has a small cardinality relative to the dimensionality of the

problem.

Split D into s training sets
⋃s
i=1Di;

for Each model do
for i to s do

Train the model using set D −Di;
Evaluate the model using set Di;

Return model with highest (lowest) score;

Figure 2.20: Cross-validation

2.5 Surrogate Models for Experimental Design

Using information feedback from a fitness function, usually the performance metric y and

class label t, a surrogate model can be constructed and used by automatic optimization

tool. A surrogate model is an approximation technique that is used when the behaviour

of the underlying problem is not understood well enough to be treated analytically and is
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expensive to measure, but at the same time the problem calls for automation. Properly

chosen surrogate model can be trained to model the behaviour of the problem, and due to

relatively low compute cost allow for automation. The benefit from using those models

comes from the fact that they are orders of magnitude faster to evaluate than hardware

generation and benchmarks, they can substantially accelerate optimization to enable an

automated approach. The problem is that they need to be suitably chosen for the target

problem.

1. SAMPLING

2. SURROGATE MODEL
CONSTRUCTION

4. FIND INFILL CONFIGURAITON
find a parameter configuration to update the model

3. EVALUATE INFILL CONFIGURAITON

TERMINATE

Figure 2.21: Surrogate Model Optimization

Surrogate models have been used in reconfigurable design optimization. Speeding-up

time consuming high-level synthesis using surrogate modeling has been explored [117]

using fitness inheritance. In [100] authors present a design and CAD tool parameter

tuning approach. Equally to the design parameters, proper selection of those CAD tool

parameters can allow for generation of better performing design. The technique offers a

very high degree of parallelism, the authors generate up to 50 designs in parallel. Very few

designers can build more than a few designs in parallel, let alone 10 or 50. Furthermore, the

investigated case study requires only 20-25 minutes for hardware generation, an unrealistic

example. Some of the proposed parameters, like random seeds used for placement, not

necessarily being good candidates for optimization. Lastly, the authors claim that the

presented approach offers a 20x reduction in the number of evaluated designs compared to

exhaustive search. This makes the approach unrealistic for multi-parameter designs with

millions of possible designs. Timing optimization using cloud computing and machine

learning is presented in [80]. Again, the optimization targets CAD parameters. Multiple

different designs are evaluated, and it is shown how tuning of the CAD parameters can
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offer better chance of design meeting timing.

A typical surrogate-based optimization algorithm is presented in Figure 2.21. The

algorithm starts with sampling of the parameter space. Sampling is necessary to construct

an initial surrogate model. After evaluation of sampled configurations has finished, con-

struction of the surrogate model, assessment of the next configuration to be evaluated and,

finally, evaluation of the configurations follows in an iterative fashion. The configuration

which is evaluated during every iteration is called infill: it can be understood as filling

in the gaps in the understanding of the problem, different possible infill criteria exist

[79, 144, 104].

(a) Grid (b) Random (c) Latin Hypercube

Figure 2.22: Examples of sampling plans.

Often a random sampling plan will be chosen; however, other plans like Latin hypercube

plan [103] offer better space filling qualities which improve performance of the optimization

algorithm [78]. Figure 2.22 presents three different sampling plans. A grid sampling plan

would seem ideal, yet it struggles to deal with highly dimensional problems. In those cases

the density of samples per space decreases . Random sampling plan has a tendency to

oversample areas of space, while undersampling others. It is visible in Figure 2.22 where

Random sampling plan oversamples the middle and leaves patches of empty space. The

Latin hypercube sampling plan space filing properties are nearly as good as of the grid

plan, but introduce randomness.

GP based surrogate models have been used for optimization of expensive fitness

functions by many researchers [79, 78]. Usually, a surrogate model consists of a series of

regressors, although for constrained optimization problems they can include classifiers,

SVM in particular [89, 28]. In such a case, aside of modeling the fitness function the

surrogate model determines which, if any, constraints are likely to fail. Extension of the

surrogate model with a classifier allows for pruning of the parameter space: the classifier

predicts which regions yield valid designs and thus prevents evaluation of unpromising

configurations, which fail constraints such as being inaccurate or overmap on resources.

This is crucial when parameter space is large and designs take a long time to evaluate.
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2.5.1 Metaheuristics and Surrogate Models

Metaheuristics are algorithms that iteratively search the domain space of a problem to

improve the quality of the solution [149]. They are a favorable methods to deal with

optimization problems whose search spaces for optimal solutions are extremely vast.

Although they can deal with discontinuous fitness functions, multimodal and even ones

of stochastic nature, they rely on multiple evaluations of the functions. This becomes

problematic when evaluation of the function is computationally expensive.

1. SAMPLING

2. MODEL CONSTRUCTION

4. METAHEURISTIC
ITERATION(s)

perform a number of iterations
of the meta-heurstic algorithm

to find a (set) of infill configurations(s)

3. EVALUATE CONFIGURATION(s)

TERMINATE

Figure 2.23: Meteahueristic Optimization and Surrogate Model

The commonly approached solution is integration of a surrogate model, which allows

for an inexpensive alternative to function evaluation. An outline of metaheuristc algorithm

with an integrated surrogate model is presented in Figure 2.23. The algorithm uses a

metaheuristic to traverse the space, avoiding when possible function evaluation. Those

function evaluations cannot be avoided all together, the algorithm has to use them to refine

the model. This approach can be used to solve multidimensional problems [160]. Parallel

algorithm with support for constraints is presented, an example of aerodynamic wing

design is used for evaluation[163]. The algorithm offers parallelism for faster optimization.

Different types of metaheuristics and surrogate model integrations are presented [34, 147].

In [44] an evolutionary algorithm based on GP is presented. A real example of a stationary

gas turbine compressor profiles is evaluated. The problem with all of the presented
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approaches is that they do not take into account non-deterministic and non-constant

evaluation time of configurations f(x). Furthermore, few, if any, realistic designs are used

for evaluation. Lastly, the surrogate models do not learn about constraints boundaries.

As an example, the PSO algorithm can be extended to use a surrogate model, as

presented in [66] based on a GP model or a Hybrid Surrogate Model (HSM) [150]. HSM is a

hybrid surrogate model using a combination of Radial Basis Function (RBF) and quadratic

approximation. The key step in integration of a surrogate model and a metaheuristic is

introduction of a mechanism which determines when to evaluate the configuration and

infill the surrogate. In the case of the GP based model the provided distribution allows for

uncertainty assessment and subsequent configuration evaluation [66]. In the case of HSM,

and generally models which do not allow for uncertainty assessment, different approach is

needed. In [150] this is done by evaluating promising configurations found by the PSO

algorithm. The PSO algorithm is complicated in its basic form [157], integration of a

surrogate further aggravates it, not to mention the problem introduction of constraints.

2.5.2 Bayesian Optimization

Although automatic optimization is desired, it is data inefficient as it usually requires a

lot of experiments. This is not possible in the case of reconfigurable computing, a single

configuration takes hours to generate and for most designers the computing resources are

limited and require a careful choice of experiments. Bayesian optimization is a powerful

framework used when the configuration evaluation budget is small. It has been used

extensively for experimental design – a systematic process where, through evaluation of an

experiment, the cause and effect relationship of a design’s input to its output is learned and

optimized. It has been extensively used for optimization of black-box functions [79, 70].

Some of the possible applications include optimization of gait in robot locomotion [96],

realistic image synthesis [60] or optimization of machine learning algorithms themselves

[140]. In [104] an Gaussian Process – Upper Confidence Bound (GP-UCB) algorithm is

used to help identify traffic congestion or to find locations of highest temperature in a

building.

Bayesian optimization is based on a statistical surrogate model of the unknown

performance function. The typically used GP surrogate model represents a distribution

over possible functions f . The optimization starts with sampling of the parameter space,

after which infill loop proceeds, as presented in Figure 2.24. During each iteration, a

posterior distribution over performances is computed, accounting for all the previous
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1. SAMPLING

2. BAYESIAN MODEL

4. FIND INFILL CONFIGURATION
xa = argmax

x∈X
a(x)

3. EVALUATE INFILL CONFIGURATION
f(xa)

TERMINATE

Figure 2.24: Bayesian Optimization

evaluations of the performance function. The user defines an acquisition function a(x)

which, expresses his belief on the desirability of points in the parameter space. This

function, defined using the Bayesian model, is used to search for the next configuration

to evaluate. This is done by maximization of an acquisition function over the parameter

space X for unevaluated configurations

argmax
x∗∈X

a(x∗). (2.38)

The configuration is evaluated using the design fitness function f . Then the loop

restarts with more data available for conditioning of the model. Bayesian optimization

is beneficial when computation cost of the regression model and acquisition function

maximization is smaller than evaluation of a configuration. Frameworks are available for

multi-objective optimization problems [56]. Work has been extend to take into account

constrained problems [28, 64]. To allow for parallel, and most importantly asynchronous,

evaluation of configurations [75]. General frameworks are presented in [79, 97, 42].

Efficient Global Optimization

The EGO approach is a Bayesian optimization algorithm [79]. The key idea behind EGO

is data efficiency, it only evaluate configurations that optimize its surrogate model. The

algorithm is based around the Expected Improvement (EI) acquisition function, which
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(a) Sampling (b) Model Construction

(c) Infill (d) Design Evaluated

Figure 2.25: EGO optimization. The algorithm starts with sampling after which it moves
into the infill stage. First, the surrogate model is constructed and then used to calculate
E[I(x)]. The configuration chosen for infill is the one offering the highestE[I(x)]. After
configuration evaluation, the surrogate model is updated and the process continuous.

determines the expected improvement of a configuration over the best currently found

configuration x+, s.t. f(x+) = max(y).

In particular, given the mean estimate f̄(x) and standard deviation σ(x) by the GP

regression, an improvement I(x) over x+ is defined

I(x) = (0, f(x+)− Y (x)). (2.39)

Y (x) is a Gaussian random number conditioned on the past observations X, y, i.e.

Y (x) ∼ N (f̄(x), σ2(x)), the distribution returned by the GP regression. The presented

equation is defined for a maximization problem, such as throughput optimization. EI

automatically manages exploration and exploitation by utilizing both the model uncertainty

and fitness predictions. The E[I(x)] of the improvement is
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1. SAMPLING

2. GP TRAINING

4. FIND INFILL DESIGN(s)
argmax
Xλ∈Xλ

E[I(µ,λ)(Xλ)]

3. EVALUATE
y = f(x)

3. EVALUATE
y = f(x)

...

TERMINATE

Figure 2.26: Asynchronous Parallel EGO Algorithm.

EI(x)] = fδΦ

(
fδ
σ(x)

)
+ σ(x)φ

(
fδ
σ(x)

)
. (2.40)

where minimization is desired; it can be modified for maximization problems. The symbols

φ and Φ respectably denote the Gaussian distribution probability and cumulative density

functions. To simplify notation fδ = (f(x+)− f̄(x)).

Asynchronous Parallel Efficient Global Optimization

EGO has been defined for parallel systems of P worker nodes [74, 75], based on new

EI, E[I(µ,λ)]. At any given time µ nodes are busy and λ are idle. The goal is to find

a set of configurations Xλ = {xi}λi=1 and to evaluate them using the idle nodes, while

configurations Xµ = {xi}λ+µ
i=λ are being evaluated on the busy nodes. For notation

purposes all the points are aggregated in X = {xi}λ+µ
i=1 . The joint Gaussian vector

Yλ+µ = {Y (xi)}λi=1 is conditioned on the past observations X, y with covariance matrix

Σ = var(X) = K(X,X)−K(X,X)[K(X,X) + σnI]−1K(X,X). Having both predictions
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(a) Sampling (b) Model Construction

(c) EI Maximization (d) Infill

Figure 2.27: Parallel EGO iteration with two worker nodes, the algorithm starts with
sampling. Afterwards it moves into the infill stage. At first the surrogate model is
constructed, with one configuration being evaluated. With one worker node free the
current surrogate model is used to search for infill configuration by examining E[I(x)].
When a configuration is evaluated, the surrogate model is updated and new search begins.

the improvement criterion is defined:

I(µ,λ)(Xλ) = max(0,max(Yλ)−max(f(x+),Yµ)). (2.41)

The key to asynchronous parallel EGO is its efficiency even if the time taken to

evaluate f for different configurations is non-uniform. This is common in reconfigurable

designs, where depending on the design configuration the hardware generation time can

vary from an hour up two two days. Parallel algorithms, which require synchronization at

some step would need to wait for the configuration with longest evaluation time to finish.

Visualization of the algorithm’s iteration is presented in Figure 2.27.
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Although the algorithm is promising, it suffers from two problems. A closed form

solution to E[I(µ,λ)] exists only for certain λ and µ values, in general it has to be estimated

using numerical procedures, such as computationally expensive Monte Carlo methods

[74, 75]. The second problem results from the curse of dimensionality. This is a multi-

dimensional integral calculation, where the number of dimensions is λ×D and it depends

on the number of idle nodes and the size of the parameter space.

argmax
Xλ∈Xλ

E[I(µ,λ)(Xλ)]. (2.42)

To decrease computational burden it is possible to compute bounds and devise an

adaptive simulation management scheme [74, 75], yet even that might not be sufficient

to discriminate alternative choices. The E[I(µ,λ)] estimation procedure is presented in

Figure 2.28. The problems resulting from Monte Carlo simulations can be clearly seen in

Figure 2.29. Only at around 1000 simulations a clear peak is visible indicating a pair of

promising configurations. Furthermore, maximization of E[I(µ,λ)(Xλ)] itself is non-convex,

the problem is multi-modal and noisy due to reliance on the estimation of the objective

function. Despite that, keeping the computational burden in check the algorithm offers

asynchronous parallelization and a lot of promise.

Σ = cov[f(X)] = K(X,X)−K(X,X)(K(X,X) + σ2
nI)−1)K(X,X) ;

f̄(X) = K(X,X)(K(X,X) + σ2
nI)−1)y ;

L =cholesky(Σ) ;
for i ∈ [0, 1, .., q] do

// Sample the Y vectors

N ∼ N (0, I);
Yµ,Yλ = f̄(X) + LN ;
// Calculate EI using sampled Ys

ei += max[max(Yλ)−max(f(x+),Yµ)];

output ei
q+1

;

Figure 2.28: E[I(µ,λ)(Xλ)] estimation, as presented in [65] defined for a GP with a zero
mean prior function.

Other Bayesian Optimization Algorithms

There are many other available Bayesian Optimization algorithms, based on a variety

of different acquisition functions [140]. GP-UCB algorithm is presented in the context
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(a) 1 simulation (b) 10 simulations

(c) 100 simulations (d) 1000 simulations

Figure 2.29: Varying number of simulatuions in E[I(µ,λ)(Xλ)] estimation. Although the
ridge representing promising configurations is clearly visibile regardless of the number of
simulations, the peak shown in image (d) can be difficult to localize. Note the symmetry.

of multi-armed bandit problems [26]. The multi-armed bandit problem is a technique

where there is a number of alternatives to pick from, and the algorithm identifies the most

promising one defined in terms of reward of a sequence of choices [81, 33]. This is typically

defined using cumulative regret; the difference in the expected reward between the choices

made and the best possible choice. This is different to global optimization, where the

objective is to find the global optimum, not the sum of all previous best sampled function

values. The multi-armed bandit problem takes its name from the problem of maximizing

pay-off when playing slot machines in a casino. The player faces a problem, which machine

and how many times to play. A slot machine is often called one armed-bandit, hence a row

of them is called multi-armed bandits for gambling and gives a name to the optimization

technique. A multi-armed bandit problem is one where user faces a number of alternative

decision he has to make at each optimization step, and the goal is to maximize his reward.

GP-UCB is based on a GP model, same as one used in EGO. The GP-UCB acquisition

function is defined as
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argmax
x∗∈X

[f̄(x∗) + α
1/2
t σ(x∗)]. (2.43)

where αt us domain-specific time-varying parameter, which regulates the trade-off between

exploration through maximization of predictive mean and standard deviation. The user has

to manage both the uncertainty of the GP model prediction, to explore poorly understood

regions of the parameter space, and the mean prediction to exploit promising regions. In

[144] authors compare GP-UCB with EI as well as Most Probable Improvement (MPI)

[104] in the bandit setting, showing no significant difference between the first two. Yet,

they present theoretical study on the convergence properties of the GP-UCB algorithm,

something that was not that for EI or MPI. Batch parallelization of the algorithm is

presented in [54].

The information-theoretic Predictive Entropy Search (PES) presented in [70] uses the

expected information gain with respect to the global maximum as the acquisition function,

advancement of similar concept presented in [ 158]. The acquisition function is designed

to minimize the negative differential entropy of p(xopt|X,y), or in other words maximize

the information about the location of the global maximum. This is a different approach

to EGO or GP-UCB which explicitly try to offset exploration based on the predictive

posterior mean and uncertainty. A number of case studies are presented, including such as

neural network training or optimization of the environment for optimal bacteria growth.

According to authors the algorithm can offer benefit over EGO by being less greedy and

using more experiments to explore the problem space.

Bayesian optimization is suited for constrained optimization [28, 156, 25]. In [28]

authors extend EGO by integration of an SVM classifier. They evaluate two schemes of

integration of probabilistic classifiers, first one is by discounting EI by the probability of

x being valid

EIc(x) = p(c(x) = 1|X, t)EI(x). (2.44)

similar to the probability adjusted EI formulated in [127]. The second method is derived

by nullification of EI(x) for configurations with probability higher than 50%.
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EIc(x) =

EI(x), p(c(x) = 1|X, t) > 0.5

0, otherwise

they use a modification of probabilistic SVM formulation as their classifier [118]. Only

one artificial problem is used for evaluation, and the constrained formulation is shown to

offer more consistent performance. An alternative approach is to use “expected violation”

as presented in [25]. The “expected violation” is the expectation of the amount by which

the improvement is violated and is used to discount EI.

2.6 Conclusion

The three major challenges associated with the development, and in particular param-

eter optimization, of reconfigurable desings are the result of reconfigurable hardware

characteristics, customization and portability. First two challenges are large parameter

spaces and long hardware generation time. The design parameter spaces often involve

millions of possible design configurations. The size of the parameter space combined with

long hardware generation time makes the optimization particularly challenging. Manual

development techniques have been developed and successfully applied at multiple levels of

reconfigurable design development, ranging from the development of specialized FPGA

chip architectures up to domain-specific frameworks, yet always requiring substantial

effort and high level of expertise from the designer. Often mathematical programming

is used by the designers during the optimization stage, yet it requires careful study of

the optimized design. This can require development of new design specific optimization

tools. More generic metaheuristic algorithms can deal with large optimization spaces, yet

they require multiple heuristic evaluations. Due to the high cost of hardware generation

generic metaheuristic approach is unfeasible for reconfigurable hardware.

Yet, various techniques have been proposed to encapsulate design characteristics and

minimize the cost involved in traversing the large parameter space. In particular, surrogate

models for expensive optimization have been shown useful in many fields. The surrogate

model based optimization involves modeling of the target problem using cheap to compute

models offsetting expensive design evaluations. Those models are often based on machine

learning techniques, mainly supervised learning in the form of regression and classification.

Both surrogate model aided metaheuristics and Bayesian optimization show a lot of

promise.
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The third and last challenge is to create automated optimization algorithms which

would efficiently traverse expensive parameter spaces, while learning from previous opti-

mization. The information gathered during optimization of a design, can be often later

transferred to yield faster and more accurate optimization of a new similar design. This is

very common in reconfigurable computing, where designs are often ported across different

platforms or customized for different goals like power efficiency or speed.
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Design by Particle Swarm

Optimization

This chapter presents our attempt to optimize reconfigurable designs using surrogate

modeling and metaheuristics, in particular PSO. Traditionally, optimization involves

manual design analysis, modeling, and exploration tool creation. This requires an experi-

enced designer, and is a time consuming process. We develop the MLO tool to automate

this process. From a number of benchmark executions, we automatically derive the

characteristics of the parameter space and create a surrogate model of a fitness function

through regression and classification. Based on this surrogate model, design parameters

are optimized using metaheuristics. The work is published in [91, 89].

On numerous occasions FPGA designs have been shown to offer power and speed

advantages over pure software solutions, but at a high design effort. In particular, the

designer has to describe the design using a hardware description language, validate and

synthesize it. The design will often be defined with various parameters, allowing for

optimization to match specific reconfigurable devices and design goals. Examples of such

parameters are the number of computational engines, numerical representation, clock

frequency, degree of pipelining. Determining the optimal configuration is difficult as the

parameters often allow for many possible design parameter configurations, each taking

large amounts of time to evaluate. Synthesis of a design and its subsequent testing can

take many hours.

Systematically optimizing a design for several parameters requires the designer to

analyze the design, create models and benchmarks, and subsequently use them to optimize

the design for throughput, power consumption, or some other performance metric. This

is a time consuming process, often lasting a number of days. Previous research has
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considered optimization of parametric designs, such as optimization of multi-FPGA

systems [71]. The level of parallelism can have non-obvious impact on the performance of

run-time reconfigurable designs [30]. The design throughput and power [155, 46] are highly

dependent on the numerical representation. It influences resource utilization and therefore

the level of parallelism. Optimization of coefficients of constant multipliers can also yield

improvement [76]. Balancing data-reuse and loop-level parallelism for hardware generation

requires complicated frameworks [94]. Determining optimal stencil configuration is known

to be a difficult problem [109]. The result of optimization is the optimal parameter setting

and usually a set of tools and models which can be used to re-optimize the design for

a different device. Although these design specific optimization tools and models might

be fast to use, their development time is often long. Furthermore, the design specific

optimization schemes have to be updated for new designs, the high manual effort and low

re-usability of the tools making this approach highly unproductive.

Generic automated tools can be quickly deployed and require little development time,

yet they often lack efficiency and optimization time will increase. Speeding-up expensive

evaluations in high-level synthesis using surrogate modeling has been previously explored

[117]. Fitness Inheritance was used to decrease the number of configuration evaluations

and hence speed-up optimization. In previous work [91, 89] we have shown it is useful

to construct surrogate models of fitness functions representing the design quality of

reconfigurable parameterized designs. As these models are orders of magnitude faster

to evaluate than generation of bitstreams and code execution of benchmarks, they can

substantially accelerate optimization, enabling an automated generic approach.

