280 research outputs found

    The World of Fast Moving Objects

    Full text link
    The notion of a Fast Moving Object (FMO), i.e. an object that moves over a distance exceeding its size within the exposure time, is introduced. FMOs may, and typically do, rotate with high angular speed. FMOs are very common in sports videos, but are not rare elsewhere. In a single frame, such objects are often barely visible and appear as semi-transparent streaks. A method for the detection and tracking of FMOs is proposed. The method consists of three distinct algorithms, which form an efficient localization pipeline that operates successfully in a broad range of conditions. We show that it is possible to recover the appearance of the object and its axis of rotation, despite its blurred appearance. The proposed method is evaluated on a new annotated dataset. The results show that existing trackers are inadequate for the problem of FMO localization and a new approach is required. Two applications of localization, temporal super-resolution and highlighting, are presented

    Non-Causal Tracking by Deblatting

    Full text link
    Tracking by Deblatting stands for solving an inverse problem of deblurring and image matting for tracking motion-blurred objects. We propose non-causal Tracking by Deblatting which estimates continuous, complete and accurate object trajectories. Energy minimization by dynamic programming is used to detect abrupt changes of motion, called bounces. High-order polynomials are fitted to segments, which are parts of the trajectory separated by bounces. The output is a continuous trajectory function which assigns location for every real-valued time stamp from zero to the number of frames. Additionally, we show that from the trajectory function precise physical calculations are possible, such as radius, gravity or sub-frame object velocity. Velocity estimation is compared to the high-speed camera measurements and radars. Results show high performance of the proposed method in terms of Trajectory-IoU, recall and velocity estimation.Comment: Published at GCPR 2019, oral presentation, Best Paper Honorable Mention Awar

    Automatic 3D human modeling: an initial stage towards 2-way inside interaction in mixed reality

    Get PDF
    3D human models play an important role in computer graphics applications from a wide range of domains, including education, entertainment, medical care simulation and military training. In many situations, we want the 3D model to have a visual appearance that matches that of a specific living person and to be able to be controlled by that person in a natural manner. Among other uses, this approach supports the notion of human surrogacy, where the virtual counterpart provides a remote presence for the human who controls the virtual character\u27s behavior. In this dissertation, a human modeling pipeline is proposed for the problem of creating a 3D digital model of a real person. Our solution involves reshaping a 3D human template with a 2D contour of the participant and then mapping the captured texture of that person to the generated mesh. Our method produces an initial contour of a participant by extracting the user image from a natural background. One particularly novel contribution in our approach is the manner in which we improve the initial vertex estimate. We do so through a variant of the ShortStraw corner-finding algorithm commonly used in sketch-based systems. Here, we develop improvements to ShortStraw, presenting an algorithm called IStraw, and then introduce adaptations of this improved version to create a corner-based contour segmentatiuon algorithm. This algorithm provides significant improvements on contour matching over previously developed systems, and does so with low computational complexity. The system presented here advances the state of the art in the following aspects. First, the human modeling process is triggered automatically by matching the participant\u27s pose with an initial pose through a tracking device and software. In our case, the pose capture and skeletal model are provided by the Microsoft Kinect and its associated SDK. Second, color image, depth data, and human tracking information from the Kinect and its SDK are used to automatically extract the contour of the participant and then generate a 3D human model with skeleton. Third, using the pose and the skeletal model, we segment the contour into eight parts and then match the contour points on each segment to a corresponding anchor set associated with a 3D human template. Finally, we map the color image of the person to the 3D model as its corresponding texture map. The whole modeling process only take several seconds and the resulting human model looks like the real person. The geometry of the 3D model matches the contour of the real person, and the model has a photorealistic texture. Furthermore, the mesh of the human model is attached to the skeleton provided in the template, so the model can support programmed animations or be controlled by real people. This human control is commonly done through a literal mapping (motion capture) or a gesture-based puppetry system. Our ultimate goal is to create a mixed reality (MR) system, in which the participants can manipulate virtual objects, and in which these virtual objects can affect the participant, e.g., by restricting their mobility. This MR system prototype design motivated the work of this dissertation, since a realistic 3D human model of the participant is an essential part of implementing this vision

