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Abstract

The closed-loop stability issue of finite-precision realizations is investigated for digital controllers im-

plemented in floating-point arithmetic. Unlike the existing methods which only address the effect of the

mantissa bits in floating-point implementation to the sensitivity of closed-loop stability, the sensitivity

of closed-loop stability is analyzed with respect to both the mantissa and exponent bits of floating-point

implementation. A computationally tractable FWL closed-loop stability measure is then defined, and the

method of computing the value of this measure is given. The optimal controller realization problem is

posed as searching for a floating-point realization that maximizes the proposed FWL closed-loop stabil-

ity measure, and a numerical optimization technique is adopted to solve for the resulting optimization

problem. Simulation results show that the proposed design procedure yields computationally efficient

controller realizations with enhanced FWL closed-loop stability performance.

Index Terms — digital controller, finite word length, floating-point, closed-loop stability, optimization.

1 Introduction

The classical digital controller design methodology oftenassumes that the controller is implemented ex-

actly, even though in reality a control law can only be realized in finite precision. It may seem that the

uncertainty resulting from finite-precision computing of the digital controller is so small, compared to
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the uncertainty within the plant, such that this controller“uncertainty” can simply be ignored. Increas-

ingly, however, researchers have realized that this is not necessarily the case. Due to the FWL effect, a

casual controller implementation may degrade the designedclosed-loop performance or even destabilize

the designed stable closed-loop system, if the controller implementation structure is not carefully cho-

sen. The effects of finite-precision computation have become more critical with the growing popularity

of robust controller design methods which focus only on dealing with large plant uncertainty (Keel &

Bhattacharryya, 1997; Mäkilä, 1999). It is well known that a control law can be implemented with dif-

ferent realizations, and these different realizations areall equivalent if they are implemented in infinite

precision. However, different controller realizations possess different degrees of “robustness” to FWL

errors. This property can be utilized to select “optimal” realizations that optimize some given criteria,

and several works (Williamson, 1991; Gevers & Li, 1993; Istepanian & Whidborne, 2001) have studied

many aspects of finite-precision digital controller design.

Generally speaking, there are two types of FWL errors in the digital controller. The first one is

perturbation of controller parameters implemented with FWL and the second one is the rounding errors

that occur in arithmetic operations of signals (Li, Wu, Chen& Zhao, 2000). Typically, effects of these

two types of errors are investigated separately for the reason of mathematical tractability. The first type

of FWL errors directly concerns with the critical issue of closed-loop stability, and many studies have

investigated some closed-loop stability robustness measures, especially for fixed-point implementation

(Fialho & Georgiou, 1994, 1999; Madievski, Anderson & Gevers, 1995; Li, 1998; Chen, Wu, Istepanian

& Chu, 1999; Whidborne, Wu & Istepanian, 2000; Whidborne, Istepanian & Wu, 2001; Wu, Chen,

Li, Istepanian & Chu, 2001). The second type of FWL errors is usually measured with the so-called

roundoff noise gain (Moroney, Willsky & Houpt, 1980; Williamson & Kadiman, 1989; Li & Gevers,

1990; Liu, Skelton & Grigoriadis, 1992; Liet al., 2000), assuming an FWL implementation of controller

coefficients. This paper addresses the closed-loop stability with respect to FWL implementation and in

the remaining of the paper, without further pointing out, the FWL effect is taken to mean the first type of

FWL errors.

In real-time applications where computational efficiency is critical, a digital controller implemented

with fixed-point arithmetic has some advantages over floating-point implementation. However, the detri-

mental FWL effects are markedly increased in fixed-point implementation due to a reduced precision.

It is therefore not surprising that previous works have focused on finding optimal controller realizations

using fixed-point arithmetic by maximizing some closed-loop stability measures (Li, 1998; Fialho &

Georgiou, 1999; Chenet al., 1999; Chen, Istepanian, Wu & Chu, 2000; Whidborneet al., 2000, 2001;
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Wu, Chen, Li, Istepanian & Chu, 2000; Wuet al., 2001). In all the previous works using fixed-point

arithmetic, various FWL closed-loop stability measures, which can be shown to directly link to the bits

required to implement the fractional part of fixed-point representation (Li, 1998; Chenet al., 1999), are

maximized to produce optimal realizations. However, the dynamic range of fixed-point representation is

determined by its integer part. Overflow occurs when there are not enough bits for the integer part. Max-

imizing these measures, while minimizing the bits requiredfor the fractional part, may actually increase

the bits required for the integer part (Chenet al., 2000; Wuet al., 2000). Arguably, a better approach

would be to consider some measure which has a direct link to the total bit length required.

