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Abstract

The closed-loop stability issue of finite-precision reatians is investigated for digital controllers im-
plemented in floating-point arithmetic. Unlike the exigtimethods which only address the effect of the
mantissa bits in floating-point implementation to the s@rigi of closed-loop stability, the sensitivity
of closed-loop stability is analyzed with respect to both tiantissa and exponent bits of floating-point
implementation. A computationally tractable FWL closedg stability measure is then defined, and the
method of computing the value of this measure is given. Thieng controller realization problem is
posed as searching for a floating-point realization thatimizes the proposed FWL closed-loop stabil-
ity measure, and a numerical optimization technique is &b solve for the resulting optimization
problem. Simulation results show that the proposed desigoeplure yields computationally efficient

controller realizations with enhanced FWL closed-loofb#itst performance.

Index Terms— digital controller, finite word length, floating-point,aded-loop stability, optimization.

1 Introduction

The classical digital controller design methodology oftissumes that the controller is implemented ex-
actly, even though in reality a control law can only be readiin finite precision. It may seem that the

uncertainty resulting from finite-precision computing bétdigital controller is so small, compared to
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the uncertainty within the plant, such that this controfiencertainty” can simply be ignored. Increas-
ingly, however, researchers have realized that this is ecéssarily the case. Due to the FWL effect, a
casual controller implementation may degrade the desiglesgd-loop performance or even destabilize
the designed stable closed-loop system, if the contratgmémentation structure is not carefully cho-
sen. The effects of finite-precision computation have becomre critical with the growing popularity
of robust controller design methods which focus only on idgalith large plant uncertainty (Keel &
Bhattacharryya, 1997; Makila, 1999). It is well known tlacontrol law can be implemented with dif-
ferent realizations, and these different realizationsafirequivalent if they are implemented in infinite
precision. However, different controller realizationsspess different degrees of “robustness” to FWL
errors. This property can be utilized to select “optimaldlizations that optimize some given criteria,
and several works (Williamson, 1991; Gevers & Li, 1993; psteian & Whidborne, 2001) have studied

many aspects of finite-precision digital controller design

Generally speaking, there are two types of FWL errors in tigitad controller. The first one is
perturbation of controller parameters implemented withLFakd the second one is the rounding errors
that occur in arithmetic operations of signals (Li, Wu, Cl&#hao, 2000). Typically, effects of these
two types of errors are investigated separately for theorea$ mathematical tractability. The first type
of FWL errors directly concerns with the critical issue obstd-loop stability, and many studies have
investigated some closed-loop stability robustness measaspecially for fixed-point implementation
(Fialho & Georgiou, 1994, 1999; Madievski, Anderson & Geydr995; Li, 1998; Chen, Wu, Istepanian
& Chu, 1999; Whidborne, Wu & Istepanian, 2000; Whidborngepanian & Wu, 2001; Wu, Chen,
Li, Istepanian & Chu, 2001). The second type of FWL errorssgally measured with the so-called
roundoff noise gain (Moroney, Willsky & Houpt, 1980; Williegson & Kadiman, 1989; Li & Gevers,
1990; Liu, Skelton & Grigoriadis, 1992; let al., 2000), assuming an FWL implementation of controller
coefficients. This paper addresses the closed-loop $yawilih respect to FWL implementation and in
the remaining of the paper, without further pointing oug FAWWL effect is taken to mean the first type of

FWL errors.

In real-time applications where computational efficiersgiitical, a digital controller implemented
with fixed-point arithmetic has some advantages over flggbivint implementation. However, the detri-
mental FWL effects are markedly increased in fixed-pointlemgntation due to a reduced precision.
It is therefore not surprising that previous works have gatlion finding optimal controller realizations
using fixed-point arithmetic by maximizing some closedgaiability measures (Li, 1998; Fialho &

Georgiou, 1999; Chesat al., 1999; Chen, Istepanian, Wu & Chu, 2000; Whidboenal., 2000, 2001;



Wu, Chen, Li, Istepanian & Chu, 2000; Wl al., 2001). In all the previous works using fixed-point
arithmetic, various FWL closed-loop stability measurekijolr can be shown to directly link to the bits
required to implement the fractional part of fixed-pointnesentation (Li, 1998; Chest al., 1999), are

maximized to produce optimal realizations. However, theaagic range of fixed-point representation is
determined by its integer part. Overflow occurs when thezenat enough bits for the integer part. Max-
imizing these measures, while minimizing the bits requicedhe fractional part, may actually increase
the bits required for the integer part (Chetral., 2000; Wuet al., 2000). Arguably, a better approach

would be to consider some measure which has a direct linkettotial bit length required.