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Generalizations of the Multicut Problem for Computer Vision

    Get PDF
    Graph decomposition has always been a very important concept in machine learning and computer vision. Many tasks like image and mesh segmentation, community detection in social networks, as well as object tracking and human pose estimation can be formulated as a graph decomposition problem. The multicut problem in particular is a popular model to optimize for a decomposition of a given graph. Its main advantage is that no prior knowledge about the number of components or their sizes is required. However, it has several limitations, which we address in this thesis: Firstly, the multicut problem allows to specify only cost or reward for putting two direct neighbours into distinct components. This limits the expressibility of the cost function. We introduce special edges into the graph that allow to define cost or reward for putting any two vertices into distinct components, while preserving the original set of feasible solutions. We show that this considerably improves the quality of image and mesh segmentations. Second, multicut is notorious to be NP-hard for general graphs, that limits its applications to small super-pixel graphs. We define and implement two primal feasible heuristics to solve the problem. They do not provide any guarantees on the runtime or quality of solutions, but in practice show good convergence behaviour. We perform an extensive comparison on multiple graphs of different sizes and properties. Third, we extend the multicut framework by introducing node labels, so that we can jointly optimize for graph decomposition and nodes classification by means of exactly the same optimization algorithm, thus eliminating the need to hand-tune optimizers for a particular task. To prove its universality we applied it to diverse computer vision tasks, including human pose estimation, multiple object tracking, and instance-aware semantic segmentation. We show that we can improve the results over the prior art using exactly the same data as in the original works. Finally, we use employ multicuts in two applications: 1) a client-server tool for interactive video segmentation: After the pre-processing of the video a user draws strokes on several frames and a time-coherent segmentation of the entire video is performed on-the-fly. 2) we formulate a method for simultaneous segmentation and tracking of living cells in microscopy data. This task is challenging as cells split and our algorithm accounts for this, creating parental hierarchies. We also present results on multiple model fitting. We find models in data heavily corrupted by noise by finding components defining these models using higher order multicuts. We introduce an interesting extension that allows our optimization to pick better hyperparameters for each discovered model. In summary, this thesis extends the multicut problem in different directions, proposes algorithms for optimization, and applies it to novel data and settings.Die Zerlegung von Graphen ist ein sehr wichtiges Konzept im maschinellen Lernen und maschinellen Sehen. Viele Aufgaben wie Bild- und Gittersegmentierung, KommunitĂ€tserkennung in sozialen Netzwerken, sowie Objektverfolgung und SchĂ€tzung von menschlichen Posen können als Graphzerlegungsproblem formuliert werden. Der Mehrfachschnitt-Ansatz ist ein populĂ€res Mittel um ĂŒber die Zerlegungen eines gegebenen Graphen zu optimieren. Sein grĂ¶ĂŸter Vorteil ist, dass kein Vorwissen ĂŒber die Anzahl an Komponenten und deren GrĂ¶ĂŸen benötigt wird. Dennoch hat er mehrere ernsthafte Limitierungen, welche wir in dieser Arbeit behandeln: Erstens erlaubt der klassische Mehrfachschnitt nur die Spezifikation von Kosten oder Belohnungen fĂŒr die Trennung von zwei Nachbarn in