With decreasing in price and increasing in availability, the use of floating-point processors in con-

troller implementations has increased dramatically. Floating-point representation has quite different

characteristics from fixed-point representation. The dynamic range of floating-point representation is

determined by its exponent part. Overflow or underflow occurswhen the bits for the exponent part are

not sufficient. The effects of finite-precision floating-point implementation have been well studied in

digital filter designs (Rao, 1996; Kalliojärvi & Astola, 1996; Ralev & Bauer, 1999). However, there has

been relatively little work studying explicitly floating point digital controller implementations. Some

exceptions include Rink & Chong (1979), Molchanov & Bauer (1995), Istepanian, Whidborne & Bauer

(2000), Whidborne & Gu (2001). In the work by Istepanianet al. (2000), a block floating-point arith-

metic was used, in which control coefficients were forced to have a common exponent and the problem

was converted into a fixed-point one. The work by Whidborne & Gu (2001) represents a case of true

floating-point implementation. In this work, a weighted closed-loop eigenvalue sensitivity index was de-

fined for floating-point digital controller realizations. This index, however, only considers the mantissa

part of floating-point arithmetic, under an assumption thatthe exponent bits are unlimited.

The generic contribution of this paper is to derive a new FWL closed-loop stability measure that

explicitly considers both the mantissa and exponent parts of floating-point arithmetic. The remainder of

this paper is organized as follows. Section 2 briefly summarizes the floating-point representation and

highlights the multiplicative nature of perturbations resulting from FWL floating-point arithmetic. Sec-

tion 3 analyses the FWL effect of floating-point arithmetic on closed-loop stability and addresses how

to measure such an effect on floating-point implemented digital controllers. Section 4 defines a com-

putationally tractable FWL closed-loop stability measurefor floating-point controller realizations and

provides the method of computing its value. In section 5, theoptimal floating-point controller realization

problem is formulated, and a numerical optimization technique is adopted to solve for the resulting opti-

mization problem. Two examples are given in section 6 to demonstrate the effectiveness of the proposed
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design method, and the paper concludes at section 7.

2 Floating-Point Representation

It is well known that any real numberx 2 R can be represented uniquely byx = (�1)s � w � 2e; (1)

wheres 2 f0; 1g is for the sign ofx, w 2 [0:5; 1) is the mantissa ofx, e 2 Z is the exponent ofx, andZ denotes the set of integers. Whenx is stored in a digital computer of finite� bits in a floating-point

format, the bits consist of three parts: one bit fors, �w bits forw and�e bits fore. Obviously,� = 1 + �w + �e: (2)

Since�w and�e are finite, the set of numbers that is represented by a particular floating-point scheme is

not dense on the real line. Thus the set of possible floating-point numbers,F , is given byF 4= 8<:(�1)s0�0:5 + �wXi=1 bi2�(i+1)1A� 2e : s 2 f0; 1g; bi 2 f0; 1g; e 2 Z; e � e � e9=; [ f0g ; (3)

wheree ande represent the lower and upper limits of the exponent, respectively, ande � e = 2�e � 1.

Note that unlike fixed-point representation, underflow can occur in floating-point arithmetic.

Denote the set of integerse � e � e asZ[e; e℄. When no underflow or overflow occurs, that is, the

exponent ofx is withinZ[e; e℄, the floating-point quantization operatorQ : R! F can be defined asQ(x) 4= 8<: sgn(x)2(e��w�1)b2(�w�e+1)jxj+ 0:5
; for x 6= 00; for x = 0 (4)

where the exponente = blog2 jxj
+ 1 and the floor functionbx
 denotes the largest integer less than or

equal tox. The quantization error,", is defined as" 4= jx�Q(x)j : (5)

It can easily be shown that the quantization error is boundedby" < jxj2�(�w+1) : (6)

Thus, whenx is implemented in floating-point format of�w mantissa bits, assuming no underflow or

overflow, it is perturbed to Q(x) = x(1 + Æ); jÆj < 2�(�w+1) : (7)

It can be seen that the perturbation resulting from finite-precision floating-point arithmetic is multiplica-

tive, unlike the perturbation resulting from finite-precision fixed-point arithmetic, which is additive.
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3 Problem Statement