With decreasing in price and increasing in availabilitye tise of floating-point processors in con-
troller implementations has increased dramatically. fgapoint representation has quite different
characteristics from fixed-point representation. The dyinarange of floating-point representation is
determined by its exponent part. Overflow or underflow ocetlien the bits for the exponent part are
not sufficient. The effects of finite-precision floating4pbimplementation have been well studied in
digital filter designs (Rao, 1996; Kalliojarvi & Astola, 26; Ralev & Bauer, 1999). However, there has
been relatively little work studying explicitly floating pu digital controller implementations. Some
exceptions include Rink & Chong (1979), Molchanov & Bauegd98), Istepanian, Whidborne & Bauer
(2000), Whidborne & Gu (2001). In the work by Istepanitral. (2000), a block floating-point arith-
metic was used, in which control coefficients were forcedaweeha common exponent and the problem
was converted into a fixed-point one. The work by Whidborne & (@001) represents a case of true
floating-point implementation. In this work, a weightedsgd-loop eigenvalue sensitivity index was de-
fined for floating-point digital controller realizations hik index, however, only considers the mantissa

part of floating-point arithmetic, under an assumption thatexponent bits are unlimited.

The generic contribution of this paper is to derive a new FWdsed-loop stability measure that
explicitly considers both the mantissa and exponent pafftsating-point arithmetic. The remainder of
this paper is organized as follows. Section 2 briefly sumzesrihe floating-point representation and
highlights the multiplicative nature of perturbationsukisg from FWL floating-point arithmetic. Sec-
tion 3 analyses the FWL effect of floating-point arithmetit @dosed-loop stability and addresses how
to measure such an effect on floating-point implementedaligontrollers. Section 4 defines a com-
putationally tractable FWL closed-loop stability meastoe floating-point controller realizations and
provides the method of computing its value. In section 5pgtémal floating-point controller realization
problem is formulated, and a numerical optimization teghaiis adopted to solve for the resulting opti-

mization problem. Two examples are given in section 6 to detrate the effectiveness of the proposed



design method, and the paper concludes at section 7.

2 Floating-Point Representation

It is well known that any real number € R can be represented uniquely by
z=(-1)" xw x 2° 1)

wheres € {0, 1} is for the sign ofz, w € [0.5, 1) is the mantissa of, e € Z is the exponent af, and
Z denotes the set of integers. Wheris stored in a digital computer of finité bits in a floating-point

format, the bits consist of three parts: one bitfof5,, bits forw andg, bits fore. Obviously,

B=1+Puw+Be. 2
Sinceg,, andg, are finite, the set of numbers that is represented by a ptittaating-point scheme is
not dense on the real line. Thus the set of possible floatigtpumbers,F, is given by
B
FE {(—1)5 (0.5 + ZbiZ‘(i“)) x 2¢:5€{0,1},b; € {0,1},e € Z,e<e < e} u{o}, (@)
i=1
wheree ande represent the lower and upper limits of the exponent, résedg ande — ¢ = 26 — 1.

Note that unlike fixed-point representation, underflow ceczuo in floating-point arithmetic.

Denote the set of integers< e < € asZ, z- When no underflow or overflow occurs, that is, the

exponent ofr is within Z|, 5, the floating-point quantization operat@r: R — F can be defined as

(4)

o A | sgn(z)2(e=Bu—1) | 20Bu—etD)|z| 4 0.5], for z #0
€Tr) =
0, for z =0

where the exponent= |log, ||| + 1 and the floor functiorjz | denotes the largest integer less than or

equal toz. The quantization errog, is defined as

e 2o — Q). (5)
It can easily be shown that the quantization error is bouryed

e < |z]2=Butl) (6)

Thus, whenz is implemented in floating-point format ¢f, mantissa bits, assuming no underflow or
overflow, it is perturbed to

O(z) = z(1 +6), |8 <27 ButD) 7)

It can be seen that the perturbation resulting from finiecjsion floating-point arithmetic is multiplica-

tive, unlike the perturbation resulting from finite-preors fixed-point arithmetic, which is additive.
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3 Problem Statement

Consider the discrete-time closed-loop control systemsisting of a linear time invariant plait(z)

and a digital controlle€'(z). The plant modeP(z) is assumed to be strictly proper with a state-space de-
scription(Ap,Bp, Cp), whereAp € R™*™, Bp € R™*! andCp € R7*™. Let (A, Bc, Ceo, D)

be a state-space description of the contrallée), with A € R™*", B¢ € R™*4, Cc € RY" and

