732 research outputs found

    Comparison of five methods of computing the Dirichlet-Neumann operator for the water wave problem

    Full text link
    We compare the effectiveness of solving Dirichlet-Neumann problems via the Craig-Sulem (CS) expansion, the Ablowitz-Fokas-Musslimani (AFM) implicit formulation, the dual AFM formulation (AFM*), a boundary integral collocation method (BIM), and the transformed field expansion (TFE) method. The first three methods involve highly ill-conditioned intermediate calculations that we show can be overcome using multiple-precision arithmetic. The latter two methods avoid catastrophic cancellation of digits in intermediate results, and are much better suited to numerical computation. For the Craig-Sulem expansion, we explore the cancellation of terms at each order (up to 150th) for three types of wave profiles, namely band-limited, real-analytic, or smooth. For the AFM and AFM* methods, we present an example in which representing the Dirichlet or Neumann data as a series using the AFM basis functions is impossible, causing the methods to fail. The example involves band-limited wave profiles of arbitrarily small amplitude, with analytic Dirichlet data. We then show how to regularize the AFM and AFM* methods by over-sampling the basis functions and using the singular value decomposition or QR-factorization to orthogonalize them. Two additional examples are used to compare all five methods in the context of water waves, namely a large-amplitude standing wave in deep water, and a pair of interacting traveling waves in finite depth.Comment: 31 pages, 18 figures. (change from version 1: corrected error in table on page 12

    Optimal realizations of floating-point implemented digital controllers with finite word length considerations.

    Get PDF
    The closed-loop stability issue of finite word length (FWL) realizations is investigated for digital controllers implemented in floating-point arithmetic. Unlike the existing methods which only address the effect of the mantissa bits in floating-point implementation to the sensitivity of closed-loop stability, the sensitivity of closed-loop stability is analysed with respect to both the mantissa and exponent bits of floating-point implementation. A computationally tractable FWL closed-loop stability measure is then defined, and the method of computing the value of this measure is given. The optimal controller realization problem is posed as searching for a floating-point realization that maximizes the proposed FWL closed-loop stability measure, and a numerical optimization technique is adopted to solve for the resulting optimization problem. Simulation results show that the proposed design procedure yields computationally efficient controller realizations with enhanced FWL closed-loop stability performance

    Computation of the inverse Laplace Transform based on a Collocation method which uses only real values

    Get PDF
    We develop a numerical algorithm for inverting a Laplace transform (LT), based on Laguerre polynomial series expansion of the inverse function under the assumption that the LT is known on the real axis only. The method belongs to the class of Collocation methods (C-methods), and is applicable when the LT function is regular at infinity. Difficulties associated with these problems are due to their intrinsic ill-posedness. The main contribution of this paper is to provide computable estimates of truncation, discretization, conditioning and roundoff errors introduced by numerical computations. Moreover, we introduce the pseudoaccuracy which will be used by the numerical algorithm in order to provide uniform scaled accuracy of the computed approximation for any x with respect to ex . These estimates are then employed to dynamically truncate the series expansion. In other words, the number of the terms of the series acts like the regularization parameter which provides the trade-off between errors. With the aim to validate the reliability and usability of the algorithm experiments were carried out on several test functions

    Finite Wordlength Controller Realizations using the Specialized Implicit Form

    Get PDF
    Une forme d'état implicite spécialisée est présentée pour étudier les effets de l'implantation en précision finie des régulateurs. Cette forme permet une description macroscopique des algorithmes à implanter. Elle constitue un canevas unificateur permettant de décrire les différentes structures utilisées pour l'implantation, telles que les réalisations avec l'opérateur delta, la forme directe II en rho, la forme d'état-observateur et bien d'autres formes qui sont d'habitude traitées séparément dans la littérature. Différentes mesures quantifiant les effets de l'implantation sur le comportement en boucle fermée sont définis dans ce contexte. Elles concernent aussi bien la stabilité que la performance. L'écart entre la réalisation à précision infinie et la réalisation à précision finie est évaluée selon la mesure de sensibilité des coefficients et la mesure du bruit de quantification. Le problème consistant à trouver une réalisation dont l'implantation amène un minimum de dégradation peut alors est résolut numériquement. Cette approche est illustrée avec deux exemples
    corecore