This is the motivation behind our development of the MLO tool, which we apply to the

problem of reconfigurable design parameter optimization. We are particularly interested in

parameters with numerous possible settings over which the design’s performance exhibits

a clear correlation. The algorithm is inspired by [66], with a major and crucial difference

of using a classifier to account for invalid regions of the parameter space. We investigate

various MLO components particularly looking into the construction of GP surrogate

models and their kernel functions to determine their impact on algorithm’s performance.

The novel aspects are:

• We combine surrogate models with metaheuristics to provide a new MLO algorithm

for automated optimization of reconfigurable design parameters. It is based on

a generic surrogate model, which approximates the reconfigurable design fitness

function using regression and classification. (Section 3.2)
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• A detailed evaluation of our MLO approach based on four case studies with variable

precision and parallelism: (a) a quadrature-based financial design [91], (b) a PQ

design [46], and two designs based on Sequential Monte Carlo (SMC) methods (c) a

stochastic volatility design and (d) a robot localization design [47]. A careful study

of algorithm’s components is performed to assess its robustness. The evaluation

includes the study of the algorithm’s parameters impact on optimization performance.

The algorithm can improve optimization time by up to 50% compared to design

specific optimization tools. (Section 3.3)

3.1 MLO Optimization Approach

The MLO approach is an automated generic optimization approach as presented in

Subsection 2.2.1. It aims to solve the reconfigurable design optimization problem presented

in Section 2.2.2. The algorithm is used to optimize designs, as presented in the problem

statement section. The great advantage of MLO is that it simplifies the optimization

flow compared to manual and design specific approaches. The designer saves time on

coding of the optimization tools and on building analytical models as glsalo is used instead.

Guaranteed MLO offers comparable optimization time, this allows for improved designers

productivity. The process is illustrated in Figure 3.1. It takes as an input hardware

generation and evaluation scripts, parameter space and goal definitions. Sample input is

presented in Figure 3.2. Those inputs are used by the algorithm to evaluate a number

of designs and, through the construction of a surrogate model, find the optimal design

parameter configuration.

The key idea behind MLO is use of the PSO algorithm extended with a surrogate model.

Metaheuristics are used to explore the parameter space and find the optimal configuration.

The challenge in applying metaheuristics to reconfigurable design parameter optimization

is related to the high cost of fitness function evaluations (design benchmark evaluations

involving bitstream generations). The high cost is avoided by using the surrogate model,

and occasionally evaluating configurations. The algorithm’s convergence is improved by

integration of an SVM classifier to prune the invalid regions of parameter space. The

classifier is used to create a decision boundary to determine if the design would likely fail

to meet certain constraints such as timing or accuracy; and those undesirable regions of

the parameter space are avoided. This further improves optimization efficiency, avoiding

unnecessary parameter configuration evaluations.

93



CHAPTER 3. DESIGN BY PARTICLE SWARM OPTIMIZATION

1. CODING
a) Design b) Benchmark

2. SPECIFICATION
a) Parameter Space b) Constraints

c) Goal

3. MLO

CHOOSE CONFIGURATION(s)

EVALUATE

TERMINATE?

Figure 3.1: MLO optimization approach.

3.2 MLO Algorithm

The algorithm is designed to offload the process of optimization from the designer whist

maintaining data efficiency. The algorithm works on the assumption that the designer

prepared the required input. That is the definition of the parameter space X , and a

benchmark function b. The benchmark function evaluates fitness and the validity of a

configuration x. Typically, this is a script which invokes hardware generation and, once

this is finished, executes a benchmarking program. That script, along with the parameter

space definition, is used by MLO for optimization. A higher level overview of the algorithm

is presented in Figure 3.3. It starts with the Latin hypercube sampling plan [103, 62]. The

data collected during sampling is used to build the initial surrogate model. The model

training starts with feature standardization. Afterwards, training of the GP and SVM

proceeds. Lastly an iterative process follows using the PSO algorithm to find the optimal

design configuration. After each iteration the model is rebuilt. The MLO algorithm has

two unique features:

1. Integration of a classifier and a regressor for reconfigurable design modeling. This

allows the algorithm to prune unfavorable regions of the parameter space. As the

space is expensive to explore due to high hardware generation cost, the integration

of the classifier is one of the main features, which enables automation.
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1 # parameter space d e f i n i t i o n
2 parameters = {” f req min ” : 100 ,
3 ” freq max ” : 100 ,
4 ”p min” : 1 ,
5 ”p max” : 10 ,
6 . . .
7 }
8
9 # Bui ld b i t s t r eams and run benchmarks , the f i t n e s s f unc t i on

10 def buildHardwareRunBenchmark ( ) :
11 # execu te b i t s t r eam genera t ion
12 os . system ( ”Make hw” )
13 # execu te benchmark and / or ana lyze b i t s t r eam
14 return os . system ( ”Make run” )
15
16 # supp ly the parameter d e f i n i t i o n and s c r i p t s to the op t im i za t i on a l gor i thm
17 opt imia lDes ign = MLO( parameters , buildHardwareRunBenchmark )

Figure 3.2: The input includes the parameter space specification, and scripts used to
generate and benchmark bitstreams.

2. Integration of an infill scheme to aid PSO. The PSO algorithm on its own has

complex dynamics. It’s behavior gets more difficult to analyze with the integration

of a surrogate model.

First, to the best of our knowledge, classifiers have not been integrated in surrogate

model based algorithms for reconfigurable design optimization to decrease the search

space size of reconfigurable designs. The concept was presented in [89, 91]. It is similar to

the concept presented in [72] where the authors define simple, yet effective, constrained

PSO algorithm. Their methodology is an extension of the PSO algorithm, which is

not applicable to expensive optimization problems. There are some surrogate-based

algorithms using a combination of a regressor and a classifier applied to constrained

expensive optimization problems outside of reconfigurable computing world [25, 156, 28].

In particular, GPs and SVMs are used in [28]. They use probabilistic SVMs to modify the

EI acquisition function. A similar concept defined for asynchronous parallel optimization

problem is presented in Chapter 4; meanwhile this chapter presents work on surrogate

model aided PSO algorithm. The advantage of the concept of using a classifier to treat

constraints is a decreased parameter space, which should allow for faster convergence

of the algorithm. This is essential in the case of reconfigurable designs, as it limits the

number of lengthy hardware generations. The drawback is increased complexity of the

algorithm and problems which can arise. This is partially mitigated by using simple
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concepts introduced in [72].

The probabilistic classifiers like Relevance Vector Machine (RVM)s [154] or GPs for

classification [124], investigated for expensive global optimization in [28], are conceptually

very attractive. However, their integration with a surrogate model can become problematic,

especially in the context of metaheuristics. The predictive probability has to be used

to either discount desirability of a configuration or a threshold minimum predictive

probability has to be defined; configurations with probability lower than a certain value

are not evaluated. The approach followed in this work is to use a non-Bayesian classifier

and to identify the valid region V using SVMs. The goal is to identify the best possible

design before exhausting time budget; with the budget being typically very limited main

aim is to find configurations with high px(1) rather than exact V. The belief is that

exploring nearby area of valid observed designs is sufficient, task for which SVMs are the

most adequate.

The second new unique feature is the integration of an infill scheme to aid PSO. If

the GP model fails to build, or the standard deviation is too high for the metaheuristic

to proceed, infill parameter configuration is evaluated with the highest predicted fitness.

Thanks to the infill scheme the algorithm is simplified and offers better performance.

Through the introduction of a classifier, discrete spaces and limitation of search space

boundaries the algorithm can end in a critical state. For example, particles can collapse

into a single point, which ceases any motion and therefore the algorithm becomes idle.

Another potential problem is when all particles are placed outside of the valid area, again

potentially ceasing all dynamics.

There is one limitation of the MLO algorithm. It cannot be used to optimize un-

structured parameters. Those are the parameters for which no underlying meaningful

distance metric exists. MLO relies on the fact that performance of design with different

parameter configurations exhibits correlation across a parameter range, this is not the

case for unstructured parameters. An example would be a parameter which defines which

chip or memory controller is being used. The possible parameter spaces are defined in the

following subsection.

3.2.1 Latin Hypercube Sampling

The algorithm uses n particles aggregated in X∗ = {x∗}n. Each particle has an associated

fitness xf and a position x. A Latin hypercube plan offers good space filling qualities,

which can improve performance of the optimization algorithm [103]. It relies on the
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1. LATIN HYPERCUBE SAMPLING

2. GP and SVM TRAINING
Surrogate Model

3. PARTICLE MOTION 3. PARTICLE MOTION

...

IS m-th ITERATION?

4. EVALUATE BEST or
INFILL

5. TERMINATE

Figure 3.3: MLO Algorithm overview.

concept of Latin square. A sampling on a square grid is only a Latin square if each each

row and column contains at least one sample. A Latin hypercube follows the same concept

defined for hypercubes. The algorithm starts with the evaluation of a number of design

parameter configurations equal to the number of particles, as indicated by the Latin

hypercube sampling. Those are the starting positions of the particles. An illustration of

sampling in one dimension is presented in Figure 3.4. Note that the evaluation of the

design with one of the configurations failed, and is marked in red.
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Figure 3.4: MLO iteration, the algorithm starts with Latin hypercube sampling.

1. Treat each of the D parameters as a continuous range of numbers. When
sampling k points, divide each parameter into k equal sized intervals. This procedure
forms a hypercube;
2. For each of the D parameters, sample using uniform distribution one point from
each of the k intervals;
3. Perform random permutation of the samples to form k D-dimensional tuples.
This forms a Latin hypercube;
4. Discretize the position of the particle so that they are valid in the parameter
space X and evaluate them;

Figure 3.5: The procedure for Latin hypercube sampling on a discrete space.

3.2.2 GP and SVM Training

After sampling, and whenever new configurations are evaluated, the surrogate model is

reconstructed. The training data X and y is standardized prior to both the GP and SVM

training. The surrogate model consists of a GP regressor and SVM classifier. Defined

for the purpose of GP training is the set of configurations that resulted in hardware

generation and fitness evaluation X+ = {xi|∃xi : [xi ∈ X] ∧ [ti ∈ T +]}. Given that set,

associated design fitness observations y = {yi|∃xi : [xi ∈ X+]} and model hyperparameters

θ the GP computes the predictive distribution p(f |x∗,X+,y, θ) for new configurations.

The SVM predicts the class t = d(x∗) for all configurations (i.e. regardless whether the

configurations are valid or not) using all observations X and the observed target labels

t = {ti}n1 . The goal of classification is to construct a decision function d, which allows

prediction of class labels d(x∗) = t∗. An illustration of the surrogate model is presented

in Figure 3.8.
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L = cholesky(K(X+,X+) + σ2
nI)−1);

a = LT \ (L \ y);
log p(y|X+) = −1

2
yTa− ΣiLii − n

2
π;

Figure 3.6: Mariginal likelihood calculation for Gaussian process regression [124].

Regression and classification are correspondingly based on the results of previous

hardware generations and benchmark executions aggregated in X,y and t. The GP

regressor uses the ARD [35] squared exponential kernel function with additive Gaussian

noise, which allows learning of the impact of different parameters on the parameter space

[124]. This kernel function has different characteristics across the dimensions (orientations)

defined by their respective hyperparameters. The SVM uses soft-margins [50] to account

for a degree of noise and the squared exponential kernel as smooth class boundaries are

expected.

v = L \ k+
∗ ;

f̄(x∗) = L \ k+
∗ ;

Var[f̄(x∗)] = K(x∗,x∗)− vTv;

Figure 3.7: Prediction of mean f̄(x∗) and of the variance Var[f̄(x∗)] of the estimate using
Gaussian process regression [124]. The matrix L and vector v are computed during model
training. The vector k+

∗ is the vector of covariances betwen the configuration and training
set k(X+,x∗).

The training of the GP is performed by marginal log-likelihood maximization as

presented in Figure 3.6. Due to non-convex nature of the problem, a number of randomly

seeded hyperparameter sets as presented in [32]. The hyperparameter set with the lowest

negative log-likelihood is chosen. Predictions are done as presented in Figure 3.7.

The SVM is trained using k-fold cross-validation on a grid of hyperparameters C and

γ for the squared exponential kernel. The problem is usually solved in the primal-dual

relationship [50, 38]. The formulation is for two classes, with labels ti ∈ {−1, 1}. The

original problem was

argmin
x,ξ,b

1
2
||w||2 + C

n∑
i=1

ξi. (3.1)

subject to ti(w · φ(xi) + b) ≥ 1− ξi. Is modified
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argmin
α

αTQα− eTα. (3.2)

where e is a n long vector of ones, Q is an n× n positive semidefinite matrix with entries

Qij ≡ titjK(xi,xj). The problem is subject to tTα = 0 and 0 ≤ αi ≤ C for all training

configurations i. The problem is solved only during prediction, when ti, α, b, C, all nn

support vectors and kernel parameter γ are stored and later used during prediction. The

prediction for an unevaluated configuration x∗ is performed as follows using the previously

stored data

d(x∗) = sgn(
nn∑
1

tiαik(xi,x) + b). (3.3)

where sgn is the sign function. When there are more than two classes present, “one-

against-one” approach is used [112] to compute the decision function.

Figure 3.8: MLO surrogate model.

3.2.3 Particle Motion

The motion of particles is governed by the classical PSO equations, although implementing

some alterations due to the discrete parameter space and integration of the surrogate

model. The classical PSO equations governing particle motion are

r1 ∼ U(0, 1), r2 ∼ U(0, 1). (3.4)

vi = wvi + c1r1(li − xi) + c2r2(gi − xi). (3.5)
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xi = xi + vi. (3.6)

where i is dimension index, r1 and r2 are uniform random numbers, l∗ is the particles x∗

so far local best found position, g∗ is the global so far best found position and U(0, 1)

is a uniform random number with range [0, 1]. The global best found position is shared

across all of the particles. The vi and are particle velocities, c1 and c2 are the acceleration

coefficients and w is the inertia weight. The equations are defined for continuous RD

spaces. Both r1 and r2 are random real numbers, which means that the resulting velocity

component used to update position x∗ cannot be used if any of the parameters is discrete.

The PSO algorithm can be modified to suit discrete spaces [36, 123, 122], and can even

be defined for binary spaces [120]. The approach is to either map and demap the problem

to the continuous domain, where classical PSO can be applied or to redefine the particle

motion governing equations. The MLO algorithm uses dithering to solve the problem,

which is essentially the mapping approach. The resulting truncation is not visible if the

space cardinality is high, making the space seem continuous with truncation having little

impact. To discretize the position value of a particle after its movement, its value is

rounded. The rounding error is randomized (dithering) as presented in Eq. 3.7. By using

dithering instead of truncation PSO particles maintain their velocity component which

results in a more thorough exploration.

dither(xi) =

bxic U(0, si) ≥ (xi mod si ).

dxie U(0, si) < (xi mod si ).
(3.7)

where si is the minimal increment for the respective parameter.

The model is integrated as follows. For all x∗ predicted to lie in V: Whenever σ(x∗)

returned by the GP is below a credible interval minσ the predicted mean f̄(x∗) is used;

otherwise the prediction is deemed to be inaccurate and design configuration evaluation

follows f(x∗). The metaheuristic will avoid I region, as values predicted to lie outside of

the valid region are assigned unfavorable -∞ value. The mechanism is analogical to the

one presented in [72], although based on surrogate models. It is illustrated in Figure 3.9

and encapsulated in the function fit, used to assign fitness to particles

fit(x∗) =


f̄(x∗) σ(x∗) > minσ and d(x∗) = 0.

f(x∗) σ(x∗) ≤ minσ and d(x∗) = 0.

−∞ d(x∗) 6= 0.

(3.8)
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(a) Iteration N (b) Iteration N+1

Figure 3.9: When calculating particle motion, depending on the uncertaintity prediction
σ(x∗), a particle either evalautes a configuration f(x∗) or uses the models fitness prediction.
In (a) the highlighted particle exceeded the minσ, subsequently the configuration was
evaluated. In (b) the particles move towards promising eareas.

The PSO algorithm proceeds for up to m iterations without design configuration

evaluation, which is explained in details in the next subsection. To allow particles to move

from one edge of the parameter space to the other in m iterations, while preventing excess

velocity build up, a velocity clamping mechanism is employed [58]. Particles can traverse

the whole parameter space in at most m iterations, before the global best found design is

evaluated.

vi = min(
si
m
, vi). (3.9)

3.2.4 Evaluate Best or Infill

The PSO algorithm proceeds for up to m iterations without design configuration evaluation

if the predicted standard deviation σ(x∗) for all x∗’s is below a credible interval. Every

m iterations; the global best found design configuration g∗ is evaluated as suggested in

[66]. If it was already evaluated, an infill configuration or a small perturbation of the g∗

is evaluated. If there are no unevaluated configurations available within the valid region

a perturbed configuration is evaluated. The perturbation is described by a vector of D

uniform random numbers U(−1, 1) within a range of one step s in respective dimensions

(s ◦ U(−1, 1)D), similar to the concept described in [66]. A small perturbation of the

best configuration can allow for the refinement of the model and for the optimization to

proceed.
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(a) Particles Stalled (b) Infill

Figure 3.10: In (a) all of the particles their local best found so far positions l∗ reside in
the invalid region. The PSO equations break. The infill (b) evaluates a configuration with
highest mean across the parameter space, and subsequently updates the global found so
far position g∗. The particle dynamics restarts.

f(dither(g∗ + s ◦ U(−1, 1)D)). (3.10)

The perturbation is dithered similar to particle motion. The infill process finds an

unevaluated configuration with maximum predicted fitness. The infill is performed over

the valid region as predicted by the decision function constructed using the SVM classifier.

argmax
x∗∈V

f̄(x∗). (3.11)

3.2.5 Termination

Although the MLO will converge towards an optimum, it is limited by heuristic search

restrictions and, as such, it cannot be guaranteed to find the global optimum. Hence,

it is crucial to specify termination criteria. There are two possible MLO termination

criteria. First, MLO terminates if it exhausts its allocated compute time budget. For

example, a number of machines is allocated for a 24-hour period. Alternatively, the

MLO algorithm terminates when a parameter configuration x is found that achieves user

required performance.
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1. LATIN HYPERCUBE SAMPLING
Subsection 3.3.1

2. GP and SVM TRAINING

1. Train GP
Maximize mariginal log-likelihood log p(y|X)

2. Train SVM
Optimize argmin

α
αTQα− eTα

Use “one-against-one” approach for more than

two classes [112]

3. PARTICLE MOTION

for Each parameter i do
r1 ∼ U(0, 1), r2 ∼ U(0, 1)
vi = wvi + c1r1(li − xi) + c2r2(gi − xi)
vi = min( si

m
, vi)

xi = xi + vi
x∗ = dither(x∗)
fit(x∗) =
f̄(x∗) σ(x∗) > minσ and d(x∗) = 0

f(x∗) σ(x∗) ≤ minσ and d(x∗) = 0

−∞ d(x∗) 6= 0

Update global g∗ best
Update particles local l∗ best

3. PARTICLE MOTION

for Each parameter i do
r1 ∼ U(0, 1), r2 ∼ U(0, 1)
vi = wvi + c1r1(li − xi) + c2r2(gi − xi)
vi = min( si

m
, vi)

xi = xi + vi
x∗ = dither(x∗)
fit(x∗) =
f̄(x∗) σ(x∗) > minσ and d(x∗) = 0

f(x∗) σ(x∗) ≤ minσ and d(x∗) = 0

−∞ d(x∗) 6= 0

Update global g∗ best
Update particles local l∗ best

...

m-th ITERATION?

4. EVALUATE BEST or INFILL

if g∗ ∈ X then
g∗ = dither(g∗ + s ◦ U(0, 1)D))
if g∗ ∈ X then

argmax
x∗∈V

f̄(x∗)

else
f(g∗)

else
f(g∗)

5. TERMINATE

Figure 3.11: MLO Algorithm with detailed data flow.
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3.3 Evaluation

The two evaluation goals are to assess MLO optimization performance sensitivity with

respect to its parameters and the impact of infill on algorithm’s performance. For

evaluation, the MLO approach is used to optimize four designs and a comparison is

made with a hill climbing algorithm. The portfolio of benchmark designs is meant to

evaluate different aspects of the new algorithm. Although some performance models

for the benchmark designs are available or can be constructed, they are not used in

optimization. The evaluated generic algorithms treat the benchmark designs as defined in

the problem statement Subsection 2.2.2, otherwise they would not be generic anymore.

Each of the mentioned designs had hardware generated prior to the optimization to make

the experiments repeatable. The task involved generation and analysis of hundreds of

bitstreams over a time period of a couple of months.

The first design is a quadrature-based financial design with variable precision [155].

Two benchmarks are provided with the design, one which evaluates energy efficiency and

one which evaluates throughput of the design. The design parameters involve numerical

representation, parallelism and degree of recomputation. The design is constrained

by accuracy of the output dependent on the numerical representation. The numerical

representation and parallelism trade off accuracy and performance. It is a commonly

found pattern in reconfigurable computing.

The second design is a PQ design with variable precision, number of computational

cores and design clock frequency [46]. The design is constrained both by timing and the

number of resources. Higher clock frequency allows for better performance, yet make

hardware generation more difficult. Increasing resource utilization improves performance

of the design by utilizing more cores and decreasing amount of necessary recomputation

at the expense of making PAR more difficult. Timing and PAR difficulties are found in

nearly all reconfigurable designs.

The third and fourth designs are the robot localization design and stochastic volatility

financial designs, both based on the sequential Monte Carlo SMCGen framework [47]. In

both cases one of the parameters has no impact on the performance of the design. This is an

important feature which allows for evaluation of the algorithms ability to detect irrelevant

parameters. Also, the performance of the design measured by the benchmark is very

noisy making the optimization potentially difficult. The two design fitness functions have

different degrees of additive noise, and their fitness functions exhibit different behavior.

A number of different configurations of MLO are evaluated. MLO is evaluated
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Table 3.1: MLO test designs overview.

Design Noise Constraints No.q D

Quadratureδ [155] Performance of the
design exhibits some
noise. One of the
parameters is a soft-
ware parameter. Two
benchmarks are avail-
able, a design through-
put and an energy
efficiency benchmarks.
LUT bound

Accuracy and resource
constraints.

20,000 3

PQδ [46] Some of the designs fail
randomly due to tim-
ing and PAR difficul-
ties. LUT bound.