Consider the discrete-time closed-loop control system, consisting of a linear time invariant plantP (z)
and a digital controllerC(z). The plant modelP (z) is assumed to be strictly proper with a state-space de-

scription(AP ;BP ;CP ), whereAP 2 Rm�m,BP 2 Rm�l andCP 2 Rq�m. Let (AC ;BC ;CC ;DC)
be a state-space description of the controllerC(z), with AC 2 Rn�n, BC 2 Rn�q, CC 2 Rl�n andDC 2 Rl�q. A linear system with a given transfer function matrix has aninfinite number of state-

space descriptions. In fact, if(A0C ;B0C ;C0C ;D0C) is a state-space description ofC(z), all the state-space

descriptions ofC(z) form arealization setSC 4= n(AC ;BC ;CC ;DC)jAC = T�1A0CT;BC = T�1B0C ;CC = C0CT;DC = D0Co (8)

where the transformation matrixT 2 Rn�n is an arbitrary non-singular matrix. DenoteX = [xj;k℄ 4= " DC CCBC AC # : (9)

The stability of the closed-loop control system depends on the eigenvalues of the closed-loop transition

matrix A(X) = " AP +BPDCCP BPCCBCCP AC # = " AP 00 0 #+ " BP 00 In #X " CP 00 In #4=M0 +M1XM2 (10)

where0 denotes the zero matrix of appropriate dimension andIn then � n identity matrix. All the

different realizationsX in SC have exactly the same set of closed-loop poles if they are implemented

with infinite precision. Since the closed-loop system has been designed to be stable, all the eigenvalues�i(A(X)), 1 � i � m+ n, are within the unit disk. DefinekXkmax 4= maxj;k jxj;kj (11)

and g(X) 4= minj;k fjxj;kj : xj;k 6= 0g : (12)

The controllerX is implemented with a floating-point processor of�e exponent bits,�w mantissa bits

and one sign bit.

Firstly, in order to avoid underflow and/or overflow, both theexponent ofkXkmax and the exponent

of g(X) should be withinZ[e; e℄ supported by the�e exponent bits. We define an exponent measure for

the floating-point controller realizationX as
(X) 4= log2 �4kXkmaxg(X) � : (13)
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The rationale of this exponent measure becomes clear in the following (obvious) proposition.

Proposition 1 X can be represented in the floating-point format of�e exponent bits without underflow

or overflow, if2�e � log2 �kXkmaxg(X) �+ 2.

Let �mine be the smallest exponent bit length that, when used to implementX, can avoid underflow

and overflow. It can be computed as�mine = �b� log2(blog2 kXkmax
 � blog2 g(X)
 + 1)
 : (14)

The measure
(X) provides an estimate of�mine as�̂mine 4= �b� log2 
(X)
 : (15)

It is clear that�̂mine � �mine .

Secondly, when there is no underflow or overflow, according tothe results of section 2,X is perturbed

toX+X Æ� due to the effect of finite�w whereX Æ� 4= [xj;kÆj;k℄ (16)

represents the Hadamard product ofX and� = [Æj;k℄. Each element of� is bounded by�2�(�w+1),
that is, k�kmax < 2�(�w+1) : (17)

With the perturbation�, �i(A(X)) is moved to�i(A(X+XÆ�)). If an eigenvalue ofA(X+XÆ�)
is outside the open unit disk, the closed-loop system, designed to be stable, becomes unstable with the

finite-precision floating-point implementedX.

It is therefore critical to know when the FWL error will causeclosed-loop instability. This means that

we would like to know the largest open “cube” in the perturbation space, within which the closed-loop

system remains stable. Based on this consideration, a mantissa measure for the floating-point realizationX can be defined as �0(X) 4= inffk�kmax : A(X+X Æ�) is unstableg : (18)

From the above definition, the following proposition is obvious.

Proposition 2 A(X+X Æ�) is stable ifk�kmax < �0(X).
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Let �minw be the mantissa bit length such that8�w � �minw ,A(X+X Æ�) is stable for the floating-

point implementedX with �w mantissa bits andA(X+X Æ�) is unstable for the floating-point imple-

mentedX with �minw �1 mantissa bits. Except through simulation,�minw is generally unknown. It should

be pointed out that due to the complex nonlinear relationship between�w and closed-loop stability, there

may exist some odd cases of smaller mantissa bit length�w < �minw � 1 which regain closed-loop sta-

bility. For example, consider the following hypothetical system. When�w � 9, the closed-loop system

is stable, but the closed-loop system becomes unstable with�w = 8. However, with�w = 7, the closed-

loop regains stability. The system becomes unstable again for �w � 6. For this system,�minw is 9 rather

than 7. The mantissa measure�0(X) provides an estimate of�minw as�̂minw0 4= �blog2 �0(X)
 � 1 : (19)

It can be seen that̂�minw0 � �minw .