Dc € R4, A linear system with a given transfer function matrix hasimfinite number of state-
space descriptions. In fact,(A2, BY,, C%, DY) is a state-space description@fz), all the state-space

descriptions of”(z) form arealization set
A _ _
So = {(Ac,Bo,Co,Do)|Ac = T'ALT, Bo = T'BY, Cc = CLT,De =D} (8)

where the transformation matriR € R™*" is an arbitrary non-singular matrix. Denote

A | De C
x -l 2| 3 5]

The stability of the closed-loop control system dependshereigenvalues of the closed-loop transition

(9)

matrix
— _ Ap+BpDcCp BpCe _ Ap O Bp O Cp O
AX) = BoCp Ac [Tl oolTlor %o,
é MO —|— MlXMQ (10)

where0 denotes the zero matrix of appropriate dimension Bnthen x n identity matrix. All the
different realizationsX in S have exactly the same set of closed-loop poles if they aréeimgnted
with infinite precision. Since the closed-loop system hantaesigned to be stable, all the eigenvalues

Ai(A(X)), 1 < i < m + n, are within the unit disk. Define
X mae = ma 2 (11)
and
9(X) = min{lzj4l : 25 # 0} (12)
The controllerX is implemented with a floating-point processor@fexponent bits,, mantissa bits

and one sign bit.

Firstly, in order to avoid underflow and/or overflow, both theonent of| X||,.x and the exponent
of g(X) should be withinZ, 7 supported by thg. exponent bits. We define an exponent measure for
the floating-point controller realizatiok as

4||X||max>

A
(%) £ log, (S (13
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The rationale of this exponent measure becomes clear irllogving (obvious) proposition.

Proposition 1 X can be represented in the floating-point formaoexponent bits without underflow

or overflow, if2% > log, (%) +2.

Let 87" be the smallest exponent bit length that, when used to imgaéXi, can avoid underflow

and overflow. It can be computed as

¢ = — |~ logy (| 1ogy | X lmax) — [log, g(X)| +1)] - (14)

The measure (X) provides an estimate ¢f™" as

Brin 2 | logy (X)) . (15)

Itis clear that3i" > gmin.,

Secondly, when there is no underflow or overflow, accordirtgeaesults of section X is perturbed

to X + X o A due to the effect of finites,, where
XoA é [xj’kdj,k] (16)

represents the Hadamard producfofind A = [, ). Each element oA is bounded byt 2~ (Buw+1),
that is,
| A ||l max < 2~ Fwtl) (17)

With the perturbatiom, );(A (X)) is moved to\; (A (X +X o A)). If an eigenvalue oA (X +Xo A)
is outside the open unit disk, the closed-loop system, desligo be stable, becomes unstable with the

finite-precision floating-point implementé&x.

It is therefore critical to know when the FWL error will caudesed-loop instability. This means that
we would like to know the largest open “cube” in the pertuidratspace, within which the closed-loop
system remains stable. Based on this consideration, aseamtieasure for the floating-point realization

X can be defined as
10(X) 2 inf{]|Allmax : A(X + X o A) is unstablé . (18)

From the above definition, the following proposition is ainys.

Proposition 2 A(X + X o A) is stable if|| Al|max < o (X).
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Let 5™ be the mantissa bit length such tht, > 7", A(X + X o A) is stable for the floating-
point implemented with 3,, mantissa bits and (X + X o A) is unstable for the floating-point imple-
mentedX with 47" — 1 mantissa bits. Except through simulatigf**™ is generally unknown. It should
be pointed out that due to the complex nonlinear relatignbbiweers,, and closed-loop stability, there
may exist some odd cases of smaller mantissa bit lefigtk: 57" — 1 which regain closed-loop sta-
bility. For example, consider the following hypotheticgsteem. Whens,, > 9, the closed-loop system
is stable, but the closed-loop system becomes unstablesyith 8. However, withg,, = 7, the closed-
loop regains stability. The system becomes unstable agaijs,f < 6. For this system3™" is 9 rather

than 7. The mantissa measurgX) provides an estimate g7 as
Jii" = —logy po(X)] — 1. (19)
It can be seen that”i» > gmin,
Define the minimum total bit length required in floating pdimplementation as
grin £ gmin 4 gmin 41 (20)