Resource constraintsω. 8,200 3

Robotδ [47] Noisy benchmark func-
tion. The challenge for
efficient optimization is
for the algorithm to de-
termine that one of the
parameters has no im-
pact on the design’s
performance.

Resource and Accuracy
constraints. One of the
parameters is a soft-
ware parameter.

24,000 3

Stochasticδ [47] Similar to the previous
design. Noisy bench-
mark function. The
challenge for efficient
optimization is for the
algorithm to determine
that one of the param-
eters has no impact
on the design’s perfor-
mance.

Resource and Accuracy
constraints. One of the
parameters is a soft-
ware parameter.

24,000 3

q Number of possible designs in the parameter space.

δ Optimized for Maxeler MPC-X1000 system with a Xilinx Virtex-6 XC6VSX475T FPGA.

ω The biggest challenge with optimization of the PQ design is PAR and timing issues.
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using three different GP kernel functions, each with additive Gaussian noise. SVM is

chosen as the classifier with an squared exponential kernel which is cross-validates on

a set of parameters γ × C = {1.2i}10
i=−10 × 10{1.25i}10

i=1. There are many possible grid

settings which could offer similar performance, this particular choice is based on previous

experience. The PSO constants c1 and c2 are set to 2.0 as recommended [58]. The following

parameters are set to m = 10 and minσ = 0.01, unless otherwise noted. To evaluate the

MLO performance optimization terminates after 200 configuration evaluations or when

the global optimum is found. For evaluation purposes, the global optimum for each design

is determined using exhaustive search prior to experiments.

3.3.1 Implementation

The MLO algorithm is implemented in Python using DEAP (Distributed Evolutionary

Algorithms in Python library) [52], PyGPs (Python Relational Gaussian Process Regression

library) [19] and Scikit-learn (Python Machine Learning toolkit) [115]. The PyGPs

framework is used to implement GP regression and Scikit-learn is used to implement SVM

classification. To allow for rapid optimization, flexible python wrappers suitable for any

API are provided. The MLO implementation calculates the fitness function by generating

a bitstream using the supplied parameters and running a test benchmark. The benchmark

can be used to examine design in terms of power usage, area, throughput or other metrics.

Desings were synthesized using MaxCompiler for the Maxeler MPC-X1000 system with

Xilinx Virtex-6 XC6VSX475T FPGA.

The algorithm terminates hardware generation if, during the preliminary resource

report, any of the resources exceeds the FPGA size by more than 10%. This is crucial for

automated optimization, the preliminary reports give a good indication of the final resource

usage and likely overmapping can be detected as quickly as in 20 minutes. Compared to

full hardware generation, a single quadrature design on Xilinx Virtex-6 XC6VSX475T

FPGA takes up to 5 hours and of PQ design of up to 14 hours. In the worst case, for the

robot localization design, it took as much as 30 hours for a single hardware generation.

3.3.2 Quadrature-based Financial Design

In [155] the designer explores the trade-off between accuracy and throughput in a

quadrature-based financial design with three parameters. The design can be used to

compute integrals for various financial applications. The first two parameters are mantissa

width mw of the floating point operators and the number of computational cores κ. Larger
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number of mw bits increases computation accuracy, but limits the maximum number of κ

that can be implemented on the chip due to the increased size of the individual core. The

third parameter is the density factor df which specifies the density of quadratures used

for integral estimation. It is a software parameter and is independent of the generated

bitstream. Density factor df increases computation time per integration while improving

the accuracy of the results due to finer estimation. All of the parameters are uniformly

discrete.

Figure 3.12: Visualization of a subset of the parameter space for the throughput benchmark
of the Quadrature-based Financial design when εrms = 0.1. Area affected by decreasing
df is highlighted.

The optimization goal is to find the design offering the highest throughput of inte-

grations per second φint or lowest energy cost per integral throughput W/φint given a

required minimum accuracy defined in terms of root mean square error εrms. The error is

defined with respect to results obtained by calculating a set of reference integrals at the

highest possible precision. The MLO terminates when the globally optimal configuration

for a given εrms is found. Although some designs produce inaccurate results, the results

can be reused for regression. Resource usage is linearly related to κ. Density factor df

is a software parameter while mw and κ affect the bitstream. Varying df only involves

software execution, as long as a bitstream for the given mw was already generated. If

a design with mw, κ is evaluated that has not been evaluated before, a new bitstream

is generated. The design with highest throughput is not always equivalent to the most

energy efficient design.
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Throughput Optimization

The throughput of the quadrature-method based design is analysed. Throughput opti-

mization is a maximization problem. The true fitness function of quadrature design energy

efficiency for εrms = 0.1 is presented in Figure 3.12.

MLO clearly outperforms the hill climbing algorithm, and offers better performance

than the analytical approach. Optimization visualizations for different εrms using different

infill methods are shown in Figures 3.13-3.15. It is visible that MLO with infill on mean

outperforms other configurations, especially prominent when εrms = 0.1 in Figure 3.13.

All configuration outperform the analytical approach, which always takes 198 hours to find

the optimal design. The reduction in optimization time is of up to 50% when εrms = 0.01.

The optimization time for the hill climbing algorithm follows a reverse trend with regards

to εrms and the optimization time than MLO. This is mainly thanks to SVM classifier

parameter space trimming. Hill climbing algorithm always starts from the same starting

point, and with more restrictive εrms limit the path to reach the global optimal design

is longer. In the MLO case, the parameter space trimmed when εrms is decreased hence

optimization is faster.

Optimization visualizations for different εrms using different kernel functions are shown

in Figures 3.16-3.18. The squared exponential kernel with ARD offers the best performance,

aside of the case when εrms = 0.01. For εrms = 0.1 seen in Figure 3.16 the Matèrn kernel,

marked in green offers, a noticeably lower performance. It is important to note, that the

differences although noticeable, are not big enough to rule out a clearly better performing

kernel.

Figure 3.13: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.1 using different infill functions.
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Figure 3.14: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.01 using different infill functions.

Figure 3.15: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.001 using different infill functions.

Figure 3.16: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.1 using different kernel functions.
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Figure 3.17: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.01 using different kernel functions.

Figure 3.18: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.001 using different kernel functions.

Energy Efficiency

The energy consumption per computation is analysed and poses a minimization problem.

Energy consumption is measured using Maxeler Technologies provided tools. The biggest

difference between throughput and energy efficiency optimization is the rate at which f

varies; the function changes more rapidly in the throughput case. The optimal configuration

is not always throughput optimal. The valid regions for all εrms limits are identical to the

throughput benchmark.
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Figure 3.19: Optimization of the Quadrature-based Financial design energy benchmark
εrms = 0.1 using different infill functions.

Figure 3.20: Optimization of the Quadrature-based Financial design energy benchmark
εrms = 0.1 using different m values.

Figure 3.21: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.1 using different kernel functions.
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Figure 3.22: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.01 using different kernel functions.

Figure 3.23: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.001 using different kernel functions.

The infill has no obvious impact on the optimization, as seen in Figure 3.19. In

Figure 3.20 impact of the m parameter is shown, where increasing m clearly decreases

algorithm performance. Visible in Figures 3.21-3.23 the squared exponential kernel with

ARD offers the best performance, although again the benefit is not drastic. As in the

throughput optimization case, the trend for the hill climbing and MLO is reversed with

respect to the optimization time and εrms limit.

3.3.3 Real-time Proximity Query (PQ) Design

In [46] the authors study a real-time PQ design. PQ involves computing the intersection

or the closest point-pair between two objects in 3D. It is particularly useful in robot
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motion planning, haptics rendering, virtual prototyping, computer graphics, animation,

and imaged-guided surgical robotics. The authors adopt a reduced precision data format

to reduce logic utilization and perform re-computation using high precision when necessary

to preserve the accuracy of results.

Figure 3.24: PQ design throughput fitness function visualization [46]. There is a clear
trend where with increased number of cores smaller number of designs become available
due to resource constraints. Random patches represented by blank of invalid area are the
result of timing and PAR issues.

The optimization goal is to find the design offering the highest throughput of points

per second under the effect of three parameters. The first two parameters are the mantissa

width mw of the floating point operators and the number of computational cores κ. A

smaller number of mw bits increases the number of cores that can be implemented on

the chip because the size of each core is reduced, but the accuracy decreases and more

re-computations are necessary. There is a chip resource limitation so one cannot increase

both mw and κ for the lowest ratio of re-computation and the highest level of parallelism.

The third parameter is the clock frequency freq of the computational cores. Increasing

freq reduces the value of κ because the placement and routing process needs more space

to meet the timing requirement. The frequency can be set between 80 MHz and 120 MHz,

there are between 1 and 4 cores andmw can be anything between 4 and 53. This results

in a total of around 8,000 possible design configurations.

The PQ design is highly noisy, as seen in Figure 3.24. Multiple designs fail when

unexpected and vice-versa due to timing constraints; only one cost table was used

per design. For a given setting a four core design might run at 120 MHz, but not at

115 MHz. Meanwhile three core design could succeed for 115 MHz but not 120 MHz.

This is challenging for the SVM classifier to correctly predict valid designs to allow for

optimization, while pruning parameter space regions which contain designs likely to

fail. The PQ design is challenging due to frequency tuning, timing issues cannot be as

accurately predicted as resource overmaping. The model presented by the authors of the

PQ design [46] could be exploited in order to use a design automated approach, yet there
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are several difficulties. The difficulty in generating hardware running at certain frequency

is dependent on the configuration of the design, and is impractical to model. Hence, no

comparison against the design specific approach is provided.

Figure 3.25: Optimization of the PQ design using different infill functions. MLO configu-
ration is the anistropic squared exponential kernel function and minσ = 0.01.

Figure 3.26: Optimization of the PQ design using different kernel functions. MLO
configuration is no infill and minσ = 0.01.

The optimization of the PQ design using MLO with different infill functions is presented

in Figure 3.25. The hill climbing algorithm initially struggles to navigate through the

noisy space, hence its low performance. Although MLO and hill climbing algorithms offer

similar design performance around 1000 hours of optimization time, the average case is

much better for the MLO algorithm. This can be clearly seen in Figure 4.14. MLO with

no infill offers marginally better performance than infill on mean. Infill on variance offers

noticeably worse performance around the 100 hour mark.
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Comparison of MLO with different kernels is presented in Figure 3.26. Both the

isotropic and squared exponential kernel with ARD offer similar performance. The Matèrn

kernel offers better performance during earlier stages of optimization, up till around 100

hours, being superseded by other kernels later on. The m parameter does not have a

noticeable impact on the performance of the algorithm.

(a) Stochastic volatility f (b) Stochastic volatility accuracy

Figure 3.27: Visualization of the stochastic volatiltiy design with a single core. The left
image shows the execution time, while the right image shows the accuracy.

3.3.4 Stochastic Volatility Design

The design is implemented using the SMCGen framework [47]. The goal of SMC methods

is to estimate the posterior distribution of some hidden problem states. In particular,

SMC deals with problems where new observations come in a sequence and inference has

to be done on-line. SMC are simulation based methods, where a number of particles is

used to model the posterior distribution. Stochastic volatility models are often used in

finance when there is no closed form solution to a problem, or the user does not wish

to use approximations to pricing functions due to accuracy constraints. The volatility

is then modeled as a stochastic process. SMC methods are one possible solution when

the inference has to be done online. For this particular design [47], the parameters are

the number of processing cores NC , the number of particles used in the simulation NP

and mantissa width of numerical operators mw. The number of cores NC is limited to

64 in powers of two, the number of particles is tested on the range of 96 to 3984 in 96

increments and the range of the mantissa widthmw of the floating point operators is set

from 10 to 40. The number of particles NP is a software parameter. All of the parameters

are uniformly discrete.
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Figure 3.28: Optimization of the stochastic volatility execution time benchmark using
different infill functions.

The software benchmark was executed 300 times, the execution time of it is in the

microsecond range and therefore is highly susceptible to measurement noises. The process

took as much as 5-6 minutes per parameter setting. The noise is clearly visible in

Figure 3.27. Both the accuracy and the fitness function are noisy. The challenge in

optimization of the stochastic design is for the algorithm to discover that mw has no

impact on both the accuracy and the execution time. The chip cannot accommodate more

than 16 cores. The design suffers from a minor place and route as well as timing issues.

In Figure 3.28 the optimization using MLO and different infill functions is presented.

The infill function has minor impact on the performance. Although MLO offers better

performance than the hill climbing algorithm, the difference is not as noticeable as in the

previous cases. It is an ideal scenario for the hill climbing algorithm, it can take a path

where it rarely generates hardware. Furthermore, as seen in Figure 3.27(b) the mw has

neither any impact on the accuracy or the performance of the design. This means that

the hill climbing algorithm has a relatively straightforward path to the optimal design.

The impact of kernel functions on performance of MLO is presented in Figure 3.29. For

all of the algorithms there is a noticeable improvement in design’s performance between

the 10th and 30th hours. Yet, it is far more prominent for MLO with isotropic squared

exponential kernel with an odd drastic improvement around the 20th hour. It is possibly

because the isotropic kernel can quickly and accurately model the problem requiring

few parameter setting evaluations. The alternative is a not sufficiently high number of

experiments. There is a similar, although not as drastic, improvement for the squared

exponential kernel with ARD.

The curves presented in both Figure 3.28 and Figure 3.28 are more edgy than in the
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Figure 3.29: Optimization of the stochastic volatility execution time benchmark using
different kernel functions.

previous designs. This is because the frequency of design improvement is much lower,

hence the curves are averages of a smaller number of points.

3.3.5 Robot Localization

The robot localization design is implemented using the same SMCGen framework [47]

as the stochastic volatility design. The design is used for mobile robot localization. The

robot needs to be aware of surrounding moving objects. In a sequential loop fashion the

robot uses its sensors to identify its location and perform motion. The parameters are the

number of processing cores NC , the number of particles used in the simulation NP and

mantissa width of numerical operators mw. For this particular design [47], the parameters

are the number of processing cores NC , the number of particles used in the simulation NP

and mantissa width of numerical operators mw. The number of cores NC is limited to

64 in powers of two, the number of particles is tested on the range of 2048 to 8096 in 96

increments and the range of the mantissa widthmw of the floating point operators is set

from 10 to 40. The number of particles NP is a software parameter. All of the parameters

are uniformly discrete.

As in the stochastic volatility design, the software benchmark was executed 300 times,

the execution time of it is in the microsecond range and therefore is highly susceptible

to measurement noises. The process took as much as 5-6 minutes per parameter setting.

The noise is clearly visible in Figure 3.30. Both the accuracy and the fitness function

are noisy. The accuracy function is linear for this design, clearly seen when comparing

Figures 3.27(b) and Figures 3.30(b). Furthermore, the optimal configuration for the robot

design is when configured with 4 not 16 cores. For larger mw, when maximizing the
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number of cores, the design suffers from place and route as well as timing problems. For

NC = 4, the hardware is not generated for nearly all of the parameter settings with mw

larger than 22. The challenge in optimization of the robot localization design is, again, for

the algorithm to discover that mw has no impact on both the accuracy and the execution

time.

(a) Robot localization f (b) Robot localization accuracy

Figure 3.30: Visualization of the robot localization design for a single core. The left image
shows the execution time, while the right image shows the accuracy.

The impact of the infill function is presented in Figure 3.31. The squared exponential

kernel with ARD clearly offers worst performance. The hill climbing offers better perfor-

mance than all of the configurations. When using variance infill function, MLO offers

better performance than the hill climbing algorithm in the later stages of optimization.

The kernel functions seem to follow similar trend as seen in the stochastic volatility design.

In Figure 3.31 the squared exponential kernel with ARD offers worst performance, while

the isotropic squared exponential kernel offers the best performance. The curves are

again bumpy due to relatively low frequency of finding a better design. Figure 3.33 and

Figure 3.34 present interaction of the infill and kernel functions. Variance infill function

seems to offer superior performance. Mean infill function offers the worst performance

when combined with the squared exponential with ARD kernel. At the same time squared

exponential kernel function with ARD offers the best performance when combined with

the variance infill function. The non-obvious interaction of MLO components is quite

noticeable.
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Figure 3.31: Optimization of the robot localization execution time benchmark using
different infill functions.

Figure 3.32: Optimization of the robot localization execution time benchmark using
different kernel functions.

Figure 3.33: Optimization of the robot localization execution time benchmark using
different kernel functions and variance infill function.
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Figure 3.34: Optimization of the robot localization execution time benchmark using
different kernel functions and mean infill function.

3.4 Discussion

3.4.1 Results

The MLO algorithm has two unique features. First, to the best of our knowledge, classifiers

have not been integrated in surrogate model based algorithms for reconfigurable design

optimization to decrease the search space size of reconfigurable designs. The advantage of

this concept is a decreased parameter space, which should allow for faster convergence

of the algorithm. This is essential in the case of reconfigurable designs, as it limits the

number of lengthy hardware generations. Results of optimization with and without a

classifier when using MLO algorithm are presented for Quadrature-based Financial design

throughput benchmark in Figures 3.35-3.37. The classifier allows the algorithm to find

the globally optimal configuration, as well as speeds-up termination of the algorithm.

The same results where observed for the energy benchmark for the Quadrature-based

Financial design. The benefit of using a classifier is clearly visible for the PQ design as

seen in Figure 3.38. The benefit is less obvious than for the Quadrature-based design as

larger portion of the optimization time is spent during the sampling process during which

the classifier is not used. The benefit of using a classifier is most obvious when the design

space is most limited, like for the Quadrature-based Financial design when εrms = 0.001.
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Figure 3.35: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.001 with and without a classifier.

Figure 3.36: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.01 with and without a classifier.

Figure 3.37: Optimization of the Quadrature-based Financial design throughput bench-
mark εrms = 0.1 with and without a classifier.
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Figure 3.38: Optimization of the PQ design with and without a classifier.

The second and the new unique feature is the integration of an infill scheme to aid

PSO. The construction of the surrogate model can fail for various reasons [78, 163, 146].

If the GP model fails to build, the standard deviation is too high for the metaheuristic to

proceed, or particle swarm ceases dynamics infill parameter setting is evaluated. Three

different infill strategies were evaluated. The results are summarized in Table 3.2. For the

quadrature design, MLO finishes optimization in as little as 50% of the time taken by

the design specific optimization tool, 99 hours vs. 198 hours. Generally, it offers between

3 to 5 times faster optimization than the hill climbing algorithm while offering better

performing design configurations.

The mean infill function offers the best performance for both the throughput and

energy benchmarks for the quadrature financial design. In nearly all cases the MLO

algorithm finds the optimal design. The infill function does not offer good performance

for the robot localization design. This is likely due to the fact that it is overly greedy,

a strategy which is not always beneficial. The variance infill function only offered best

performance for the stochastic volatility design. Generally, the trend is not clear. We opt

for the mean infill function based on the reasoning that it offers better performance than

variance infill function and it has one major advantage over not using infill. In case of

designs suffering from place and route or timing problems, similar to the proximity query

design, it is possible for region next to the global best parameter setting to consist solely

of invalid parameter settings. In such case, evaluation of a perturbation is not going to

result in hardware generation and improvement of the model. The algorithm effectively

becomes a hill climbing algorithm.

Other parameters of the algorithm have been investigated, the m parameter and kernel

functions in particular. Increasing the m parameter has a noticeably large impact on
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Table 3.2: The average optimization time in hours and the percentage of the average
performance of the optimal configuration of different designs. The hill climbing algorithm
and three different configuration of the MLO algorithm are compared. The global optimum
was found using exhaustive search.

Design H.C. MLO f̄(x∗) MLO Var[f̄(x∗)] MLO no infill

Quad.Th. 0.1 300 (98%) 182 (100%)† 190 (95%)− 151 (97%)

Quad.Th. 0.01 459 (88%) 125 (100%)† 137 (100%) 115 (96%)q

Quad.Th. 0.001 393 (72%) 107 (100%)† 114 (100%) 104 (99%)

Quad.En. 0.1 562 (96%) 142 (97%) 176 (96%)− 146 (99%)

Quad.En. 0.01 483 (88%) 102 (100%)† 133 (100%) 106 (99%)

Quad.En. 0.001 535 (78%) 102 (100%)† 105 (100%) 99 (100%)

PQ 903 (93%) 300 (91%) 300 (90%) 300 (92%)

Stochastic 337 (99%) 96 (99%) 84 (99%) 54 (88%)q

Robot 366 (99%) 153 (75%)− 162 (89%) 153 (99%)

1 The time presented is the average time when an algorithm stopped improving design’s performance.

2 Numbers in parenthesis are the percentages of the performance of the optimal design configuration.

3 MLO use s.e. kernel function with ARD, m = 10 and minσ = 0.01.

q Optimization time is short as the algorithm fails to find optimal design frequently.

− Worst performance out of all configurations.

† Infill on best mean finds the optimal configuration most frequently.

the algorithm in few cases, it is most prominent for the quadrature-based design. For

the energy efficiency benchmark, when εrms = 0.1, for MLO configured with m = 100

fails to improve the design’s performance beyond 70-80% of the optimal configuration.

The performance of the algorithm has a generally negative tendency when increasing m,

although this is not always as noticeable.

When creating a surrogate model, the choice of the kernel function should be based

on the domain specific knowledge of the problem. Most reconfigurable designs parameters

spaces are spanned by different subspaces. The kernel function should ideally use ARD,

being able to determine the relevance of different parameters on the design quality. For

example the impact of numerical precision and the level of parallelism is different across

the parameter space. At the same time, kernel functions with ARD have more degrees of

freedom and require more data for accurate modeling. One would expect MLO with the

squared exponential kernel function with ARD to perform best for both the stochastic

volatility and the robot designs. This is not the case, as both of the designs have noisy

fitness functions and they are largely linear. This means that the Matérn kernel and

isotropic squared exponential kernels can model the design with less data, and hence offer

faster optimization.
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Most fitness functions will be smooth to a certain degree. An exponential Gaussian

kernel which assumes infinite smoothness might not always be accurate. If the fitness

function f changes polynomially, which is often the case, the degree of smoothness would

ideally be limited. Reconfigurable computing benchmarks will usually be equally smooth

over the whole parameter space, apart for few outliers where the underlying design

generation changes. This could be possible if a different place and route mechanism was

used to map design. The two possible kernel functions which are often appropriate are

squared exponential with ARD and Matérn kernel functions, both with additive Gaussian

noise. The first offers the automatic parameter relevance determination, yet assumes

smoothness. The Matérn kernel is isotropic, while offering a limited degree of smoothness.