Define the minimum total bit length required in floating pointimplementation as�min 4= �mine + �minw + 1 : (20)

Clearly, a floating-point implementedX with a bit length� � �min can guarantee no underflow, no

overflow and closed-loop stability. Combining the measures
(X) and�0(X) results in the following

true FWL closed-loop stability measure for the floating-point realizationX�0(X) 4= �0(X)=
(X) : (21)

An estimate of�min is given by�0(X) as�̂min0 4= �blog2 �0(X)
 + 1 : (22)

It is clear that�̂min0 � �min. The following proposition summarizes the usefulness of�0(X) as a

measure for the FWL characteristics ofX.

Proposition 3 A floating-point implementedX with a bit length� can guarantee no underflow, no over-

flow and closed-loop stability, if 2��1 � �0(X) : (23)

Since the closed-loop stability measure�0(X) is a function of the controller realizationX and�̂min0
decreases with the increase of�0(X), an optimal realization can in theory be found by maximizing�0(X), leading to the following optimal controller realization problem�true 4= maxX2SC �0(X) : (24)
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However, the difficulty with this approach is that computingthe value of�0(X) is an unsolved open

problem. Thus, the true FWL closed-loop stability measure�0(X) and the optimal realization problem

(24) have limited practical significance. In the next section, we will seek an alternative measure that not

only can quantify FWL characteristics ofX but also is computationally tractable.

4 A Tractable FWL Closed-Loop Stability Measure

When the FWL error� is small, from a first-order approximation,8i 2 f1; � � � ;m+ ngj�i(A(X+X Æ�))j � j�i(A(X))j � l+nXj=1 q+nXk=1 �j�ij�Æj;k ������=0 Æj;k : (25)

For the derivative matrix�j�ij�� = h �j�ij�Æj;k i, define



�j�ij�� 



sum 4=Xj;k ������j�ij�Æj;k ����� : (26)

Then j�i(A(X+X Æ�))j � j�i(A(X))j � k�kmax 



 �j�ij�� �����=0



sum : (27)

This leads to the following mantissa measure for the floating-point realizationX�1(X) 4= mini2f1;���;m+ng 1� j�i(A(X))j


 �j�ij�� ����=0


sum : (28)

Obviously, if k�kmax < �1(X), then j�i(A(X + X Æ �))j < 1 which means that the closed-loop

remains stable under the FWL error�. In other words, for a givenX, the closed-loop can tolerate

those FWL perturbations� whose normsk�kmax are less than�1(X). The larger�1(X) is, the larger

FWL errors the closed-loop system can tolerate. Similar to (19), from the mantissa measure�1(X), an

estimate of�minw is given as �̂minw1 4= �blog2 �1(X)
 � 1 : (29)

The assumption of small� is usually valid in floating-point implementation. Generally speaking,

there is no rigorous relationship between�0(X) and�1(X), but�1(X) is connected with a lower bound

of �0(X) in some manners: there are “stable perturbation cubes” larger thanf� : k�kmax < �1(X)g
while there is no “stable perturbation cube” larger thanf� : k�kmax < �0(X)g (Wu et al., 2000,

2001). Hence, in most cases, it is reasonable to take that�1(X) � �0(X) and �̂minw1 � �̂minw0 . More

importantly, unlike the measure�0(X), the value of�1(X) can be computed explicitly. It is easy to see

that �j�ij�� �����=0 = �j�ij�X ÆX : (30)
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Let pi be a right eigenvector ofA(X) corresponding to the eigenvalue�i. DefineMp 4= [p1 p2 � � � pm+n ℄ (31)

and My 4= [y1 y2 � � � ym+n ℄ =M�Hp (32)

where the superscriptH denotes the conjugate transpose operator andyi is called the reciprocal left

eigenvector related topi. The following lemma is due to Li (1998).

Lemma 1 LetA(X) =M0 +M1XM2 given in (10) be diagonalizable. Then��i�X =MT1 y�ipTi MT2 (33)

where the superscript� denotes the conjugate operation andT the transpose operator.

Comments: The necessary and sufficient condition forA(X) being diagonalizable is that it hasm + n
linearly independent eigenvectors. This includes two cases. Firstly,A(X) hasm+n distinct eigenvalues.

In this case, we can differentiate eigenvalues simply by their values. Secondly, the eigenvalues ofA(X)
are not all distinct but there arem+n linearly independent eigenvectors. In this case, we can differentiate

eigenvalues by their corresponding eigenvectors.

The following proposition shows that, given aX, the value of�1(X) can easily be calculated.

