508 research outputs found

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    Finding Even Subgraphs Even Faster

    Get PDF
    Problems of the following kind have been the focus of much recent research in the realm of parameterized complexity: Given an input graph (digraph) on nn vertices and a positive integer parameter kk, find if there exist kk edges (arcs) whose deletion results in a graph that satisfies some specified parity constraints. In particular, when the objective is to obtain a connected graph in which all the vertices have even degrees---where the resulting graph is \emph{Eulerian}---the problem is called Undirected Eulerian Edge Deletion. The corresponding problem in digraphs where the resulting graph should be strongly connected and every vertex should have the same in-degree as its out-degree is called Directed Eulerian Edge Deletion. Cygan et al. [\emph{Algorithmica, 2014}] showed that these problems are fixed parameter tractable (FPT), and gave algorithms with the running time 2O(klogk)nO(1)2^{O(k \log k)}n^{O(1)}. They also asked, as an open problem, whether there exist FPT algorithms which solve these problems in time 2O(k)nO(1)2^{O(k)}n^{O(1)}. In this paper we answer their question in the affirmative: using the technique of computing \emph{representative families of co-graphic matroids} we design algorithms which solve these problems in time 2O(k)nO(1)2^{O(k)}n^{O(1)}. The crucial insight we bring to these problems is to view the solution as an independent set of a co-graphic matroid. We believe that this view-point/approach will be useful in other problems where one of the constraints that need to be satisfied is that of connectivity

    Covering Vectors by Spaces in Perturbed Graphic Matroids and Their Duals

    Get PDF
    Perturbed graphic matroids are binary matroids that can be obtained from a graphic matroid by adding a noise of small rank. More precisely, an r-rank perturbed graphic matroid M is a binary matroid that can be represented in the form I +P, where I is the incidence matrix of some graph and P is a binary matrix of rank at most r. Such matroids naturally appear in a number of theoretical and applied settings. The main motivation behind our work is an attempt to understand which parameterized algorithms for various problems on graphs could be lifted to perturbed graphic matroids. We study the parameterized complexity of a natural generalization (for matroids) of the following fundamental problems on graphs: Steiner Tree and Multiway Cut. In this generalization, called the Space Cover problem, we are given a binary matroid M with a ground set E, a set of terminals T subseteq E, and a non-negative integer k. The task is to decide whether T can be spanned by a subset of E T of size at most k. We prove that on graphic matroid perturbations, for every fixed r, Space Cover is fixed-parameter tractable parameterized by k. On the other hand, the problem becomes W[1]-hard when parameterized by r+k+|T| and it is NP-complete for r <= 2 and |T|<= 2. On cographic matroids, that are the duals of graphic matroids, Space Cover generalizes another fundamental and well-studied problem, namely Multiway Cut. We show that on the duals of perturbed graphic matroids the Space Cover problem is fixed-parameter tractable parameterized by r+k

    On Finding Optimal Polytrees

    Full text link
    Inferring probabilistic networks from data is a notoriously difficult task. Under various goodness-of-fit measures, finding an optimal network is NP-hard, even if restricted to polytrees of bounded in-degree. Polynomial-time algorithms are known only for rare special cases, perhaps most notably for branchings, that is, polytrees in which the in-degree of every node is at most one. Here, we study the complexity of finding an optimal polytree that can be turned into a branching by deleting some number of arcs or nodes, treated as a parameter. We show that the problem can be solved via a matroid intersection formulation in polynomial time if the number of deleted arcs is bounded by a constant. The order of the polynomial time bound depends on this constant, hence the algorithm does not establish fixed-parameter tractability when parameterized by the number of deleted arcs. We show that a restricted version of the problem allows fixed-parameter tractability and hence scales well with the parameter. We contrast this positive result by showing that if we parameterize by the number of deleted nodes, a somewhat more powerful parameter, the problem is not fixed-parameter tractable, subject to a complexity-theoretic assumption.Comment: (author's self-archived copy
    corecore