The Matérn kernel has a parameter ν which is set to either 3 or 5 and regulates the

expected smoothness. No benefit from using the Matérn kernel function was observed.

Investigation of Matérn kernel with ARD should be considered.

3.4.2 Usability

For the Quadrature-based Financial design comparison to design specific optimizaton

tools developed by an expert designer is presented. As previously mentioned the MLO

algorithm finishes optimization in as little as 50% of the time taken by the design specific

optimization tool, 99 hours vs. 198 hours. This comes at the cost of no guarantee of

finding an optimal design, contrary the the expert designed design specific tool. Yet, the

example clearly proves the concept of an generic optimization tool. The algorithm can

deal with different constraints.

A quantitative comparison is difficult for the PQ design as well as the two designs based

on the SMCGen framework. The difficulty with design of a design specific optimization

tool for the PQ design comes from timing and PAR constraints. What is possible is

construction of a very accurate model of performance of the design. For such a design an

expert designer would typically evaluate a couple of configurations using multiple costs

tables over a period of a few days. For the SMCGen framework based designs first an

expert designer would evaluate a number of designs to establish that mantissa width of

the design does not affect its performance. Afterwards, maximum number of cores would

be established by analyzing resource reports. Lastly, the designer would set number of

particles to satisfy performance while satisfying error constraints. The procedure would

take a few days. For all of those designs manual optimization time is estimated between

3-7 days of work. This does mean that potentially an expert designer would be able to
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find the optimal designer faster.

The benefit of using the tool comes from offloading the designer from optimization

and improving his productivity. There is no guarantee of optimization time for MLO,

but the algorithm can deal efficiently with typical reconfigurable design problems. When

encountering a design that suffers from PAR or timing problems, the optimization time

can increase significantly due to lengthened configuration evaluation time, PQ being such

a design. This is no different to manual optimization. Users have to be aware of that,

potentially more accurate classifier could mitigate this problem. The MLO algorithm does

not scale to designs with more than 3-4 parameters.

3.5 Conclusion

This chapter presents MLO, a novel tool which can determine optimized parameter

configuration of a reconfigurable FPGA design. The MLO can offer superior performance,

while reducing effort on analysis and design-specific tool development. The main advantage

of using the MLO is a shift from design specific optimization, which can take substantial

amount of design time, to automatic computation. The MLO requires multiple benchmarks

for further evaluation, and the time that MLO takes is usually substantially lower than

the time for design specific optimization with place-and-route and bitstream generation.

For one of the designs, MLO finishes optimization in as little as 50% of time taken by the

design specific optimization tool. It offers between 3 to 5 times faster optimization than

the hill climbing algorithm while offering better performing design configurations.

Recommended algorithm parameter settings are as follows. Infill on highest (lowest)

predicted fitness and the squared exponential kernel function with ARD and minσ = 0.01

are recommended. The setting was recommended by [146, 66] and our experimental work

confirms its good performance. The parameter m should be set to values in the range

of 10, as in some of the evaluated examples the value drastically lowered optimization

performance.
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Chapter 4

Design by Efficient Global

Optimization

This chapter present the ARDEGO algorithm. It offers a simplified optimization loop

compared to the MLO, presented in Chapter 3. The main advantage of this new algorithm

is further reduced user input and thus required experience. Furthermore, to speed-up

optimization time the algorithm is parallelized. The algorithm takes into account random

nature of hardware generation time, the optimization loop is asynchronous. Whenever a

configuration is evaluated and a optimization worker node becomes idle, new configuration

is prepared for evaluation. The work is published in [88, 47].

FPGAs, and other reconfigurable computing devices, can provide high computational

performance but their productive adoption has been hampered due to long hardware

design cycles. Describing designs in low-level hardware description languages is more

complex than software approaches and the hardware build process is also time-consuming:

synthesizing and implementing a single design can take several hours for large modern

FPGAs. Advances have been made in high level FPGA design approaches but the problem

of long hardware build time remains. In addition to specifying design functionality, a

designer is often confronted with multiple non-functional design parameters such as degree

of pipelining, memory transfer rates and clock frequency that have to be optimized for

performance or power consumption. This optimization requires tremendous effort in

analyzing the application to create models and benchmarks, which are then used in the

parameter optimization process. Analytical models have been used to tackle this problem

for multi-FPGA systems [71]. Numerical representation is known to have significant

impact on resource utilization and the number of possible FPGA kernels, and therefore

design throughput [155]. Optimization of coefficients of constant multipliers can also yield
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improvement [76]. Determining optimal stencil configuration is known to be a difficult

problem [109].

Ideally, all those design parameters would be automatically optimized. There were

several such attempts: Fitness Inheritance was used to decrease number of design evalua-

tions and hence speed-up optimization [117]. In [100] the authors present a design and

CAD tool parameter tuning approach. Equally to the design parameters appropriate

selection of those CAD tool parameters can allow for generation of better performing

design. The technique offers a high degree of parallelization, yet it does not specify how

it deals with noise and optimizes only one small design, which takes a few minutes to

generate. Timing optimization using cloud computing and machine learning is presented

in [80] with a focus on optimization of CAD parameters. In previous work [91, 89] we

have demonstrated that it is useful to construct surrogate models of fitness functions

representing the design quality of reconfigurable parameterized designs. Yet, creators of a

fully automated reconfigurable design optimization tools still face a number of challenges.

Challenge one: the algorithm should use simple optimization loop and not require manual

setup or tuning for a particular problem. Challenge two: the designers often face multiple

constraints, it is common for the majority of the designs in the parameter space to have

timing, PAR difficulties or resource constraints. Challenge three: the tool should be able

to optimize designs based solely on design generation and benchmarking, while being data

efficient. That is, evaluate as few designs as possible.

We start with treatment of the reconfigurable design parameter optimization problem

as a noisy black box global optimization problem. The noisy black box optimization

problem is optimization of a noisy function with little or no knowledge of its inner workings.

We do this to allow the designer to focus on the actual design, rather then analytical

treatment of the optimization problem. To address the two challenges we utilize Bayesian

optimization technology inspired by the parallel asynchronous EGO acquisition function

[75]. The new ARDEGO algorithm neither requires the designer to tune the algorithm, for

example by changing some of its parameters, or to analytically study and model the design.

It requires few design evaluations, allowing for an efficient approach. Through introduction

of a new adaptive plan it can deal with design, which often violate their constraints. The

algorithm is parallelized, and three realistic designs are used for evaluation.

The novel aspects are:

• The novel ARDEGO tool that offers “out-of-the-box” automatic optimization of

reconfigurable designs parameters, based on EGO approach. The algorithm combines

work on constrained and parallel versions of the algorithm. Furthermore it integrates
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a new sampling plan, allowing optimization of designs where only smart part of the

parameter space satisfies constraints. Lastly, it integrates the idea of “always valid

design” to improve optimization speed. (Section 4.3)

• Due to unkown nature of the underlying problems, ARDEGO performance is

largely non-deterministic. To better understand potential bottlenecks and assess

performance issues, an analytical assessment of the optimization time is provided.

(Section 4.4)

• An evaluation of ARDEGO using three case studies: (a) a quadrature design for

financial computation [155], (b) a PQ design [46], and a Reverse Time Migration

(RTM) design for seismic imaging with 7 parameters [109]. The algorithm is shown to

optimize the RTM design in less than 93 hours, as well as reduction of optimization

time of the quadrature-based design from 32 to 25 hours compared to design specific

tool for multiple workers, a 22% reduction. (Section 4.5)

• Hardware acceleration of the compute intensive parts of the algorithm is presented.

It is shown how idle hardware can be utilized for speed-up of up to 43x of the

computation intensive components of the algorithm. (Section 4.6)

4.1 Problem Statement

To allow for parallelization the problem is extended with respect to the problem statement

in Section 2.2.2. Evaluation of each parameter setting f(x) involves a certain cost, returned

by the cost function C : X → R+. The cost function is random in nature, yet it exhibits

some tendencies. For example, the cost increases with resource utilization. In case of

parallel optimization algorithms, non-uniform cost implies either an asynchronous problem

or large inefficiencies in case of batch parallelization. This becomes prominent when

looking at the hardware generation time distribution presented in Figure 4.1. The problem

gets further alleviated by the introduction of software design parameters. If the required

hardware was already generated parameter evaluation can take as little as few seconds.
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Figure 4.1: Histogram of hardware generation time for the quadrature design [155]
implemented using MaxJ for the Maxeler MPC-X1000 system with a Xilinx Virtex-6
XC6VSX475T.

4.2 ARDEGO Approach

The idea behind ARDEGO is to minimize design effort of reconfigurable design optimiza-

tion. In particular, ARDEGO is applied to problems where multiple parameters have

to be optimized to optimize some performance criterion, while possibly being subject to

constraints. This is the exact same problem as presented in [89]. There are two obvious

approaches to this problem, one is manual tuning and the other is exhaustive search.

The first approach is labor intensive and requires a high level of expertise. The second

approach evaluates all of the possible designs and as a result is not efficient in terms of

the number of performed experiments, even for moderate parameter spaces. Yet, it is

fully automated. ARDEGO is used in a similar way. The difference is that the simple

loop is replaced with the ARDEGO algorithm.

The key property of the algorithm is its simplicity. Algorithms like MLO presented in

Chapter 3 have multiple parameters which can impact their performance. They are based

on metaheuristics which exhibit complex behavior [149]. The complex behavior is further

aggravated by addition of surrogate models, making their analysis and predictability

limited. Metaheuristics can be parallelized [110, 73, 129], and it is also possible to

parallelize MLO. Yet, due to the main pitfall of MLO struggling with high dimensional
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designs we do not make such attempt. Its optimization loop is already complicated, and to

deal with asynchronous optimization we believe that large amount of work would have to

be invested in reengineering of its optimization loop. Instead, we follow with ARDEGO.

1. CODING
a) Design b) Benchmark

2. SPECIFICATION
a) Parameter Space b) Constraints

c) Goal

3. ARDEGO

CHOOSE DESIGN(s)

EVALUATE

TERMINATE?

Figure 4.2: ARDEGO optimization approach.

ARDEGO follows a straight-forward optimization loop. It is designed to utilize multiple

available cores in an asynchronous fashion, exhibiting large optimization time speed-up.

Whenever a worker becomes idle, search for new infill configurations begins. Furthermore,

compared to MLO, ARDEGO can deal with high dimensional parameter spaces. MLO

algorithm relies on the absolute values of the standard deviation GP prediction from the

surrogate model. It uses the prediction to determine when to evaluate a configuration

and when to rely on the model. In high dimensional parameter spaces this becomes

problematic, the algorithm ends up not using the surrogate model and converges to

the standard PSO. Instead, ARDEGO is based on the parallel expected improvement

acquisition function [75, 74], and does not suffer from this problem.

This optimization approach has two limitations with respect to using exhaustive search.

Currently, only parameter spaces with meaningful distance metrics are supported. Those

are spaces, which constitute of a set of values with no underlying meaningful metric. For

example, a space with three different Ethernet controllers. The second limitation is that

the global optimum is not guaranteed to be found, unlike in exhaustive search. Yet, this

is also the case when designer follows manual tuning.
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1 # parameter space d e f i n i t i o n
2 parameters = {” f req min ” : 100 ,
3 ” freq max ” : 100 ,
4 . . .
5 }
6
7 # Bui ld b i t s t r eams and run benchmarks , the f i t n e s s f unc t i on
8 def buildHardwareRunBenchmark ( ) :
9 # execu te b i t s t r eam genera t ion

10 os . system ( ”Make hw” )
11 # execu te benchmark and / or ana lyze b i t s t r eam
12 return os . system ( ”Make run” )
13
14 # supp ly the parameter d e f i n i t i o n and s c r i p t s to the op t im i za t i on a l gor i thm
15 opt imia lDes ign = ARDEGO( parameters , buildHardwareRunBenchmark )

Figure 4.3: The input includes the parameter space specification, and scripts used to
generate and benchmark bitstreams.

4.3 ARDEGO Algorithm

The algorithm is designed to offer automatic design parameter optimization. It is based

on a GP surrogate model of a reconfigurable design. To account for constraints a SVM

classifier is integrated. The key steps of the ARDEGO algorithm are illustrated in

Figure 4.4. The algorithm starts to build the initial surrogate model with sampling of

the parameter space, generating hardware for these parameter samples and evaluating

their fitness. The algorithm invokes P worker nodes, which can build and evaluate

configurations in parallel. At any given time µ nodes are busy and λ are idle. After the

initial GP and SVM surrogate model is constructed, an iterative process follows where

the model is refined with new configurations. The goal is to find a set of λ configurations

Xλ ∈ X λ that are most likely to improve over the currently best found configuration.

This involves global optimization of the new E[I
(µ,λ)
v (Xλ)] acquisition function, inspired

by asynchronous parallel EGO and modified for constrained problems. Hardware is then

built for the design using infill configurations, fitness is evaluated and the surrogate model

updated accordingly. The infill search does not block the optimization on the worker

nodes and multiple worker nodes can finish evaluation at similar time. The termination

condition is checked whenever a worker node finishes evaluation.

The earlier mentioned challenges are addressed by ARDEGO in the following way:

1. ARDEGO is designed to have a straight-forward optimization loop. It uses an
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acquisition function inspired by the asynchronous parallel EGO [75], it uses asyn-

chronous parallelization for faster optimization. An SVM classifier is included and

the acquisition function is modified to account for constraints. This is done by

setting expected improvement to zero whenever a candidate configuration in Xλ

assessed by the acquisition function is predicted to be invalid. The acquisition

function presented in [75] fails to proceed with optimization without an integrated

classifier. It is a greedy function and is going to continuously evaluate potentially

promising, even if clearly invalid, configurations.

2. A classifier allows ARDEGO to prune the parameter space and identify promising

regions. The novel adaptive sampling plan addresses the issue of parameter spaces

with a small number of valid configurations.

3. Data efficiency : only configurations which optimize the model are evaluated. The

experiments are not needed to evaluate acquisition function.

1. ADAPTIVE SAMPLING

2. GP + SVM TRAINING

3. INFILL
argmax
Xλ∈Xλ

E[I
(µ,λ)
v (Xλ)]

4. EVALUATE
y = f(x)

4. EVALUATE
y = f(x)

...

TERMINATE

Figure 4.4: ARDEGO, inspired by parallel EGO [75].

133



CHAPTER 4. DESIGN BY EFFICIENT GLOBAL OPTIMIZATION

The probabilistic classifiers, like RVMs [154] or GPs for classification [124], are investi-

gated for expensive global optimization in [28, 64]. They are conceptually very attractive

replacement for SVMs. However, their integration with a greedy algorithm, like EGO,

can be problematic. Weighting of EI by px(1) is impractical. For example, if the target

problem f is an exponential function with decreasing probability of constraint satisfaction;

EI will always try to, rightfully, sample the very promising yet unrealistic region of space.

The test problems investigated in [28, 64] do not target such functions. The approach

followed in this work is to use a non-Bayesian classifier and to identify the valid region

V using SVMs. The goal is to identify the best possible design before exhausting time

budget; as the budget is typically very limited the main aim is to find configurations with

high px(1). The belief is that exploring nearby region of valid configurations is sufficient,

task for which SVMs are the most adequate.

4.3.1 Adaptive Sampling

The algorithm involves a two-stage adaptive sampling plan to allow for a good coverage of

the valid space. Initially, if available, an always valid configuration is evaluated. This is

the configuration, which designer knows works and does not violate constraints. Typically,

this would be the configuration, which was evaluated to ensure correctness of the code

and scripts. For example, if the parameters are the number of cores and clock frequency

this would be the configuration with a single core and lowest possible clock. It is a

configuration representing the most basic configuration, which the designer is certain will

generate successfully. This allows ARDEGO to localize a region of space, which does

not violate any constraints. This is especially important if the valid region is relatively

small. The sampling plan has two stages, a Latin hypercube sampling of a number of

configurations followed by a random sampling of extra configurations. A Latin hypercube

plan offers good space filling qualities, which improve performance of the optimization

algorithm [103] while the subsequent random sampling is mainly used to sample more valid

configurations for the GP regression. This sampling methodology allows for regression in

cases when the valid region is small relative to the parameter space.

A visualization of the adaptive sampling plan is presented in Figure 4.5. Initially the

always valid configuration is evaluated, followed by a Latin hypercube sampling. The

subsequent random sampling plan evaluates a number randomly chosen configurations

from the area predicted to be valid by the SVM, tuning its shape. Figure 4.6 illustrates

the result of sampling and initial classification in the three other sampling plans. Although
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the identified valid areas have similar shape, the number of configurations available for

regression is severely limited.

(a) Always valid (b) Latin Hypercube S. (c) Random S.

Figure 4.5: Adaptive sampling plan, blue area indicates V .

(a) Grid (b) Random (c) Latin Hypercube

Figure 4.6: Three alternative sampling plans.

4.3.2 GP and SVM Training

After sampling, and whenever new configurations are evaluated, the surrogate model is

reconstructed. The training data X and y is standardized prior to both the GP and SVM

training. The surrogate model consists of a GP regressor and SVM classifier. Defined

for the purpose of GP training is the set of configurations that resulted in hardware

generation and fitness evaluation X+ = {xi|∃xi : [xi ∈ X] ∧ [ti ∈ T +]}. Given that set,

associated design fitness observations y = {yi|∃xi : [xi ∈ X+]} and model hyperparameters

θ the GP computes the predictive distribution p(f |x∗,X+,y, θ) for new configurations.

The SVM predicts the class t = d(x∗) for all configurations (i.e. regardless whether the

configurations are valid or not) using all observations X and the observed target labels

t = {ti}n1 . The goal of classification is to construct a decision function d, which allows

prediction of class labels d(x∗) = t∗. An illustration of the surrogate model is presented

in Figure 4.9.
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L = cholesky(K(X+,X+) + σ2
nI)−1);

a = LT \ (L \ y);
log p(y|X+) = −1

2
yTa− ΣiLii − n

2
π;

Figure 4.7: Mariginal likelihood calculation for Gaussian process regression [124].

Regression and classification are correspondingly based on the results of previous

hardware generations and benchmark executions aggregated in X,y and t. The GP

regressor uses the ARD [35] squared exponential kernel function with additive Gaussian

noise, which allows learning of the impact of different parameters on the parameter space

[124]. This kernel function has different characteristics across the dimensions (orientations)

defined by their respective hyperparameters. The SVM is uses soft-margins [50] to account

for a degree of noise and the squared exponential kernel as smooth class boundaries are

expected.

v = L \ k+
∗ ;

f̄(x∗) = L \ k+
∗ ;

Var[f̄(x∗)] = K(x∗,x∗)− vTv;

Figure 4.8: Prediction of mean f̄(x∗) and of the variance Var[f̄(x∗)] of the estimate using
Gaussian process regression [124]. The matrix L and vector v are computed during model
training. The vector k+

∗ is the vector of covariances betwen the configuration and training
set k(X+,x∗).

The training of the GP is performed by marginal log-likelihood maximization as

presented in Figure 4.7. Due to non-convex nature of the problem, a number of randomly

seeded hyperparameter sets as presented in [32]. The hyperparameter set with the lowest

negative log-likelihood is chosen. Predictions are done as presented in Figure 4.8.

The SVM is trained using k-fold cross-validation on a grid of hyperparameters C and

γ for the squared exponential kernel. The problem is usually solved in the primal-dual

relationship [50, 38]. The formulation is for two classes, with labels ti ∈ {−1, 1}. The

original problem was

argmin
x,ξ,b

1
2
||w||2 + C

n∑
i=1

ξi. (4.1)

subject to ti(w · φ(xi) + b) ≥ 1− ξi. Is modified
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argmin
α

αTQα− eTα. (4.2)

where e is a n long vector of ones, Q is an n× n positive semidefinite matrix with entries

Qij ≡ titjK(xi,xj). The problem is subject to tTα = 0 and 0 ≤ αi ≤ C for all training

configurations i. The problem is solved only during prediction, when ti, α, b, C, all nn

support vectors and kernel parameter γ are stored and later used during prediction. The

prediction for an unevaluated configuration x∗ is performed as follows using the previously

stored data

d(x∗) = sgn(
nn∑
1

tiαik(xi,x) + b). (4.3)

where sgn is the sign function. When there are more then two classes present, “one-

against-one” approach is used [112] to compute the decision function.

Figure 4.9: ARDEGO surrogate model.

4.3.3 Infill

This step consists of search over the parameter space for λ configurations that are most

likely to improve over x+ and of their subsequent evaluation on the idle worker nodes.

In the meanwhile µ configurations Xµ are being evaluated on the busy nodes. The

algorithm’s acquisition function is based on modified asynchronous parallel EGO [75].

Each configuration can take a different amount of time to evaluate, hence the algorithm

needs to be asynchronous. Whenever one of the P nodes finishes evaluation, the acquisition

function is maximized. If more than one node is free, the acquisition function is used
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to find a set of configurations to evaluate on the empty nodes. The surrogate model is

updated as soon as a configuration is evaluated, and the configurations which are being

evaluated are taken into account in the acquisition function. This ensures that promising

regions, which are already being explored, are not overly exploited. The search for the

most promising configurations is performed only over the valid space. As V is not known

directly, an SVM classifier is used to predict if a configuration is invalid and modify its

impact on the EI. If the configuration xi ∈ Xµ is predicted to be invalid, Y (xi) is excluded

from calculation of EI. This is presented for a set of configurations Xµ, and the associated

GP prediction Yµ. A prediction Y (xi) is only included in the vector Yλ
v if it is predicted

to be valid d(xi) = 1. The constrained busy configuration vector is defined as follows

Yµ
v = {Y (xi)|∃xi : [xi ∈ Xµ] ∧ [d(xi) = 1]}. (4.4)

This is used to create constrained improvement function

I
(µ,λ)
v (Xλ) = max(0,max(Yλ)−max(f(x+),Yµ

v )). (4.5)

The expectation of the constrained I
(µ,λ)
v is used to define the acquisition function.

Whenever a configuration in the set Xλ is predicted to be invalid xi ∈ Xλ, the EI is set to 0.