Proposition 4 LetA(X) be diagonalizable. Then�1(X) = mini2f1;���;m+ng j�ij(1 � j�ij)

�MT1 Re[��iy�ipTi ℄MT2 � ÆX

sum : (34)

Proof: Noting j�ij = p��i�i leads to�j�ij�X = 12p��i�i ����i�X �i + ��i ��i�X� = 12j�ij ����i�X�� �i + ��i ��i�X� = 1j�ijRe
���i ��i�X� : (35)

Combining (28), (30), (35) and Lemma 1 results in this proposition.

Replacing�0(X) with �1(X) in (21) leads to a computationally tractable FWL closed-loop stability

measure �1(X) 4= �1(X)=
(X) : (36)

From the above measure, an estimate of�min is given as�̂min1 4= �blog2 �1(X)
 + 1 : (37)
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It is useful to compare the proposed measure with the previous results, especially the most recent one

given by Whidborne & Gu (2001). For a complex-valued matrixY = [yj;k℄, define the Frobenius normkYkF 4= 0�Xj;k y�j;kyj;k1A1=2 : (38)

Under an assumption that the exponent bits are unlimited, the computationally tractable weighted closed-

loop eigenvalue sensitivity index addressed in (Whidborne& Gu, 2001) is given by�(X) 4= m+nXi=1 �i�i(X) (39)

where�i are non-negative weighting scalars and�i(X) are single-eigenvalue sensitivities defined by�i(X) 4= kXk2F 



��i�X



2F : (40)

The thinking behind the above definition is as follows. From afirst-order approximation, it can easily be

shown that j�i(A(X+X Æ�))� �i(A(X))j � k�kmaxkXkF 



��i�X



F : (41)

Therefore, for those multiplicative perturbations bounded by k�kmax, a small�i(X) will limit the

resulting change of the corresponding eigenvalue within a small range.

The first obvious observation is that�1(X) considers both the mantissa and exponent of floating-

point arithmetic and is therefore able to handle all the aspects of underflow, overflow and closed-loop

stability, while�(X) only considers the mantissa part of floating-point arithmetic and is thus “incom-

plete”. Secondly, it can be seen that�(X) deals with the sensitivity of�i while �1(X) (�1(X)) consid-

ers the the sensitivity ofj�ij. It is well-known that the stability of a discrete-time linear time-invariant

system depends only on the module of its eigenvalues. As�(X) includes the unnecessary eigenvalue

arguments in consideration, it is generally conservative in comparison with�1(X). Thirdly, �1(X) uses


�j�ij�X ÆX


sum while�(X) useskXkF 


��i�X 


F in checking the change of an eigenvalue. It is easy to see

thatj�i(A(X+X Æ�))j � j�i(A(X))j � k�kmax 



�j�ij�X ÆX



sum � k�kmaxkXkF 



��i�X



F : (42)

Obviously,



�j�ij�X ÆX


sum gives a more accurate limit thankXkF 


��i�X


F does on the change of the

corresponding eigenvalue module due to the multiplicativeperturbations. This again implies that�1(X)
is less conservative than�(X) in estimating the robustness of closed-loop stability withrespect to con-

troller perturbations. The fourth observation is that�1(X) provides an estimate of�min, �̂min1 in (37),

while �(X) cannot provide information on bit length to the designer. One reason is that the measure
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�1(X) consists of two components, with�1(X) addressing the stability margin and eigenvalue sensi-

tivity linked to the mantissa bits, and
(X) considering the exponent bits, while�(X) only focuses

on the eigenvalue sensitivity partially linked to the mantissa part. The other reason is that, over all the

closed-loop eigenvalues,�1(X) considers the “worst” one while�(X) considers a “weighted average”.

5 Optimization Procedure

As different realizationsX have different values of the FWL closed-loop stability measure�1(X), it is

of practical importance to find an “optimal” realizationXopt that maximizes�1(X). The controller im-

plemented with this optimal realizationXopt needs a minimum bit length and has a maximum tolerance

to the FWL error. This optimal controller realization problem is formally defined as� 4= maxX2SC �1(X) : (43)

Assume that a controller has been designed using some standard controller design method. This con-

troller, denoted as X0 4= �D0C C0CB0C A0C � ; (44)

is used as the initial controller realization in the above optimal controller realization problem. Letp0i be a

right eigenvector ofA(X0) corresponding to the eigenvalue�i, andy0i be the reciprocal left eigenvector

related top0i. The definition ofSC in (8) means thatX 4= X(T) = � Il 00 T�1 �X0 � Iq 00 T � (45)

wheredet(T) 6= 0. It can then be shown thatA(X) = � Im 00 T�1 �A(X0) � Im 00 T � (46)

which implies that pi = � Im 00 T�1 �p0i; yi = � Im 00 TT �y0i: (47)