Clearly, a floating-point implementeX with a bit length3 > ™" can guarantee no underflow, no
overflow and closed-loop stability. Combining the measur€€) and ., (X) results in the following

true FWL closed-loop stability measure for the floatingapoealizationX

po(X) = p1o(X) /7(X). (21)
An estimate of3™™" is given bypy(X) as
jain 2 —[logy po(X)] +1. (22)

It is clear that3; > p™in. The following proposition summarizes the usefulnespfX) as a

measure for the FWL characteristicsXf

Proposition 3 A floating-point implemente&X with a bit lengths can guarantee no underflow, no over-
flow and closed-loop stability, if

2571 > py(X). (23)

Since the closed-loop stability measugX) is a function of the controller realizatick andB(’)"i”
decreases with the increase @f(X), an optimal realization can in theory be found by maximizing

po(X), leading to the following optimal controller realizationgplem

AN
Utrue = )r(%%x IOO(X) . (24)
fe}
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However, the difficulty with this approach is that computitg value ofu(X) is an unsolved open
problem. Thus, the true FWL closed-loop stability measui€&) and the optimal realization problem
(24) have limited practical significance. In the next sattiwe will seek an alternative measure that not

only can quantify FWL characteristics & but also is computationally tractable.

4 A Tractable FWL Closed-L oop Stability Measure

When the FWL erroA is small, from a first-order approximatiow; € {1,---,m + n}
. I+n g+n 8‘>\|
N(AX +XoA))| = NAX) =D > 5 Sk - (25)
j=1k=1 “Ik|a=0
Al -
For the derivative matrng‘LA = |:6“5j,k‘j|’ define
(26)
52 1., 2 % 55,
Then
M(AX +X o A))| = N(AX)] <[ Allmax | 57 (27)
sum
This leads to the following mantissa measure for the flogpioigt reallzatlonX
A 1-— Ai K X
pmX) = i€{1,-m+n} | A ' (28)
o ‘ 8A sum

Obviously, if | Allmax < p1(X), then|X;(A(X + X o A))| < 1 which means that the closed-loop
remains stable under the FWL erréx. In other words, for a giveiX, the closed-loop can tolerate
those FWL perturbationA whose normg A || ,.x are less thap; (X). The largens; (X) is, the larger
FWL errors the closed-loop system can tolerate. Similad®),(from the mantissa measyig(X), an
estimate of3”7" is given as

3min 2 _|logy p (X)) — 1. (29)

wl

The assumption of smalA is usually valid in floating-point implementation. Genérapeaking,
there is no rigorous relationship betweef(X) andy; (X), but i, (X) is connected with a lower bound
of ug(X) in some manners: there are “stable perturbation cubesgangn{ A : | A |nax < p1(X)}
while there is no “stable perturbation cube” larger tHal : || A||max < wo(X)} (Wu et al., 2000,
2001). Hence, in most cases, it is reasonable to takgth&) < uo(X) and 57" > 7 More
importantly, unlike the measuye (X), the value ofu; (X) can be computed explicitly. It is easy to see

that
I\l ~ 0\

DA | Ay OX oX. (30)



Let p; be a right eigenvector ok (X) corresponding to the eigenvalug Define

1>

Mp [pl P2 - pm+n} (31)

and

A _
My:[YI Y2 - YM+n}:MpH (32)

where the superscripf denotes the conjugate transpose operatorygnd called the reciprocal left

eigenvector related tp;. The following lemma is due to Li (1998).

Lemmal Let A(X) = Mg + M; XM, given in (10) be diagonalizable. Then

O\
0X

= M{y;p; M3 (33)
where the superscriptdenotes the conjugate operation d@nthe transpose operator.

Comments: The necessary and sufficient condition #(X) being diagonalizable is that it has + n
linearly independent eigenvectors. This includes twosaBestly, A (X) hasm+n distinct eigenvalues.
In this case, we can differentiate eigenvalues simply by trdues. Secondly, the eigenvaluesAfX)

are not all distinct but there are+n linearly independent eigenvectors. In this case, we céerdiitiate

eigenvalues by their corresponding eigenvectors.

The following proposition shows that, giverdg the value of.; (X) can easily be calculated.