The reasoning is as follows; there are λ− 1 working nodes left, and there is a candidate set

of configurations Xλ−1 with E[I(µ,λ−1)(Xλ−1)]. The set is extended with a configuration

x, predicted to be valid, to produce Xλ and extended with a configuration x′, predicted

to be invalid, to produce X′λ. The valid configuration can offer improvement, hence

E[I(µ,λ−1)(Xλ)] ≤ E[I(µ,λ)(Xλ)]. The invalid configuration would bring no contribution to

EI, hence E[I(µ,λ−1)(Xλ−1)] = E[I(µ,λ)(X′λ)]. If there is a choice between Xλ and X′λ,

the first is chosen. If there is an invalid configuration in a set, there is an alternative

definitely as good and possibly better set. As such, there is no need to calculate EI.

EI(Xλ)) =

E[I(µ,λ)(Xλ)], ∀xi ∈ Xλ, d(xi) = 1.

0, otherwise.

and the infill process becomes

argmax
Xλ∈Xλ

E[I
(µ,λ)
v (Xλ)]. (4.6)

As Monte Carlo techniques are used for calculation of EI, the choice between configu-

rations with similar EI can be based purely on the noise in the estimation, even when
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a large number of simulations or an adaptive scheme is used [75]. Where as, in that

situation ARDEGO is going to evaluate the set of configurations indicated by EI and one

configuration in the direct neighborhood of the best found configuration. The E[I
(µ,λ)
v (Xλ)]

is chosen as it allows for simpler implementation with less conditional statements and

offsets exploitation for exploration around the best found configuration in the later stages

of optimization.

There are other possible schemes for integration of classifiers and EGO based opti-

mization. In the case of the sequential EI, it can be multiplied by the probability of a

configuration being valid p(c(x∗) = 1|X, t), or a decision boundary can be constructed

p(c(x∗) = 1|X, t) > 0.5. The constrained EGO presented in [28] shows such an approach

using probabilistic SVMs. RVMs [154] and other probabilistic classifiers such as GPs could

be used alternatively, as presented in [64]. Those approaches are not directly suitable

for parallelized EI, as the E[I(µ,λ) cannot be directly multiplied by the probability of

a configuration being valid, it constitutes of multiple configurations where each has a

certain probability of being valid. It is the expected improvement by evaluation of a set of

configurations, not a single one. The alternative approach would be to use the probability

of individual configurations in Xλ and Xµ being valid in calculation of the I(µ,λ)(Xλ).

For example, by multiplication of Y (x∗) by p(c(x∗) = 1|X, t) or by using construction of

E[I
(µ,λ)
v ] by using threshold values on probabilities of p(c(x∗) = 1|X, t).

The acquisition function maximization is performed using exhaustive search with up

to k parameters, and using a PSO algorithm otherwise. This is due to the fact that using

exhaustive search to maximize acquisition function could dominate the design optimization

time in case of millions of possible configurations in multiple parameters settings. What

happens, is that the computation time would become larger than experiment time.

Although faster implementations of the acquisition function could allow for exhaustive

search with more parameters than k, due to the curse of dimensionality for some D

it would still become implausible. That is why a global optimizer has to substitute

exhaustive search for some D. The global optimizers computation cost is a fraction

of a single configuration evaluation time. This allows for a generous compute budget

to maximize the chance of finding the most promising infill. There are other possible

acquisition function maximizers [149, 68, 157]). All are plausible, as long as they can

deal with non-convex problems. PSO was chosen due to its wide availability and easy

implementation. The estimation of E[I
(µ,λ)
v ] is presented in Figure 4.11. It consists of the

estimation of the fitness and uncertainty, which is subsequently used to calculate E[I
(µ,λ)
v ]

using Monte Carlo techniques.
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(a) EI Maximization (b) Infill

Figure 4.10: ARDEGO search for infill using E[I
(µ,λ)
v ] when two worker nodes are free.

// Evaluate only when all configurations in Xλ predicted to be valid

if ∃xi ∈ Xλ s.t d(xi)) ≥ 1 return 0;
// Trim the evaluated configurations set Xµ

Xµ
v s.t. ∀xi ∈ Xµ

v , d(xi) = 1 ∧ xi ∈ Xµ;
L =cholesky(Σv)) ;
for i ∈ [0, 1, .., q] do

// Sample the Y vectors

N ∼ N (0, I);
Yµ

v ,Y
λ = m(Xv) + LN ;

// Calculate EI using sampled Ys

ei += max(max(Yλ)−max(f(x+),Yµ
v ));

return ei
q+1

;

Figure 4.11: EMC [I
(µ,λ)
v (Xλ)], dervied from [65]. The set Xv is the set X excluding

configurations predicted to be invalid. Σv is the covariance matrix of Yµ
v and Yλ.

Due to not always using exhaustive search for maximization of EI, integration of the

classifier, discrete space X and the nature of E[I
(µ,λ)
v ] itself it is possible for the new

expected improvement function not to indicate any configurations for evaluation. This

happens during the later stages of optimization when E[I
(µ,λ)
v ] is low and its numerical

estimation becomes problematic. Higher number of Monte Carlo simulations can elevate

the problem, yet it indicates that non of the configurations offer clearly better performance

according to the GP model. It is also possible for E[I
(µ,λ)
v ] to indicate some configurations,

which have already been evaluated, particularly if the parameter space is discrete. This

only happens in the case when P is greater than 1. As an example, E[I
(µ,λ)
v ] indicates two

configurations one of, which has already been evaluated. The other configuration might
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be promising and EI might indicate it for infill while the already evaluated configuration

does not contribute towards EI. In this cases, there are three possible solution. The first

is to constrain EI to avoid calculation of E[I
(µ,λ)
v ] for Xλ for sets of configurations, which

contain already evaluated configurations. The other solution is evaluation of some other

configuration. The first solution seems promising, yet might stall evaluation in the later

stages of optimization. In ARDEGO hill climbing around the best found configuration is

used. It allows for a natural transition to a local search, and prevents the algorithm from

using EGO methodology when it struggles to discriminate configurations.

4.3.4 Termination

Although the ARDEGO will converge towards an optimum, it is not guaranteed to find

the global optimum. Hence, it is crucial to specify termination criteria. There are two

possible termination criteria. First, ARDEGO terminates if it exhausts its allocated

compute time budget. For example, a number of machines is allocated for a 24-hour

period. Alternatively, the ARDEGO algorithm terminates when a parameter configuration

x is found that achieves user required performance.

4.4 Computational Complexity

The two stages of the algorithm are the search for infill configurations and their subsequent

evaluation. Design evaluation usually involves hardware generation which often takes

hours to complete. However, searching for infill configurations suffers from the curse

of dimensionality and theoretically can outgrow hardware generation times for high-

dimensional problems. The curse here comes from the fact that the volume of the

parameter space increases faster than the number of configurations that can be evaluated.

In higher dimensions, more infill points have to be estimated per configuration than in

lower dimensions, being potentially time consuming. A model is derived to assess the

approximate optimization time during optimization, and hence allow to quantitatively

assess potential bottlenecks.

4.4.1 Adaptive Sampling

The time spent during sampling can be split into overhead time and configuration

evaluation time. The overhead time, which is the time spent on determining which

configurations to sample ts, is dominated by the SVM training time. It can be assumed to
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be O(n3) [115]. The training complexity is increased by the two SVM hyperparameters γ

and C, to choose the most appropriate values k-fold cross-validation is used over a grid.

The complexity of model construction increases with the grid size of g points. The SVMs

are retrained during every model construction after the random sampling stage finishes.

O(ts) = O(n3). (4.7)

4.4.2 Infill

The main optimization loop has few steps. The time intensive steps are; the surrogate

model is update (tm), acquisition function minimization (ta) and parameter configuration

evaluation (te). Each of those steps is repeated during each of iteration. The first step

is construction of the surrogate model. The construction consists of the SVM classifier

and the GP regressor training. The complexity of SVM training and prediction is the

same as during adaptive sampling stage. To derive GP regression complexity we assume

the limiting case, when all configurations produce fitness y = {yi}ni=1. The GP regression

has a O(n3) complexity based on the number of evaluated configurations n [124], the

complexity is equal to the complexity of SVMs. Training is repeated multiple times to

account for the non-convex marginal likelihood function.

O(tm) = O(n3). (4.8)

The other time consuming component of the main optimization loop is the acquisition

function search arg maxx∈Xλ E[I(x)µ,λv ](Xλ). The exhaustive search is dependent on the

parameter space and is O(mD) for a space with m points per parameter. The parameter

m will usually be in the range of tens to a hundred. EI assessment of each configuration

involves GP and SVM prediction, where the GP prediction complexity dominates with

O(n2). Therefore, the time per infill using exhaustive search is:

O(ti) = O(mDn2). (4.9)

Alternatively a metaheuristic can be used with a budget of p acquisition function

estimations.

O(ti) = O(pn2). (4.10)
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The final component is evaluation of the infill configurations te time. The limiting

case is when there is only one worker node, and n configurations to evaluate.

O(te) = O(n). (4.11)

4.4.3 Dominant Components

If exhaustive search is used to search for the infill configuration the complexity of ti is

bounded by O(mDn2) and becomes an obvious bottleneck. Luckily, despite its highest

computational complexity its basic computation cost is orders of magnitude smaller than

hardware generation time. Thus, it does not dominate the optimization time, except for

large parameter spaces. In those cases a global optimizer is used, like PSO, and under

the current budget allocation the complexity is O(ti) = O(pn2). Search for infill is also

dependent on the number of Monte Carlo simulations used to estimate EI. The larger the

number of simulations, the more accurate the estimate. At the same time ti increases and

can become problematic. Low accuracy of EI can increase n, by less optimal infill choices

and thus result in overall longer optimization time. It is crucial to investigate the impact

of the number of Monte Carlo estimates on the performance of the algorithm.

The complexity of ts and tm is of cubic order, with the number of evaluated configura-

tions n being dominant. Number of evaluated configurations n will unlikely exceed few

hundred, meaning training time will not be the bottleneck. Furthermore, both the basic

computation time of SVM or GP training is orders of magnitude lower than hardware

generation.

4.5 Evaluation

The primary objective of the evaluation section is to compare ARDEGO with alternative

techniques. This involves investigation of the impact of the parallelism on its performance.

A secondary objective is to determine how the potentially costly Monte Carlo simulations

and the new adaptive sampling plan impact ARDEGO, which is compared to Latin

hypercube.

Three design benchmarks are used to evaluate ARDEGO optimization time. A

quadrature-based financial design with customizable precision [155], a noisy PQ design

with custom frequency [46] and a high performance RTM design with seven parameters

[109]. All involve complex design choices, and have non trivial constraints. First two
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benchmark designs are discussed in Chapter 3. The RTM design is included in the

benchmark portfolio to evaluate optimization of designs with larger number of parameters,

often encountered in reconfigurable designs. The design is subject to multiple constraints

and involves manipulation of stencil configuration.

ARDEGO is compared with surrogate model aided PSO algorithm called MLO

presented in Chapter 3 and hill climbing. Hill climbing is a straightforward optimization

algorithm, which can deal with mixed continuous and discrete parameter spaces, and

makes no assumptions about the fitness function. The MLO algorithm does not offer

parallelism, while the hill climbing algorithm can be parallelized. To make the optimization

experiments repeatable, data on the application case studies are collected prior to the

experiments. The total optimization time is measured, the results are averaged over

20 experiments. Due to the large parameter space, an analytical model, presented and

validated in [109], is used as a substitute for the experiments to mimic the performance of

the RTM design. This is tuned using real hardware generations.

The algorithm terminates hardware generation if during the preliminary resource

report any of the resources exceeds the FPGA size by more than 10%. This is crucial

for automated optimization, the preliminary reports give a good indication of the final

resource usage and likely overmapping can be detected as quickly as in 20 minutes.

4.5.1 Implementation

The optimized application designs target a Maxeler MPC-X1000 system with a Xilinx

Virtex-6 XC6VSX475T FPGA. The worker nodes consist of high performance Intel Xeon

x5650 (32 nm, 6 cores, 2.67GHz) CPUs. The ARDEGO configuration is as follows. The

training data is normalized prior to model training. SVM is chosen as the classifier with

an squared exponential kernel which is cross-validates on a set of parameters γ × C =

{1.2i}10
i=−10 × 10{1.25i}10

i=1. The GP is retrained 100 times with random initialization

of the hyperparameters. The sampling stage uses 5D configurations for each of the two

stages of the adaptive sampling for a total of 10D, as recommended by [75, 28]. This

sampling plan could be problematic for a configuration with a large number of parameters

(100+), yet reconfigurable designs rarely have more than a dozen. 5000 Monte Carlo

simulations are used for each EMC [I
(µ,λ)
v (Xλ)] estimation. 1

1Experiments were performed with between 5 and 500,000 Monte Carlo simulations, no noticeable
impact on the algorithm performance was observed. Although experiments indicated as little as 5
simulations as sufficient, 5000 simulations were chosen as a precautionary measure while not impacting
experiment time. In [75] authors suggest using adaptive simulation allocation scheme. The topic requires
further study.
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Table 4.1: ARDEGO test designs overview.

Design Noise Constraints No.q D

Quadratureδ [155] Performance of the
design exhibits some
noise. One of the
parameters is a
software parameter.
Two benchmarks are
available, a design
throughput and an
energy efficiency
benchmarks. LUT
bound

Accuracy and re-
source constraints.

20,000 3

PQδ [46] Some of the designs
fail randomly due to
timing and PAR diffi-
culties. LUT bound.

Resource
constraintsω.

8,200 3

RTM† [109] Not noisy. The valid
portion of the design
space is small.

Resource and mem-
ory bandwidth con-
straints.

20,160,000 7

q Number of possible configurations in the parameter space.

δ Optimized for Maxeler MPC-X1000 system with a Xilinx Virtex-6 XC6VSX475T FPGA.

† Based on a model tuned using real hardware. The model is set to match Xilinx Virtex-6 XC6VSX475T FPGA.
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4.5.2 Quadrature-based Financial Design

In [155] the authors present a precision optimization methodology for a quadrature-based

numerical integration solver for financial option pricing on reconfigurable devices. The

design has two benchmarks measuring the throughput and energy consumption. The

goal is to find the configuration offering the highest throughput or the lowest energy

consumption given a required minimum accuracy εrms by optimizing three parameters.

The three parameters are mantissa width mw of the floating point operators, the number of

computational cores κ, and the density factor df which specifies the density of quadratures

used for integral estimation. All of the parameters are uniformly discrete. Energy

consumption is measured using Maxeler Technologies provided tools. ARDEGO is

evaluated for three different εrms, which influence the number of valid configurations. The

parameter space X spans 18,000 configurations, with an average hardware generation time

of around 2 hours. The total optimization time using the previous application specific

optimization methodology [155], including hardware generation and benchmark execution,

is 198 hours. Depending on erms, the optimal configuration can be between 10-100 times

faster and up to 200 times more power efficient than the most basic configuration.

The optimization time of the quadrature design is presented in Table 4.2. The level

of parallelism P has a noticeable impact on optimization time. Although it is difficult

to make a definite statement due to only 4 different values of P being evaluated, it does

not follow the model speedup = 1 + b log λ presented in [75]. Least squares logarithmic

fitting for the speedup model, speedup = a + b log λ , yields fairly consistent values across

different erms values, where a is in the range of 0.75 to 0.9 and b in the range of 1.4 to 2.

Contrary to what is expected, the number of simulations does not seem to have any

impact on the optimization time. The variance of the results is too high due to relativity

low number of experiments, 20 per setting. Even if that is the case, its highly doubtful that

the impact would be large. The adaptive sampling exhibits no impact on the optimization

time.

Compared to optimization time achieved by the MLO or hill climbing algorithm, as

seen in Table 4.2, ARDEGO offers much better performance even without parallelization.

Aside of better performance, it nearly always finds the optimal configuration. That is not

the case for the two other algorithms. Hill climbing can offer as little as 76% of the optimal

configuration performance, while for MLO it is 95%. With regards to optimization time,

when P = 1 MLO and ARDEGO are comparable for the energy efficiency benchmark.

Although increasing parallelism for Hill climbing improves optimization time, clearly

the best found configuration deteriorates. In the throughput case, ARDEGO offers a
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significant advantage with between 14% and 47% shorter optimization time. When P

increases, MLO gets further outclassed.

Figure 4.12: Optimization of the quadrature-based financial design energy efficiency
benchmark.

The dynamics of optimization are presented for few settings in Figures 4.12-4.13. The

speed-up achieved by parallelism is visible in all of the figures. When the number of

workers P increases, the curves for both ARDEGO and the hill climbing algorithm are

approximately shifted left, indicating equally performing configuration found at an earlier

time. Taking into account that optimization time is presented in log scale, it is clearly

visible that hill climbing algorithm is at an extreme disadvantage. The hill climbing

algorithm takes longer to converge than either ARDEGO or MLO, and rarely finds the

optimal configuration. For P = 1 MLO offers better configurations at earlier optimization

time than ARDEGO, this changes towards the end of optimization.

4.5.3 Real-time Proximity Query Design

Computation of intersections and point-pairs between two objects in 3D has many

applications; haptics rendering, computer graphics, virtual prototyping and imaged-guided

surgical robotics. To deal with this particular problem authors present the real-time

PQ design [46]. The design offers configurable data precision, preserving accuracy while

allowing for reduced FPGA resource utilization when needed.
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Figure 4.13: Optimization of the quadrature-based financial design throughput benchmark.

The design has three parameters. The mantissa width mw of the floating point opera-

tors, the number of computational cores k and the clock frequency of the computational

cores freq. The mantissa width impacts the number of available computational cores. The

higher the numerical precision the more area is required to implement each core. At the

same time, higher mantissa width offers higher accuracy and requires less re-computation.

The more re-computation is needed, the lower the throughput of the design. Throughput

can be increased by higher clock frequency, at the same time it is more difficult for the

design to meet the timing requirements. Clearly, the relation between different parameters

is complex and optimization is non-trivial. The mantissa width mw = [4, 32], number of

cores k = [1, 4], and the frequency freq = [80, 120] MHz. This results in a total of 8200

possible configurations. All of the parameters are uniformly discrete.

Because of clock frequency optimization and timing issues, the design is challenging

for optimization. Nearby configurations can fail, and in contrary when logic utilization

is an issue, timing prediction is more difficult and generally configuration evaluation

cannot not be prematurely terminated. This is clearly visible in the design fitness function

visualization presented in Figure 2.7. The design is interesting from the perspective of

automatic optimization that uses classifiers, can the algorithms deal with hard to predict

invalid spaces. Furthermore, the noisiness of the design generation process makes utilization

of the model presented in [46] difficult. The model deals with resource constraints, while

the timing is a big issue. This renders the model impractical for optimization purpose
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Figure 4.14: Optimization of the PQ design throughput.

and calls for other methods of optimization.

The dynamics of optimization are presented in Figure 4.14. It is clear that ARDEGO

offers superior performance to both MLO and the hill climbing algorithm. For P=1, MLO

and ARDEGO offer similar optimization time, yet hill climbing algorithm requires two

to four nodes to match them. When increasing P , both ARDEGO and the hill climbing

algorithm improve their performance. The hill climbing algorithm requires 16 nodes to

offer similar performance to ARDEGO with 6 nodes, yet is still inferior. The design is

challenging for MLO and ARDEGO due to noisy parameter space and classifier struggling

to properly classify the parameter space. The problems resulting from PAR and timing

constraints are largely random in nature, although probability of successful bitstream does

vary with the designs parameters. An SVM classifier constructs a hard decision boundary,

failing to accommodate that information. The design is challenging for the hill climbing

algorithm for a different reason. Although the optimal configuration is located relatively

closely to the starting point, the valid configuration, initial navigation through the noisy

space is time consuming. The Table 4.2 shows that all of the algorithms struggle to find

the optimal configuration, and usually terminate when their configuration evaluation

budget has been exhausted.

The trends visible in the optimization of the PQ design are similar to ones presented

for the quadrature design. Increasing parallelism P offers a clear speed-up, again of

logarithmic nature. The results are presented in Table 4.2. Equally number of Monte
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Carlo simulations seem to have no clear impact on the optimization time, although the

results are not presented and the adaptive sampling does not offer any benefit with

respect to Latin hypercube. With regards to the two alternative algorithms, MLO and

hill climbing, ARDEGO offers a clear improvement.

4.5.4 Reverse Time Migration Design

In [109] the designer faces a problem of optimizing seven parameters of a high performance

RTM design and there are around 20 million possible parameter combinations. The

RTM design is used for seismic imaging to detect terrain images of geological structures.

The design involves stencil computation, and most of the parameters are related to

balancing communication and computation ratios as well as controlling the internal

architectural settings such as parallelism and numerical precision to find an optimal

configuration. The parameters explored are blocking ratios in two dimensions (α and

β), bit-width optimization ratio B, arithmetic operation transformation ratio T , and

kernel and dimension parallelism, Pdp, Pknl and Pt. All of the parameters are uniformly

discrete. Hardware generation time takes up to 9 hours for a single configuration. An

analytical model has been developed to enable optimization of the design involving memory

architectures, precision optimization, computation transformation, and design scalability

[109]. The optimized design is over 100 times faster than the basic configuration, the

unoptimized basic design.

Figure 4.15: Optimization of the RTM design execution time.
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The trends visible in the optimization of the RTM design follow similar pattern as

in previous designs. The level of parallelism P greatly improves performance of the

optimization achieving logarithmic speed-up. The number of Monte Carlo simulations

seems to have slight impact on the optimization time when P = 2. This is probably the

case as increasing P does not yield more accurate results, yet it increases the computational

burden of Monte Carlo simulations. This is not clear and can be due to low number of

experiments.

Figure 4.16: Optimization of the RTM design execution time, Latin hypercube sampling.

Contrary to the previous examples, the adaptive sampling plan yields massive im-

provements to the optimization time. This is the case as valid area includes only 3.2% of

the available parameter space. Using Latin hypercube sampling instead of the adaptive

sampling plan, ARDEGO finds configurations offering between one third and three quar-

ters of the optimal configuration performance. This is regardless of P and the number of

Monte Carlo simulations.

Optimization of the RTM design was not possible using MLO algorithm, hence, it

is left out of the comparison. Due to its reliance on absolute standard deviation output

from the surrogate model, for higher dimensional problems the MLO algorithm ends up

evaluating all configurations instead of using surrogate model estimates. The EI metric

relies on relative value and as a result ARDEGO does not suffer from this problem. The

hill-climbing algorithm offers poor performance, mainly due to the highly dimensional

nature of the problem. It does not get close to the optimal configuration, and terminates
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at around 1000 optimization hours, against 100-200 for ARDEGO. This is presented in

Figure 4.15.