Hence MT1 Re[��iy�ipTi ℄MT2 = � Il 00 TT �MT1 Re[��iy�0ipT0i℄MT2 � Iq 00 T�T �4= � Il 00 TT ��i � Iq 00 T�T � (48)

with�i =MT1 Re[��iy�0ipT0i℄MT2 . Define the following cost function:f(T) 4= mini2f1;���;m+ng0BB�



�� Il 00 TT ��i � Iq 00 T�T �� ÆX(T)



sumj�ij(1� j�ij) log2 4kX(T)kmaxg(X(T)) 1CCA�1 : (49)
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Then the optimal controller realization problem (43) can beposed as the following optimization problem:� = maxT2Rn�ndetT6=0 f(T) : (50)

Efficient numerical optimization methods exist for solvingfor this optimization problem to provide an

optimal transformation matrixTopt. WithTopt, the optimal realizationXopt can readily be computed.

6 Numerical Examples

Two examples are used to illustrate the proposed design procedure for obtaining optimal FWL floating-

point controller realizations and to compare it with the method given in (Whidborne & Gu, 2001).

Example 1. This example, taken from (Gevers & Li, 1993), has been studied by Whidborne & Gu

(2001). The discrete-time plant is given byAP = 2664 3:7156e + 0 �5:4143e + 0 3:6525e + 0 �9:6420e � 11 0 0 00 1 0 00 0 1 0 3775 ;BP = [ 1 0 0 0 ℄T ;CP = [ 1:1160e � 6 4:3000e � 8 1:0880e � 6 1:4000e � 8 ℄ :
The initial realization of the digital controller is given byA0C = 26664 2:6743e + 0 �5:7446e + 0 2:5101e + 0 �9:1782e � 12:8769e � 1 �2:7446e � 2 �6:9444e � 1 �8:9358e � 3�3:3773e � 1 9:8699e � 1 �3:2925e � 1 �4:2367e � 3�8:3021e � 2 �3:1988e � 3 9:1906e � 1 �1:0415e � 3 37775 ;B0C = [ 1:0959e + 6 6:3827e + 5 3:0262e + 5 7:4392e + 4 ℄T ;C0C = [ 1:8180e � 1 �2:8313e � 1 5:0006e � 2 6:1722e � 2 ℄ ; D0C = 0 :
Based on the proposed FWL closed-loop stability measure, the optimization problem (50) was formed

and solved for using the MATLAB routinefminsearch.m to obtain an optimal transformation matrixTopt = 26664 7:7275e + 3 �1:0904e + 2 �2:1292e + 2 9:8042e + 16:9729e + 3 2:1370e + 3 4:4988e + 1 2:1812e + 26:2844e + 3 3:9092e + 3 2:9303e + 2 2:9240e + 25:5879e + 3 5:2862e + 3 5:5027e + 2 3:4367e + 2 37775
and the corresponding optimal realization of the digital controllerXopt given byAoptC = 26664 �1:4441e + 0 �1:0500e + 0 �6:0800e � 2 �1:0102e � 13:8412e + 0 2:4034e + 0 6:7143e � 2 1:7402e � 1�1:3159e + 1 �4:5856e + 0 5:3403e � 1 �6:8843e � 13:2330e � 1 �2:1078e + 0 �6:6254e � 2 8:2322e � 1 37775 ;
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BoptC = [ 1:6342e + 2 �2:5378e + 2 9:1370e + 2 �6:1106e � 2 ℄T ;CoptC = [ 8:9770e + 1 �1:0310e + 2 �2:8290e + 0 �8:0995e + 0 ℄ ; DoptC = 0 :
An “optimal” controller realization problem was given in (Whidborne & Gu, 2001) based on the

weighted closed-loop eigenvalue sensitivity index (39). We will use the index “s”, rather then “opt”, to

denote the solution of this “optimal” controller realization problem. For this example, the transformation

matrix solution obtained using the MATLAB routinefminsearch.m given in (Whidborne & Gu, 2001) isTs = 2664 8:1477e + 3 0 0 07:0104e + 3 2:2671e + 3 0 06:1991e + 3 3:9989e + 3 1:1558e + 2 05:6761e + 3 5:2680e + 3 3:5814e + 2 1:5299e + 13775
with the corresponding controller realizationXs given byAsC = 26664 �9:9795e � 1 �9:5988e � 1 �4:7357e � 3 �1:7234e � 32:1137e + 0 1:6951e + 0 �2:2171e � 2 5:2689e � 3�1:4177e + 0 6:1144e � 1 6:7870e � 1 �9:0420e � 21:9428e + 0 �2:4577e + 0 4:2234e � 1 9:4079e � 1 37775 ;BsC = [ 1:3451e + 2 �1:3439e + 2 5:3833e + 1 �2:5633e + 1 ℄T ;CsC = [ 1:5673e + 2 �1:1677e + 2 2:7885e + 1 9:4430e � 1 ℄ ; DsC = 0 :