Proposition 4 Let A(X) be diagonalizable. Then

: Al (1 — [Ad])
X) = min . (34)
M) = e TMT RN yipTIME) 0 X,
Proof: Noting |\;| = /A7), leads to
A\ 1 <axf BAZ-> 1 <<8/\Z~>* BAZ-> 1 { aAZ}
= LN+ N — ) = i +A; = Re|\! . (35
ox ~ 2o Lax M TN ax ) T ey Wex ) M PN ax) TRtV ax) - 9

Combining (28), (30), (35) and Lemma 1 results in this prijpms

Replacinguo(X) with p1(X) in (21) leads to a computationally tractable FWL closedslstability

measure

p1(X) 2 1 (X)/7(X). (36)

From the above measure, an estimatg'8f” is given as
Smin D
1" = —[logy p1 (X)) + 1. 37)
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It is useful to compare the proposed measure with the previesults, especially the most recent one

given by Whidborne & Gu (2001). For a complex-valued maWix= [y, ], define the Frobenius norm

1/2
A *
1Y (lr = (Z yj,kyj,k) : (38)

j’k
Under an assumption that the exponent bits are unlimited;dimputationally tractable weighted closed-

loop eigenvalue sensitivity index addressed in (Whidbd&rteu, 2001) is given by

m—+n
T(X)2 Y aTi(X) (39)
=1

whereq; are non-negative weighting scalars ahdX) are single-eigenvalue sensitivities defined by

o\ |I?

Ti(X) 2 ||1X 12 (40)

The thinking behind the above definition is as follows. Frofitst-order approximation, it can easily be

shown that
o\,

Mi(AX + X0 A)) = Xi(AX))] < (A lmax] X]lp

(41)

Therefore, for those multiplicative perturbations bowhds || A ||max, @ smallY;(X) will limit the

resulting change of the corresponding eigenvalue withimallsrange.

The first obvious observation is that(X) considers both the mantissa and exponent of floating-
point arithmetic and is therefore able to handle all the etspef underflow, overflow and closed-loop
stability, while T(X) only considers the mantissa part of floating-point arithenabd is thus “incom-
plete”. Secondly, it can be seen the¢X) deals with the sensitivity ok; while p; (X) (121 (X)) consid-
ers the the sensitivity of\;|. It is well-known that the stability of a discrete-time laretime-invariant
system depends only on the module of its eigenvaluesY &§) includes the unnecessary eigenvalue

arguments in consideration, it is generally conservativeomparison wittp; (X). Thirdly, p; (X) uses

H ol 5 x while T (X) uses|X||g ‘ g?{’ - in checking the change of an eigenvalue. It is easy to see
sum
that
— — |\ oA
Mi(AX +X o A))] = Xi(AX))| < [[Allnax | 2570 X | < [Allmax]IXF || 55 (42)
sum

Obviously, H Il XH gives a more accurate limit thafX||p ‘ g
sum

2 - does on the change of the
corresponding eigenvalue module due to the multiplicgtieturbations. This again implies that(X)

is less conservative thaf(X) in estimating the robustness of closed-loop stability wéthpect to con-
troller perturbations. The fourth observation is tpatX) provides an estimate g™, B{'”'” in (37),

while YT(X) cannot provide information on bit length to the designer.e@gason is that the measure

10



p1(X) consists of two components, wifly (X) addressing the stability margin and eigenvalue sensi-
tivity linked to the mantissa bits, angX) considering the exponent bits, whilg(X) only focuses
on the eigenvalue sensitivity partially linked to the masii part. The other reason is that, over all the

closed-loop eigenvalueg, (X) considers the “worst” one whil# (X) considers a “weighted average”.

5 Optimization Procedure

As different realization&X have different values of the FWL closed-loop stability meap; (X), it is

of practical importance to find an “optimal” realizatid,,; that maximizeg; (X). The controller im-
plemented with this optimal realizatidX,,; needs a minimum bit length and has a maximum tolerance
to the FWL error. This optimal controller realization pretyi is formally defined as

AN
U= max p1(X). (43)

Assume that a controller has been designed using some sfaralatroller design method. This con-

troller, denoted as

e 9
Be Ag¢
is used as the initial controller realization in the abovtrogl controller realization problem. Lel; be a

X, 2 : (44)

right eigenvector oA (X,) corresponding to the eigenvaldg andy,; be the reciprocal left eigenvector

related topg;. The definition ofS¢ in (8) means that

XéX(T):[g To_l}xo[% g} (45)

wheredet(T) # 0. It can then be shown that

I, O

2= o

|Zxo [ 7] (46)

which implies that

I I 0
Hence
EIE Il 0 % % I 0
M| Re[\yip; |M; = [0 TT M Re[A;y5,p0:] M5 (;J T-T
A [ O I 0
20 o]l oo (48)
with &; = M7 Re[\yg,pi;]MZE. Define the following cost function:
I, 0 } [1 0 ) !
P, | 7 _ o X(T
F(T)2  min <[0 ] lo TO i logy X (Dlmax (49)
ie{l,-,m+n} ‘>\2|(1 - ‘)\ZD 2 g(X(T))
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Then the optimal controller realization problem (43) campbsed as the following optimization problem:

v= max f(T). (50)
TERNXN
det T#0

Efficient numerical optimization methods exist for solvifog this optimization problem to provide an

optimal transformation matrif',,;. With T,¢, the optimal realizatioX,,; can readily be computed.