4.6 Hardware Acceleration

The most computationally demanding component of ARDEGO are Monte Carlo estimates

of EMC [I
(µ,λ)
v ]. During every infill procedure at least one worker, and this typically means

at least one FPGA, are idle. This means that there is a potential for acceleration of

ARDEGO. The FPGA circuit should allow for higher number of Monte Carlo estimates

at no additional cost, the hardware is idle and present in the system.

The EMC [I
(µ,λ)
v ] estimation problem has no data hazards and easily maps onto stream-

ing computing model. The code from Figure 4.11 is parallelized. For maximum throughput

the design is heavily pipelined, and C-slowing technique is applied [93]. Depending on

the depth of C-slowing buffer, a different number of points are estimated in a batch. The

circuit is presented in Figure 4.17. The surrogate model prediction and the accumulation

and division are done in software. The surrogate model prediction and accumulation and

division are done only once per EMC [I(µ,λ)] calculation and would introduce significant

resource cost to the design.

The design is multi-core, with each core consisting of a memory and data-path elements.

Memory element stores the data required to create random number generators Y µ and Y λ.

Three BRAM elements labeled with “BRAM L”, “BRAM µ” or “BRAM λi” store the

decomposed convariance matrix, and means of the associated Yµ
(ω) or Yλ

(ω) vectors. The

memory element also contains register storing fx+ value. The memory can be shared across

numerous data-paths, effectively becoming unrolling factor. Each data-path generates a

Gaussian random number for every Y µ and Y λ, using the data supplied from memory.

The rest of the data-path performs the calculation as defined inEMC [I(µ,λ)]. The results

from each data-path are aggregated in the C-slowing buffer and returned from the engine

after a programmed number of Monte Carlo simulations.

The maximum µ and λ limit is configurable, allowing for custom level of parallelism

P. The design has multiple number of data-paths per number of cores, increasing the

throughput and resource cost. BRAM memory components are reused across data-paths if

overmapping on BRAM. The ratio of memory components to data-paths has to be balanced

as it can cause difficulties during place and route process. In the current implementation

the Gaussian random number generators follows [151]. It is a low resource implementation

with quality sufficient for billions of samples. As a rule of thumb, the generator used in
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Figure 4.17: A circuit used for acceleration of the E[I(µ,λ)(Xλ)] and E[I
(µ,λ)
v (Xλ)] functions.

The connectors widths represent the number of double or floating point numbers.

the estimation of EMC [I(µ,λ)] has to retain statistical quality for at least the number of

used simulations. Once this criterion is achieved, resource utilization can be optimized to

maximize throughput and include extra cores and data-paths.

The circuit is applicable both to EMC [I(µ,λ)] and EMC [I
(µ,λ)
v ]. In the case of EMC [I

(µ,λ)
v ]

the simulation simply not proceeds if and of the infill parameter settings is predicted to

be invalid. If any of the already being evaluated parameter settings is predicted to be

invalid, its standard deviation is set to 0. This effectively transforms Yµ into Yµ
v and

allows the same circuit to handle all cases. An alternative is to reconfigure FPGA with a

different configuration to accommodate smaller vector Yµ
v and use the spare resources to

increase the number of cores and data-paths.

Hardware Evaluation

The circuit is compared against a high performance Intel Xeon x5650 CPU runs software

implementation of the EMC [I(µ,λ)]. The CPU runs at 2.67GHz utilizing all 6 cores.

Software was compiled with CPU specific optimization flags for maximum performance.
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Abramowitz and Stegun method [20] is used for software Gaussian random number

generation, although Marsaglia [101] and other were investigated. The method offers good

performance and reasonable quality random numbers. The hardware is configured with

2 cores, each with unrolling factor of 4 and one memory unit. The maximum λ and µ

are set to 6, allowing estimations of EMC [I(µ,λ)] with µ and λ between 0 and 6. Double

precision arithmetic is used for both software and hardware. The clock frequency is

150 MHz. C-slowing is set to 100. Throughput of the FPGA and software implementation

is presented in Figure 4.18.

Figure 4.19 shows the speedup figure of FPGA solution over software. The speedup is

assessed by varying λ between 1 and 6, both µ and λ have equal impact on the cost of

the integral estimation. It becomes apparent that speedup increases with λ, or P, and the

number of Monte Carlo simulations. Speedup improves with λ as the software solution

becomes slower as λ increases, while FPGA throughput is constant. The maximum

observed speedup was 43x over our software implementation when λ = 6. For low number

of Monte Carlo simulations the FPGA on-chip memory unit takes relatively large amount

of time, yet becomes insignificant as the number of simulation increases. Although [75] uses

as little as 1000 simulations for initial EMC [I(µ,λ)] estimations, higher number significantly

increases the estimate accuracy. Finally, during later stage of optimization when high

number of Monte Carlo simulations becomes beneficial, the accelerated EMC [I(µ,λ)] engine

offers high speedup.

Figure 4.18: Throughput of unoptimized hardware and multi-core software implementa-
tions of EMC [I(µ,λ)].

The computation cost is solely dominated by the Gaussian random number generation.

Assuming software being able to generate 20 million Gaussian random numbers per second
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Figure 4.19: Speed-up of the hardware vs. the software solution with increasning number
of Monte Carlo simulations.

per 1 GHz of clock speed [152] the throughput of a 6 core 3 GHz CPU is

Software Throughput = 6× 3× 20, 000, 000 = 360, 000, 000. (4.12)

360 million random Gaussian numbers per second. The throughput of the FPGA solution

is number of cores k, times the number of data-paths d, times the clock frequency f, finally

times the supported level of parallelism µ+ λ. This gives

Theoertical FPGA Throughput = k× d× f× (µ+ λ). (4.13)

which in the current implementation gives

FPGA Throughput = 2× 4× 150 MHz× (6 + 6). (4.14)

a total of 14.4 billion random Gaussian numbers per second. This gives a theoretical

speed-up of 40x, matching the experimental results of 43x.

Software implementation could be further optimized, for example using SSE instruction.

Yet, a all of the CPU 6 cores were utilized it becomes apparent that even with extreme

optimization FPGA solution offers huge performance benefit. It has to be taken into

account that the FPGA engine configuration is not optimized, and substantial speed-up
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is expected. Different random number generators, evaluation of custom arithmetic among

many possible improvements. Most importantly, the FPGA is part of the system and is

idle, hence not using it would be wasteful. Currently GP and SVM predictions are the

dominant components in EMC [I(µ,λ)] calculation, unless for extremely large number of

simulations.

4.7 Discussion

4.7.1 Results

The algorithm is not substantially faster than MLO when P = 1. Yet, it has a simple

optimization loop and offers parallelism. This results in as much as 85% optimization

time reduction when using 6 workers, 190 vs. 29 hours. The design specific tool requires

198 hours to finish optimization, reduced down to 33 hours assuming 6 worker nodes and

perfect parallelization. ARDEGO requires at most 32 hours to finish optimization of

quadrature-based design regardless of error constraints. In the best cases it requires just

25 hours, a 22% reduction in optimization time.

MLO cannot optimize designs with multiple parameters, like the RTM design. The

ARDEGO algorithm is shown to optimize the RTM design in less than 93 hours, and

hill climbing algorithm fails to proceed with optimization due to dimensionality. With

6 worker nodes for the quadrature-based design ARDEGO offers up to 46% reduction

of optimization time compared to the hill climbing algorithm with 16 nodes, 25 vs. 46

hours. Furthermore, hill climbing algorithm does not always find the optimal design.

Summarizing, compared to the hill climbing algorithm, ARDEGO offers better performing

configurations and uses less computing power resulting in an much increased efficiency.

This is the direct result of data efficiency, only configurations, which either are promising

or resign in unexplored region are evaluated. Hill climbing explores the parameter space in

an inefficient manner, hoping that the next configuration will offer better performance. It

offers speed-up with increased level of parallelism, yet it often struggles with optimization

and cannot be applied in higher dimensions.

The adaptive sampling plan offers similar performance to Latin hypercube sampling

plan for low dimensionality when the valid region constitutes large portion of the parameter

space. In the RTM case where the valid region covers only 2.2% of the parameter space,

the benefit of the new sampling plan becomes noticeable. Is allows the algorithm to find

configurations offering twice the performance of the best configuration found when using
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Latin hypercube sampling plan.

The number of Monte Carlo simulations has no clear impact on ARDEGOs optimization

performance. Although not presented, the effect of the number of Monte Carlo simulations

on the performance of the algorithm was investigated, and no impact was observed. As

little as 5 simulations, and as many as 500,000 were investigated. We believe that currently

more accurate estimations do not offer a clear benefit due to one of the two reasons.

First, the ARDEGO algorithm requires more accurate classification mechanism and

other components have a much smaller impact. The PQ design has a noisy design space,

where hardware generations often fail due to PAR and timing issues. The RTM design

has multiple constraints and resides in a large parameter space. Quadrature design has

multiple constraints, the optimal configuration is difficult to locate. The algorithm often

samples invalid designs, something that is clearly wasteful.

Second, the number of simulations would need to be further increased, beyond 500000

per point, and more thorough search is needed to observe any benefit. The hardware

acceleration allows for more thorough evaluation of the parameter space, and allows for

larger parameter spaces to use exhaustive search for acquisition function maximization

during infill. It is possible that using exhaustive search for acquisition function maxi-

mization for highly dimensional designs, like RTM, would bring positive impact. Due to

increased search space with λ, exhaustive search should always be considered infeasible for

λ>1. Software solution, with throughput of up to 100,000,000 simulations per second, is

limited in what it offers. Disregarding GP and SVM prediction cost it would take around

15 minutes to perform exhaustive infill search for the RTM design with 5000 simulations

per configuration when λ = 1. With ARDEGO taking around 150 iterations to finish

optimization, this adds up to a 40 hour overhead. Further work on acceleration is worth

an investigation. As at least one idle FPGA is available during infill, it seems wasteful

not to use it.

4.7.2 Usability

For the Quadrature-based Financial design comparison to design specific optimizaton

tools developed by an expert user is presented. The ARDEGO algorithm offers better

performance than a parallelized design specific optimization tool, for 6 worker nodes a

reduction of up to 22%. As in the MLO case, the optimization comes at the cost of no

guarantee of finding an optimal design.

The major improvement compare to MLO in terms of algorithms usability comes
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from its parallelization and ability to deal with designs with larger number of parameters.

Parallelization allows the algorithm to mitigate long hardware generation time. Parallelism

is widely employed by expert users, evaluating multiple design configuration in parallel.

The ability to deal with larger number of parameters allows the algorithm to be applied

to a much wider range of designs. For example, the author of the RTM design, clearly

an expert designer, spent over a week just to construct analytical models of the design’s

performance. This time does not include subsequent hardware generations. Clearly

ARDEGO could substantially improve his productivity. At the same time construction of

those models allows designers to better understand the underlying problem.

For a novice designer the ability of the algorithm to deal with a larger number of

parameters and offering parallelism could simply make reconfigurable hardware feasible.

Often designers want to utilize reconfigurable designs only for a particular problem and

can not justify the required time investment to both learn a HDL and inner workings of

reconfigurable designs. By tighter coupling of ARDEGO with tool chains the design cycle

could be simplified automating optimization.

4.8 Conclusion

We present ARDEGO, an asynchronous parallel algorithm for automatic optimization

of design parameters in reconfigurable designs. ARDEGO is evaluated using three case

studies, a quadrature-based financial application, a proximity query design used in 3D

object intersection detection and an reverse time migration design for seismic imaging.

All designs show a clear time saving when using ARDEGO over hill climbing and the

MLO optimization algorithm, which was presented in Chapter 3. Up to 85% reduction of

optimization time is observed with respect to the MLO algorithm and a 22% compared to

design specific tool. Optimizing the RTM design, we show that ARDEGO can optimize

highly-dimensional designs. When using 6 worker nodes, the algorithm manages to finish

the optimization in as little as 93 hours. The previously presented MLO algorithm could

not optimize the 7 dimensional design. Simple techniques, like hill climbing, can optimize

designs with few parameters; however, they fail to deal with larger number of parameters

due to their data inefficiency and exponentially growing search spaces.

Although the ARDEGO algorithm can still take substantial amount of time to finish

optimization, it offers a clear advantage over other approaches as well as manual ap-

proach which require extensive designer interaction to study and tweak the design. The

ARDEGO algorithm allows for parallelism, offering logarithmic speed-up, greatly reducing
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optimization time.
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Chapter 5

Design and Knowledge Transfer

It has been previously shown how optimization of reconfigurable designs can be automated.

Example of designs that can benefit from such schemes are numerous: A reconfigurable

radio throughput is highly dependent on the level of parallelism [30], by balancing the

numerical representation and re-computation designs power, throughput and accuracy

can be optimized [155, 46], whilst stencil configuration has non-obvious impact on designs

performance [109], multiplier constant co-efficients can have substantial impact on design

performance [76].

Previous research on automated optimization of reconfigurable designs involves both

design and CAD tool parameters. Cloud computing and machine learning can be used to

tune CAD parameters for faster optimization [80]. In [100] optimization of CAD tools and

design parameters is presented, although only a small design is used for evaluation. In

Chapter 4 we show how Bayesian optimization methodology is used to treat noise, offering

a simple algorithm and allowing for parallelism to speed-up optimization time. The key

advantage of the Bayesian optimization methodology, is that it is data efficient. It relies

on the model of a design, and uses experiments through hardware generation to refine it.

However, all of the approaches are wasteful. When an optimization finishes, a number

of bitstreams are discarded, when they could be used to navigate algorithms in future

optimization attempts. The key idea presented in this chapter is how to prevent this type

of waste, and to show how previous optimization attempts can yield faster optimization.

We present the concept of recovery of lost knowledge during previous design optimiza-

tion, and how to benefit from it. The key idea is to store information like bitstreams

and benchmark output during optimization in view of later reusing it to optimize future

designs. Currently, designers discard this information. The work presents the Auto-

Transfer algorithm; it extends the ARDEGO algorithm presented in Chapter 4 with a
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new knowledge transfer step. The concept of knowledge transfer is related to the idea

of transfer learning [113]. Transfer learning is a new field in machine learning, which

tackles the problem of transferring knowledge from one problem onto another. It deals

mainly with three different tasks: (a) “what to transfer” between the tasks, (b) “when to

transfer” and (b) “how to transfer”. The difference between this approach and transfer

learning, is that we only transfer the previously collected data to speed-up new design

optimization. In transfer learning, the knowledge gained about the problem, such as

optimized hyperparameters, is transferred as well.

We identified two use cases. The first use case: designs are often ported across

platforms and it is crucial to use bitstreams generated for one platform to speed-up

optimization of the design being ported onto a different platform. The second use case:

designs with related architectures often offer similar performance behaviour, and this

knowledge can be of great value especially in the context of frameworks, like [24, 47]. This

use case includes using old bitstreams to speed-up optimization of a revised design. This

is a common situation in the reconfigurable computing community. At times, once the

design is completed, it gets tested and optimized and only then new features are requested

or a bug is discovered. Knowledge transfer is easy for a human being, but becomes a

challenge in an automated approach. We approach the problem by utilizing Bayesian

optimization, in particular the new Auto-Transfer algorithm.

• Statement of the problem of knowledge transfer in reconfigurable design optimization.

We formally define the problem of reusing old results of reconfigurable design

optimization to yield optimization of new and revised designs. (Section 5.1)

• Identification of two different knowledge transfer cases and their treatment in the

context of automatic reconfigurable design optimization. (Section 5.2)

• Presentation of an algorithm for automatic knowledge transfer in the reconfigurable

design optimization context, the Auto-Transfer algorithm. It derives from ARDEGO

presented in Chapter 4. Instead of initially randomly sampling the parameter space,

it uses knowledge stored in the form of previous design synthesis and benchmarking

results. (Section 5.3)

• An evaluation of Auto-Transfer algorithm using three case studies: The first case

study is a quadrature design for financial computation [155]. It is built for two

different platforms and we show how bitstreams generated for an old platform can be

used to guide the algorithm for faster optimization of the design on a next generation

platform. We follow with a similar treatment of the RTM design for seismic imaging
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(a) Common parameters (b) Relationship between functions

Figure 5.1: In (a) six parameter settings are in the old design respository. The set
XH ∈ Xold consists of three out of six of those configurations. The three configurations
can be evaluated for the new design and used to verify the relationship between the two
designs.

with multiple parameters [109]. Lastly, we attempt to reuse hardware generated

between two related designs. A stochastic volatility design and a robot localization

design [47]. By using knowledge transfer optimization time is reduced by up to 35%

compared to ARDEGO. (Section 5.4)

5.1 Problem Statement

To allow for knowledge transfer the problem is extended with respect to the problem

statement in Section 2.2.2. The user often faces the problem of creating a design similar to

a previously created one. The designer applies design patterns or uses his prior experience

to improve his efficiency when creating the new design. The same process can be replicated

in automated optimization. There are two designs, an old design and a new one. The

knowledge, which includes the information learned and the old data, can be used to speed

up the new design optimization. The problem we are concerned with is how to transfer

the old data. There are three challenges: (a) “what to transfer”, (b) “when to transfer”

and (c) “how to transfer” [113].

The old design has associated fitness functions fold, as well as multiple constraint

functions hold,i and gold,j. Typically the following data is aggregated in the repository:

Xold evaluated parameter settings, yold associated finesses and exit codes indicating failed
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(a) XH evaluated (b) f(x) mapped using z

Figure 5.2: To transfer the old parameter settings, there needs to be a set of parameters
XH, which can be used to verify the hypothesis that there is a relationship between the
designs. In this case the set consists of parameter settings x1 to x3. Those parameter
settings allow to identify the relationship between the old and the new design. This is
later used for more accurate modeling and optimization.

constraints told. All of that information can be potentially transferred. In particular,

it is possible to transfer knowledge if there are some easily detectable function z s.t.

zf ◦ fold = f and/or z s.t. zi ◦ hold,i = hi or zj ◦ gold,j = gj . Aside of expert knowledge, the

only way to detect if there are any relationship, and what they are, is to evaluate a set of

the same parameter configurations. This also means that the parameter space of the old

design Xold and of the new design X needs to have a non-empty common set Xold ∩X 6= ∅.
It is also possible to revise the parameter space. The concept is presented in Figure 5.1.

For example, when moving from Xilinx to Altera platforms the width of mantissa and

exponent of floating point operators follow different restrictions.

If those relationships are discovered, some of the parameter settings from the old

repository can be used for treatment of the new problem, as shown in Figure 5.2. This

should allow for better modeling of the new design, thus resulting in a decreased number

of new parameter setting evaluations and faster optimization. The knowledge transfer

of the old results Xold, yold and told is only beneficial when functions z can be cheaply

identified. The optimization time saving due to knowledge transfer should be greater than

the cost associated with using it. Otherwise, transfer knowledge becomes pointless. The

concept is called “negative transfer” in transfer learning and cannot be excluded [113].

164



CHAPTER 5. DESIGN AND KNOWLEDGE TRANSFER

5.2 Auto-Transfer Approach

The goal is to recover any useful information collected during old design optimization

to decrease the required number of parameter configuration evaluations for the newly

optimized design. The task of selecting an old design from the database suitable for

knowledge transfer is not currently automated. In the current work the designer indicates

a design which he believes is related to the new design. There are three challenges related

to knowledge transfer: (a) “what to transfer”, (b) “when to transfer” and (c) “how to

transfer” [113]. The new approach is outlined in Figure 5.3. It is based on the new

Auto-Transfer algorithm.

1. CODING
a) Design b) Benchmark

2. SPECIFICATION
a) Parameter Space b) Constraints

c) Goal

3. DESIGN DATABASE
a) Related Design(s)

4. AUTO-TRANSFER

CHOOSE DESIGN(s)

EVALUATE

TERMINATE?

Figure 5.3: Knowledge transfer optimization approach, extended to accomodate old
designs.

The Auto-Transfer algorithm starts with the knowledge transfer step; the designer

provides an old design database. Ideally the database would contain data of previous design

optimization and a feature set allowing to identify individual designs and configurations.

This would allow an algorithm to automatically find the most similar designs and transfer

the data gathered during their optimization. Unfortunately, creation of such a meaningful

feature set requires a lot of data, which is currently not available. Due to the cost

of hardware generation it is possible that such a feature set will never be constructed,
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although cloud computing might make it possible in the future. The database used in this

approach is specified in the Subsection 5.3.1 and addresses challenge (a). The database

could contain data gathered during optimization of the same design for an older platform.

It could also contain data gathered during optimization of a related design which shares

code, and hence some characteristics, with the new design. The designer is responsible

for providing a database containing optimization results of a similar design. Challenge

(b) is addressed by testing of different hypothesis to verify if data can be transferred.

The Auto-Transfer algorithm verifies the relationship through evaluation of some of the

parameter configurations of the new design. This set of parameter configuration is used for

hypothesis testing. It is described in Subsection 5.3.2. Then, depending on the hypothesis

testing outcome, the data will or will not be transferred. This addresses challenge (c)

and is described in Subsection 5.3.3. It helps to minimize the possible negative impact

of knowledge application. Two candidate use cases are identified for the Auto-Transfer

algorithm.

The cross-platform transfer is a common case, when a design is ported onto a new

platform. The new platform offers different amount of resources, has different topology

and timing characteristics.

Figure 5.4: Moving to a new platform [6].

The second use case is related designs. The designs can be based on the same

core algorithm or framework and the designer believes that they follow similar behavior.

Examples of such frameworks are [47, 94]. The approach is suitable in cases when the

designs follow the same parameterization, or there is a straight-forward mapping between

them, which the user can indicate. Designs that are revised to improve performance or to

include extra features fall into this category.