It is obvious that the true minimum exponent bit length�mine for a realizationX can directly be

obtained by examining the elements ofX. The true minimum mantissa bit length�minw however can

only be obtained through simulation. That is, starting froma very large�w, reduce�w by one bit and

check the closed-loop stability. The process is repeated until there appears closed-loop instability at�w = �wu. Then�minw = �wu + 1. Table 1 summarizes the various measures, the corresponding

estimated minimum bit lengths and the true minimum bit lengths for the three controller realizationsX0,Xs andXopt, respectively. It can be seen that the floating-point implementation ofX0 needs at least 26

bits (20 mantissa bits and 5 exponent bits) while the implementation ofXopt needs at least 13 bits (8

mantissa bits and 4 exponent bits). The reduction in the bit length required is 13 (12-bit reduction for the

mantissa part and 1-bit reduction for the exponent part). ComparingXopt with Xs, it can be seen thatXopt needs one bit less in the exponent part and one bit less in the mantissa part.

Notice that any realizationX 2 SC implemented in infinite precision will achieve the exact per-

formance of the infinite-precision implementedX0, which is the designed controller performance. For

this reason, the infinite-precision implementedX0 is referred to as the ideal controller realizationXideal.
Figure 1 compares the unit impulse response of the plant output y(k) for the ideal controllerXideal with

those of the 8-mantissa-bit plus 5-exponent-bit implementedXs and 8-mantissa-bit plus 4-exponent-bit
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implementedXopt. The 8-mantissa-bit implementedX0 quickly becomes unstable and is not shown

here. From Figure 1, it can be seen that the closed-loop system with the 13-bit implementedXopt is

stable while the system with the 14-bit implementedXs is unstable. Figure 2 compares the unit impulse

response ofy(k) for Xideal with those of the 9-mantissa-bit plus 5-exponent-bit implementedXs and

the 9-mantissa-bit plus 4-exponent-bit implementedXopt. Again the 9-mantissa-bit implementedX0 is

unstable and is not shown. It can be seen that the response with the 14-bit implementedXopt is clearly

closer to the ideal performance than that of the 15-bit implementedXs.
Example 2. This example is taken from a continuous-timeH1 robust control example studied in (Keel

& Bhattacharryya, 1997; Whidborneet al., 2001). The continuous-time plant model andH1 controller

are sampled with a sampling period of 4 ms to obtain the discrete-time plantAP = � 1:9980e + 0 �9:9800e � 11 0 � ;BP = [ 1 0 ℄T ; CP = [ 3:9880e � 3 �4:0040e � 3 ℄ ;
and the initial realization of the digital controllerA0C = 24 2:3985e + 0 �1:8017e + 0 4:0317e � 11 0 00 1 0 35 ;B0C = [ 1 0 0 ℄T ;C0C = [�7:3591e + 1 1:4661e + 2 �7:3018e + 1 ℄ ; D0C = 1:2450e + 2 :
The MATLAB routine fminsearch.m was used to solve for the optimization problem based on the FWL

closed-loop stability measure presented in this paper to obtain an optimal transformation matrixTopt = 264 1:8515e + 2 7:2829e � 1 9:7266e + 01:8540e + 2 1:6951e + 1 �2:3477e + 01:8566e + 2 3:3300e + 1 �1:4508e + 1 375
and the corresponding optimal realization of the digital controllerXopt withAoptC = 264 1:0006e + 0 �8:8718e � 2 9:9092e � 2�2:7168e � 2 1:0178e + 0 �4:5738e � 1�3:6546e � 2 3:2513e � 2 3:8007e � 1 375 ;BoptC = [�6:8999e + 0 9:2711e + 1 1:2450e + 2 ℄T ;CoptC = [�3:6469e � 2 2:7168e � 2 �6:1334e � 1 ℄ ; DoptC = 1:2450e + 2 :
Based on the method of the weighted closed-loop eigenvalue sensitivity index (Whidborne & Gu, 2001),

the MATLAB routine fminsearch.m found a transformation matrix solutionTs = 24 1:8446e + 2 0 01:8500e + 2 2:9433e + 0 01:8553e + 2 5:9061e + 0 8:3753e � 335
14