6 Numerical Examples

Two examples are used to illustrate the proposed desigreguoe for obtaining optimal FWL floating-

point controller realizations and to compare it with the Inoek given in (Whidborne & Gu, 2001).

Example 1. This example, taken from (Gevers & Li, 1993), has been studliy Whidborne & Gu

(2001). The discrete-time plant is given by
3.7156e + 0 —5.4143e¢ +0 3.6525e¢ +0 —9.6420e — 1

1 0 0 0
Ap = 0 1 0 0 :
0 0 1 0

Bp =1[1 0 0 0]7,

Cp

[1.1160e — 6 4.3000e —8 1.0880e — 6 1.4000e — 8] .

The initial realization of the digital controller is givelyb

2.6743e + 0 —5.7446e +0 2.5101le +0 —9.1782e — 1

0 2.8769¢ — 1 —2.7446e —2 —6.9444e — 1 —8.9358e — 3
| =3.3773e —1  9.8699¢ — 1 —3.2925¢ — 1 —4.2367¢ — 3
—8.3021e — 2 —3.1988¢ —3 9.1906e — 1 —1.0415e — 3

B = [1.0959¢ +6 6.3827e +5 3.0262¢+5 7.4392¢+4]7

C) = [1.8180e —1 —2.8313¢ —1 5.0006e —2 6.1722¢ —2], D% =0.

Based on the proposed FWL closed-loop stability measuespiimization problem (50) was formed
and solved for using the MATLAB routinfminsearch.m to obtain an optimal transformation matrix

7.7275e +3 —1.0904e +2 —2.1292e + 2 9.8042e + 1
6.9729¢ +3  2.1370e +3  4.4988e + 1 2.1812e + 2
6.2844e +3  3.9092e +3  2.9303e + 2 2.9240e + 2
5.5879%¢ +3 5.2862e +3 5.5027e + 2 3.4367e + 2

Topt =

and the corresponding optimal realization of the digitaitooller X,,; given by

—1.4441e + 0 —1.0500e +0 —6.0800e —2 —1.0102e — 1
3.8412e +0 2.4034e+0 6.7143e —2 1.7402e — 1

—1.3159e¢ + 1 —4.5856e +0 5.3403e —1 —6.8843e —1 |’
3.2330e — 1 —2.1078e + 0 —6.6254e —2 8.2322e — 1

opt __
A =

12



BP' = [1.6342¢ +2 —2.5378¢+2 9.1370e +2 —6.1106e —2]"

CP' = [8.9770e +1 —1.0310e +2 —2.8290e+0 —8.0995¢+0], DX'=0.

An “optimal” controller realization problem was given in fddborne & Gu, 2001) based on the
weighted closed-loop eigenvalue sensitivity index (39e WMl use the index “s”, rather then “opt”, to
denote the solution of this “optimal” controller realizatiproblem. For this example, the transformation

matrix solution obtained using the MATLAB routifminsearch.m given in (Whidborne & Gu, 2001) is

8.1477e 4+ 3 0 0 0
T. — 7.0104e +3 2.2671e+3 0 0
0 16.1991e +3 3.9989%¢ +3 1.1558¢ + 2 0

5.6761le +3 5.2680e +3 3.5814e +2 1.5299e + 1

with the corresponding controller realizatid®, given by

—9.9795e —1 —9.5988e —1 —4.7357e —3 —1.7234e — 3
2.1137¢ +0 1.695le+0 —2.2171e —2 5.268% — 3

—1.4177e +0 6.1144e —1 6.7870e —1 —9.0420e —2 | ’
1.9428e + 0 —2.4577e +0 4.2234e —1 9.4079e — 1

Bt = [1.3451le+2 —1.3439¢+2 5.3833¢e +1 —2.5633¢ + 1]T ;

AL =

Ci = [1.5673¢ +2 —1.1677e +2 2.7885e +1 9.4430e —1], D% =0.