Figure 5.5: Related designs.
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1
2 # des ign database
3 des ign db = { [ 100 , 1 , 11 , 53 ] : [ 5 5 . 0 ] , # Prev ious l y opt imized de s i gn s
4 [ 100 , 4 , 8 , 53 ] : [ 2 2 . 0 ] , # and data ga thered during t h e i r
5 . . . # opt im i za t i on i s s upp l i e d to the
6 } # algor i thm .
7
8 # parameter space d e f i n i t i o n
9 parameters = { . . . }

10
11 # Bui ld b i t s t r eams and run benchmarks , the f i t n e s s f unc t i on
12 def buildHardwareRunBenchmark ( ) :
13 # execu te b i t s t r eam genera t ion
14 os . system ( ”Make hw” )
15 # execu te benchmark and / or ana lyze b i t s t r eam
16 return os . system ( ”Make run” )
17
18 # supp ly the parameter d e f i n i t i o n and s c r i p t s to the op t im i za t i on a l gor i thm
19 opt imia lDes ign = ARDEGO( parameters , buildHardwareRunBenchmark , des ign db )

Figure 5.6: The algorithm input is extended with a design database. The design database
stores results of previous optimizations, allowing ARDEGO algorithm to transfer knowl-
edge. This can improve both the speed and accuracy of the optimization.

The current approach is distinct to transfer learning [113] in that it does not reuse

previously learned information. For example, in the case of GPs prior can be modified

to accommodate previously learned information or previously most promising kernel

function can be used [124]. For example, one could discourage equal weighting of different

parameters by using anisotropic squared exponential kernel function and a prior which

penalizes equal magnitude length-scale hyperparameters. The Auto-Transfer algorithm

was not extended to follow such approach due to time constraints.

5.3 Auto-Transfer Algorithm

The approach is based on the ARDEGO algorithm presented in Chapter 4. The Auto-

Transfer algorithm is part of a wider class of Bayesian optimization algorithms. It relies

on a GP surrogate model, which drives the optimization. It starts with knowledge

transfer step after, which it proceeds to infill. Infill is a procedure of finding promising

parameter settings for evaluations, based on the surrogate model. The infill evaluates

the most promising settings as indicated by the acquisition function. The Auto-Transfer

algorithm uses the E[I
(µ,λ)
v (Xλ)] acquisition function presented in Chapter 4. It accounts

for constraints and allows for asynchronous parallelism during optimization.
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0. DESIGN DATABASE absent

1. KNOWLEDGE TRANSFER 1. ADAPTIVE SAMPLING
replaced

2. GP + SVM TRAINING

4. FIND INFILL DESIGN(s)

argmax
Xλ∈Xλ

E[I
(µ,λ)
v (Xλ)]

3. EVALUATE
y = f(x)

3. EVALUATE
y = f(x)

...

TERMINATE

Figure 5.7: The Auto-Transfer algorithm with comparison to the ARDEGO algorithm.

The Auto-Transfer algorithm does not initially sample the design space, unlike the

ARDEGO algorithm or the MLO algorithm presented in Chapter 3. Instead, it uses a

knowledge transfer step as presented in Figure 5.7. The step relies on user-provided data,

which contains data gathered during optimization of an old design. Relationship between

the old design’s fitness and constraint functions is recovered by evaluation of a subset

of old parameter settings XH provided in the database. Then, Pearson (linear) [114] or

Spearman (monotonic) [167] correlation estimators are used to tests the hypothesis that

there are either linear or monotonic relationships between the old and the new design.

Conceptually, using information theoretic approach seems very attractive. For example,

mutual information [69] can be used to measure mutual dependence between between the

fitness functions and the constraint functions using the old data and new data evaluated

for the configurations XH. Directional relationship can be identified using transfer entropy
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[128] or symbolic transfer entropy [145]. Unfortunately, in general, information theory

requires very large number of samples to provide statistically significant results, making it

impractical in the current context. Based on the observations in Chapter 4,nold is going

to vary between 30 and 150 samples, making its subset XH even smaller. Typically, this

can be considered to be smaller then the sample size D 10 used for sampling in Chapter 4.

On the other hand, although with certain restrictions, Pearson (linear) [114] or Spearman

(monotonic) [167] correlation estimators can be used to identify significant very strong

correlations using small number of samples [37].

If a relationship is discovered, a regression model is constructed. The model is used

to map the information gathered in the database and treat the old experiments as if

they came from the new design. The benefit comes when the cost of testing of those

relationships is smaller than the time saved by constructing more accurate models and

thus speeding up optimization.

5.3.1 Knowledge Transfer

The process of knowledge transfer has three aspects, each addresses one of the previously

mentioned challenges. First, a set of parameter settings is evaluated for the new platform.

Secondly, the users hypothesis that the designs are related is tested. Lastly, if the

hypothesis holds, the knowledge accumulated in the database is transferred. This is done

by using the uncovered functions zi to map the fitness calculated for the old design, as

well as other information, onto the new design.

Challenge (a) – What To Transfer

The database consists of previous nold parameter sets {xi}noldi=1 = Xold, the associated

performance figures for which hardware was successfully generated ∀xi ∈ Xold s.t.fold(xi) =

yi → yi ∈ yold, as well as exit codes {ti}noldi=1 = told. Whenever possible, the database

contains k + r vectors v associated with all of the k equalities and r inequalities, s.t

∀xi ∈ Xold s.t.hold,i(xi) = vj → vj ∈ vold,i. Equally, in the case of inequalities ∀xi ∈
Xold s.t.gold,i(xi) = vj → vj ∈ vold,i. An example of a constraint, the LUT usage has to

be lower than the number of LUTs available. Another example is accuracy. Throughput

constraint is also plausible, the design is only accepted after it reaches a certain threshold.

All of those values are recorded. If any of the constraints fails, the exit code is recorded

as well. An example is presented in Table 5.1.

The goal is to identify the relationship between the old and the new design using as

169



CHAPTER 5. DESIGN AND KNOWLEDGE TRANSFER

Table 5.1: An example of a design repository Xold of a design configurable with mw

mantissa width of floating point numerical operators and the number of cores cores. A
total of 8 parameter settings were evaluated.

mw cores Throughput yold Accuracy vold,1 Latency vold,2 LUTs vold,3 Exit code t

32 1 102.5 0.001 1 ms 35% 0

19 3 305.6 0.005 3 ms 44% 0

35 5 n/a n/a n/a n/a 1

19 5 507.2 0.005 6 ms 72% 0

21 5 506.5 0.004 6 ms 81% 0

24 5 502.4 0.002 6 ms 89% 0

15 7 703.1 0.1 9 ms 92% 2

Table 5.2: An example XH for the design presented in Table 5.1 and a related design.
There is a clear difference in performance.

mw cores Throughput y Accuracy v1 Latency v2 LUTs v3 Exit code t

32 1 201.2 0.001 1 ms 25% 0

19 3 405.3 0.005 7 ms 24% 0

21 5 606.8 0.004 9 ms 57% 0

few design evaluations as possible. There are two relatively easily verifiable relationships.

The algorithm allows for either linear or monotonic relationships between the old and

new f , hi and gj . The process starts by reevaluation of a random subset of nH parameter

settings XH, which are present in Xold; they can be evaluated on the new platform and

involved successful hardware generation. This subset is used for hypothesis testing. If

there is no such subset, then knowledge transfer cannot proceed.

Challenge (b) – When to Transfer

First a test is performed to verify if there is a linear relationship between any of the

old and new functions f , hi and gi. For example, a design has been ported from a

Xilinx to an Altera FPGA. The test verifies if there is a linear relationship between

the throughput of the design on the previous fold and the new platform f . Then, in

the case of comparison of fitness functions, ∀yi ∈ yold,∃xi ∈ XH s.t.fold(xi) = yi and

∀yi ∈ y,∃xi ∈ XH s.t.f(xi) = yi. The size of old and new y vectors does not have to be

the same. It is possible for some of the designs evaluated on the old platform to violate

some constraints on the new platform, or vice versa. If any of the function f , hi and gj
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cannot be evaluated for the new platform, they are excluded from their associated y or

v vectors. To test the linear relationship hypothesis Hl, the Pearson product-moment

correlation coefficient [114] is calculated between those sets.

ρ(vold,v) =
cov(vold,v)

σvoldσv
(5.1)

The Pearson product-moment is equally performed to test for a linear relationship between

fitness functions using vectors y and yold.

The test is only performed if the set XH contains at least three designs, otherwise the

Pearson product-moment correlation coefficient and associated hypothesis testing will

always indicate a linear relationship between two sets of values. Although the sample size

is typically going to small, taking into account that the user indicated related designs, the

former should be sufficient. With a low sample size, due to the cost associated with design

evaluation, the significance level for the double sided p-value is restrictive. It is important

to note that the vectors v can be of different sizes for the old and the new design, and

for different constraints. For example, if the design was built for the old platform but

overmaps on resources on the new platform, its fitness cannot be assessed.

Table 5.3: Correlations calculated for the set XH presented in Table 5.1 and Table 5.2.
With alpha = 0.05% the Hl is rejected for the latency, although the Hm holds. For
mapping of the LUTs, both hypothesis are rejected.

mw cores Throughput Accuracy Latency LUTs

yold y vold,1 v1 vold,2 v2 vold,3 v3

32 1 102.5 201.2 0.001 0.001 1 ms 1 ms 35% 25%

19 3 305.6 405.3 0.005 0.005 3 ms 7 ms 44% 24%

21 5 507.2 606.8 0.004 0.004 6 ms 9 ms 81% 57%

Pearson correlation (p) 1.0 (0.0%) 1.0 (0.0%) 0.92 (25%) 0.97 (15%)

Spearman correlation (p) 0.99 (0.035%) 1.0 (0.0%) 1.0 (0.0%) 0.87 (33.0%)

If the linear relationship hypothesis Hl is rejected at an α significance level or indicates

a weak correlation, a test is performed to check the hypothesis Hm that there is a

monotonic relationship between the two functions. Again, the test is only performed if

the set XH contains at least three designs. To test the hypothesis Hm the Spearman rank

correlation is calculated [167]. The test values vold,i and vi are converted into ranks rold

and r. The Spearman rank correlation is then defined as
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ρ(vold,v) = 1− 6
∑nH

i=1 d
2
i

n3
H − nH

(5.2)

where di = rold, i − ri is the difference between ranks. Similarly to the Pearson correlation,

double sided p-value is calculated. If the Hm is rejected at an α significance level or there

is a weak correlation, it is assumed that the null hypothesis H0 holds and that there is

no relation between the two tested functions. The Spearman rank correlation is equally

calculated to test for a monotonic relationship between fitness functions using vectors y

and yold.

Figure 5.8: Linear and Isotonic regression [115].

Challenge (c) – How to Transfer

Knowledge is transferred differently depending on which hypothesis, if any, was not

rejected. If the linear relationship hypothesis was acceptedHl the old values yold or vold

are mapped to the new design. This is done by calculating a least-square linear regression

to create a mapping function zi for either f , hi or gi. So the mapping function zi becomes

zj(v) = av + b. (5.3)

which is then used to perform mapping zj(vold,i) = vi and treat the data from old

experiment as if it originated from the new design. The same procedure applies to vectors

yold and y. If the linear relationship hypothesis Hl does not hold, but the monotonic Hm
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does, isotonic regression is performed [45]. The isotonic regression solves a weighted least

squared fit problem. The problem is formulated as a quadratic program

min
∑
i

wi(vold,i − vi)2. (5.4)

which is subject to vold,min = vold,1 ≤ vold,2 ≤ .. ≤ vold,nH = vold,max. The constraint

enforces the monotonic relationship between the two variables. The weights wi are strictly

positive. When Spearman rank correlation is negative, the zj function is believed to be

strictly negative. In such case the problem is trivially reformulated by negating v. The

same procedure applies to vectors yold and y.

Table 5.4: The table presents training set created using knowledge transfer step for the
designs presented in Table 5.1 and Table 5.2. Blue rows represent transferred data.

mw cores Throughput y Accuracy v1 Latency v2 LUTs v3 Exit code t

32 1 201.2 0.001 1 ms 25% 0

19 3 405.3 0.005 3 ms 24% 0

21 5 606.8 0.004 9 ms 57% 0

19 5 602.1q 0.005q 9† ms n/a+ n/a−

24 5 606.1q 0.002q 9† ms n/a+ n/a−

15 7 804.7q 0.1q 15† ms n/a+ 2δ

q Linear regression used to obtain the prediction.

† Isotonic regression used to obtain the prediction.

δ The configuration is predicted to be inaccurate based on accuracy prediction.

+ Could not create a regression.

− Could not create LUT regression, cannot predict LUT constrain failure.

Related designs and different parameter spaces

It is possible that ranges of some of the parameters between Xold and X are vastly different.

In that situation it can be plausible for the designer to use a mapping between them.

For example, two designs are based on Monte Carlo techniques and there is a software

parameter Simulations, which is the number of simulations used in a particular design.

The range for the two designs is different for the Simulations parameter. One is in the

range of thousands, whilst the other is in the range of millions. In such situations it is

recommended to use a linear map to transform the old Simulations parameter to make

it match that of the new design. Thus a proxy parameter is created. This is done on
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case by case basis, and requires input from the designer to transform the old parameter

settings to the new X . An example is presented in the next section.

Choose a random set XH of designs from Xold for hypothesis testing;
Evaluate XH designs for the new platform using the benchmark function b;
Aggregate results for f , all hi and gi in corresponding vectors vi;
for f , all hi and gi do

Test Hl using vi;
if Hl not rejected at significance level α then

Calculate linear least square regression (zi);
Map vold using the function zi;

a.) For f , insert the results into the vector y;
b.) For hi or gi, evaluate constraints using the mapping and insert exit

codes into the vector t;

else
Test Hm using vi;
if Hm not rejected at significance level α then

Calculate Isotonic regression (zi);
Map vold using the zi function;

a.) For f , insert the results to the vector y;
b.) For hi or gi, evaluate constraints using the mapping and insert exit

codes into the vector t;

Figure 5.9: The knowledge transfer step.

5.4 Evaluation

The primary objective of the evaluation section is to identify the benefits, and potential

drawbacks, of knowledge transfer. The comparison is made between the new Auto-Transfer

algorithm and ARDEGO. Three application case studies are used. A quadrature-based

financial design with customizable precision [155], a high performance RTM design with

seven parameters [109] and two designs based on the SMC SMCGen framework [47]. The

quadrature-based financial design and the RTM design are used to identify the first use

case. The designs are first optimized for one platform, followed by the optimization for a

second platform. The optimization time of the design on the second platform is compared

to ARDEGO. The two designs based on the SMCGen framework are used to evaluate

use case two, the robot localization and stochastic volatility designs. First the robot

localization design is optimized, and later those results are transferred by Auto-Transfer

algorithm to optimize the stochastic volatility design.
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Three potential benefits of knowledge transfer are evaluated. Firstly, lower number

of initial samples allows for earlier use of the data efficient acquisition function. The

configurations sampled from Xold are more likely to be valid, hence smaller number of

samples can be drawn. By the data efficiency argument established in Chapter 4, earlier

use of the data efficient acquisition function should help in optimization. Secondly, the

sampling is biased by Xold. The old design repository contains promising configurations,

instead of randomly sampling from the X the initial samples in the Auto-Transfer algorithm

are drawn from Xold. Lastly, through knowledge transfer, a more accurate surrogate model

can be using a smaller number of evaluations.

Auto-Transfer algorithm uses up to 5 D parameter settings to construct XH. The

actual number is based on the size of XH, in the case of the quadrature design this usually

around 2 D to 3 D with around 6 to 9 configurations. The number of initial sample

parameter settings for ARDEGO is set to match that of Auto-Transfer algorithm. This

evaluation method allows to assess the impact of the knowledge transfer and sampling

bias, rather than the impact of lower number of initial samples. The α is set to 1%,

and correlations weaker than ±0.95 are rejected. The algorithm terminates hardware

generation if, during the preliminary resource report, any of the resources exceeds the

FPGA size by more than 10%. This is crucial for automated optimization, the preliminary

reports gives a good indication of the final resource usage, and likely overmapping can be

detected as quickly as in 20 minutes.

5.4.1 Implementation

The worker nodes consist of high performance Intel Xeon x5650 (32 nm, 6 cores, 2.67GHz)

CPUs. The training data is normalized prior to model training. SVM is chosen as

the classifier with an squared exponential kernel which is cross-validates on a set of

parameters γ × C = {1.2i}10
i=−10 × 10{1.25i}10

i=1. The GP is retrained 100 times with

random initialization of the hyperparameters. 5000 Monte Carlo simulations are used for

each EMC [I
(µ,λ)
v (Xλ)] estimation. 1

1In Chapter 4 experiments were performed with between 5 and 500,000 Monte Carlo simulations,
no noticeable impact on the algorithm performance was observed. Although experiments indicated as
little as 5 simulations as sufficient, 5000 simulations were chosen as a precautionary measure while not
impacting experiment time. In [75] authors suggest using adaptive simulation allocation scheme. The
topic requires further study.
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Table 5.5: knowledge transfer test designs overview.

Design Noise Constraints No.q D

Quadratureδ†

[155]
Performance of
the design exhibits
some noise. One
of the parame-
ters is a software
parameter. Two
benchmarks are
available, a design
throughput and an
energy efficiency
benchmarks. LUT
bound

Accuracy and re-
source constraints.

20,000δ or 10,000† 3

RTMδ† [109] Not noisy. The
valid portion of
the design space is
small.

Resource and mem-
ory bandwidth con-
straints.

20,1600,000δ or
80,650,000†

7

Robotδ [47] Noisy benchmark
function. The chal-
lenge for efficient
optimization is for
the algorithm to
determine that one
of the parameters
has no impact on
the design’s perfor-
mance.

Resource and Ac-
curacy constraints.
One of the param-
eters is a software
parameter.

24,000 3

Stochasticδ [47] Similar to the pre-
vious design.

Resource and Ac-
curacy constraints.
One of the param-
eters is a software
parameter.

24,000 3

q Number of possible designs in the parameter space.

δ Optimized for Maxeler MPC-X1000 system with a Xilinx Virtex-6 XC6VSX475T FPGA.

† Optimized for Maxeler MPC-X2000 system with an Altera Stratix V GS 5SGSD8 FPGA.

ω The biggest challenge with optimization of the PQ design is PAR and timing issues.
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(a) Maxeler MPC-X1000 system with Xilinx Virtex-6 XC6VSX475T FPGA

(b) Maxeler MPC-X2000 Altera Stratix V GS 5SGSD8 FPGA

Figure 5.10: Visualization of a subset of the parameter space for the throughput benchmark
εrms = 0.1 of the quadrature-based financial design implemented on two different platforms.

5.4.2 Cross-platform, Quadrature-based Financial

In [155] the designer explores tradeoff between accuracy and throughput in a quadrature-

based financial design with three parameters. The design can be used to compute integrals

for various financial applications. The first two parameters are mantissa width mw of the

floating point operators and the number of computational cores cores. Larger number of

mw bits increases computation accuracy, but limits the maximum number of cores that

can be implemented on the chip due to the increased size of the individual core. The

third parameter is the density factor df which specifies the density of quadratures used

for integral estimation. It is a software parameter and is independent of the generated

bitstream. Density factor df increases computation time per integration while improving

the accuracy of the results due to finer estimations. All of the parameters are uniformly

discrete.
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Figure 5.11: Optimization of the quadrature-based financial design throughput benchmark
for εrms = 0.1 using knowledge transfer.

Figure 5.12: Optimization of the quadrature-based financial design throughput benchmark
for εrms = 0.01 using knowledge transfer.

Figure 5.13: Optimization of the quadrature-based financial design throughput benchmark
for εrms = 0.001 using knowledge transfer.
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The optimization goal is to find the design offering the highest throughput of integra-

tions per second φint given a required minimum accuracy defined in terms of root mean

square error εrms. The error is defined with respect to the results obtained by calculating

a set of reference integrals at the highest possible precision. The ARDEGO algorithm

terminates when the globally optimal configuration for a given εrms is found. Although

some designs produce inaccurate results, the results can be transferred for regression.

Resource usage is linearly related to cores. Density factor df is a software parameter

while mw and cores affect the bitstream. Varying df only involves software execution, as

long as a bitstream for the given mw was already generated. If a design with mw, cores is

evaluated, and had not been previously evaluated, a new bitstream is generated.

Figure 5.14: Relationship between performance of a single core design for the quadrature
design implemented on the MPC-X1000 and MPC-X2000 platforms. Note the log-scale.
The throughput for MPC-X2000 improves little for low df values, as the problem becomes
communcation bound instead of compute bound. This is less of an issue in the case of
MPC-X1000.

The design is first optimized for the Maxeler MPC-X1000 system with Xilinx Virtex-6

XC6VSX475T FPGA platform. Afterwards, optimization for Maxeler MPC-X2000 Altera

Stratix V GS 5SGSD8 FPGA follows. Due to Altera floating point arithmetic restrictions,

the parameter mw for the new platform is restricted to the range of [32,53].

During sampling, there are parameter settings with largerdf in the design repository

Xold. This means that the hypothesis tests always indicate a linear relationship, even

though it is actually monotonic. For lower df the linear relationship holds. That is
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why the speedup for εrms = 0.001 is seen throughout all of the optimization, as seen in

Figure 5.13.

Knowledge transfer speeds up optimization in nearly all of the cases during early

stages of optimization as seen in Figures 5.11-5.13. This is due to knowledge transfer

induced inaccuracies. Although both of the designs run at the same clock frequency, and

the accuracy constraint functions of the design on both platforms are identical, this is

not the case for the fitness function. Presented in Figure 5.14 is the relation between the

performance of the design on the two platforms over a set of df . As the df parameter is

decreased, the problem becomes communication bound instead of compute bound. This

is especially prominent when εrms = 0.1 or εrms = 0.01.

5.4.3 Cross-platform, Reverse Time Migration

In [109] the designer faces a problem of optimizing seven parameters of a high performance

RTM design; depending on the platform used, there are between 20 and 81 million possible

parameter combinations. The RTM design is used for seismic imaging to detect terrain

images of geological structures. The design involves stencil computation, and most of the

parameters are related to balancing communication and computation ratios as well as

controlling the internal architectural settings such as parallelism and numerical precision

to find an optimal design. The parameters explored are blocking ratios in two dimensions

(α and β), bit-width optimization ratio B, arithmetic operation transformation ratio

T , and kernel and dimension parallelism, Pdp, Pknl and Pt. Hardware generation time

takes up to 9 hours for a single design. An analytical model has been developed to

enable optimization of the design involving memory architectures, precision optimization,

computation transformation, and design scalability [109]. The optimized design is over

100 times faster than the basic configuration, the unoptimized basic design. All of the

parameters are uniformly discrete.