with the corresponding controller realizationXs given byAsC = 264 9:9711e � 1 �1:5840e � 2 1:8305e � 53:2077e � 5 9:9558e � 1 �1:1505e � 3�2:8762e � 2 2:5216e � 1 4:0584e � 1 375 ;BsC = [ 5:4211e � 3 �3:4074e � 1 1:2019e + 2 ℄T ;CsC = [�2:9785e � 2 2:6087e � 1 �6:1154e � 1 ℄ ; DsC = 1:2450e + 02 :
Table 2 summarizes the various measures, the correspondingestimated minimum bit lengths and the

true minimum bit lengths forX0,Xs andXopt. Obviously, the implementation ofX0 needs at least 30

bits (25 mantissa bits and 4 exponent bits) while the implementation ofXopt requires at least 12 bits (7

mantissa bits and 4 exponent bits). It can be seen that the optimization results in a reduction of 18 bits for

the mantissa part. It is interesting to note that the realizationXs, while reducing 16 bits in the required�minw , actually increases the required�mine by one bit, compared withX0. This is not surprising, since the

measure�(X) completely neglects the exponent part. Figure 3 compares the unit impulse response of

the plant outputy(k) for the ideal controllerXideal with those of the 14-bit implementedXs (8 mantissa

bits and 5 exponent bits) and the 14-bit implementedXopt (9 mantissa bits and 4 exponent bits). It can

be seen that the closed-loop system with the 14-bit implementedXopt is stable while the system with the

14-bit implementedXs is unstable. Figure 4 compares the unit impulse response ofy(k) forXideal with

those of the 15-bit implementedXs (9 mantissa bits and 5 exponent bits) and the 15-bit implementedXopt (10 mantissa bits and 4 exponent bits). The performance of the 15-bit implementedXopt is clearly

closer to the ideal performance than that of the 15-bit implementedXs.
7 Conclusions

The closed-loop stability issue of finite-precision realizations has been investigated for digital controller

implemented in floating-point arithmetic. A new computationally tractable FWL closed-loop stability

measure has been derived for floating-point controller realizations. Unlike the existing methods, which

only consider the mantissa part of floating-point scheme, the proposed measure takes into account both

the exponent and mantissa parts of floating-point format. Ithas been shown that this new measure yields

a more accurate estimate for the FWL closed-loop stability.Based on this FWL closed-loop stability

measure, the optimal controller realization problem has been formulated, which can easily be solved

for using standard numerical optimization algorithms. Twonumerical examples have demonstrated that

the proposed design procedure yields computationally efficient controller realizations suitable for FWL

float-point implementation in real-time applications.
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Realization �1 �̂min1 �1 �̂minw1 
 �̂mine �min �minw �mineX0 2.6644e-9 30 8.5182e-8 23 3.1971e+1 5 26 20 5Xs 4.7588e-6 19 8.7907e-5 13 1.8473e+1 5 15 9 5Xopt 9.5931e-6 18 1.5229e-4 12 1.5875e+1 4 13 8 4

Table 1: Various measures, corresponding estimated minimum bit lengths and true minimum bit lengths
for three controller realizationsX0,Xs andXopt of Example 1.

Realization �1 �̂min1 �1 �̂minw1 
 �̂mine �min �minw �mineX0 2.6767e-11 37 2.8122e-10 31 1.0506e+1 4 30 25 4Xs 3.1047e-6 20 7.6679e-5 13 2.4697e+1 5 15 9 5Xopt 5.8446e-6 19 8.2771e-5 13 1.4162e+1 4 12 7 4

Table 2: Various measures, corresponding estimated minimum bit lengths and true minimum bit lengths
for three controller realizationsX0,Xs andXopt of Example 2.
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Figure 1: Unit impulse responsey(k) forXideal, 14-bit implementedXs (8 mantissa bits and 5 exponent
bits) and 13-bit implementedXopt (8 mantissa bits and 4 exponent bits) of Example 1.
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Figure 2: Unit impulse responsey(k) forXideal, 15-bit implementedXs (9 mantissa bits and 5 exponent
bits) and 14-bit implementedXopt (9 mantissa bits and 4 exponent bits) of Example 1.
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Figure 3: Unit impulse responsey(k) forXideal, 14-bit implementedXs (8 mantissa bits and 5 exponent
bits) and 14-bit implementedXopt (9 mantissa bits and 4 exponent bits) of Example 2.
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Figure 4: Unit impulse responsey(k) forXideal, 15-bit implementedXs (9 mantissa bits and 5 exponent
bits) and 15-bit implementedXopt (10 mantissa bits and 4 exponent bits) of Example 2.
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