It is obvious that the true minimum exponent bit lengtfi’™™ for a realizationX can directly be
obtained by examining the elementsXf The true minimum mantissa bit lengf**™ however can
only be obtained through simulation. That is, starting framery largeg,,, reduces,, by one bit and
check the closed-loop stability. The process is repeatditl there appears closed-loop instability at
Bw = Buwu. Thenpmin = g, + 1. Table 1 summarizes the various measures, the corresgpndin
estimated minimum bit lengths and the true minimum bit lbador the three controller realizatio®s,,

X andX,p¢, respectively. It can be seen that the floating-point imgletation ofX, needs at least 26
bits (20 mantissa bits and 5 exponent bits) while the implaat®on of X,,; needs at least 13 bits (8
mantissa bits and 4 exponent bits). The reduction in thebdth required is 13 (12-bit reduction for the
mantissa part and 1-bit reduction for the exponent partmg@aingX,,; with X, it can be seen that

X,pt Needs one bit less in the exponent part and one bit less indhéssa part.

Notice that any realizatiolXX € S implemented in infinite precision will achieve the exact-per
formance of the infinite-precision implement&q, which is the designed controller performance. For
this reason, the infinite-precision implemend&glis referred to as the ideal controller realizatiii,e.; .
Figure 1 compares the unit impulse response of the plantibytp) for the ideal controlleiX;4e, with

those of the 8-mantissa-bit plus 5-exponent-bit implem@; and 8-mantissa-bit plus 4-exponent-bit
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implementedX,,;. The 8-mantissa-bit implementé&d, quickly becomes unstable and is not shown
here. From Figure 1, it can be seen that the closed-loopraysith the 13-bit implementeX,; is
stable while the system with the 14-bit implemen®glis unstable. Figure 2 compares the unit impulse
response ofy(k) for X;qea1 With those of the 9-mantissa-bit plus 5-exponent-bit impatedX, and
the 9-mantissa-bit plus 4-exponent-bit implemer¥eg,. Again the 9-mantissa-bit implement&q), is
unstable and is not shown. It can be seen that the resporisé¢hwitl4-bit implementeX,; is clearly

closer to the ideal performance than that of the 15-bit imelistedX .

Example 2. This example is taken from a continuous-titg, robust control example studied in (Keel
& Bhattacharryya, 1997; Whidborret al., 2001). The continuous-time plant model afid, controller

are sampled with a sampling period of 4 ms to obtain the disdhme plant

1.9980e +0 —9.9800e — 1
A-P = 1 0 3

Bp = [1 0]", Cp=[3.9880c—3 —4.0040c —3],

and the initial realization of the digital controller

2.3985¢ +0 —1.8017e +0 4.0317¢ — 1
1 0 0 :
0 1 0

B, =11 0 0]7,
CY = [—7.3591le+1 1.466le+2 —7.3018¢+1], DY =1.2450e + 2.

The MATLAB routine fminsearch.m was used to solve for the optimization problem based on the FW
closed-loop stability measure presented in this papertaimhan optimal transformation matrix

1.8515e + 2 7.2829¢ — 1 9.7266e 40
Topt = | 1.8540e +2 1.6951e + 1 —2.3477e + 0
1.8566e + 2 3.3300e +1 —1.4508e + 1

and the corresponding optimal realization of the digitaitooller X, with

1.0006e +0 —8.8718e —2  9.9092e — 2

AP = | —2.7168¢ —2 1.0178¢ +0 —4.5738¢ — 1 | ,
~3.6546e —2 3.2513¢ —2  3.8007¢ — 1
B = [-6.8999¢ +0 9.2711e +1 1.2450¢ +2]" ,
CP' = [-3.6469c —2 2.7168¢ —2 —6.1334e—1], D' =1.2450¢ + 2.

Based on the method of the weighted closed-loop eigenvalstivity index (Whidborne & Gu, 2001),

the MATLAB routine fminsearch.m found a transformation matrix solution

1.8446e + 2 0 0
Ts = | 1.8500e +2 2.9433e+0 0
1.8553e +2 5.906le +0 8.3753e — 3
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with the corresponding controller realizatid®y given by

9.9711le —1 —1.5840e —2 1.8305e — 5
A = 3.2077e —5  9.9558¢ —1 —1.1505e — 3 | ,
—2.8762e —2 2.5216e —1 4.0584e — 1

S, = [5.421le —3 —3.4074e —1 1.2019¢ +2]7 ,

CS = [—2.9785¢ —2 2.6087¢ — 1 —6.1154e — 1], D% = 1.2450e + 02.