The design is first optimized for the Maxeler MPC-X1000 system with Xilinx Virtex-6

XC6VSX475T FPGA platform. Afterwards optimization for Maxeler MPC-X2000 Altera

Stratix V GS 5SGSD8 FPGA follows.

The RTM design is a perfect example of a design, which can benefit a lot from

knowledge transfer. The parameter space for the new platform MPC-X2000 fully contains

the parameter space used for building on MPC-X1000. As seen in the Figure 5.15 there is

a clear benefit from using the old designs. The initial large benefit comes from reevaluation

of old designs, which all build on the old platform, and from knowledge transfer. For all
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Figure 5.15: Optimization of the RTM design execution time for MPC-X2000, using
knowledge resue.

P , the algorithm ceases optimization when using knowledge for a certain amount of time.

The optimization log files indicate that this is due to the algorithm refining the valid

region of the parameter space, which is much larger for the new platform. As multiple

invalid designs are evaluated, the optimization does not progress.

5.4.4 Related Designs, Stochastic Volatility Design and Robot

Localization

The stochastic volatility and robot localization designs are implemented using the SMCGen

framework [47]. The goal of SMC methods is to estimate the posterior distribution of some

hidden problem states. In particular, SMC deals with problems where new observations

come in a sequence, and inference has to be done on-line. SMC are simulation based

methods, where a number of particles is used to model the posterior distribution.

SMC methods are applied to stochastic volatility models which are used in finance

when there is no closed form solution to a problem, or the user does not wish to use

approximations for pricing functions due to accuracy constraints. The volatility is then

modeled as a stochastic process. SMC methods are one possible solution when the

inference has to be done online. For this particular design [47], the parameters are the

number of processing cores NC , the number of particles used in the simulation NP and

mantissa width of numerical operators mw. The number of cores NC is limited to 64 in

powers of two, the number of particles is tested on the range of 96 to 3984 in 96 increments

and the range of the mantissa width mw of the floating point operators is set from 10

to 40. The number of particles NP is a software parameter. All of the parameters are
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uniformly discrete. The chip cannot accommodate more than 16 cores. The design suffers

from minor place and route as well as timing issues.

(a) Stochastic volatility f (b) Stochastic volatility accuracy

(c) Robot localization f (d) Robot localization accuracy

Figure 5.16: Stochastic volatlity and robot localization designs.

The robot localization design is implemented using the same SMC SMCGen framework

[47] as the stochastic volatility design. The design is used for mobile robot localization.

The robot needs to be aware of surrounding moving objects. In a sequential loop fashion

the robot uses its sensors to identify its location and perform motion. The parameters

are the number of processing cores NC , the number of particles used in the simulation

NP and mantissa width of numerical operators mw. For this particular design [47], the

parameters are the number of processing cores NC , the number of particles used in the

simulation NP and mantissa width of numerical operators mw. The number of cores NC

is limited to 64 in powers of two, the number of particles is tested on the range of 2048

to 8096 in 96 increments and the range of the mantissa width mw of the floating point

operators is set from 10 to 40. The number of particles NP is a software parameter. All of
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the parameters are uniformly discrete. The chip cannot accommodate more than 4 cores.

The design suffers from minor place and route as well as timing issues.

Figure 5.17: Optimization of robot localization design using knowledge transferd from the
optimization of the stochastic volatility design.

For both designs the software benchmark was executed 300 times, the execution time

is in the microsecond range and therefore is highly susceptible to measurement noises.

The process took as much as 5-6 minutes per parameter setting. The noise is clearly

visible in Figure 5.16. For both of the designs, both the accuracy and the fitness function

are noisy. The challenge in optimization of those designs is for the algorithm to discover

that mw has no impact on both the accuracy and the execution time.

The knowledge transfer in those designs is tested by first optimizing the stochastic

volatility design, and then using collected data to optimize the robot design. There is

a clear linear relationship between fitness functions of those designs, and a monotonic

relationship between their accuracy functions. The challenge is to find those relationships

despite the noise and small number of available data. The designs are fairly simple, hence

optimization is fast and results in little available data. The range of the NP parameter on

both platforms is normalized, so that the parameter spaces are identical. This reflects a

designer assumption that the number of particles should have similar impact on both of

the designs.

As seen in Figure 5.17 the benefit from knowledge transfer is none for P = 2 or P = 4,

and negative when P = 1. The number of designs that can be built on both platforms

is relatively small. The chip for the robot design does not accommodate more than 4

cores, while for the stochastic design up to 16 core designs can be built. Furthermore, this

results in the algorithm incapable of discovering the monotonic relationship between the

accuracy functions. With only between 3 and 5 valid parameter configuration in XH, and
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a noisy accuracy function, both the Hl and Hm hypothesis fail. This is a clear example

of a negative impact of knowledge transfer. Although, aside of P = 1, the knowledge

transfer has no impact on the performance of the algorithm.

Figure 5.18: Comparison of different parameter setting LUT utilization of the robot and
stochastic volatiltiy design. Stochastic volatility is the old design.

Depending on mw both of the designs become BRAM bound, LUT bound or PAR

becomes the issue. Although in the current approach it is impossible to recover infor-

mation on PAR issues, the algorithm can reuse synthesis resource utilization reports.

Unfortunately, it seems that in this test case they provide no positive feedback. There are

a number of possible reasons for this.

Looking at Figure 5.18, there is a clear correlation between LUT utilization of the two

designs. Unfortunately, it is weak, 0.66 at α = 0.0002. This correlation was estimated

using relatively large amount of data, during optimization, number of valid parameter

settings in XH was typically between 3 and 5 samples. Such weak correlations, even at

low α have to be treated with caution. Hence, during optimization both Hl and Hm for

LUTs were rejected.

Looking at Figure 5.19, there is a a clear correlation between BRAM utilization of

the two designs. Contrary to the previous case, the correlation is strong. The correlation

across is 0.93 at α ≈ 0.0 significance level. The data set contains one outlier, when

removed the correlation spikes to 0.987 at α ≈ 0.0, a strong correlation. Again, those
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Figure 5.19: Comparison of different parameter setting BRAM utilization of the robot
and stochastic volatiltiy design. Stochastic volatility is the old design.

correlations were calculated using relatively large amount of data, during experiments

number of valid parameter in XH was typically between 3 and 5 samples. The Hl was

often accepted.

5.5 Discussion

5.5.1 Results

Knowledge transfer is a challenging technique, which requires further refinement. It

however shows a lot of promise.

For the quadrature design, it can offer as much as 35% reduction in optimization

time. Looking at Table 5.6 when εrms = 0.001 the reduction in optimization time when

P = 4 is decreased from 133 hours to 86 hours, a 35% optimization time reduction. The

reduction for P = 2 and P = 1 is 33% and 35% respectively. For εrms = 0.01 a reduction

is observed only for P = 2 and P = 1, 15% and 20% respectively. For εrms = 0.1 when

P = 2 small negative impact is observed. The impact is not as big as the optimization

time in Table 5.6 suggests, the time spent on fine tuning of the design configuration to

achieve the 2% improvement is substantial.
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Table 5.6: The average optimization time in hours and the percentage of the average
performance of the optimal configuration of different designs. ARDEGO without and with
knowledge transfer is compared. The global optimum was found using exhaustive search.

Design Quad. Th. (0.1) Quad. Th. (0.01 ) Quad. Th. (0.001) RTM Robot

ARDEGO P = 1 277 (100%) 354 (98%) 289 (100%) 311 (94%) 118 (94%)

ARDEGO P = 1, K. 237 (100%) 300 (100%) 188 (100%)+ 291 (100%) 134 (100%)

ARDEGO P = 2 129 (98%) 152 (100%) 190 (100%) 176 (86%) 63 (94%)

ARDEGO P = 2, K. 183 (100%)− 121 (98%) 127 (100%)+ 163 (99%)+ 76 (100%)

ARDEGO P = 4 121 (98%) 86 (100%) 133 (97%) 96 (48%) 43 (100%)

ARDEGO P = 4, K. 117 (97%) 89 (100%) 86 (100%)+ 85 (94%)+ 39 (100%)

1 ARDEGO algorithm uses adaptive sampling plan and 5000 Monte Carlo estimates per EI evaluation.

2 The time presented is the average time when an algorithm stopped improving design’s performance.

3 Numbers in parenthesis are percentages of the performance of the optimal design configuration.

+ Positive impact of knowledge transfer.

− Possibly negative impact of knowledge transfer.

For the RTM design, the optimization time reduction as well as the performance of the

optimal configuration is noticeably improved by knowledge transfer. The improvement

is most prominent when P is greater than 1. The improvement when P = 4 is 45% in

design performance, as well as shorter optimization time. In the last benchmark design,

knowledge transfer across related designs, no clear improvement was observed. The

optimization for P = 2 and P = 1 offers better performing configurations, and for P = 4

the optimization time is 10% shorter. Yet, it is difficult to rule out experiment noise

especially when looking at the dynamics of optimization presented in Figure 5.17.

Note that the numbers reported in Table 5.6 are less informative than the previously

presented figures. Optimization plot shows the full dynamics of optimization. The

algorithm terminates after its evaluation budget was exhausted, and comparison of

optimization time without looking into performance of the best found design may be

misleading. Lastly, there is the question of which algorithm should be preferred; The one

that finds a sub-optimal, yet promising configuration in a short time span or one which

takes more time to find the optimal configuration.

5.5.2 Usability

The biggest benefit from using the Auto-Transfer algorithm comes when porting a design

onto a new platform. A reduction of up to two days of optimization time is observed, 133

hours to 86 hours. The algorithm needs more evaluation examples, but as no negative

impact of knowledge transfer was observed. The potential substantial time saving is very

promising. This is the case for both an experienced and novice user.
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Knowledge transfer for related designs is not as straightforward as cross-platform

transfer. It should pose no problems for an experienced designer who understands that

there is a relationship between two designs, while can be problematic for a novice designer.

The hypothesis testing is designed in such way to eliminate, or at least minimize, cases

where relationship was either falsely indicated or can not be established. This means that

with a great deal of confidence, Auto-Transfer will perform as good as ARDEGO and

possibly much better.

5.6 Conclusion

We present a new Auto-Transfer algorithm which can offer substantial reduction in

optimization time. It derives from work presented in Chapter 4. For the quadrature-

based financial design and the reverse time migration designs we observe a reduction in

optimization time of up to 35%. For the quadrature based design, the knowledge transfer

step helped improve optimization speed despite large amount of noise being introduced

by the new platform.

Based on our experience, and experimental work, there are a number of obvious

features that can be used in knowledge transfer. Specific to reconfigurable computing

is the resource utilization; that includes DSPs, BRAMs, and LUTs utilization. Design

specific features like accuracy, throughput, latency or power are good candidates. Using

detailed synthesis timing reports to better optimize clock frequency is more challenging,

propagation delay information also includes circuit spatial information and could be

misleading.

Whenever the parameter spaces of the two designs have a large common set and

enough configurations available to verify their relationship, knowledge transfer can be

expected to be beneficial. This generally will not be a concern when porting designs

across platforms or slightly revising their source code. For related designs, the designer

has to be careful. Knowledge transfer is not always beneficial, and it cannot guarantee to

improve algorithm’s performance. Minor negative impact, in the form of less desirable

optimization dynamics, was observed in one of the test cases. Currently the robustness

and stability of the approach require further study.
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Chapter 6

Conclusion and Future Work

In this thesis we show the potential for automatic optimization of reconfigurable designs.

Furthermore, we extend the idea to show how results of synthesis and benchmarking can

be used to speedup optimization. In this chapter, we conclude the achievements and

suggest future work to address the current limitations.

6.1 Summary of Achievements

The main focus of the thesis is decreasing the effort associated with reconfigurable design

development by automating optimization. The designer should focus on the problem

statement and designs correctness, the tools should carry out implementation. Currently,

the design cycle has limited automation. This is being partially addressed by HLS to

describe the design [49]. HLS is important in the context of reconfigurable computing as

it largely makes the underlying platform transparent to the programmer. Through the use

of libraries and integrated tool-chains hardware compilers provide an programming model

API. Good examples are ROCCC 2.0 [18], YAHDL [39] or its evolution the MaxCompiler

[3]. Yet, even when using HLS user faces a number of different design choices. In particular,

this thesis focused on optimization of design parameters. In the background section three

major challenges were identified, for readers convenience the table is again provided in

Table 6.1.

Our first step towards automation is presented in Chapter 3. This work presents

initial automation attempt, addressing long hardware generation time mentioned in

Table 6.1. The MLO algorithm is based on surrogate model technology and particle swarm

optimization. The method shows a lot of promise, we show how it can optimize designs

up to 50% faster then design specific optimization methodology. The optimization can
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Table 6.1: The three major challenges with optimization of reconfigurable designs.

Challenge Description

Hardware Generation Time Generation and evaluation of a single parameter setting
takes between an hour to two days.

No. of possible configurations The curse of dimensionality. The number of potential
design configurations can be in the millions.

Lost Knowledge The knowledge gathered during development and opti-
mization of designs is not transferred.

involve both software and hardware parameters. Yet it suffers from a number of problems;

complicated optimization loop and lack of parallelism. Reconfigurable design automatic

optimization involves multiple hardware generations, a time consuming process. The

optimization time is generally in 50-150 hours for three parameter designs. Lastly, the

approach fails to optimize designs with much large number of parameters.

The complicated optimization loop, lack of parallelism and inability to deal with high

dimensional problems are addressed in Chapter 4. Based on experience gathered during

MLO evaluation, a new algorithm is presented, called ARDEGO. The algorithm addresses

the first two challenges mentioned in Table 6.1. The new algorithm is based on the EGO

algorithm and it offers several improvements over MLO. It offers parallelism, and has a

straight-forward optimization loop. The optimization time is decreased by as much as 50%

for a single optimization node. As the ARDEGO algorithm uses multiple optimization

workers, its optimization speed is even further increased relative to MLO. When using 6

worker nodes, optimization finishes in as little as one fifth of the time. The ARDEGO

algorithm is shown to optimize a 7 parameter design in less than 93 hours, as well as

reduce the optimization time of the quadrature-based design from 32 to 25 hours compared

to design specific tool when using multiple workers, a 22% reduction. The parallelization

is asynchronous, taking into account big differences in hardware generation time for

different parameter settings. Lastly, the Monte Carlo compute intensive component of the

ARDEGO algorithm is accelerated, achieving up to a 43x speed-up.

The main drawback of ARDEGO compared to a human designers is that the algorithm

does not build up its knowledge with subsequent design optimization. This is the last of the

challenges mentioned in Table 6.1. Chapter 5 shows how results of design synthesis and

design benchmarking can be transferred to decrease optimization time of a similar design

when ported onto a different platform or when its code is revised. In modern dynamic
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environment the designs are often modified and the underlying platforms revised. A

methodology to transfer old synthesis results is crucial to automation. The initial findings

show clear benefit when applying knowledge transfer when porting a design onto a different

platform, up to a 35% optimization time reduction is observed. Knowledge transfer does

not always offer improved optimization time or better performing configurations, the

concept requires extra case studies and further work.

6.2 Future Work

Although the work presented in this thesis shows a lot of promise, a number of open

questions arise.

6.2.1 Revision of ARDEGO

ARDEGO algorithm was a natural evolution of the MLO algorithm. Optimization was

shifted from metaheursitics to Bayesian optimization and the algorithm was parallelized.

The current main limitations of the algorithm come from two different aspects.

Evaluation Cost

First, the cost of design generation is not taken into account during optimization. This is

especially important when hardware and software are co-optimized. Exhaustive evaluation

of all software parameters using a given bitstream is wasteful, at the same time treating

them equally to hardware parameters increases the problem complexity. One promising

solution would be to split design evaluation time C(x) into hardware generation Ch(x) and

software Cs(x). Those two functions could be then modeled for example using GP or some

other regression techniques. The incorporation of cost can be easily done by modification

of the acquisition function, as shown in [107, 139, 64, 148]. In case of standard EI the

cost-aware improvement function in the reconfigurable computing context [107] becomes

I(x)c =
I(x)

Cs(x∗) + Ch(x∗)
. (6.1)

Although this approach seems promising, it suffers from one main problem. Same as

pure EGO algorithm, it is still a greedy approach. Whenever a bitstream is generated, it

drastically decreases the evaluation cost of all the parameter settings which use it. At
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every step of the cost-aware EGO algorithm improvement per cost will look promising,

and the algorithm can end up evaluating a wasteful amount of parameter settings which

offer minuscule improvement. For example, there are two alternative choices, one is a

parameter setting x which offers improvement of a 100 at a cost of 10 hours and there is

a set of one million parameter configurations which offer improvement of 1 at a cost of

1 second. Although selection of one of the cheap and less promising configurations will

result in a revised model, they can still look deceitfully promising. Multi-step acquistion

function would seem to be a solution, where looks few steps ahead and makes more

strategic choices. But, as is suggested in [64], it is intractable [148]. Another possible

mitigation of the problem is to balance the cost and improvement, using a similar concept

to standard deviation and mean balancing used in the GP-UCB algorithm [26]. In the

context of global optimization the acquisition function could be defined as

argmax
x∗∈X

[f̄(x∗) + α
1/2
t σ(x∗) +

γt
Cs(x∗) + Ch(x∗)

]. (6.2)

where αt and γt are domain-specific time-varying parameters, which regulate the trade-

off between exploration through maximization of predictive mean, standard deviation

and the cost of configuration evaluation. The main challenge is management of γt and

asynchronous parallelization of such algorithm. Work on batched GP-UCB algorithm [54]

could be extended.

The concept of configuration cost management is similar to typically used by human

designer. For example, optimize a single core design first. Single core design is smaller and

takes much less time to generate hardware. Once the single core design was optimized,

increase the number of cores.

Classification and Constraint Function Modeling

Currently synthesis results, like resource utilization, are not directly used to predict the

probability pt(x∗) that an unseen configuration will meet all constraints. Furthermore,

some of the constraints, like resource utilization, could be analytically modeled for each

target device [117]. As the modeling is done per device instead of design, the approach is

still generic.

Secondly, the SVM classifier does not take into account the random nature of certain

aspects of hardware generation. This becomes especially apparent when looking at the

PQ design, presented in Figure 6.2. There is a certain probability p1(x∗) that a design
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Figure 6.1: GP prediction of BRAM utilization for the stochatic volatility design.

will meet all of the constraints. The probability is related to the parameter settings.

The approach requires different approach to dealing with the random constraints, a

possible solution lies in the approach presented in [64]. The surrogate model should consist

of a number of constraint function regressors. To make the approach truly Bayesian,

SVM classification could be replaced by modeling of the constraint function using GPs,

that is hi(x) ∼ GP(mi(x), ki(x,x)) and gj(x) ∼ GP(mj(x), kj(x,x)) each with a distinct

mean and kernel function. Example of a GP fit to BRAM utilization data for stochastic

volatility design with mw = 38 is presented in Figure 6.1. 1 Having that prediction, one

can either use the mean prediction h̄i(x∗) ≥ ci to construct a hard decision function, or

use use the fact that GP returns a point distribution hi(x∗) ∼ N (h̄i(x∗), σi(x∗)). Lastly,

the GP regressions could be further refined, using kernels most appropriate to different

constraint functions.

Two crucial to reconfigurable computing functions, the timing function and the place

and route function, should be to discover the probability a that the hardware will be

generated. Those functions are vastly different to other constraint functions, like resource

constraint function, which can be considered to be largely deterministic. One of the possible

solutions is to use Bayesian classifier like RVM or again Gaussian Process classification.

Multiobjective Optimization

Reconfigurable designs are often optimized for multiple goals, mainly performance and

power. Initial investigation of modification of MLO to accommodate multiobjective

1More accurately, as the BRAM constraint function is only positive, hbram : X → R+, modeling in
the log space would be more appropriate log(hbram(x)) ∼ GP(mbram(x), kbram(x,x))
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(a) Fitness function

(b) Probability of hardware generation

Figure 6.2: PQ design throughput fitness function [46] and probability of succesful
hardware generation visualization.

optimization is presented in [90]. An example of Pareto fronts found using Multiobjective

Machine Learning Optimizer (MOMLO) algorithm are presented in Figure 6.3. The goal

in such optimization is to identify the Pareto optimal front for the multiple goals. As

we presented in Chapter 4, ARDEGO has several benefits over surrogate model assisted

meta-heuristic optimization. It uses a simpler optimization loop and according to our

study offers better performance. A natural step would be to use a multiobjective Bayesian

optimization algorithm [84] in the reconfigurable design optimization context.

6.2.2 Knowledge Transfer

Knowledge transfer shows promise, yet the three earlier identified tasks need to be further

addressed: (a) “what to transfer”, (b) “when to transfer” and (b) “how to transfer” [113].

“What to transfer”; there are a number of sources that can potentially benefit new

optimization. In Chapter 5 we exploit information collected during generation of a design

for a different platform. Platform specific information can be aggregated as well, possibly

to allow better assessment of PAR and timing issues for different groups of related designs.

Furthermore, we only investigated reusing information from a single old design. The
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(a) Real Pareto front (b) Estimated Pareto front

Figure 6.3: Real and approximated Pareto fronts found with the MOMLO algorithm [90].

knowledge transfer concept can be extended to benefit from information gathered during

optimization of multiple designs.

“When to transfer”; one of the main problems is a rigorous definition of related designs.

The crucial work is to establish a reconfigurable design-specific distance metric that would

allow for easy identification of related designs. A similar concept is presented in [116].

They define the concept of “a problem specific distance metric over decision variables that

correlates with the strength of interactions between the variables”. One of the possibilities

is to define designs as graphs, and use graph similarity [164]. It is a compute intensive

process; however, it can might allow for search for related designs across design databas.

Then, multiple similar designs could be automatically fetched. Although far fetched, a

cloud base multi-user design database might be the future of reconfigurable computing.

“How to transfer”; the information learned during previous optimization, for example

captured in the form of optimized hyperparameters, is lost. By revising the algorithm, as

described in the previous Section to accommodate new fully Bayesian surrogate model, the

Knowledge Transfer approach could be substituted by a full transfer learning approach.

The suggested changes were presented in the previous section, and follow similar concepts

to the ones presented in [64]. Currently, a full-fledged transfer learning approach is

impossible due to the lack of common design features. Construction and evaluation of

such a feature set would only be possible after examination of a large data set of optimized

designs. Currently such a data set is not available and is prohibitively expensive to

construct, although this might change due to cloud computing and cheaper computing

resources.
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