verschiedene Komponenten. Dies schrĂ€nkt die AusdrucksfĂ€higkeit der Kostenfunktion ein und fĂŒhrt zu suboptimalen Ergebnissen. Wir fĂŒgen dem Graphen spezielle Kanten hinzu, welche es erlauben, Kosten oder Belohnungen fĂŒr die Trennung von beliebigen Paaren von Knoten in verschiedene Komponenten zu definieren, ohne die Menge an zulĂ€ssigen Lösungen zu verĂ€ndern. Wir zeigen, dass dies die QualitĂ€t von Bild- und Gittersegmentierungen deutlich verbessert. Zweitens ist das Mehrfachschnittproblem berĂŒchtigt dafĂŒr NP-schwer fĂŒr allgemeine Graphen zu sein, was die Anwendungen auf kleine superpixel-basierte Graphen einschrĂ€nkt. Wir definieren und implementieren zwei primal-zulĂ€ssige Heuristiken um das Problem zu lösen. Diese geben keine Garantien bezĂŒglich der Laufzeit oder der QualitĂ€t der Lösungen, zeigen in der Praxis jedoch gutes Konvergenzverhalten. Wir fĂŒhren einen ausfĂŒhrlichen Vergleich auf vielen Graphen verschiedener GrĂ¶ĂŸen und Eigenschaften durch. Drittens erweitern wir den Mehrfachschnitt-Ansatz um Knoten-Kennzeichnungen, sodass wir gemeinsam ĂŒber Zerlegungen und Knoten-Klassifikationen mit dem gleichen Optimierungs-Algorithmus optimieren können. Dadurch wird der Bedarf der Feinabstimmung einzelner aufgabenspezifischer Löser aus dem Weg gerĂ€umt. Um die AllgemeingĂŒltigkeit dieses Ansatzes zu ĂŒberprĂŒfen, haben wir ihn auf verschiedenen Aufgaben des maschinellen Sehens, einschließlich menschliche PosenschĂ€tzung, Mehrobjektverfolgung und instanz-bewusste semantische Segmentierung, angewandt. Wir zeigen, dass wir Resultate von vorherigen Arbeiten mit exakt den gleichen Daten verbessern können. Abschließend benutzen wir Mehrfachschnitte in zwei Anwendungen: 1) Ein Nutzer-Server-Werkzeug fĂŒr interaktive Video Segmentierung: Nach der Vorbearbeitung eines Videos zeichnet der Nutzer Striche auf mehrere Einzelbilder und eine zeit-kohĂ€rente Segmentierung des gesamten Videos wird in Echtzeit berechnet. 2) Wir formulieren eine Methode fĂŒr simultane Segmentierung und Verfolgung von lebenden Zellen in Mikroskopie-Aufnahmen. Diese Aufgabe ist anspruchsvoll, da Zellen sich aufteilen und unser Algorithmus dies in der Erstellung von Eltern-Hierarchien mitberĂŒcksichtigen muss. Wir prĂ€sentieren außerdem Resultate zur Mehrmodellanpassung. Wir berechnen Modelle in stark verrauschten Daten indem wir mithilfe von Mehrfachschnitten höherer Ordnung Komponenten finden, die diesen Modellen entsprechen. Wir fĂŒhren eine interessante Erweiterung ein, die es unserer Optimierung erlaubt, bessere Hyperparameter fĂŒr jedes entdeckte Modell auszuwĂ€hlen. Zusammenfassend erweitert diese Arbeit den Mehrfachschnitt-Ansatz in unterschiedlichen Richtungen, schlĂ€gt Algorithmen zur Inferenz in den resultierenden Modellen vor und wendet ihn auf neuartigen Daten und Umgebungen an

    3D-TV Production from Conventional Cameras for Sports Broadcast

    Get PDF
    3DTV production of live sports events presents a challenging problem involving conflicting requirements of main- taining broadcast stereo picture quality with practical problems in developing robust systems for cost effective deployment. In this paper we propose an alternative approach to stereo production in sports events using the conventional monocular broadcast cameras for 3D reconstruction of the event and subsequent stereo rendering. This approach has the potential advantage over stereo camera rigs of recovering full scene depth, allowing inter-ocular distance and convergence to be adapted according to the requirements of the target display and enabling stereo coverage from both existing and ‘virtual’ camera positions without additional cameras. A prototype system is presented with results of sports TV production trials for rendering of stereo and free-viewpoint video sequences of soccer and rugby
    • 

    corecore