Table 2 summarizes the various measures, the correspoaslingated minimum bit lengths and the
true minimum bit lengths foX, X andX,,;. Obviously, the implementation a, needs at least 30
bits (25 mantissa bits and 4 exponent bits) while the implaat®on ofX,,; requires at least 12 bits (7
mantissa bits and 4 exponent bits). It can be seen that timipation results in a reduction of 18 bits for
the mantissa part. It is interesting to note that the rei@ingX, while reducing 16 bits in the required
pmin actually increases the requirg’™ by one bit, compared witK,. This is not surprising, since the
measurel’ (X) completely neglects the exponent part. Figure 3 compaeesrift impulse response of
the plant outpug (k) for the ideal controlleX;ge,; With those of the 14-bit implementeX; (8 mantissa
bits and 5 exponent bits) and the 14-bit implemerXeg; (9 mantissa bits and 4 exponent bits). It can
be seen that the closed-loop system with the 14-bit implé®aeX,,,; is stable while the system with the
14-bit implementedX is unstable. Figure 4 compares the unit impulse respongg:pfor X;qea With
those of the 15-bit implementeX (9 mantissa bits and 5 exponent bits) and the 15-bit implésden
X,pt (10 mantissa bits and 4 exponent bits). The performanceedt$kbit implementeX . is clearly

closer to the ideal performance than that of the 15-bit imeletedX .

7 Conclusions

The closed-loop stability issue of finite-precision reatlians has been investigated for digital controller
implemented in floating-point arithmetic. A new computatifly tractable FWL closed-loop stability
measure has been derived for floating-point controlleiizatibns. Unlike the existing methods, which
only consider the mantissa part of floating-point scheme ptioposed measure takes into account both
the exponent and mantissa parts of floating-point formdtastbeen shown that this new measure yields
a more accurate estimate for the FWL closed-loop stabiltgised on this FWL closed-loop stability
measure, the optimal controller realization problem hantfermulated, which can easily be solved
for using standard numerical optimization algorithms. Twonerical examples have demonstrated that
the proposed design procedure yields computationallyiefficontroller realizations suitable for FWL

float-point implementation in real-time applications.
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Realization o1 A{m’n 11 Aun;zlm v Afrzm‘n IBmzn g;zm f13m‘n
Xo 2.6644e-9| 30 | 8.5182e-8| 23 | 3.1971e+l] 5 26 20 5
X5 4.7588e-6| 19 | 8.7907e-5| 13 | 1.8473e+1] 5 15 9 5
Xopt 9.5931e-6| 18 1.5229e-4| 12 1.5875e+1| 4 13 8 4

Table 1: Various measures, corresponding estimated mimitsitlengths and true minimum bit lengths
for three controller realizationX,, Xs andX,,; of Example 1.

Realization o1 {mn I lem v /Bgzm IBmin 181,7)12“ /Bgzm
Xy 2.6767e-11] 37 | 2.8122e-10; 31 | 1.0506e+1| 4 30 25 4
Xy 3.1047e-6| 20 7.6679e-5| 13 | 2.4697e+l1l| 5 15 9 5

Xopt 5.8446e-6| 19 8.2771e-5| 13 | 1.4162e+1] 4 12 7 4

Table 2: Various measures, corresponding estimated mimibitilengths and true minimum bit lengths
for three controller realizationX,, Xs andX,,; of Example 2.
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Figure 1: Unit impulse responggk) for X;qea1, 14-bit implemente® (8 mantissa bits and 5 exponent
bits) and 13-bit implementel,,,; (8 mantissa bits and 4 exponent bits) of Example 1.

19



x 10

10
- Xideal
Xs
8r X i
- = opt
6r i
-2+ |
_4 - _
_6 | |
0 500 1000 1500

Figure 2: Unit impulse responggk) for X;qea1, 15-bit implemente®; (9 mantissa bits and 5 exponent
bits) and 14-bit implementel,,,; (9 mantissa bits and 4 exponent bits) of Example 1.
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Figure 3: Unit impulse responggk) for X;qea1, 14-bit implemente® (8 mantissa bits and 5 exponent
bits) and 14-bit implementel,,,; (9 mantissa bits and 4 exponent bits) of Example 2.
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Figure 4: Unit impulse responggk) for X;qea1, 15-bit implemente®; (9 mantissa bits and 5 exponent
bits) and 15-bit implementeX,,; (10 mantissa bits and 4 exponent bits) of Example 2.

22



